
Towards a Predictable and High Performance Use of Instruction Caches
in Hard Real-Time Systems

Alexis Arnaud Isabelle Puaut
IRISA, Campus universitaire de Beaulieu,

35042 Rennes Cédex, France
Email: aarnaud/puaut@irisa.fr

Abstract

Cache memories have been widely used in order to
bridge the gap between high speed processors and relatively
slow main memories. However they are a source of pre-
dictability problems. A lot of progress has been achieved to
model caches, in order to determine safe and precise bounds
on (i) tasks’ WCETs in the presence of caches; (ii) cache-
related preemption delays. An alternative approach to cope
with cache memories in real-time systems is to lock their
contents so as to make memory access times and cache-
related preemption delays entirely predictable. In this pa-
per, we focus on instruction caches and we describe the
state of the art in the so-called static cache locking tech-
nique and its related algorithms. Then benefits and prob-
lems with this approach are discussed. Eventually refine-
ments and an enhanced technique, dynamic cache locking,
are sketched.

1 Caches and real-time systems

Introduction. Cache memories have been designed as a
solution for the ever-growing discrepancy of speed between
processors and relatively slow memory components. These
are typically small content associative memories with small
access time, which are inserted between the CPU and the
main memory and which act as ante-memories. Indeed no
change is required in the memory addressing scheme since
caches act transparently. They work in such a way that
they exploit the spatial and temporal locality of memory
reference streams. Therefore at any time cache memories
contain memory blocks that are likely to be accessed in the
near future. A key property of cache memories is that they
improve the average performance of a computer system.

A real-time system is a computer system for which the
good functioning is not only defined by the correctness of

results, but also by the the dates at which these results are
to be produced. More particularly, a hard real-time system
requires the exact knowledge of these dates. In order to sat-
isfy this requirement, such a system must use an adequate
scheduling policy such as Fixed Priority Preemptive (FPP),
and has to be validated. The validation process consists of
the computation of the worst-case execution time (WCET)
of each task, and then in performing a schedulability
analysis on the whole task set. Extensive studies have been
done on both latter subjects.

Now cache memories are a source of unpredictability is-
sues. Two phenomena consolidate this fact :

• Intra-task interferences, which occur when a task over-
rides its own blocks in the cache, due to conflicts.

• Inter-task interferences, which arise in multitasking
systems, due to preemptions. These interferences
imply a so-called cache-related preemption delay to
reload the cache after a task was preempted.

As a consequence, the designer of a hard real-time sys-
tem may choose not to use cache memories at all, at the cost
of over-sizing the system, or may choose to use scratch-pad
memories [1], which are basically on-chip static memories.
Nevertheless there is a growing demand in the industry, of
hard real-time systems with better performance and cheaper
hardware. This fact drives to consider processors designed
for general purpose computers. As regards the validation
process, an important issue here is to cope with the effects
of cache memories which are common in these processors.

Current approaches. There are at the present time two
categories of approaches to deal with caches in real-time
systems. In the first one, cache analysis, caches are used
without any restriction. Static analysis techniques (cache-
aware WCET analysis [11, 10] and schedulability analysis
[8]) predict their worst-case impact on the system schedu-
lability.



The second category of approaches consists in using them
in a restricted or customized manner so as to adapt them to
the needs of real-time systems and schedulability analysis.
Cache partitioning techniques [7, 9] assign reserved por-
tions of the cache to certain tasks in order to guarantee that
their most recently used code or data will remain in the
cache while the processor executes other tasks. The dy-
namic behavior of the cache is kept within partitions. These
techniques eliminate inter-task interferences, but need extra
support to tackle intra-task interference (e.g. static cache
analysis) and reduce the amount of cache memory available
for each task.
Within the same category, another way to deal with caches
in real-time systems is to use cache locking techniques,
which load the cache contents with some values and lock
it to ensure that the contents will remain unchanged. This
ability to lock, entirely or partially, the cache contents is
available on several commercial processors (among oth-
ers : Motorola ColdFire MCF5249, Motorola PowerPC
603e, IDT RC64575, ARM 940). The cache contents can
be loaded and locked at system start for the whole system
lifetime (static cache locking), or changed at run-time, like
for instance when a task is preempted by another one (dy-
namic cache locking). The key property of cache locking is
that the time required to access the memory is predictable.
Throughout the rest of this paper, a cache is assumed to be
an instruction cache unless otherwise specified.
We will call instruction block or simply block a contiguous
sequence of instructions that can be mapped into a cache
block.

2 Algorithms for static cache locking

It has been proven in [12] that the problem of the optimal
placement of contents in a cache memory, in the sense that
it minimizes the number of cache misses, is NP-hard. This
result is even stronger : unless P=NP, it belongs to the class
of extremely inapproximable problems.
As a consequence, the goal of an algorithm for selection of
cache contents must be to minimize a quantity which is not
the number of cache misses, and its design must take into
account a heuristic. At the present time two solutions have
been proposed and are presented below. In the following,
we consider a set of periodic tasks which run within the
framework of a hard real-time system comprising one level
of instruction cache in which the contents may be locked
on a per-line basis.

2.1 A genetic algorithm for selection of cache con-
tents

In this first solution [5], the optimization problem con-
sists in minimizing the cache-aware response time [4] and
at the same time choosing the cache contents so as to get the
best possible performance. It is solved by means of a ge-
netic algorithm. Each individual contains only one chromo-
some, which describes the state of the blocks of the whole
task set. Each gene of a chromosome is a bit, and repre-
sents the state (locked or not) of an individual block. The
fitness function is a weighted mean of the response times
of the tasks, where, for each task, the weight depends on
the state of its blocks. The response time of each task is
obtained through the Cache-aware Response Time Analy-
sis (CRTA). For each individual, its probability of being se-
lected for crossover depends on its degree of validity, which
is a function of the number of locked blocks and the av-
erage response time. The population generation process is
repeated a prior-defined number of times.

2.2 Pseudo-polynomial algorithms for selection of
cache contents

In this solution [13], two greedy algorithms have been
designed. Both have a pseudo-polynomial complexity.
From the task periods and access statistics of instruc-
tion blocks along the worst-case execution path of each
task, each algorithm computes a heuristic and selects the
cache contents accordingly, so as to minimize a well cho-
sen cache-aware metric, and thus to improve the task set
schedulability.
The first algorithm, named Lock-MU (for Minimize Uti-
lization) tries to minimize the cache-aware CPU utilization
[2] of the task set. The second one, known as Lock-MI (for
Minimize Interferences) tries to minimize, for every task of
the system, its cache-aware response time.

2.3 General remarks

Benefits. Static cache locking is an advantageous ap-
proach with many respects. As compared with a system
which does not use any instruction cache, the worst-case
and average-case performances of a system with a locked
cache may be improved. Since the cache contents are
locked, neither intra-task nor inter-tasks conflicts occur, so
that the technique of estimation of the WCET of a task is fa-
cilitated. The schedulability analysis is simplified as well,
since the cache related preemption delay is constant. Fur-
thermore power consumption is reduced because fetching
contents from the cache consumes less power than fetching
it from the main memory, and no cache line replacement
policy is enabled.



Influence of the size of the task set. If the ratio between
the size of the task set and the size of the cache memory
is very high, only a very small fraction of the task set will
benefit from the cache, which will lead to an important dete-
rioration of the performance of the system. In this regard, as
the size of the task set grows, the performance (with respect
to either the worst-case or the average-case) with a locked
cache will be asymptotically the same as if there were no
cache at all. The static cache locking approach thus lacks
some scalability.

Average-case execution time (ACET) issues. The algo-
rithms presented above select some instruction blocks so as
to minimize cache-aware metrics such as response time or
CPU utilization rate when, for each task, its worst-case ex-
ecution path is taken. Now depending on the algorithmic
structure of a task, there may exist one or many feasible ex-
ecution paths.
Consider a simple program P in which only two paths may
be taken, namely the worst-case execution path W and the
alternate execution path A. For each path π, c(π) repre-
sents its execution time and p(π) the probability of tak-
ing π. Furthermore assume that the cache is locked with
contents chosen along the path W, and note λ(π) the gain
obtained on the path π from locking the cache (W and
A may share common memory locations). The function
λ reaches a maximum for the path W. Then the WCET
of P is C = c(W ) − λ(W ), whereas its ACET is C =
(c(W )−λ(W ))p(W )+(c(A)−λ(A))p(A). From this, we
see that the improvement of the average-case performance
not only depends on the contents of the cache, but also on
the probability that the worst-case path W be taken, and on
the distance between W and A. Here the distance is defined
as the number of memory locations by which W and A dif-
fer.

Locality. Another important task property is locality. In
most of the programs developed in the industry, mem-
ory reference streams tend to exhibit regions with spatial
and temporal locality patterns. As previously mentioned,
cache memories are designed so as to benefit from this phe-
nomenon. In both approaches presented above for selecting
instruction blocks to be locked in the cache, locality is not
considered at all.

3 Current work

Stability. In the previous section, we showed the influ-
ence of the probability of taking the worst-case execution
path on the improvement of the average-case performance
of a task. This probability can be thought as a stability fac-
tor. More precisely, let T be a task and W its worst-case

execution path. W may provide several sub-paths with var-
ious stability factors. The exact identification of these sub-
paths by means of static analysis appears to be intractable.
With regards to the static cache locking, a proposed ap-
proach is to consider the set M of different memory loca-
tions referenced on W . T is run with various sets of inputs.
Then, with help of the corresponding execution traces, each
time a memory location M [i] is referenced both on W and
on an execution trace, a counter attached to M [i] is incre-
mented. Eventually frequencies are computed on M for all
0 ≤ i ≤ N . They define approximate stability factors.
This way, when an algorithm must pick up blocks among
those of the whole task set, it would be possible to give a
slight advantage to blocks which have a high stability fac-
tor. Both the worst and the average cases would benefit
from such a policy. As regards the average case, the rea-
sons have already been given above. In the worst case, as
there would be a higher rate of stable blocks locked into the
cache, there would be globally more cache hits, and conse-
quently a better usage of the cache. Moreover the benefits
from the approach presented in the section 2 would be kept
intact.

Dynamic cache locking. Because of the issues regarding
the size of the task set, the static cache locking technique
shall not work well with real life programs which are in-
creasingly complex. Even if a large enough cache memory
could be provided so as to keep using static cache locking,
a fair amount of scalability could be a requirement for some
embedded systems.
An evolution of the static technique is the dynamic cache
locking technique. As in the static case, the decisions con-
cerning the contents of the cache are taken before the sys-
tem startup. But here, the contents are changed at some
chosen points, according to the advancement of the tasks.
There are two possibilities: at a given date, either the cache
is assigned to a single task, or it is assigned to a bunch of
tasks, as in the static cache locking technique. There is an
ongoing work based on the first possibility and on an evo-
lution of the notion of approximate stability factor given in
the former paragraph. As in the static case, the goal is to
minimize a metric such as the response time of each task.

Spatial and temporal locality. Some work has already
been performed on the analysis of locality [6] or the defi-
nition of a locality metric [3, 14]. A good definition of a
locality metric would provide a way to identify which in-
struction blocks are best candidates for assignment into an
instruction cache, and to design better heuristics for the al-
gorithms which select the contents of the cache.

Architectural refinements. While the model considered
in the present paper assumes only one level of cache mem-



ory, most of the systems nowadays provide two or three lev-
els. Since access time grows with the cache level, instruc-
tion blocks should be assigned in such a manner that the
better their qualities (e.g. stability or locality), the lower the
cache level they will occupy.
In the cache locking technique, a cache memory could
be replaced with a scratch-pad memory, which further-
more would consume even less power than a locked cache,
mainly because of issues related with associativity. But we
argue that cache memories are not only more widespread,
but also that cache memories allow for a better flexibility. A
scratch-pad memory does not act as an ante-memory. Gen-
erally, the respective ranges of addresses of a scratch-pad
memory and the main memory are separated and share the
same address space. Thus transparency is lost and a reloca-
tion mechanism is necessary. If tasks run directly in phys-
ical memory, some modifications have to be done on the
tasks.

Heterogeneous systems. Some systems incorporate tasks
with various degrees of real-time requirements. A way to
deal with such systems is to allow, for example, static cache
locking for critical interrupt handlers, dynamic cache lock-
ing for other hard-real time jobs, and normal cache opera-
tions for soft real-time jobs.

References

[1] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee,
M. Balakrishnan, and Peter Marwedel. Scratchpad
memory : A design alternative for cache on-chip
memory in embedded systems. In Proceedings of the
10th International Workshop on Hardware/Software
Codesign, CODES, Estes Park (Colorado), May 2002.

[2] S. Basumallick and K. Nilsen. Cache issues in real-
time systems. In ACM SIGPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Real-Time Sys-
tems, June 1994.

[3] Mark Brehob and Richard Enbody. An analyti-
cal model of locality and caching. Technical Re-
port MSU-CSE-99-31, Departement of Computer Sci-
ence and Engineering, Michigan State University, East
Lansing, Michigan, August 1999.

[4] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil,
and A. Wellings. Adding instruction cache effect to
schedulability analysis of preemptive real-time sys-
tems. In Proceedings of the 1996 Real-Time tech-
nology and Applications Symposium, pages 204–212.
IEEE Computer Society, June 1996.

[5] Marti Campoy, A. Perles Ivars, and J. V. Busquets
Mataix. Static use of locking caches in multi-
task preemptive real-time systems. In IEEE/IEE
Real-Time Embedded Systems Workshop (Satellite of
the IEEE Real-Time Systems Symposium), London,
United Kingdom, December 2001.

[6] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson.
Locality as a visualization tool. IEEE transactions on
computers, 45(11):1319–1326, 1996.

[7] D. B. Kirk. Smart (strategic memory allocation for
real-time) cache design. In Proceedings of the 10th
IEEE Real-Time Systems Symposium (RTSS89), pages
229–237, Santa Monica, California, USA, December
1989.

[8] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo,
Sang Lyul Min, Rhan Ha, Seongsoo Hong, Chang Yun
Park, Minsuk Lee, and Chong Sang Kim. Analysis of
cache-related preemption delay in fixed-priority pre-
emptive scheduling. IEEE Transactions on Comput-
ers, 47(6):700–713, June 1998.

[9] Jochen Liedtke, Hermann Hartig, and Michael
Hohmuth. OS-controlled cache predictability for real-
time systems. In Proceedings of the Third IEEE Real-
Time Technology and Applications Symposium (RTAS
’97), pages 213–227, Washington - Brussels - Tokyo,
June 1997. IEEE.

[10] Thomas Lundqvist and Per Stenstrm. An integrated
path and timing analysis method based on cycle-level
symbolic execution. Real-Time Systems, 17(2-3):183–
207, November 1999.

[11] F. Mueller. Timing analysis for instruction caches.
Real-time systems, 18(2):217–247, May 2000.

[12] Erez Petrank and Dror Rawitz. The hardness of cache
conscious data placement. In Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 101–112, Portland,
Oregon, 2002. ACM Press.

[13] Isabelle Puaut and David Decotigny. Low-complexity
algorithms for static cache locking in multitasking
hard real-time systems. In 23rd IEEE International
Real-Time Systems Symposium, Austin, TX, USA, De-
cember 2002. IEEE.

[14] Dee A.B. Weikle, Sally A. McKee, Kevin Skadron,
and Wm.A. Wulf. Caches as filters : A framework for
the analysis of caching systems. In Proceedings of the
3rd Grace Hopper Celebration of Women in Comput-
ing, September 2000.


