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Abstract

Most previous research done in probabilistic schedula-
bility analysis assumes a known distribution of execution
times for each task of a real-time application. This is how-
ever not trivial to determine it with a high level of confi-
dence. Methods based on measurements are often biased
since not in general exhaustive on all the possible execu-
tion paths, whereas methods based on static analysis are
mostly Worst-Case Execution Time – WCET – oriented. Us-
ing static analysis, this work proposes a method to obtain
probabilistic distributions of execution times. It assumes
that the given real time application is divided into multiple
tasks, whose source code is known. Ignoring in this pa-
per hardware considerations and based only on the source
code of the tasks, the proposed technique allows designers
to associate to any execution path an execution time and a
probability to go through this path. A source code example
is presented to illustrate the method.
Keywords: Probabilistic execution times, Static analysis,
Soft real-time systems.

1. Introduction

Real-time systems are widely used in many industrial
sectors. They address not only safety-critical applications
like nuclear power control or flight management systems,
but also multimedia applications like video on demand,
video conference, virtual reality and so forth. The first kind
of applications, for which all the timing constraints are to be
met, is known as hard real-time system. For the second kind
of applications, known as soft real-time systems, a temporal
fault would just result in a mere decrease of the quality of
service (QoS).

Facing the concurrent access to few resources like pro-
cessors, real-time applications are usually divided into mul-

tiple tasks and require during their development stage, a
schedulability analysis [5, 14]. This analysis consists in
computing – on-line or off-line – the ordering of tasks to
be executed on the processor(s) such that all the timing
constraints, or a reasonable part of them, are met during
runtime. In a hard real-time context, the knowledge of the
WCETs of each task is a key point to produce a correct task
ordering, and many results on WCET determination have
been produced [18]. To match the growing complexity of
processor architecture, the WCET estimation methods are
getting more and more complex as they take into account in-
struction and data caches [17, 15], pipelines [11] and branch
prediction [7]. While these methods are necessary for hard
real-time systems, they are less justified for soft real-time
systems, where methods based on probabilistic schedulabil-
ity analysis are more and more studied. In this latter context,
many contributions for probabilistic schedulability analysis
[13, 9, 16, 4] assume that the execution times of the tasks
are probability distributions.

Using statistical methods, the authors of [12] have pro-
posed an estimation of execution times. However, such
techniques can not provide a reliable probabilistic execution
time, since they cannot be in general exhaustive in terms of
execution paths. To our knowledge, there are no other sig-
nificant studies only examining the distribution of execution
times. Most of the work done is indeed either on WCET or
on mean execution time estimation. Leaving apart the deter-
ministic estimation of WCET [18], a recent work [3] from
Bernat et al. has proposed an estimation of WCET, using
probabilistic schemes, and can even be useful for the hard
real-time systems where a probability closer enough to 1.0
could be suitable for particular applications. In their the-
ory, the different execution paths are still deterministically
evaluated, only the low-level WCETs are given in proba-
bilistic terms. Based on random samples of measured exe-
cution times, Edgar et al. have also proposed an approach
[10] to statistically estimate the WCET with a confidence
level. Using these WCET estimates, they have besides dis-

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04) 

1068-3070/04 $20.00 © 2004 IEEE 



cussed on the schedulability analysis of tasks. In their work,
WCET estimations come from computation time distribu-
tion based on measurements. On the contrary in our work,
probabilistic considerations are only applied to the source
code and its different execution paths. Note that the theory
on average case complexity [2] can also give an answer in
estimating average execution times of many algorithms, but
once again, it does not deal with execution time distribu-
tions.

This paper presents a framework to compute for any pos-
sible execution path of the source code, on the one hand the
probability to go through this path during runtime and on
the other hand, the corresponding execution time. The ap-
proach is based on source code analysis. Compared to sta-
tistical methods, this static analysis provides a high level of
confidence in the proposed method since all the execution
paths are considered.

This paper is organized as follows. First, notations and
definitions are presented. Secondly, considering straight-
line code and then code with loop structures, we present
the paper contributions. After a section with an illustra-
tive source code example, we deal with some implemen-
tation considerations. Conclusions and perspectives are fi-
nally given.

2. Definitions and notations

Real-time applications often communicate with an envi-
ronment which may use some multimedia or physical data,
depending on the application field. These data considered
as external data for the real-time system may have a prob-
abilistic representation. In this work, we suppose that each
external variable of a task goes along with a probabilistic
representation of its values. No assumption is drawn on the
availability of the variable in terms of time. These external
variables are assumed to be random variables and are de-
noted Ei with i naturals (i ∈ 1, 2, ..., p). In the source code
of the task, some local or global internal variables may de-
pend on the above mentioned random variables. These local
or global variables are then also random variables, and let
Ii with i naturals (i ∈ 1, 2, ..., q) denote these internal vari-
ables.

Any random variable (external or internal one) goes
along with a probability mass function (pmf), denoted in the
following by f . For example, fEi(x) is the probability that
the random variable Ei take the value x. This probability is
also noted P (Ei = x) (P (Ei = x) = fEi(x)). The same
notations apply to Ii variables. The cumulative function of
any random variable Ei is by definition:

F (x) = P (Ei ≤ x) =
∑

j∈Dom(Ei)
j≤x

P (Ei = j).

where Dom(E) denotes the domain of E. We also assume
that the domain of Ei or Ii are described only with discrete
values. The pmf of external variables Ei are supposed to be
known whereas those of internal variables Ii are not. They
can however be determined if necessary and further details
will be given in the next section.

The determination of the task execution time distribution
turns out to be a quite complex issue, and one hypothesis
we draw to propose a first solution is the independence of
external variables Ei.

The proposed method applies to a single task and uses a
static analysis of its source code. Furthermore, any source
code can be considered as an assembly of conditional, se-
quence and loop constructs. The following grammar, writ-
ten in BNF notation – Backus Naur Form –, is the grammar
used in this article to describe any source code1:

S ::= BB; |
If (Cond) then S else S endif ; |
while (Cond) loop S endloop; |
S {S}

where BB, Cond, S and {S} represent respectively a ba-
sic block (branch-free sequence of instructions), a condition
(boolean expression), a construct, and a sequence of con-
structs of any type. In the following, a logical condition
may also be represented by this kind of notations: C i, Cif ,
Celse.

The proposed method does not take into account hard-
ware considerations yet; the execution time of any instruc-
tion is intentionally assumed to be constant and context-
independent. Furthermore, we assume no optimization
mechanism in the compilation process.

3. Probabilistic execution times

Given the source code of a task and for any execution
path, our objective is to compute on the one hand the proba-
bility to go through this path and on the other hand, its asso-
ciated execution time. Our approach is a tree-based method
– introduced initially by [19]. We propose to associate to
any execution path an execution time and a set of conditions
to satisfy to go through the considered path. This associa-
tion is obtained by applying recursively some formulae to
the tree representation of the source code.

The conditions we deal with may be either deterministic
or probabilistic. We subsequently assume that any condi-
tion can be viewed as a probabilistic condition, associated
with a probability that can be equal to 0.0, 1.0 or any value
included within 0.0 and 1.0.

1This grammar is intentionally simplified.
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Construct (S). Possible Execution Times Possible Conditions to Resulting sequence
for S. Notation: T(S). run S. Notation: C(S). of basic blocks.

BB (basic block) T (BB) C(BB) = True r(BB; ) = BB;

S1; ...Sn;
n

X

i=1

T (Si)
n

\

i=1

C(Si) r(S1; ...; Sn; ) = r(S1); ...; r(Sn)

if (Cif ) then
St; T (Cif ) + T (St) C(St) ∩ Cif r(S) = r(St);

else
Se; T (Cif ) + T (Se) C(Se) ∩ ¬Cif r(S) = r(Se);

end if;

Table 1. Execution Times and Conditions

Regarding loop structures, execution time evaluation re-
quires to determine the number of loop iterations. To grad-
ually introduce our method, we first focus on straight-line
code, and then take into account loop structures in the
source code of a task.

3.1. Straight-line code

Two main steps have been identified in our method: a
first step in which a tree-based technique provides for each
possible execution path, its corresponding execution time
and its corresponding logical conditions to satisfy to go
through this path during runtime, and a second step in which
conditions are probabilistically evaluated.

Tree-based method

Our tree-based method associates to any node of the tree-
based representation of the source code an execution time
and a logical condition. This association is reported in table
1 (column 2 and 3) through some recursive formulae, mak-
ing possible to evaluate any node from its child nodes. In
table 1:

• T (Si) represents the execution time for a construct S i,
and T (Cif ) the execution time of Cif evaluation. As
we leave apart hardware considerations, we assume
that T (BB) and T (Cif ) are fixed and known.

• C(Si) represents the conditions to run Si. While for a
basic block BB, the related condition is equal to True
(C(BB) = True), for a sequence S1; S2; ...; Sn;
of constructs, the conditions to run the sequence is
the (logical) intersection of conditions to run each S i

(i ∈ 1...n). In some particular cases, the conditions
are trivial: for instance if each Si = BBi, then the
condition results in C(S1; S2; ...; Sn; ) = ∩iC(Si) =
∩iTrue = True2. Dealing with conditional con-
structs the condition C(S) produces two branches re-

2∩ is used here as the logical AND.

sulting in two distinct conditions for the two possible
execution paths: C(Sif ) ∩ Cif and C(Selse) ∩ C¬if .

The last column of the table will be useful in the follow-
ing when dealing with the probabilistic evaluation of condi-
tions. Let us just mention that this column allows us to build
the resulting sequence of basic blocks associated with the
considered execution path. It transforms the representation
of the considered path from a tree into a flat representation
(sequence of basic blocks).

Applying recursively the table formulae results in a set
of different execution times, a set of condition logical inter-
sections, and a set of basic block sequences. Every execu-
tion path in the source code is associated with these three
features.

Probabilistic evaluation of conditions

Assuming that above recursive formulae are completed, let
Chi be an execution path and let ∩n

i=1C(Si) be the set of
conditions to satisfy to go through Chi. The probabilistic
evaluation of the execution time consists then in evaluating:

P
`

Tn
i=1 C(S(i))

´

Besides, any condition can be written as an ex-
pression of the following form [C(S(i))] ≡
[fi(E1, E2, ..., Ep, I1, I2, ..., Iq) ∝ 0] where
∝= {<, >,=,≤,≥}, where Ej are the external vari-
ables of the source code, and where Ij are the internal
variables of the source code. As the sets are supposed
discrete, we have:

P
`

Tn
i=1 C(S(i))

´

=
X

D
P (E1 = e1, ..., Ep = ip, I1 = v1, ..., Iq = vq)

where D represents all the (p + q) tuples
e1, e2, ..., ep, i1, i2, ..., iq belonging to the domain
Dom(E1)× ...×Dom(Ep)×Dom(I1)× ...× Dom(Iq)
such that

⋂n
i=1 fi(E1, E2, ..., Ep, I1, I2, ..., IQ) ∝ 0 and

where the notation Dom(X) represents the domain of
random variable X .
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Though complex, the summation can be automatized by
using a full exploration of D, and verifying for each ele-
ment of D whether the latter expression is true. If so, the
corresponding probability is used in the summation. What
is more annoying is that we cannot write a mere product
of individual probabilities because of the possible inter-
dependance of Ii variables. Our method proposes then to
replace every internal variable Ii with a quantity which only
depends on the external variables Ei, assumed to be inde-
pendent. For this purpose, we use the last column of table 1,
where r(S) (S is a construct of any type) represents the re-
sulting flat representation of constructs. If S is a basic block
BB for example, we trivially have: r(S) = BB. In a con-
ditional construct however, two different flat representations
may be obtained: one for the if branch (r(S t)), the other for
the else branch (r(Se)). Through a recursive application of
the table formulae, this column provides then the resulting
sequence of basic blocks of any execution path.

In this basic block sequence, specific to Chi, let us point
out two facts:

- for any assignment concerning an internal variable I i,
it may report the knowledge of Ii to the knowledge (1)
of another internal variable Ii, (2) of a combination of
external variables Ei only, or (3) of a combination of
internal and external variables,

- in the case Ii does not depend on external variables, the
value of Ii can be computed for the considered execu-
tion path, using a partial execution of the basic block
sequence.

To determine the relation giving Ii from the external
variables, we propose algorithm 1. For a given execution
path, this algorithm consists in going through the induced
basic block sequence (in reverse execution order), and in
keeping up to date the history of the assignments involving
the internal variables. The algorithm operates as follows:
for any execution path, say Chi, we assume that the asso-
ciated logical conditions and their internal variables I i are
identified. These variables are gathered in a set I. The re-
lated basic block sequence is examined in the reverse order
(lines 1, 2, 10 and 11). For each basic block we point to,
we check whether this basic block contains an assignment
involving an element of I (line 3). If so, we memorize the
label of this element and the right member expression of
the assignment in a variable called Lvect (line 4). We then
withdraw this element from I (line 5). If some new inter-
nal variables appear in this expression, we add them into I
(lines 6 and 7). The storage (in Lvect) of labels and the
right member expression of assignments, in others words,
the "history" of initial Ii variables, then provides the ex-
pression of Ii function of external variables Ei.

The probabilistic evaluation of the conditions associ-
ated with Chi is then very close. As we now know the

Alg. 1 Determining Ii in terms of the external variables Ei.
Require: Chi is given, associated conditions are identi-

fied, and all the Ii included in these conditions are iden-
tified. We store all these Ii in a set I

local Lvect {Lvect is a dynamic list of 2-dimensional
vectors: one dimension for a label, and one dimension
for a regular expression}

1: We start at the end of the induced basic block sequence;
2: while (We are not at the beginning of the induced ba-

sic block sequence) or (There is still element in I to
determine) do

3: if (The basic block we are pointing to contains an
assignment involving one element – say Ii – of I)
then

4: We store in Lvect the label of Ii and the expression
of the assignment right member;

5: We withdraw Ii from I;
6: if (Some new internal variables appear in the ex-

pression of the assignment right member) then
7: We add these internal variables as some new el-

ements of I
8: end if
9: end if

10: We go to the next basic block (in reverse execution
order);

11: end while
12: if There is still an element in I then
13: RAISE an exception;
14: end if
Ensure: For the given execution path, Lvect provides the

history of internal variables Ii, and allows us to set up
the dependence related to Ei variables.

expression giving all the internal variables Ii according
to the external variables Ei, we can rewrite the expres-
sion of fi introduced in terms of the variables Ek solely.
Let gi be this modified function such that [C(S(i))] ≡
[gi(E1, E2, ..., Ep) ∝ 0]. We finally write:

P
n

\

i=1

C(S(i))

!

=
X

D
P (E1 = e1, ..., Ep = ep)

where D represents all the p tuples e1, e2, ..., ep belong-
ing to the domain Dom(E1) × ... × Dom(Ep) such that⋂n

i=1 gi(E1, E2, ..., Ep) ∝ 0. As we assume that external
variables are mutually independent, we write:

P
n

\

i=1

C(S(i))

!

=
X

D

j=p
Y

j=1

P (Ej = ej) (1)

where all the Ej pmf are known. The probability that Ch i

will be executed during execution phase is then determined.
Moreover the execution times have been determined using
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Construct (S). Possible Execution Times Possible Conditions to Resulting sequence
for S. Notation: T(S). run S. Notation: C(S). of basic blocks.

For all the possible values of the number of loop iterations: {p1, p2, ..., pn} (n integer).

"

p1
X

k=1

T (Cw(k)) + T (Sw(k))

#

+ T (Cw)

"

p1
\

k=1

C(Sw(k))

#

∩ (NIt = p1) r(Sw(1)); ...; r(Sw(p1));

while Cw(k)

"

p2
X

k=1

T (Cw(k)) + T (Sw(k))

#

+ T (Cw)

"

p2
\

k=1

C(Sw(k))

#

∩ (NIt = p2) r(Sw(1)); ...; r(Sw(p2));

loop

Sw(k);

"

...
X

k=1

T (Cw(k)) + T (Sw(k))

#

+ T (Cw)

"

...
\

k=1

C(Sw(k))

#

∩ (NIt = p...) r(Sw(1)); ...; r(Sw(...));

end loop;
"

pn
X

k=1

T (Cw(k)) + T (Seqw(k))

#

+ T (Cw)

"

pn
\

k=1

C(Sw(k))

#

∩ (NIt = pn) r(Sw(1)); ...; r(Sw(pn));

k is supposed to be the loop index ranging from 1 to the number of loop iterations.

Table 2. Execution Times and Conditions

the formulae of table 1. Hence, we have the probabilistic
execution time of Chi. For all the feasible paths, we finally
get the probabilistic execution times of the source code.

3.2. Code with loop structures

In this subsection, we deal with source code that may
contain loop structures. The main refinement of the previ-
ous section consists in taking into account code included in
loop structures and executed several times.

In a loop structure, we can always take under considera-
tion a loop index k that describes the iteration number. This
number may be on the one hand deterministic (k bound-
aries can be deterministically evaluated as well as its step3),
or on the other hand probabilistic (one of both boundaries of
k may be random variables, and its step may be also prob-
abilistic). As it is difficult to be exhaustive in the range of
loop index k, we have chosen to restrict our work to a com-
mon loop condition case: (Ii ≤ k ≤ Ij), with Ii, Ij two
internal random variables and with a constant and unit step
for the k range. Cases (k ≤ Ij) and (k ≥ II) are of course
particular cases of this latter case.

The successive executions of the loop body imply that
all the conditions within loops are evaluated several times.
In table 2, we report the recursive formulae to be applied
to the source code containing loop structures. In column 2
for example, not only conditions to run the structures of the
loop body, but also a condition on the number of times the
loop body is executed, are used.

Related to the number of loop iterations, the condition

3The difference of k values between two consecutive iterations.

to be evaluated is of type NIt = p. Due to the particular
choice of loop condition, it can be written as the evaluation
of (Ij ≥ p)∩(Ii ≤ p). Then, we can write that [NIt = p] ≡
[(f1(Ij) ≥ 0)∩(f2(Ii) ≥ 0)], where f1 is the function x �→
x−p and f2 is the function x �→ −x+p. To determine Ii and
Ij function of external variables only, we apply algorithm 1.
The same method as in the straight-line code context is then
applied to get the probabilistic execution times of the source
code.

4. A Source Code Example

In this section, a task source code example is scrutinized
using the method presented above. Our example deals with
the control of a physical experiment. This experiment re-
quires a minimum of power generated by electromagnetic
(or acoustic) waves. At each periodical execution of the
task, a treatment is conducted to confirm that the physical
experiment is still under nominal functioning. This kind
of experiment may be used for example to keep a confined
area under specific conditions, to test a mobile phone emis-
sion/reception or to test a high performance microphone.
Let Ex, Ey and Ez be three independent power quantities
resulting from the acquisition of three independent signals.
Each external variable Ei has a pmf supposed to be known.
The signals may correspond to three isotropic signals ac-
quired in a three dimensional Cartesian space. Assuming
that signal is not taken under consideration when its power
is above a threshold, we suppose that this threshold is also
a random variable and corresponds to the power of an elec-
tromagnetic (or an acoustic) noise. Let T be the random

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04) 

1068-3070/04 $20.00 © 2004 IEEE 



variable associated with this threshold. The task execution
time depends indirectly on the values of E i and T , as illus-
trated in part of the task C source code of algorithm 2.

Alg. 2 Source code example.
TASKPOWERALERT := proc E[N], T, PowerMin
Require: N is a global integer variable, E[N ] is a table of

N floats, T and PowerMin are float. The distribution
of E and of T are known and PowerMin is given.

local float P; int j; {Three dimension space.}
1: P=0.0;
2: for (j=0; j<N; j++;) do
3: if (E[j]>T) then E[j]=T; end if; {Ignore signal power

above threshold value.}
4: P = P + E[j]; {Compute the total power.}
5: end for
6: if (P<PowerMin) then Treatment; end if; {The alert is

treated through a specific code.}
Ensure: If the resulting power is under PowerMin then run

Specific Code.

In this code, the conditions (P < PowerMin) and
(E[j] > T ) (i = 1, 2, 3) result in 23 ∗ 2 = different ex-
ecution paths. Each path can be identified by the values
of the 4 conditions. For instance, the condition to −1−
NOT go through the then branches within the for loop body
and −2− to go through the then branch of if structure, is
(
⋂i=3

i=1 E[i] ≤ T ) ∩ (P < PowerMin). The probability
evaluation of this condition consists then in computing:

Pb = P (

i=3
\

i=1

(E[i] ≤ T ) ∩ (P < PowerMin))

Besides, the resulting basic block sequence associated with
this execution path and coming from the recursive applica-
tion of formulae given in the last column of tables 1 and
2:

1: float P; int j;
2: P=0.0;
3: P = P + E[1];
4: P = P + E[2];
5: P = P + E[3];
6: Treatment;

Applying algorithm 1 results in the determination of P : the
different assignments give the relation P = 0.0 + E[1] +
E[2] + E[3]. We then write that Pb =

P (
i=3
\

i=1

(E[i] ≤ T ) ∩ (E[1] + E[2] + E[3] < PowerMin))

=
X

D
P (T = t) ×

i=3
Y

i=1

P (E[i] = ei)

where D represents all quadruples (e1, e2, e3, t) that belong
to the set Dom(E1)× Dom(E2) × Dom(E3) × Dom(T )
and such that (e1 ≤ T )∧ (e2 ≤ T )∧ (e3 ≤ T )∧ (e1 +e2 +
e3 < PowerMin). The probability associated with the
considered path can then be computed. The same method is
applied to the other execution paths.

As far as execution times are concerned, we apply the re-
cursive equations given in table 1 and 2 to the source code.
We then gather in a set the different execution paths having
the same execution time. Therefore, as the possible execu-
tion path set is discrete, the summation of their associated
probabilities results in the probability that the source code
take this time to execute.

To experimentally confirm the correctness of our
method, we have compared the probabilistic proposed ap-
proach with a stochastic simulation of the source code exe-
cution. We choose a normal distribution for E[j] and T , and
we analyze the execution times of the 16 different execution
paths. For the different E[j], the same normal distribution
is chosen: a mean of µ = 2 and a variance of σ = 1. For
T , we choose a mean of µ = 4 and a variance of σ = 1.
The value for PowerMin is 8. Reporting the results in figure
1, we observe that for each computed execution times, the
probabilistic analysis gives closely the same results than a
stochastic simulation4 of the source code execution. It con-
firms on the example the correctness of the proposed theory.
Note that a statistic test has been conducted to confirm that
our samples follow a normal distribution.

Figure 1. Probabilistic analysis vs. Simula-
tion

4Note that the simulation operates on 106 different executions.

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04) 

1068-3070/04 $20.00 © 2004 IEEE 



5. Implementation considerations

Complexity and automation

Considering complexity issues, two issues must be distin-
guished: one deals with the determination of execution
times and their associated conditions, and the other one
deals with the probabilistic evaluation of these conditions.

For the first part, at any stage of the execution time anal-
ysis, all the execution scenarios must be examined. The
complexity is then greater than the complexity of tree-based
static WCET analysis. At a given node of the tree, our
tree-based technique produces either two leaves when an if
structure is examined, or p leaves when a loop structure is
examined with p representing the possible number of itera-
tions. Same considerations also apply to the determination
of the condition combination associated with each execu-
tion path.

As regards the probabilistic evaluation of conditions, the
complexity is clearly exponential and strongly depends on:

1. the relation between the internal Ii and external ran-
dom variables Ei,

2. the domain width of external variables (through the ex-
ploration of the whole domain D).

Nevertheless these two parts can be automatized. An
adaptation of WCET tools [8, 6] can first be achieved to im-
plement the tree-based method part (execution times, and
conditions). Then, implementation of probability evalua-
tion consists in the implementation firstly of algorithm 1,
and secondly of equation (1). Note that the complexity of
this latter equation is based mainly upon the exploration of
the domain D.

Probabilistic evaluation: some particular cases

As underlined above, the probabilistic evaluation of condi-
tions is exponential. However, its computation can be sim-
plified in some particular – but rather interesting – cases.
For example, conditions of type: [fi(E1, E2) ∝ 0] with E1

and E2 two external variables and with ∝= {<, >,=,≤
,≥}, can be rapidly evaluated using a probabilistic algebra.
Provided that random variables E1 and E2 are independent,
this algebra can be used after or before algorithm 1, making,
in this latter case, this algorithm unecessary.

For example, probability evaluation involving arithmetic
operators is nearly straightforward. The addition operator
for instance uses the convolution product of the two pmf
from the two discrete random variables E1 and E2. We
can write indeed the following equation [1]: P (E1 + E2 =
k) =

∑k−min(E2)
j=min(E1) P (E1 = j) × P (E2 = k − j), where

min(X) represents the minimum value that random vari-
able X can take. The evaluation of the probability of con-
dition E1 + E2 = k is then reported to the pmf of E1 and
E2, supposed to be known. The same kind of results can
be applied to P (E1 − E2 = k), P (E1 × E2 = k) and
P (E1/E2 = k). The scheme used to write these proba-
bilities function of E1 and E2 pmf lays on the condition
partitioning mechanism.

Let for example scrutinize the case P (E1 × E2 = k),
with k (integer) ranging from min(E1 ×E2) to max(E1 ×
E2) (not necessarily equal to respectively min(E1) ×
min(E2) and max(E1) × max(E2) depending on E1 and
E2 signs). One possible partition of event E1 × E2 = k is⋃max(E1)

i=min(E1) (E1 = i) ∩ (E2 = k/i). Hence, we can write:

P (E1 ∗ E2 = k) = P (

max(E1)
[

i=min(E1)

(E1 = i) ∩ (E2 = k/i))

=

max(E1)
X

i=min(E1)

P ((E1 = i) ∩ (E2 = k/i))

As E1 and E2 are independent, the product of proba-
bilities can then be written, making possible to compute
P (E1 ∗ E2 = k). If E1 and/or E2 take the value 0, special
attention is required. The corresponding probability can for
example be equal to 0.0 or 1.0 (if k is equal to 0.0, the prob-
ability is then equal to 1.0: it is certain that 0 = 0 !). Any-
way, leaving apart these special cases, the above expression
determines the probability P (E1 ∗ E2 = k) in terms of the
pmf of E1 and E2.

With such basic operators, and provided that the condi-
tion of type [fi(E1, E2) ∝ 0] uses arithmetic operators and
that E1 can be dissociated from E2 (and vice versa), the
probabilistic evaluation of the condition is reported to the
knowledge of the respective pmf of E1 and E2 .

Let us just mention that any evaluation of probability
P (fi(E1, E2) ∝ 0) with ∝∈ {<, >,≥,≤} can also be re-
ported to the evaluation of P (fi(E1, E2) = k)) (notion of
cumulative probability).

All these operators on random variables can then be used
to compose a probabilistic algebra, and to provide a differ-
ent way to compute the probability of a condition to be sat-
isfied. It is of interest to mention it for a validation issue:
indeed, it may give some ways to compute the probability
for an execution path to be followed, and could then par-
tially contribute to the validation of a tool implementing the
proposed technique.

6. Conclusion

Using a static source code analysis, this paper shows that
it is possible for a real-time application designer to deter-
mine the probabilistic distribution of task execution times.
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The proposed technique requires that for each task of the
system, its external random variables be mutually indepen-
dent and that their respective probability distributions be
known. A tree-based technique has been proposed in order
to build for each possible execution path, its corresponding
execution time, its corresponding logical conditions to sat-
isfy to go through this path during runtime, and lastly its
resulting basic block sequence. Once these three features
are identified for one execution path, an algorithm is used
to look for relations giving internal source code variables
in terms of the external variables. Finally, these relations
combined with the pmf of the external variables provide the
probability to go through this execution path during run-
time. Generalizing this process to all possible execution
paths results in the probabilistic distribution of execution
times.

The proposed method is about to be entirely imple-
mented: the tree-based method part can indeed be slightly
derived from WCET tools already implemented, and prob-
abilistic evaluation, though exponential, reveals interest-
ing characteristics to be rapidly automatized. Once imple-
mented, we are going to check the feasibility of the method
on concrete source code. It is as well of great interest to
scrutinize the complexity issue in order to decrease the com-
putational cost of our proposed method. We shall also fo-
cus on more intricate loop conditions to take under consid-
eration more general source code. Moreover, as no hard-
ware accelerating features is yet taken into account in this
work, we shall also examine what would be appropriate to
face, for examples, instruction and data caches, pipelines
or branch prediction. Another point which requires further
research is the assumption of independence between exter-
nal random variables. While for particular applications, this
assumption is suitable, it is more controversial in general.
Jointly distributed random variables could however be use-
ful to carry on computing the probabilities.
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