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Abstract

Cache memories have been widely used in order
to bridge the gap between high speed processors
and relatively slower main memories, and thus to
improve the overall performance of systems. How-
ever in the context of hard real-time systems, they
are a source of predictability problems. A lot of
progress has been achieved to model caches to
statically determine safe and precise bounds on the
worst-case execution times (WCETs) estimates of
tasks on architectures with caches. Nonetheless
cache-aware WCET analysis techniques may not
always be applicable or may be too pessimistic,
because some memory accesses are unknown stati-
cally. Another reason may come from a poorly doc-
umented or non-deterministic cache line replace-
ment policy. An alternative approach is to lock
cache lines so as to make memory access times en-
tirely predictable.

In this paper, we consider an instruction cache
and a task. We propose a an algorithm which par-
titions the task into a set of regions. Each region
owns statically a locked cache contents determined
offline.

A set of tasks is used to experimentally analyze
the effects of the algorithm on the worst-case cache
miss rate (WCCMR). A sharp improvement is ob-
served, as compared with a system without any
cache. Furthermore it is observed that the results
obtained on WCCMRs compare to the results ob-
tained from static analysis of a cache whose pol-
icy is to replace least recently used (LRU) cache
lines. Contrary to cache analysis techniques, our
algorithm depends neither on the scheduling pol-
icy, nor on the cache line replacement policy. As a
further property, it works at the machine language
level, and thus does not require any source code.

Keywords : hard real-time systems, cache
memories, worst-case execution time

1 Introduction

1.1 Cache memories and real-time issues
Caches are small buffer memories with low la-

tency which are inserted between the CPU and the
main memory. They benefit from the spatial and
temporal locality often found in instruction and/or
data streams in order to store, at any time, mem-
ory references which are likely to be addressed in a
near future. They operate transparently. Therefore
no change is required in the memory addressing
scheme. They bring an improvement of the overall
performance of computer systems. However two
phenomena make it hard to know statically mem-
ory access in the worst case:

• Intra-task interferences which occur when a
task overrides its own cache lines, mainly
because of the relatively small size of the
cache as compared with the task’s memory
demands.

• In preemptive multitasking systems, preemp-
tions cause inter-task interferences. Namely
when the execution is switched from a task A
towards a task B, some cache blocks used by
A may be evicted by B.

In the industry, there is a growing demand of
hard real-time systems with improved performance
and cheaper hardware. Thus the challenge here
is to accomodate the performance goal of cache
memories with predictability requirements of hard
real-time systems.

1.2 Cache memories in hard real-time systems
There are at the present time two categories of

approaches for safely incorporating cache memo-
ries in hard real-time systems. In the first one,
cache analysis, caches operate without any re-
striction. Static analysis techniques (cache-aware
WCET analysis [9, 7] and schedulability analysis



[6]) predict their worst-case impact on the system
schedulability. They assume that the cache line re-
placement policy is known.

The second category of approaches consists in
using caches in a restricted or customized manner
in order to adapt them to the needs of hard real-
time systems and schedulability analysis.

Cache-partitioning techniques assign portions
of a cache to some specified tasks in order the
guarantee that for each task its most recently used
code or data will remain in the cache while the
processor executes another task. The partitioning
can be made at the hardware [5] or software level
[8]. Since the dynamic behavior of the cache is
isolated within each partition, inter-task interfer-
ences are eliminated. The counterpart is that the
per-task available amount of memory is reduced,
hence decreased performance. Furthermore static
cache analysis is still required to tackle intra-task
interferences.

An alternative is to use cache locking tech-
niques. Locking a cache line consists in loading
some contents in a cache and inhibiting the cache
line replacement policy. If all the cache lines are
locked, we say that the state of the cache is a locked
cache state. Predictability is strictly ensured if
contents is chosen offline. This feature is available
on several commercial processors (among others:
Motorola ColdFire MCF5249, Motorola PowerPC
603e, ARM 940T).

Given a task, its code is subdivided into one or
more zones. Each such zone has a locked cache
state. Consequently, executions of the task are sub-
divided into temporal windows, in each of which
the cache is locked. When there is more than one
zone, the locking scheme is said to be dynamic,
whereas for only one zone, it is static [11, 2].

If the locking method is global, at every instant,
each task owns a portion of the cache space. No
cache reload is needed when a task is preempted.
In the case of a local locking method (see for ex-
ample [10, 3]), each task owns the entire cache. To
ensure this, the cache is reloaded each time a pre-
emption occurs.

1.3 Paper contents and contributions
This paper explores the use of local dynamic

locking of instruction caches in hard real-time sys-
tems. Dynamic cache locking is attractive from
several points of views. First of all, it improves
the worst and average-case performance of tasks,
as compared with the case where the same tasks do
not use any cache at all.

When using dynamic instruction cache locking
techniques, the interactions between the dynamic

properties of caches and other architectural compo-
nents such as pipelines or branch predictors are less
complex, making easier the analysis of these com-
ponents in validation tools of hard real-time sys-
tems. Dynamic instruction cache locking can also
be used when no cache analysis method can apply
accurately, due for instance to non-deterministic or
poorly documented cache replacement strategies.

It may be also suitable for designing mixed sys-
tems providing both tasks with hard real-time con-
straints and tasks with soft real-time constraints
which may use unrestricted caches.

In this paper, we propose algorithms for find-
ing a partition of the machine code of a given task
into regions, and to determine a locked state of the
instruction cache for each such region. It is per-
formed in a non-blind manner by using memory
access patterns obtained by profiling the task. The
goal is to improve the worst-case performance as
compared with a system with no cache, in such
a way that this performance be comparable with
results obtained from static analysis of the same
cache whose replacement policy is the least re-
cently used (LRU).

1.4 Paper organization
The remainder of the paper is organized as fol-

lows. Section 2 gives an overview of the proposed
local dynamic instruction cache locking strategy.
Then we detail the experimental setup and perfor-
mance measurements used for validating our ap-
proach in Section 3. In Section 4, we give an
overview of other studies related to our work. Fi-
nally we conclude in Section 5 with a summary of
the paper contributions.

2 A dynamic instruction cache locking
technique

In this section we describe our method which
supports dynamic instruction cache locking. After
introducing the assumptions and notations (§2.1)
and giving a first glance at the method (§2.2), the
central objects of this work, namely regions, are
studied in paragraph 2.3. Then we detail how to
associate a locked cache state to a region of a pro-
gram in order to improve the worst-case perfor-
mance of this program (§2.4). Finally, an algo-
rithm for partitioning a program into such regions
is described in the paragraph 2.5.

2.1 Assumptions
2.1.1 Architecture and program model

In our model, we consider a CPU provided with
a one-level set-associative instruction cache.



We will consider a progamm presented in bi-
nary form. Each subroutine owns a unique re-
turn point. Indirect jumps are excluded. Moreover
the program is assumed to execute within a finite
amount of time.

Throughout this paper, for any program, we
will associate to each of its subroutines a control
flow graph (CFG). A control flow graph is an ab-
stract representation of a subroutine. Each node in
the graph represents a basic block, i.e. a sequen-
tial piece of code with a unique entry point and a
unique exit point. Directed edges are used to rep-
resent jumps in the control flow.

2.1.2 Reloading and locking operation

Reloading and locking the cache may be done
by inserting instructions calling a special subrou-
tine. However, in this work, this operation is as-
sumed to be done without modifying the program.
We use debug registers which raise an exception at
specified values of the program counter. An excep-
tion handler does the job of reloading and locking
the cache. The benefit is that the program’s mem-
ory map is left unchanged.

2.2 Overview
We propose to apply a local dynamic cache

locking strategy which aims to improve the WCET
of a program as compared with the case of a system
with no cache. The main issue is to avoid perform-
ing an exhaustive search of all the possible subdivi-
sions of the program and of all possible cache con-
tents for each subdivision, as this would result in
a combinatorial explosion. The proposed method
consists in the following two steps :

1. Profiling.
We determine, from executions of the pro-
gram with various entry data sets, a collec-
tion of execution paths along with their ex-
ecution frequencies. These paths must ver-
ify the following two conditions: (i) as many
basic blocks as possible are reached; (ii) no
path can be deduced from other paths with
set operations, so that the number of paths
is minimal. From this profiling information,
we compute for each basic block an execution
frequency.

2. Program partitioning
A greedy algorithm is applied on the set of
basic blocks. At the initial state, the program
is presented as the set of basic blocks of its
control flow graph. Each such basic block is
a region. At each step of the algorithm, re-
gions are aggregated into new regions. Each

region has a locked cache state. Two basic op-
erations, merging and inlining, allow to create
new regions from existing ones. The goal of
the algorithm is to determine a set of regions
minimizing the WCET estimation of the pro-
gram.

2.3 Regions

The notion of region is central in this work.
Given a subroutine whose CFG is known, a re-
gion R is a connected part of this CFG. Namely,
between any couple B1, B2 of basic blocks of R,
there exists at least one non-directed path between
them. R may be of one of two types :

• R is a simple region if it has a locked cache
state which is known statically. This state is
computed with an algorithm described in sec-
tion 2.4. The addresses through which other
regions of the program may enter R are cache
reload points. When one of them is reached,
the cache is reloaded with the locked cache
state of R.

• Suppose R spans all the basic blocks of its
subroutine. If there is a significant benefit
from avoiding cache reloads when entering
and exiting from this subroutine, R may be
inlined. In this case, R inherits the cache
state of any region in which the subroutine
was called.

2.4 Computation of a locked cache state for a
simple region

Consider a simple region R in a program. We
provide it with a locked cache state. Namely, for
each cache line, we select from this region the
memory line such that: (i) it can be loaded in that
cache line; (ii) its execution frequency is the high-
est; (iii) the gain obtained from having this mem-
ory line in the cache is more important than the cost
of loading and locking it in the cache.

The last condition is true if the execution fre-
quency of this memory line exceeds a constant pro-
portional to the average number of times a cache
reload occurs when entering R.

This locked cache state is chosen so as to min-
imize, among all possible choices, an heuristic
which is the approximate time spent, during any
execution of the program, in the basic blocks of R
plus the average time spent reloading the locked
cache state of R. The proof of this property
vaguely follows the lines of the main proof pre-
sented in [11], so we will not detail it here.



2.5 The Region Merging and Inlining algo-
rithm

In this Section, first we define two basic op-
erations on regions, namely merging and inlining
(§2.5.1). Then, in order to improve the WCET of a
program, an algorithm (§2.5.2) partitions the pro-
gram into regions using these two operations.

2.5.1 Basic operations on regions

Merging Let R1 and R2 be two simple regions
that are connected. Merging these two regions into
a new simple region R means that:

• R aggregates the blocks of R1 and R2

• The locked cache state of R is computed by
the algorithm presented in the paragraph 2.4.

We will use the notation R = R1 ⊕ R2 to ex-
press the fact that the region R is obtained as the
result of merging R1 with R2.

Inlining Suppose a subroutine contains only a
simple region R. There may be a potential benefit
by avoiding cache reloads when calling and exiting
this subroutine. The general idea for the inlining
operation is to allow the this subroutine to inherit
the locked cache state from the subroutine which
has just called it.

We now define a calling region CR of R the
following way (cf. figure 1):

• CR is a simple region.

• There exists at least one chain (f0, . . . , fm−1)
of subroutine calls leading from CR to R: (i)
the call towards f0 lies in CR; (ii) if m ≥ 2,
each f0, . . . fm−2 represent an inlined region;
(iii) fm−1 calls towards the subroutine repre-
senting R.

Now let CRi (1 ≤ i ≤ n) be the calling regions
of R. Then inlining R means that, for each CRi:

• For each memory line of R, its frequency is
assumed to be scaled up by the proportion,
among all the calling regions, of calls from
CRi towards R.

• Its locked cache state is computed (§2.4) of-
fline from the knowledge of the memory lines
of both CRi and R.

From now on, the locked cache state of R is
inherited from the locked cache state of the last ac-
cessed calling region during runtime (cf. figure 1).

R

CR1 CR2

CR4 CR5CR3

simple region

inlined region
subroutine call

memory lines of R sent in each
of its calling regions

Figure 1. A region R and its calling re-
gions CRi. Inlining operation on R.

2.5.2 Description of the algorithm

In this subsection, we give a description of an
algorithm which determines a partition of a pro-
gram P into regions in order to to minimize the
WCET of P. We propose a sub-optimal strategy,
the RMI (Region Merging and Inlining) greedy al-
gorithm. RMI takes as an input the partition of P
in basic blocks, which are initial regions. At each
iteration, a pair of regions is chosen and merged
once for all, thus giving a new partition choice.
RMI keeps also track of the current best partition.
Inlining operations are involved when updating the
best partition. When completed, RMI returns the
best found partition of the program.

Quality of an operation. Let Ωpre be a partition
of P, and Ωpost the partition resulting from an opera-
tion (merging or inlining) on Ωpre. The quality cri-
terion of this operation is based on the difference,
noted δ, between the WCETs of P with the locked
cache states from respectively Ωpost and Ωpre. The
best operation gives the lowest value of δ, noted
δmin. It represents on the WCET of P its best im-
provement if δmin < 0, and its least deterioration
otherwise.

In order to choose among some possible oper-
ations on Ωpre the best one, the EvalOp algorithm
(cf. algorithm 1) must be called each time such an
operation was attempted on Ωpre. Given an opera-
tion, the WCET of the resulting partition Ωpost and
its quality criterion δ are computed (�. 1-2). Then
EvalOp updates the information on the partition re-
sulting from the best operation on Ωpre if needed (�.
3).



Algorithm 1 EvalOp algorithm
Require: P: program; Ωpre: partition of P; Ωpost:

partition after an operation; δmin: best quality
criterion

Ensure: Ωmin: partition resulting from the best
operation; δmin

1: WCET(Ωpost)←WCET of P with Ωpost;
2: δ←WCET(Ωpost) - WCET(Ωpre);
3: if δ ≤ δmin then Ωmin ← Ωpost; δmin ← δ;

Description of the RMI algorithm. First note
that a partition Ω of P into regions gives rise to
a search space. Namely this search space contains
all the partitions that can be deduced from Ω by
operations (merging and inlining) on its regions.

Algorithm 2 RMI algorithm
Require: P: program, Ωinit: initial partition of P,

Smax: max size of a set of locked cache states
Ensure: Ωbest: best found partition

1: Ωcur ← Ωinit; Ωbest ← ∅;
2: WCET(Ωcur)←WCET of P with Ωcur;
3: WCET(Ωbest)←WCET of P (no cache);
4: while a subroutine has more than 1 simple re-

gion in Ωcur do
5: Ωcur ← TryMerge(P, Ωcur);
6: if WCET(Ωcur) ≤ WCET(Ωbest) and

Size(Ωcur) ≤ Smax then Ωbest ← Ωcur;
7: Ωinlined ← Ωcur;
8: while there are inlineable regions in Ωinlined

do
9: Ωinlined ← TryInline(P, Ωinlined);

10: if WCET(Ωinlined) ≤ WCET(Ωbest) and
Size(Ωcur) ≤ Smax then Ωbest ← Ωinlined;

11: end while
12: end while

The RMI algorithm (cf. algorithm 2) starts from
the initial solution search space corresponding to
the basic blocks of P stored in the current partition
choice Ωcur (�. 1). At each iteration, RMI searches
for the best merging between a pair of regions (�.
5) by calling the TryMerge algorithm (cf. algo-
rithm 3), thus updating Ωcur, and equivalently re-
ducing the solution search space. It then updates
the information on the best partition (�. 6-11). The
whole process is iterated until no merging opera-
tion is possible in the solution search space, which
means that, in Ωcur, only one simple region remains
in each subroutine (�. 5). When choosing the
best partition Ωbest of P, RMI first compares Ωbest

against Ωcur (�. 6), and updates it if needed. Then,
starting from Ωcur, a greedy algorithm is used to
choose a sequence of inlining operations (�. 8-11)

by calling the TryInline algorithm (cf. algorithm
4). At each step, the current choice is stored in
Ωinlined. After a choice was made, Ωbest is updated
if needed.

Description of the TryMerge algorithm. Given
a partition Ω of the program P, for each pair of
mergeable regions, the TryMerge algorithm tries
to merge them and builds a test partition Ωtest (�.
3). If the EvalOp algorithm decides that Ωtest re-
sults from the current best merging operation, it is
stored in Ωmin (�. 4). After completion, Ω is up-
dated with the partition stored in Ωmin representing
the best merging operation (�. 6).

Algorithm 3 TryMerge algorithm
Require: P: program, Ω: partition of P
Ensure: Ω

1: δmin ← δmax;
2: for each connected pair of simple regions

(R1, R2) ∈ Ω do
3: Ωtest ← (Ω\{R1, R2}) ∪ {R1 ⊕R2};
4: (Ωmin, δmin)← EvalOp(P, Ω, Ωtest, δmin);
5: end for
6: Ω← Ωmin;

Description of the TryInline algorithm. Given
a partition Ω of P, for each subroutine which con-
tains only one simple region R, the TryInline al-
gorithm builds a test partition Ωtest in which R is
inlined (�. 3-7). As for TryMerge, the EvalOp al-
gorithm is used to choose the current best inlining
operation (�. 8) whose corresponding partition is
stored in Ωmin. After completion, Ω contains the
partition corresponding to the best inlining opera-
tion (�. 10).

Algorithm 4 TryInline algorithm
Require: P: program, Ω: partition of P
Ensure: Ω

1: δmin ← δmax;
2: for each inlineable region R ∈ Ω do
3: CR: set of calling regions of R in Ω;
4: R′← R; CR′← CR;
5: Ωtest ← Ω\{R, CR};
6: Inline R′ in CR′;
7: Ωtest ← Ωtest ∪ {R′, CR′};
8: (Ωmin, δmin)← EvalOp(P, Ω, Ωtest, δmin);
9: end for

10: Ω← Ωmin;

As regards the worst-case complexity of the
RMI algorithm in terms of the basic operations in-
volved, merging and inlining, it is quadratic in the



number of basic blocks of the considered program.
This property is shown in the annex A.

3 Experimental results

This section deals with an experimentation de-
signed to validate the approach adopted in this
work. In the paragraph §3.1, the experimental pro-
tocol and the assumptions are detailed. Then in the
following paragraph (§3.2), we evaluate the impact
of our method on the worst-case performance.

3.1 Experimental setup
Hardware and timing model. As the worst-case
performance with regards to an instruction cache is
our only concern, we assume an executive support
from a 32 bit MIPS R3000 processor at instruction
level only. In our model, this processor provides
only one architectural component, namely an in-
struction cache. Its cache line replacement policy
is the LRU policy. Moreover we suppose that this
cache can be totally locked.

The size of the cache ranges from 512 bytes to
4 kilobytes, and its associativity is equal to 1 (thus
it is direct-mapped). The application performance
with respect to the cache is our only concern in this
study. Therefore the timing model for the proces-
sor is very simple. The worst case performance
of a task under a given configuration of the cache
is measured in worst case cache miss rate (WC-
CMR).

When the cache is dynamically locked, a spe-
cial routine of the underlying operating system is
assumed to manage the reloading and the locking
of the cache. As the performance of this routine
is highly critical, it is assumed to be stored into a
scratch-pad memory [12]. As we focus on cache
misses, only operations loading memory lines into
the cache are taken into account. Thus, given a
locked cache state S, the worst number of cache
misses of this routine is assumed to be equal to |S|,
i.e. the number of cache lines in S.

Generation of execution traces. In order to pro-
file programs, a MIPS R3000 processor emulator
at instruction level is used to generate execution
traces.

Estimation of worst case miss rates. The WC-
CMRs of programs, presented in binary form, are
computed with the Heptane 1 static WCET anal-
ysis tool [4]. Within the context of this work, it
uses a technique based on abstract syntaxic trees.

1Heptane is an open-source software available at
http://www.irisa.fr/aces/software/software.html

In such a tree, the leaves are basic blocks, while
the other nodes are sequences, if-then-else con-
trol structures, or loop structures. The WCET and
the WCCMR are computed bottom-up by formu-
lae which establish for each node a partial WCET
(resp. WCCMR) depending on its children nodes.
The WCET (resp. WCCMR) of the root node is
then the WCET (resp. WCCMR) of the analyzed
program.

Heptane includes hardware modeling capabili-
ties to estimate safely but precisely the numbers
of hits and misses in the worst case on architec-
tures with instruction caches, pipelines and simple
branch predictors. In the present study, Heptane’s
pipeline and branch prediction modeling modules
were switched off since our focus is on instruction
caches only. In addition of a cache analysis mod-
ule, Heptane was incorporated a module that takes
into account the presence of a dynamically locked
instruction cache. This new module uses a file de-
scribing the set of cache states and cache reload
points of the program to be analyzed. It classifies
instructions into two categories : miss and hit. An
instruction is classified a a hit if it is locked in the
instruction cache, and is classified as a miss other-
wise.

Experimentation process. Given a program and
a parametrization of the instruction cache, the ex-
periment proceeds in two steps (see figure 2). First,
the set of cache states and cache reload points is
computed by the RMI algorithm. For this purpose,
execution traces are generated with Nachos.
The second step is the performance evaluation it-
self. The WCCMR is computed with Heptane.
Two cases are considered: (i) a system with a dy-
namic instruction cache (i.e. operating in its nor-
mal behavior); (ii) a system with a dynamically
locked instruction cache.

profiling
partition into

regions 

execution 
traces

program

WCCMR
estimation

locked cache
states

Figure 2. Experimental protocol

The experiments were conducted on three
benchmark tasks, whose features are summarized



in figure 3. The third column gives, for each task,
the code size in bytes.

Name Description Size
minver matrix inversion 4584
matmult matrix product 1328
jfdctint integer DCT transformation 3424

Figure 3. Characteristics of tasks

3.2 Performance of dynamic instruction cache
locking

In this paragraph, we interpret the results ob-
tained from the experimentation. First, we ex-
amine the worst-case performance improvement
obtained with our approach (§3.2.1). Then we
study some properties of the RMI algorithm itself
(§3.2.2).

3.2.1 Worst-case performance

We compare the worst-case performance of the
tasks in two situations: (i) the cache is dynamically
locked; (ii) the cache is dynamic wih a LRU pol-
icy. The figures 4, 5, and 6 describe the results of
the experiments. In the locked case, the WCCMR
comprises the cache misses due to the task itself,
and the cache misses arising from cache reloading
operations.

Impact of the cache size. As seen on figures
4, 5, and 6, in both locked and LRU cases, the
worst-case performance is far better than without
any cache (in this situation, the WCCMR would
be equal to 100%).

In the dynamic case, the WCCMR sharply de-
creases when increasing the cache size, as the
cache conflict probability decreases.

In the locked case, when increasing the cache
size, we observe a general tendency towards the
decrease of the part of the WCCMR which rep-
resents the reload overhead, . But for a notable
exception in the case of the task jfdctint with a 1
KB cache, a similar tendency applies as regards the
part of the WCCMR from the task itself.

Now we compare the worst-case performance
between the locked cache and the dynamic case.
In this aim, we compute, for each task and each
cache size, a ratio between the total WCCMR in
the locked case and the WCCMR in the dynamic
case. With the exception of two results (jfdctint
with a 1 KB cache, and minver with a 4 KB cache),
the average ratio is equal to 1 for jfdctint, 1.44 for
minver and 0.83 for matmult. Thus the results are
in the same order of magnitude in the locked and
dynamic situations.
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Figure 4. WCCMR results for minver.

0,7%

23,2%

15,5%

1,8%

2,5% 2,3%

17,8%

13,0%

2,5% 2,5%0%

5%

10%

15%

20%

25%

30%

512 B 512 B 1 KB 1 KB 2 KB 2 KB 4 KB 4 KB

Cache size

W
C

C
M

R

Locked cache Reload overhead Dynamic cache
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Impact of the associativity degree. On the fig-
ure 7, we consider the task minver and a 1 KB
cache. The impact of the associativity degree is
illustrated both in the locked and LRU cases.

We observe that the worst-case performance of
the locked cache scales well when increasing the
associativity degree. This can be explained by the
fact that, for a given cache size, a cache contents
computed by the Lock-MP algorithm for a spec-
ified associativity degree remains valid for other
associativity degrees. This confers to the RMI al-
gorithm a low sensitivity to the variations of this
parameter.
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Figure 7. Compared impact of the as-
sociativity degree of a 1 KB cache for
the task minver.

3.2.2 Properties of the RMI algorithm

Performance. As noticed before, the worst-case
complexity of the RMI is quadratic in the number
of basic operations, merging or inlining, on the ini-
tial set of basic blocks of a task. The figure 8 in-
dicates, among others, for each task and for each
cache parametrization, the number IB of initial ba-
sic blocks and the time T it took to compute a set
of locked cache states. The study of the quantity
T/IB2 shows that the computation time T in sec-
onds follows the approximate law T = 0.5IB2.

Locked cache states. As regards the number of
locked cache states determined by the RMI al-
gorithm, the figure 8 shows that this number de-
creases when the size of the cache increases. This
is is essentially due to the fact that the cache con-
tents selection algorithm Lock-MP accepts a more
important number of useful memory lines in a less
important number of locked cache states.

A notable fact is that, even when the size of a
task is inferior or approximately equal to the size

of the cache, the RMI algorithm may determine
more than one locked cache state. It can be seen
in the figure 8 in the case of the task minver for a
4 KB cache, and in the case of the task matmult
for most of the cache sizes. A reason for rejection
of valuable memory lines by the Lock-MP algo-
rithm is the existence of conflicts due to placement
constraints in a set-associative cache. The RMI al-
gorithm may address this issue by creating more
locked cache states when there is a benefit from
considering those rejected memory lines.

Task Cache
size

Nb of ba-
sic blocks

Computation
time

Nb of
cache
states

minver

512 B 135 3h 6min 49s 10
1 KB 135 2h 30min 52s 6
2 KB 135 2h 35min 13s 4
4 KB 135 2h 42min 12s 3

jfdctint

512 B 23 5min 22s 12
1 KB 21 4min 32s 3
2 KB 19 3min 12s 3
4 KB 19 3min 13s 1

matmult

512 B 23 2min 48s 2
1 KB 23 2min 48s 2
2 KB 22 2min 50s 2
4 KB 23 3min 2

Figure 8. Results characteristics

4 Related work

Studies have been performed for static instruc-
tion cache locking in multitasking hard real-time
systems. In [2], a global approach is proposed.
The cache state minimizing the cache-aware re-
sponse time (CRTA) [1] of each task is chosen. It
is achieved with a genetic algorithm. The fitness
function is a weighted mean of the response time
of each task. The same authors explored a local
approach in [3] with the same algorithm for cache
contents selection.

In [11], two greedy algorithms have been de-
signed for a global locking scheme. Both have a
pseudo-polynomial complexity. From task periods
and access statistics of instruction blocks along the
worst-case execution path of each task, each al-
gorithm selects a cache state so as to minimize a
well chosen cache-aware metric, and thus to im-
prove the task set schedulability. A local variant is
proposed in [10].

As explained in [10], static cache locking lacks
some scalability. If the ratio between the size of the
task set and the size of the cache memory is very
high, only a very small fraction of the task set will
benefit from the cache. Our work is applied on a
per-task basis, and thus is a local approach. It is de-
signed to overcome the scalability problem by al-



lowing the locked state of the cache to be reloaded
at some addresses of a program.

The work [13] is a combination of dynamic data
cache locking and static cache analysis. Given
a task, at compile time, an algorithm computes
the regions in the code where one cannot accu-
rately determine all possible cache contents re-
quired for analyzing the state of the data cache, be-
cause of memory references which cannot be stati-
cally known. Such regions are enclosed with a pair
of statements so that the cache is locked in them.
A locality analysis based on the study of reuse vec-
tors selects the data to be loaded in the cache. In or-
der to address the multitasking issues, it is assumed
that the data cache is partitioned among the tasks
of the system. Also the knowledge of the cache
replacement policy is required.

As compared with this work, our approach pro-
poses a scheme in which the instruction cache is al-
ways locked. Thus our method does not depend on
the cache line replacement policy, and may be used
in cases when static cache analysis fails. More-
over our work does not depend on any partition of
the cache. Therefore it does not require addition-
nal partitioning techniques, and it can be easily ap-
plied in situations in which the number of tasks of
the system may vary.

Finally, scratch-pad memories [12] are an alter-
native to instruction or data caches. These are on-
chip static memories with low latencies. As a con-
sequence they may reconcile performance and pre-
dictability. They generally provide lower capaci-
ties than caches and consume far less power. Be-
cause of the addressing scheme, the code of tasks
must be explicitly modified in order to benefit from
scratch-pad memories. Thus, as compared with our
scheme, this approach requires more compiler sup-
port. We believe that the addressing transparency
provided by instruction caches is a key advantage,
because it alleviates the need for code transforma-
tions.

5 Conclusion

The key benefit of instruction cache locking is
to make the memory access times entirely pre-
dictable and to be a technique that eliminates intra-
task conflicts. It can be applied in situations
where static cache analysis cannot be used (e.g.
when the cache has a non deterministic or undocu-
mented cache line replacement policy). Moreover,
it may make easier the analysis of other architec-
tural components. In this work, we have proposed
a local dynamic cache locking strategy and an al-
gorithm for determining a finite number of cache

configurations for a given task. Its additional fea-
tures are independence from any scheduling pol-
icy (it is a per-task strategy), unnecessity to access
the source code of programs, scalability with re-
gards to cache associativity. With regard to per-
formance evaluation against a system without any
instruction cache, a sharp improvement is observed
on the miss rates in the worst case. Moreover for
many cache parametrizations, the worst-case per-
formance is in the same order of magnitude as re-
sults from static LRU cache analysis.

As a further work, it would be interesting to ex-
plore the transposition of the RMI algorithm (i.e.
we keep the basic merging and inlining operations)
from a greedy algorithm towards a genetic algo-
rithm. The main reason is that a genetic algorithm
exhibits a better exploration of a solution space and
thus might find sets of locked cache states which
would lead to better improvements on worst-case
performances. Another direction would be to adapt
this work in other situations. It could be easily
achieved for multi-level instruction caches. Fi-
nally, the adaptation to data caches should be in-
vestigated.

A Worst-case complexity of the RMI
algorithm

As regards the worst-case complexity of the
RMI algorithm, we now show that it is quadratic
in terms of involved operations (merging and in-
lining). First we detail a worst-case scenario.
Suppose our program comprises NS subroutines
F0 . . . FN , each with NR basic blocks assimilated
to simple regions. In each Fk, the NR regions
are consecutive. We consider the following call-
ing hierarchy: for each k, Fk calls the subroutines
Fk+1 . . . FNS−1. For the sake of simplicity, we as-
sume here that the main subroutine may be inlined.
Starting from the value k = 0, RMI repeats the fol-
lowing steps until only one simple region remains
in each subroutine: (i) choose a pair of regions of
Fk, then merge them; (ii) in the remaining subrou-
tines Fk+1, . . . , FNS−1, no pair of regions is cho-
sen for merging; (iii) if only one simple region re-
mains in Fk, then increment k; (iv) try to inline
each of the subroutines F0, . . . , Fk−1, but never
choose one.

Given a value of k, each of the subroutines
F0, . . . , Fk−1 contain only one region simple. At
a given stage, assume the subroutine Fk has NR −
i + 1 regions. Then NR − i mergings are tried
before making a choice. As each of the remain-
ing NS − k− 1 subroutines Fk+1, . . . , FNS−1 has
NR simple regions, overall (NS −k− 1)(NR− 1)



mergings are tried without any choice being made.
As regards the subroutines F0, . . . , Fk−1, k inlin-
ing operations are tried without any success. Thus,
at a given stage, (NR− i)+(NS−k−1)(NR−1)
operations are done. As the number of regions of
Fk can vary from 2 to NR for mergings, i ranges
from 1 to NR − 1. Now summing over the NS

subroutines, we obtain the following number of
operations:

∑NS−1
k=0

∑NR−1
i=1 [(NR − i) + (NS −

k − 1)(NR − 1) + k]. The computation of this
sum yields 1

2N2
SNR(NR − 1) operations. Thus

this value is in O((NSNR)2). As NSNR is the
number of basic blocks of the program, the worst-
case complexity of the RMI algorithm in number
of operations is quadratic with the number of basic
blocks.
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