
Scratchpad memories vs locked caches in hard real-time systems:
a quantitative comparison
Isabelle Puaut and Christophe Pais

Université de Rennes I/IRISA
Campus Universitaire de Beaulieu, 35042 RENNES Cedex - France
E-mail: {Isabelle.Puaut|Christophe.Pais}@irisa.fr

Abstract

We propose in this paper an algorithm for off-line selec-
tion of the contents of on-chip memories. The algorithm sup-
ports two types of on-chip memories, namely locked caches
and scratchpad memories. The contents of on-chip memory,
although selected off-line, is changed at run-time, for the sake
of scalability with respect to task size. Experimental results
show that the algorithm yields to good ratios of on-chip mem-
ory accesses on the worst-case execution path, with a tolera-
ble reload overhead, for both types of on-chip memories. Fur-
thermore, we highlight the circumstances under which one
type of on-chip memory is more appropriate than the other
depending of architectural parameters (cache block size) and
application characteristics (basic block size).

1 Introduction

In hard real-time systems all task deadlines have to be met
in all situations for safety reasons. For that reason, many
schedulability analysis methods rely on the knowledge of an
upper bound for the execution times of tasks (WCETs, for
Worst-Case Execution Times). WCET estimates have to be
safe (i.e. greater than any possible execution time) and as
tight as possible (as close as possible to the execution time of
the longest path). Safe bounds for task execution times may
be computed using static WCET analysis methods that obtain
WCETs through a static analysis of task source and/or object
code [13].

WCET of programs is obviously influenced by the hard-
ware in use. The increasing performance gap between the
processor and the off-chip memory has made it important to
use some kind of on-chip memory in real-time embedded sys-
tems. Caches have been extensively used to bridge that gap.
The advantage of caches is that the allocation and dealloca-
tion of memory blocks from the cache are managed by hard-
ware, in a transparent manner to the programmer and com-
piler. Unfortunately, caches are source of predictability prob-
lems in hard real-time systems [3]. A lot of progress has
been achieved in the last ten years to statically predict worst-
case execution times (WCETs) of tasks on architectures with
caches [10, 3, 6, 7]. However, cache-aware WCET analysis

techniques are not always applicable due to the lack of docu-
mentation of hardware manuals concerning the cache replace-
ment policies. Moreover, they tend to be pessimistic with
some cache replacement policies (e.g. pseudo round-robin,
pseudo-LRU, random replacement policies) [3, 1]. Lastly,
caches are sources of timing anomalies in dynamically sched-
uled processors [8] (a cache miss may in some cases result in
a shorter execution time than a hit). In such situations, cache
locking techniques are of interest.

Locking techniques exploit hardware support allowing the
software (compiler or programmer) to control the cache con-
tents: load information into the cache and disable the cache
replacement policy (lock or freeze the cache). This ability to
lock cache contents is available in several commercial pro-
cessors (ColdFire MCF5249, PowerPC 440, MPC5554, ARM
940 and ARM 946E-S). The contents of the locked cache can
be fixed for the whole execution of a task (static locking) or
changed at run-time (dynamic locking). Dynamic cache lock-
ing techniques have been shown in [11] to provide tight worst-
case WCET estimates as far as applications exhibit temporal
locality.

An alternative to caches for on-chip storage is scratch-
pad memory. Scratchpad memories are small on-chip static
RAMs that are mapped onto the address space of the proces-
sor at a predefined address range. Their inherent predictabil-
ity have made them popular in real-time systems. Contrary
to caches, the task of allocating code/data memory to the
scratchpad memory is under software control (it lies with the
compiler or programmer). Significant effort has been invested
in developing efficient allocation techniques for scratchpad
memories [4, 15, 5, 16]. Except [14], all these techniques
aim at reducing the average execution time (ACET) of pro-
grams, through memory access profiles. Such ACET-oriented
techniques are not necessarily suited for real-time systems,
since the execution path followed in average may not be the
worst-case execution path. Only [14] aims at optimizing tasks
worst-case performance. However, in that study, scratch-
pad allocation is static (scratchpad contents is not changed
at run-time), raising performance issue when the amount of
code/data is much larger than scratchpad size. To the best of
our knowledge, no WCET-oriented dynamic scratchpad allo-
cation method has been proposed since now.

The contributions of this paper are twofold:

- We propose an algorithm for allocating code portions in
on-chip memory, supporting two very similar types of
memories: scratchpad memories and locked caches. The
algorithm operates off-line for the sake of predictability
of memory accesses. It introduces multiple load points
in the code of a single task and selects the values to be
loaded at run-time into the on-chip memory. The algo-
rithm is WCET oriented in the sense that it aims at mini-
mizing the task WCET estimate. The algorithm is a gen-
eralization of the algorithm previously proposed in [11]
for off-line selection of the contents of locked instruction
caches.

- We give a quantitative comparison of the use of dy-
namic WCET-oriented cache locking and scratchpad al-
location. Experimental results show that the worst-case
performance of applications using the two types of mem-
ory are very close to each other in most cases. The
sources of differences between the two approaches are
highlighted. In particular it is shown how architectural
parameters (cache block size) and task structure (size of
basic blocks) impact the task worst-case performance.

This paper focuses on dynamic loading of code into scratch-
pad memories and locked caches only.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the algorithm for the off-line selection of the
contents of on-chip memory, and highlights the differences re-
sulting from the type of on-chip memory into consideration.
Section 3 is devoted to a study of the impact of the type of on-
chip memory (cache vs scratchpad memory) on the WCETs
of tasks, as well as on the ratios of on-chip memory accesses
along the worst-case execution path. Finally, we conclude in
Section 4.

2 Selection of on-chip memory contents

This section presents an algorithm1 for off-line selection
of the contents of two very similar classes of on-chip mem-
ories: locked caches and on-chip static RAM (scratchpad).
The algorithm is applied off-line. It considers an isolated task,
represented by its control flow graph (CFG). For every task,
the algorithm selects (i) reload points, which are points where
the on-chip memory will be reloaded at run-time; (ii) memory
contents, which are the pieces of code to be loaded at run-time
when control reaches the reload point. As a result, the code of
applications is divided into regions at the entry of which the
contents of the on-chip memory is loaded. On-chip memory
contents is selected thanks to the knowledge of execution fre-
quencies of basic blocks along the worst-case execution path
(WCEP), obtained through an external WCET estimation tool.
Furthermore, since the worst-case execution path may vary

1An example of this algorithm as well as implementation is-
sues can be found in the extended version of this paper Scratch-
pad memories vs locked caches in hard real-time systems: a qual-
itative and quantitative comparison. It can be downloaded at
http://www.irisa.fr/centredoc/publis/PI/2006/irisapublication.2006-10-
10.2735384409.

when a piece of code is selected to be loaded into on-chip
memory, the WCEP is re-evaluated regularly in the course of
the content selection procedure. The regions altogether cover
all the code of the task. As a consequence, it can be known
statically if a given instruction in the code will be an on-chip
or an off-chip memory access.

2.1 Notations and assumptions

We consider a CPU with a k-way set-associative instruc-
tion cache or a scratchpad memory. The cache is of size
SC and comprises a total of B blocks of SB bytes each
(SC = B ∗ SB). Blocks are grouped into S sets of k cache
blocks each; an instruction at address ad is mapped onto one
of the k blocks of set

⌊

ad
SB

⌋

mod S. We consider that there
exists a mechanism to load and lock cache blocks into the in-
struction cache, inhibiting cache replacement on those blocks
until they are unlocked. In the following, the term program
line will denote a piece of code of cache-block size.

The scratchpad is of size SS ; there is no hardware-imposed
allocation unit in scratchpad. Allocation in scratchpad is only
restricted by the some alignement constraints (for instance,
alignment of instructions on 4 bytes boundaries).

In the following, ton and toff will denote respectively la-
tencies to access on-chip memory (cache/scratchpad) and off-
chip memory. We assume that the time for loading a piece of
code of size sz into on-chip memory is a linear function of
sz (treload = a + b ∗ sz). Parameters ton, toff , b are taken
from the hardware manuals (processor, system). b represents
the cost per byte and a represents the software cost resulting
from the call of the reload procedure.

Only reducible loops are currently supported.

2.2 Content selection algorithm

The algorithm is made of two independent parts: selection
of reload points (§ 2.3) and selection of on-chip memory con-
tents (§ 2.4).

2.3 Selection of reload points

Reload points are placed at loop pre-headers (basic block
before a loop header in the CFG) to exploit temporal local-
ity. A cost function CF (L), given in Equation (1), decides
whether or not on-chip memory (cache/scratchpad) should be
reloaded at the pre-headers of a loop L. CF (L) is an estima-
tion of the decrease of WCET estimate which would occur if
loading the most frequently executed instructions of the loop.
In the formulas: f(s) denotes the total number of executions
of a statement s along the WCEP; mf (L) denotes the most
frequently executed instructions of loop L along the WCEP,
instr(L) denotes the whole set of instructions of loop L, and
pre head(L) denotes the pre-headers of loop L.

WCET offchip(L) =
∑

i∈pl(L)

f(i) ∗ toff

WCET onchip(L) =
∑

i∈mf (L)

f(i) ∗ ton

+
∑

i∈instr(L)−mf (L)

f(i) ∗ toff

+
∑

i∈pre head(L)

f(i) ∗ (a + b ∗ |mf (L)|)

CF (L) = WCET offchip(L) − WCET onchip(L) (1)

A positive value of CF (L) means that enough WCET im-
provement is expected to compensate the reload cost. The
pre-headers of the loops with positive values of CF (L) are
selected as reload points. It may be remarked that selection of
reload points only depends on the code structure and on ba-
sic hardware parameters (on-chip and off-chip memory laten-
cies); it does not depend on the considered on-chip memory
(locked cache or scratchpad).

2.4 Selection of on-chip memory contents

Selection of cache contents is based on frequency infor-
mation along the WCEP. Since loading and locking a value
into on-chip memory may change the WCEP, it is re-evaluated
regularly. The algorithm for selection of cache contents is
sketched below.

1 ToBePlaced = ListBasicBlocs;
2 (WCET,WCEP) = evaluate WCET();
3 ListBB = SelectMostBeneficialBB(ToBePlaced,N);
4 while | ListBB | 6= 0 do
5 for each bb in ListBB do
6 ListReloadPoints = getPoints(BB);
7 for each rp in ListReloadPoints do
8 Load(bb,rp);
9 end for
10 end for
11 (WCET,WCEP) = evaluate WCET();
12 if WCET > WCETprevious iteration return;
13 ListBB = SelectMostBeneficialBB(ToBePlaced,N);
14 end while

The algorithm fills progressively the on-chip memory at the
reload points identified in § 2.3. This is done by considering
successively all the program basic blocks, starting from the
one with the maximum expected decrease of WCET estimate.
Initially (line 1), the set of basic blocks to be considered (list
ToBePlaced) includes all basic blocks of the program. All
reload points have an empty content.

The algorithm then proceeds iteratively. At a given it-
eration, the group formed by the N most beneficial basic
blocks are considered for locking (N is an algorithm parame-
ter, defining how often the WCEP is re-evaluated). The notion
of benefit of a basic block (function SelectMostBeneficialBB)
is simply the execution frequency of the basic block along the
worst-case execution path. The higher is the frequency, the
higher is the chance that the basic block is loaded into on-chip
memory.

The inner loop of the algorithm (lines 6 to 9) is dedicated
to the loading of basic block bb. First we get the list of reload
points at which bb may be loaded (line 6). Function get-
Points, not detailed here for space considerations, returns the
list of reload points directly dominating bb (reload points are
arranged into an inter-procedural domination tree). The ac-
tual loading of the basic block is achieved by function Load,
which differs depending on the type of memory under con-
sideration (locked cache vs scratchpad, see below). The algo-
rithm iterates until locking new basic blocks does not result in
improvements of WCETs anymore, or until there are no more
basic blocks to be considered (line 11 and 12). WCETs and
WCEPs are estimated thanks to an external WCET estimation
tool.

The WCEP and the cost function are re-evaluated regularly,
after having considered the placement of N% of basic blocks
(line 13). The lower is the value of N the better is the estima-
tion of the WCEP along the whole algorithm and the better is
the quality of the cache contents (but the longer is the execu-
tion time of content selection).

The differences between the loading of basic block into
a locked cache and into a scratchpad memory are hidden in
function Load:
− In the case of a locked cache, function Load allocates in-

formation in the locked cache on a per cache block basis.
Load scans all program lines of the basic block. It inserts
a program line pl if there is a free (not yet filled-in) cache
block in the k ways pl is mapped onto. There is no modi-
fication of the memory layout of the application (see [11]
for more details on implementation considerations).

− In the case of a scratchpad memory, function Load allo-
cates information on a per basic block basis2. Load uses
a first-fit allocation strategy to find a free block of the ba-
sic block size into the scratchpad and jointly determine
the address where the basic block will be copied at run-
time.

3 Dynamically locked caches vs scratchpad
memories: a quantitative comparison

As far as the contents of the locked cache or scratchpad is
selected at compile time, both schemes are predictable. The
outcome of every memory access (on-chip access or off-chip
access) is known off-line. One interesting consequence of this
aspect is that the predictabiliy issues raised by timing anoma-
lies as defined in [8] (a cache miss may in some cases result
in a shorter execution time than a hit) do not occur anymore.
Several factors related to the nature of the on-chip memory
(scratchpad vs locked cache) are expected to impact the worst-
case performance of tasks:
− Addressing scheme. When using a locked cache, the lo-

cation of information in the cache is transparent to soft-
2One could consider allocating memory areas smaller than the basic

block, by splitting basic blocks. We did not explore this direction in a first
step because it results in extra complexity to decide which basic blocks should
be splitted and where.

Name Description Code size Nb. of Average BB Nb loops
(bytes) BBs size (bytes)

adcpm Adaptive differential pulse code modulation 8504 265 32 17
compress Compression of a 128 x 128 pixel image using discrete cosine transform 3056 115 27 12
des des and triple-des encryption/decryption algorithm 11068 229 48 13
jfdctint JPEG slow-but-accurate integer implementation of the forward DCT

(Discrete Cosine Transform)
3608 49 73 3

minver Matrix inversion for 3x3 floating point matrices 4520 135 33 17

Table 1. Task characteristics

ware. It is entirely under hardware control. The positive
aspect is that no modification of the code layout is re-
quired when a basic block is locked into the instruction
cache. The negative impact is that since the placement in
the cache is under hardware control, there may be con-
flicts for cache locations. For instance, two basic blocks
with the same address modulo the cache size for a direct-
mapped cache cannot be locked simultaneously. This
problem does not arise when using a scratchpad, since
address selection is under software control.

− Granularity of allocation. The smallest locking unit in
a locked cache is the cache block. If no modification of
the code layout is done, basic blocks may not be aligned
on cache block boundaries. Thus, when locking the pro-
gram lines of a basic block, extra instructions may be
locked as well. As these instructions are not necessarily
on the WCEP, they are not necessarily the most inter-
esting instructions to lock. This problem of pollution is
expected to show up with large cache blocks. This issue
does not arise when allocating code in scratchpad mem-
ory, since there is no lower bound on the size of allocated
blocks in scratchpad memory.
When allocating information in scratchpad memory, the
location of the piece of information in memory is under
software control. Thus, in order to keep the implemen-
tation cost low, the most natural allocation unit is a con-
tiguous zone of code (here, a entire basic block). As a
consequence, some space may be wasted when the basic
blocks to be allocated are too large to be allocated in the
left free space in scratchpad memory. This fragmenta-
tion issue is expected to arise in applications with large
basic blocks. We expect the problem to be more acute
when allocating data, because some big data structures
may be candidate to scratchpad allocation. Note that the
problem will not occur when using locked caches, since
locking is done at the cache block granularity with no
need for changing the basic block addresses: for large ba-
sic blocks, only the program lines fitting into the locked
caches are locked, even if the entire block does not fit
into the cache.

These phenomenon are exhibited and quantified below,
through a comparison of the worst-case performance (worst-
case execution times, ratios of on-chip and off-chip mem-
ory accesses) of benchmark applications using respectively a
locked cache and a scratchpad memory. No comparison with

unlocked cache is made because this is part of previously pub-
lished work [9, 12, 11].

3.1 Experimental setup

Our interest here is to evaluate the differences between dy-
namic allocation in locked caches and dynamic allocation in
scratchpad memory. As we consider hard-real time systems,
we focus on worst-case performance, estimated off-line with-
out executing the code. Results are given on a per-task ba-
sis. The performance metrics we use are the task WCET and
the ratios of on-chip and off-chip memory accesses along the
worst-case execution path. To isolate the impact of the mem-
ory hierarchy, the WCET estimates given in the rest of this
section only account for memory accesses (on-chip/off-chip),
assuming that an off-chip access takes 10 cycles as com-
pared to on-chip latencies of 1 cycle. The figures thus volon-
tarily ignore architectural elements other than memory hier-
archy (pipelining, branch-prediction) to be as architecture-
independent as possible.

Our experiments were conducted on MIPS R2000/R3000
binary code, but we are actually independent of any specific
MIPS-compatible processor since our focus is on instruction
caches and scratchpad memory only. We consider an instruc-
tion cache with SB = 16 bytes large blocks (4 instructions).
The cache associativity degree can be parametrized (from a
direct-mapped cache to a fully associative cache). By default,
the cache size and the scratchpad size is 1 KB, ti=0, tl ac-
counts for one off-chip access per block of 16 bytes.

The WCETs of tasks are computed by the Heptane static
WCET analysis tool [2].

Five benchmark tasks have been used (see Table 1 for
a summary of the tasks features). All benchmarks except
compress are maintained by the Mälardalen WCET research
group3. Compress is from the UTDSP Benchmark suite4.

The content selection algorithm is run with N = 10, mean-
ing that the WCEP is re-evaluated after placing 10% of the
basic blocks.

3.2 Basic experiments

We study the number of on-chip and off-chip mem-
ory accesses for a direct-mapped locked instruction cache

3http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
4http://www.eecg.toronto.edu/

Task On-chip Off-chip Reload WCET
ratio ratio ratio (cycles)

adpcm locked 76.0% 24.0% 4.4% 42861
adpcm scratchpad 83.1% 16.9% 7.1% 39769
compress locked 98.8% 1.2% 8.2% 26773754
compress scratchpad 99.2% 0.8% 8.8% 27039482
des locked 85.8% 14.2% 2.3% 10656840
des scratchpad 85.5% 14.5% 3.6% 11028095
jfdctint locked 69.5% 30.5% 1.1% 45278
jfdctint scratchpad 60.4% 39.6% 0.9% 54533
minver locked 91.0% 9.0% 13.1% 35392
minver scratchpad 93.5% 6.5% 14.9% 34938

0

20

40

60

80

100

120

ad
pc

m lo
ck

ed

ad
pc

m sc
ra

tch
pa

d

co
mpr

es
s l

oc
ke

d

co
mpr

es
s s

cra
tch

pa
d

de
s l

oc
ke

d

de
s s

cra
tch

pa
d

jfd
cti

nt
loc

ke
d

jfd
cti

nt
sc

ra
tch

pa
d

minv
er

 lo
ck

ed

minv
er

 sc
ra

tch
pa

d

Reload ratio
Off-chip ratio
On-chip ratio

Figure 1. On-chip/Off-chip/reload ratios for locked caches & scratchpad memories

of 1 KB, compared with a scratchpad memory of 1 KB.
Blocks in scratchpad memory are aligned on instruction
boundaries (4 bytes). In the following, results are ex-
pressed in terms of ratios of categories of memory accesses
(non−chip/noff−chip/nreload

non−chip+noff−chip
) and WCET estimate.

The major conclusion that can be drawn from the quanti-
tative results, given in Figure 1, is that for most benchmarks,
WCET estimates when using a locked instruction cache and a
scratchpad memory are very close to each other. Furthermore,
for most benchmarks, the amount of extra memory accesses
for reloading the on-chip memory is acceptable. One may
also remark that the ratio of on-chip memory accesses for both
types of on-chip memory is good if applications exhibit tem-
poral locality, which is the case for all the benchmarks consid-
ered in this paper. In addition, task size does not have a direct
impact on ratios of on-chip memory accesses: the biggest ap-
plication des, whose code is 11 times the cache size, exhibit
a better ratio of on-chip memory accesses than smaller appli-
cations (adpcm, jfdctint). This is because there are several
contents of on-chip memory associated to each task (contents
on-chip memory, while selected off-line change at run-time).

The reminder of this section focus on the reasons why, in
some cases, scratchpad may result in tigher WCET estimates
than locked caches or vice-versa.

3.3 Impact of cache block size

Table 2 shows the impact of the cache block size. For that
purpose, we used two different sizes for cache blocks: 8B, and
32B (the total cache capacity is kept to 1 KB). In this section,
we have used a fully-associative cache, in order to focus on
the impact of cache block size only (conflicts for cache block
locations do not exist).

What can be seen from the results is that an increase of the
cache block size always results in an increase of the WCET es-
timates. This phenomenon comes from the fact that the cache
is locked on a cache-block basis, resulting in the loading of
program lines belonging to basic blocks which are not nec-
essarily on the WCEP (pollution issue raised in the previous
section). For some benchmarks (adpcm, compress) pollution

Task On-chip Off-chip Reload WCET
ratio ratio ratio (cycles)

adpcm locked (8B) 78.1% 21.9% 3.3% 40606
(32B) 78.6% 21.4% 3.8% 40660

adpcm scratchpad 83.1% 16.9% 7.1% 39769
compress locked (8B) 99.21% 0.79% 9.03% 27393624

(32B) 99.25% 0.75% 9.77% 28372360
compress scratchpad 99.2% 0.8% 8.8% 27039482

des locked (8B) 88.6% 11.4% 3.7% 9918470
(32B) 87.8% 12.4% 4.1% 10360504

des scratchpad 85.5% 14.5% 3.6% 11028095
jfdctint locked (8B) 70.4% 29.4% 1.2% 44080

(32B) 69.3% 30.7% 1.2% 45530
jfdctint scratchpad 60.4% 39.6% 0.9% 54533

minver locked (8B) 93.2% 6.8% 15.6% 36058
(32B) 94.1% 5.9% 19.7% 39770

minver scratchpad 93.5% 6.5% 14.9% 34938

Table 2. Impact of cache block size

increases the ratio of on-chip memory accesses. The reason is
that extra instructions locked because of pollution do not pre-
vent more interesting instructions to be locked. Anyway, in all
situations, the reload cost gets higher when increasing cache
block size, because more instructions than strictly necessary
are actually locked. All in all, the pollution issue arising with
locked caches, although easy to exhibit, only has a slim im-
pact on WCET estimates.

The pollution problem could be removed by aligning basic
blocks on cache block boundaries, at the cost of a larger code
size.

3.4 Impact of basic block size

Finally, we examine in Table 3 the impact of basic blocks
size on worst-case performance, which turned out to be the
factor with the biggest impact on worst-case performance.
The study is done on the jfdctint benchmark, using either a
fully-associative cache of 1 KB or a scratchpad of 1 KB as
well. Two versions of the benchmark, with the same func-
tionality, are studied: (i) a version with small basic blocks
(original version), in which the code of the two inner loops
are mainly made of calls to a function with a very small body

(a couple of C statements) (ii) a modified version with large
basic blocks, in which the function bodies are inlined in the
callees. As a consequence, the code of the two inner loops is
now mainly composed of a big basic blocks of around 1.5 KB.

Task On-chip Off-chip Reload WCET
ratio ratio ratio (cycles)

jfdctint locked (small BB) 71.1% 28.9% 1.1% 43598
(big BB) 68.7% 31.3% 1.5% 35370

jfdctint scratch. (small BB) 60.4% 39.6% 0.9% 54533
(big BB) 32.2% 67.8% 0.5% 63689

Table 3. Impact of Basic block size

The results show that locked caches are not very sensitive
to the size of basic blocks, since locking is done at a gran-
ularity which is independent of the size of basic blocks. The
increase of WCET estimates when analyzing the version with-
out inlining is explained by the times required for function
calls and parameter passing, which do not exist with the other
code version.

On the contrary, the results depicted in table 3 show that
scratchpads are very sensitive to basic block size because of
fragmentation. On this example, the ratio of on-chip memory
accesses drops drastically (from 60.4% to 32.2%) because a
single big basic block cannot be loaded into scratchpad mem-
ory because of memory fragmentation. This phenomenon ap-
pears when loading code with large basic blocks, which is
rather rare in practice except when inlining is used for per-
formance considerations. Fragmentation could be much more
common if dynamically loading data structures such as big
arrays.

4 Concluding remarks

We have proposed in this paper an algorithm for off-line
selection of the contents of on-chip memory. The proposed
algorithm supports both locked caches and scratchpad mem-
ories. Experimental results show that the algorithm yields
to good ratios of on-chip memory accesses along the worst-
case execution path, with a tolerable reload overhead, for both
types of on-chip memory. Furthermore, we have highlighted
the circumstances under which one type of on-chip memory is
more appropriate than the other. On the one hand, worst-case
performance with scratchpad memories may degrade when
loading large information due to the scratchpad memory frag-
mentation. Splitting basic blocks may reduce fragmentation,
at the cost of extra-complexity in the selection process. Ex-
ploring the impact of basic block splitting is left as future
work. On the other hand, worst-case performance with locked
caches may slightly degrade with large cache lines, due to a
phenomenon of pollution (not-so frequent program lines may
be locked because of the cache line locking granularity). Our
future work will focus on allocation of data.

References

[1] C. Berg. PLRU cache domino effects. In 6th International
Workshop on Worst-Case Execution Time Analysis, in conjunc-
tion with the 18th Euromicro Conference on Real-Time Sys-
tems, Dresden, Germany, July 2006.

[2] A. Colin and I. Puaut. A modular and retargetable frame-
work for tree-based WCET analysis. In Proceedings of the
13th Euromicro Conference on Real-Time Systems, pages 37–
44, Delft, The Netherlands, June 2001.

[3] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and the
results of WCET tools. Proceedings of the IEEE, 91(7), July
2003.

[4] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan,
I. Kadayil, and A. Parikh. Dynamic management of scratch-
pad memory space. In Proc. of the 38th Design Automation
Conference (DAC’01), Dec. 2001.

[5] L. Li, L. Gao, and J. Xue. Memory coloring: A compiler ap-
proach for scratchpad memory management. In Proc. of the
14th International Conference on Parallel Architectures and
Compilation Techniques, 2005.

[6] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-
time software: Beyond direct mapped instruction cache. In
Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS96), pages 254–263. IEEE, Dec. 1996.

[7] T. Lundqvist and P. Stenström. An integrated path and tim-
ing analysis method based on cycle-level symbolic execution.
Real-Time Systems, 17(2-3):183–207, Nov. 1999.

[8] T. Lundqvist and P. Stenström. Timing anomalies in dynami-
cally scheduled microprocessors. In IEEE Real-Time Systems
Symposium, pages 12–21, 1999.

[9] A. Marti-Campoy, A. P. Ivars, and J. V. Busquets-Mataix.
Static use of locking caches in multitask preemptive real-time
systems. In IEEE/IEE Real-Time Embedded Systems Workshop
(Satellite of the IEEE Real-Time Systems Symposium), London,
UK, Dec. 2001.

[10] F. Mueller. Timing analysis for instruction caches. Real-Time
Systems, 18(2):217–247, May 2000.

[11] I. Puaut. WCET-centric software-controlled instruction caches
for hard real-time systems. In Proceedings of the 18th Euromi-
cro Conference on Real-Time Systems, Dresden, Germany, July
2006.

[12] I. Puaut and D. Decotigny. Low-complexity algorithms for
static cache locking in multitasking hard real-time systems. In
Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS02), pages 114–123, Austin, Texas, Dec. 2002.

[13] P. Puschner and A. Burns. A review of worst-case execution-
time analysis. Real-Time Systems, 18(2-3):115–128, May
2000. Guest Editorial.

[14] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET
centric data allocation to scratchpad memory. In Proceedings
of the 26th IEEE Real-Time Systems Symposium (RTSS05),
Dec. 2005.

[15] S. Udayakumaran and R. Barua. Compiler-decided dynamic
memory allocation for scratch-pad based embedded systems.
In Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, Nov. 2003.

[16] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware
scratchpad allocation algorithm. In Proceedings of Design Au-
tomation and Test in Europe (DATE), Paris, France, Feb. 2004.

