
Impact of automatic gain time identification on tree-based static WCET analysis

Mathieu Avila, Maxime Glaizot, Isabelle Puaut
IRISA, Campus de Beaulieu, 35042 Rennes Cédex, FRANCE

e-mail: puaut@irisa.fr

Abstract

WCET estimates obtained using static analysis methods
are getting increasingly pessimistic as the complexity of
hardware and software increases. The difference between
the WCET of one task (estimated off-line) and its actual ex-
ecution time (only known on-line) is known as gain time.
Identifying gain time as soon as possible is important be-
cause it increases the number of tasks that can be accepted
dynamically. While some research has already been under-
taken for the identification of gain time, few work has con-
sidered the impact of gain time identification and reclaim-
ing on static WCET analysis methods. This is the objective
of this paper, in which we introduce three classes of meth-
ods for gain time identification, and discuss their impact on
tree-based static WCET analysis methods.

1 Motivations for automatic gain time identi-
fication

Most scheduling algorithms for hard real-time tasks as-
sume that the WCET estimation of each task is known. A
number of dynamic scheduling algorithms have also been
proposed to dynamically accept soft real-time tasks when
spare capacity is left by hard-real-time tasks. Spare capac-
ity is either extra time (time known to be left by the hard
real-time tasks during the design phase) or gain time (spare
time appearing at run-time when hard real-time tasks exe-
cute in less than their WCET).

Static WCET analysis techniques return an upper bound
on the execution time of a task on a given hardware, based
on its source code. Having an upper bound on all possi-
ble execution times (safety) is of prime importance in hard
real-time systems to have confidence in the schedulability
analysis methods. But despite the important progress made
in static analysis methods, safety comes at the cost of pes-
simistic WCET estimations. Two sources of pessimism can
be identified: (i) analysis of the execution paths, or high
level analysis (when it is not known statically which path
will be executed, the longest path is selected), (ii) low-level
analysis (when the execution time of an instruction is not

known a priori due to the use of complex processors with
performance enhancing features such as caching or branch
prediction, the most pessimistic execution time is selected).
As the complexity of software and hardware increases, the
degree of pessimism of WCET estimates also increases. In
such situations, identifying and reclaiming gain time is get-
ting increasingly important. In this paper we concentrate on
the estimation of gain time, and not on its reclaiming.

In our opinion, the methods for gain time identification
should have the following properties:

� Early detection. The presence of gain time should be
detected before the tasks finish their execution. The
sooner the gain time is detected, the earlier new tasks
can be dynamically accepted.

� Predictable cost. Early identifying gain time requires
to monitor the progression of the tasks, which has a
cost in terms of execution time. This cost has to be pre-
dictable and the designer should have means to control
the cost of gain time identification.

� High efficiency. All gain time should be detected,
should it come from the low-level or the high-level
sources of pessimism of static WCET analysis.

� Transparency. No support (or very low support) from
the designer should be required.

� Predictable and low memory requirements.

Several techniques have been proposed for gain time
identification. [3] consists in measuring the execution time
of tasks between so-called gain points using specific hard-
ware, the gain points being placed by the programmer. A
software evolution of [3] is presented in [2]. In this pro-
posal, the gain points are automatically determined, but the
target language is very simple. Both [3] and [2] identify all
gain times because they use measurements to monitor the
tasks progress. Other methods, that only identify gain time
coming from the pessimistic identification of worst-case ex-
ecution paths, have been proposed in [1] and [4] (the latter
tackles object-oriented hard real-time programs). The prin-
ciple of these two methods is to know statically the WCET
of the different paths in the program. Then, each time a
path decision is taken, the gain time can be estimated, but

because there are no measures of the actual execution times,
the low-level analysis pessimism will not be identified.

In the following, we briefly propose three classes of tech-
niques aiming at reaching all the above-identified desirable
properties and study the support that static WCET analysis
should provide in order for these techniques to be imple-
mented.

2 Three methods of gain time identification
and their impact on WCET analysis

All three methods use some general principles. Instru-
mentation code is inserted in the tasks at specific points
called gain points (GP) in which the time actually consumed
by the task is measured. Measurements are used to identify
all sources of pessimism of WCET analysis. All three meth-
ods identify gain time on-line by subtracting the measured
execution time of segments of the task code from the WCET
of the same segments. The methods differ by the rules gov-
erning GP placement and the definition of a segment. Our
discussion hereafter concentrates on the impact of gain time
identification on tree-based WCET analysis tools.

A simple example is used hereafter to illustrate the pros
and cons of each method for GP placement, as well as their
impact on WCET analysis. The source code of the example
is presented in figure 1. Two important things can be noticed
about this code: (i) the maximum number of iterations of the
loop (three, as indicated in the annotation [3] in the source
code) may be overestimated (the loop may execute once or
twice only); (ii) the most time-consuming execution path
within the loop is the “else” path, although the “then” path
can be actually executed too.

int i;

int j;
for (i=0;i<N;i++) { [3]
 /* Known to iterate at most 3 times */

 j=3;
 }
 else {
 j=j+i;
 }
}

 if (j==1) {

Figure 1. Source code sample

We can extract two data structures from this source code:
the program control flow graph (left part of figure 2) and its
syntax tree (right part of figure 2). The latter data struc-
ture is used in so-called tree-based WCET analysis tools to
compute the WCET of a piece of code through a bottom-up
traversal of its syntax tree.

Figure 3 depicts for this sample program the differences
that may exist between the off-line and a given on-line time-
line. It shows that the actual execution time is lower than the

I

IT

TH EL

FIL

E

FT

FT = FOR / Test part
IT = IF / Test part
TH = IF / THEN
EL = IF / ELSE
FIL = FOR / Incr and Loop
E = END

I = Initialization

FT FIL

EI

TH ELIT

FOR

IF

ROOT

Figure 2. Control-flow graph (left) and syntax
tree (right)

WCET. More precisely, it identifies the different sources of
gain time: (i) gain time coming from the pessimism of low-
level analysis (in the figure, the actual execution time of
basic block I is lower than its worst-case counterpart identi-
fied off-line); (ii) gain time due to the pessimistic evaluation
of the worst-case execution path (e.g. the loop iterates two
times instead of three at worst; within the loop the “else”
branch – basic block EL – may be executed whereas it is
not the longest branch).

WCET Time Axis

Actual execution Time AxisEL TH E

EL
I

I

EL EL E

FOR(0) FOR(1)

FOR(0) FOR(1) FOR(2)

Figure 3. Off-line and on-line timelines

2.1 Segment-based method

This method puts almost no constraint on the locations
of GPs. It reasons on segments defined as intervals between
successive GPs in the task control flow. This method is
flexible since the length and location of segments can be
tailored so as to find an appropriate tradeoff between cost
and earliness of gain time identification. However, the off-
line overheads of the method are high. Indeed, the static
WCET analyzer has to generate partial WCETs for any pair
of points that can be consecutive in the task control flow,
leading to a potentially high number of partial WCETs to
be computed.

For instance, if three GPs are placed in our sample code
as shown in figure 4, six partial WCETs must be computed
to cover all possible paths between successive GPs in the
control flow graph. Furthermore, the integration of the com-
putation of WCETs of segments is not natural in tree-based
WCET analyzers because of the mismatch between the lo-
cation of GPs and the data structures used by such analyz-
ers.

I

IT

TH EL

FIL

E

FT

gp1

gp2 gp3

gp1 −> gp2
gp1 −> gp3
gp2 −> gp3
gp2 −> gp2
gp3 −> gp3
gp3 −> gp2

Partial WCETs
to be computed:

Figure 4. Example of GP locations in the
segment-based GP placement method

The large number of partial WCETs, in addition to
increasing the complexity of the computation of partial
WCETs, also increases the complexity of the on-line part of
gain time identification, since all partial WCETs have to be
accessible on-line. Another problem of this method is that,
when a GP is placed in a loop body, it only allows to iden-
tify gain time within the loop but is unable to identify the
gain time arising when the loop iterates less than expected.

2.2 Structural method

This method restricts the locations of GPs to the con-
trol structures in the syntax tree like loops, conditional con-
structs (segments do not cross control structures boundaries
as in the first method). A control structure in which it is
interesting to reclaim gain time is enclosed by a pair of GPs
(immediately before and after the control structure). Par-
tial WCETs are then needed for all “instrumented” control
structures. Figure 5 shows on our example all possible pairs
of GPs (e.g. GPs ��� � and ��� � to define a segment corre-
sponding to the loop).

One can note that the number of partial WCETs to be
computed off-line tend to be less numerous than with the

(a)

(b)

(c) (d)

gb_b

gb_e

gd_b

gd_egc_e

gc_b

(GP pairs a, c and d)

ga_bga_e Partial WCETs
to be computed:

ga_b −> ga_e
gc_b −> gc_e
gd_b −> gd_e

EL

FIL

IT

FT

TH

E

I

Figure 5. Possible GP locations in the struc-
tural GP placement method

first method. On our example, if the TH, EL and FOR con-
trol structures are instrumented (pairs of GPs a, c and d,
which is roughly equivalent to placing GPs ����� , �	��
 and
����� in the first method), only three partial WCETs have
to be computed, compared to six in the first method. The
off-line computation of the partial WCET of segments is
rather straightforward, as tree-based tools actually compute
a WCET for each level of the syntax-tree. However, the
method is less flexible than the first one because of the im-
posed restrictions on the locations of GPs.

2.3 Path based method

This last method is an hybrid one which is halfway be-
tween the first two ones. As in the segment-based method,
no restriction is put on the locations of GPs, thus ensuring
the flexibility of the method (ability to find an appropriate
trade-off between cost and earliness of gain time identifica-
tion). But instead of defining segments as intervals between
successive GPs in the task control flow, it defines segments
as intervals between the beginning of execution of the task
and the different GPs (see figure 6).

Since a GP can be encountered several times if it is
enclosed in a loop (for instance �	��
 in the figure), sev-
eral partial WCETs have to be generated depending on the
loop counters. Instead of generating all possible WCETs of
segments, we propose to represent the WCET as paramet-
ric values depending on the loop counters (functions with
the loops counters as parameters). These functions should
be simple enough to be evaluated on-line, but expressive
enough to represent the WCET time elapsed since the be-
ginning of the program.

On the on-line part, the task must keep track of the values

Partial WCETs
to be computed:

base −> gp1
base −> gp2 (parametric)
base −> gp3 (parametric)

I

IT

TH EL

FIL

E

FT

gp1

gp2 gp3

base

Figure 6. Example of GP locations in the path-
based GP placement method

needed by the evaluation functions (essentially loop coun-
ters). Each time a GP is encountered, these values, the eval-
uation function and the elapsed time are stored. The actual
computation of gain time (especially the calls to the func-
tions that evaluate the segments’ WCETs) can be deferred
until gain time is requested by the dynamic scheduler. The
impact of this method on tree-based WCET analysis is big-
ger when GPs are placed inside loops than outside, because
then parametric WCET representations must be generated.

2.4 Degree of pessimism of partial WCET esti-
mates

A common issue to be addressed is the degree of safety
of WCET estimations of segments (partial WCETs) in order
for the estimation of gain time not to be overly optimistic.

This issue is illustrated in figure 7, which depicts gain
time identification during the execution of a task made of a
sequence of two blocks A and B. Due to the consideration
of pipelining effects, the sum of the partial WCETs of A and
B (6 time units each in the figure) may exceed the WCET
of the sequence A;B (10 time units). Assume that the actual
execution of both A and B is 4 time units (the gain time is
2 time units). If the partial WCETs of 6 are used for gain
time computation, the gain time is overestimated (4 time
units instead of 2), which can cause new tasks to be accepted
dynamically whereas too few spare time is available.

More generally, the requirement is that the partial
WCETs be consistent with the global WCET of the task.
Thereby we mean that the value of the WCET of a segment
of code is lower or equal to its equivalent in the WCET of

WCET Time Axis

Actual execution Time Axis

A: 4 time units

B: 4 time units

WCET of A;B (10 time units)

Partial WCET of A (6)

Partial WCET of B (6)

Figure 7. Pessimism of partial WCET esti-
mates

the whole task. Such consistency problems could occur be-
cause of low-level analysis in architectures with pipelines
(as shown in the example) and in symbolic WCET esti-
mation methods. Possible directions to address this is-
sue would be to provide “optimistic” partial WCETs or to
change the WCET computation method for the whole task
so that partial WCETs are consistent with the global one.

3 Concluding remarks

Early identification of gain time requires to obtain
WCETs of segments of the task code instead of consider-
ing the code as a whole. In this paper, we have proposed
three classes of methods for identifying gain time, differing
by their definition of segments. We have further examined
their impact on tree-based WCET analysis methods.

Except for the second proposed method, which can be
integrated naturally in tree-based WCET analyzers, we are
convinced that the need to compute partial WCETs has a
non negligible impact on the structure of the WCET analy-
sis tools. Earliness of gain time identification comes at the
price of a further increase in complexity of WCET analysis
techniques.

References

[1] N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms for en-
hancing the flexibility and utility of hard real-time systems. In
IEEE Real-time systems symposium, pages 12–21, December
1994.

[2] P. Gopinath and R. Gupta. Applying compiler techniques to
scheduling in real-time systems, 1990. Philips Laboratories.

[3] D. Haban and K. Shin. Application of real-time monitoring
to scheduling tasks whith random execution times. In IEEE
Transaction on software enginneering, December 1990.

[4] E. Y.-S. Hu, A. Wellings, and G. Bernat. A novel gain time
reclaiming framework integrating wcet abalysis for object-
oriented real-time systems. In Second workshop on WCET
analysis, June 2002.

