
I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO
R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1032

Salto: SYSTEM FOR ASSEMBLY-LANGUAGE TRANSFORMATION
AND OPTIMIZATION

ERVEN ROHOU, FRANÇOIS BODIN, ANDRÉ SEZNEC,
GWENDAL LE FOL, FRANÇOIS CHAROT, FRÉDÉRIC RAIMBAULT

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 99 84 71 00 – Fax : (33) 99 84 71 71

Salto: System for Assembly-Language Transformation and

Optimization

Erven Rohou, Fran�cois Bodin, Andr�e Seznec,

Gwendal Le Fol, Fran�cois Charot*, Fr�ed�eric Raimbault**

Th�eme 1 | R�eseaux et syst�emes
Projet CAPS

Publication interne n�1032 | Juin 1996 | 19 pages

Abstract: On critical applications, particularly embedded systems, the performance tuning requires multiple
passes. Salto (System for Assembly Language Transformation and Optimization) is a retargetable framework
for developing all the spectrum of tools that are needed for performance tuning on low-level codes (assembly-
languages) on uniprocessors. Salto enables the building of pro�ling, tracing and optimization tools. The user
is responsible for giving a machine description of the target architecture, which includes instruction-set of the
processor, precise hardware con�guration and reservation-tables for all instructions, but high-level functions are
provided to him for writing any tool corresponding to his needs.

Moreover Salto will be a part of a global solution for manipulating assembly-code to implement low-level
code restructuration as well as to provide a high-level code restructurer with useful information collected from
the assembler code and from instruction pro�ling.

Salto has been tested on Intel platforms running Linux (i486) and Solaris (PentiumPro) and on a Sparc-
station running SunOs 4.1. A machine description for the Sparc v7 architecture is currently available. Two
examples, a basic block instrumentation and a local reordering optimization, are given in the paper as illustra-
tion.

Key-words: assembly language, optimization, embedded systems, reservation tables, user interface, object
oriented, compilation process

(R�esum�e : tsvp)

* ferohou,bodin,seznec,lefol,charotg@irisa.fr
** raimbaul@univ-ubs.fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(URA 227) Université de Rennes 1 – Insa de Rennes et en Automatique – unit́e de recherche de Rennes

Salto : un syst�eme pour la transformation et l'optimisation des

codes assembleurs

R�esum�e : Pour la plupart des applications critiques, notamment les syst�emes embarqu�es, l'optimisation
des performances requiert plusieurs passes. Salto est un environnement de travail reciblable qui permet le
d�eveloppement de l'ensemble des outils n�ecessaires pour l'analyse et l'optimisation de performances sur des codes
assembleurs pour mono-processeurs. Salto facilite la construction d'outils pour le pro�ling, la g�en�eration de
traces et l'optimisation. L'utilisateur doit fournir un �chier de description de la machine cible. Cette description,
du jeu d'instructions du processeur, contient la con�guration mat�erielle et les tables de r�eservations d�ecrivant
l'usage des ressources. Une interface de haut-niveau, orient�ee objet, est fournie pour l'�ecriture des outils dont
il a besoin.

En outre, Salto est destin�e �a être un �el�ement d'une solution globale de manipulation de code assembleur
tant pour la restructuration de codes de bas-niveau que pour la production d'information �a destination d'un
optimiseur de haut-niveau.

Salto a �et�e test�e sur des plateformes Intel fonctionnant sous Linux (i486) et Solaris (PentiumPro) et sur
Sparcstation sous SunOs 4.1. Une description de l'architecture Sparc v7 est disponible. Deux exemples, une
instrumentation des blocs de base et un ordonnancement local, sont d�ecrits dans cet article en guise d'illustration.

Mots-cl�e : assembleur, optimisation de performances, syst�emes embarqu�es, tables de r�eservation, interface
utilisateur, orient�e objet, châ�ne de compilation

Salto: System for Assembly-Language Transformation and Optimization 3

1 Introduction

It is our belief that for many critical applications, particularly in embedded systems, the performance tuning of
low-level code cannot be handled by a single-pass compiler. We believe that such performance tuning requires the
cooperation of many tools including assembly-code schedulers targeted for the precise hardware con�guration,
tracing and pro�ling tools and instruction-layout optimizers. These tools should feed information back to the
high-level compiler.

The increasing usage of high-performance embedded systems based on RISC/VLIW architectures has high-
lighted the need for tools that allow the easy implementation of �ne-grain parallelism optimizations and
assembly-code pro�ling and instrumentation, along with an accurate description of the target architecture
and high retargetability. Salto, presented in this paper, is a �rst step toward the availability of such a system.

Salto is a retargetable framework for developing the whole spectrum of tools that manipulates assembly-
language. The objective of such a system is to provide the user with a single environment that will allow him
to implement the tools that are needed for performance tuning on low-level codes; this set of tools includes
assembly-code schedulers, as well as pro�ling and tracing tools that provide the user with information on where
to focus optimizations and how e�cient they can be, therefore allowing tradeo� choices. Such a system is
intended to address general computing as well as embedded systems for which optimizations are more critical
and aggressive, but time-consuming techniques are more tolerable.

A large number of tools have been written to experiment with new optimizations or to try to point out
particular mechanisms. This development phase is generally time consuming and requires much investment.
Utilities able to trace or pro�le programs exist, but they are often provided \as is": they are not at all exible,
and only work for speci�c architectures. Studying a particular problem is likely to require rewriting from scratch
large pieces of code. As Salto is retargetable with the instruction-set architecture as well as with the precise
target hardware, it is likely to be a major help for such studies.

Salto overcomes many limitations of previous solutions: it does not implement any algorithm by itself, but
its scope is broad enough to allow implementation of either pro�ling or optimization techniques. A large amount
of work needed while working at the assembly-code level (code parsing, construction of the dependence graph,
etc.) is performed automatically by the system. To the user, Salto provides an object-oriented interface to
deal with assembly-code. The objects contain a complete description of the control-ow graph of the program
(when available) and a model of the target architecture. They are easily accessible through the user interface
and provide a comfortable way to implement algorithms without having to worry about infrastructure.

With Salto we plan to address the �eld of software analysis and optimization for superscalar and VLIW
architectures.

Section 2 reviews related works and points out how our tool provides a more general and integrated solution
for building tracers, pro�lers and optimizers. The general approach leading to Salto is presented in section 3.
Section 4 gives an overview of the system. Section 5 details the features of our tool. Examples are given in
section 6.

2 Related Work

To our knowledge no available single environment deals with the whole spectrum of code restructuration and
execution pro�ling and tracing. Moreover most tools are not fully retargetable.

Much work has been done in the �eld of low-level code optimization and analysis of dynamic program
execution. Optimization can be done at di�erent levels of granularity. They range from code transformations for
improving the parallelism in each basic-block to procedure motion for improving the instruction-cache behavior.
Dynamic program execution can be analyzed by pro�ling or tracing. Pro�ling deals with the number of times
a piece of code (instruction, block or procedure) is executed. This is particularly interesting for determining
critical sections in codes. As object-code optimization is CPU consuming, the optimizations should focus only
on those sections. Tracing furnishes a more precise analysis: the order of instructions is known and precise
addresses are obtained.

2.1 Analysis

Many techniques for analyzing program behavior depend on instrumentation of either the source code or the
executable �le. Pixie [26] is an instrumentation utility running on MIPS machines for executables. The
instrumented program, which contains additional code, counts the execution of each basic-block. A counter is

PI n�1032

4 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

added in each block. Ball and Larus [3] studied how to optimally use the same technique by minimizing the
number of counters required. They build a control ow graph of the procedure being instrumented and compute
the maximal spanning tree before deciding where to add code. They proved this technique to be optimal. They
implemented their strategy in a tool called Qpt [3].

A more exible solution called ATOM [12, 27] was proposed for the DEC Alpha. ATOM also depends
on code instrumentation and provides common analysis and performance tools. A partial list given in [12]
contains instruction pro�ling, system-call summary, memory checker, and many others. The major advantage
is the ability for the user to implement instrumentations in the C language enabling a high degree of exibility.
ATOM can be seen as a library of prede�ned functions that ease the instrumentation of the code.

Gordon Irlam's Spy [22] runs on Sparc architectures running SunOs 4.x. Spy exploits special features of the
Sparc microprocessor [11] to fetch the instruction to be executed. Spy provides as output a trace composed of the
instruction addresses and the data addresses, if any. Other tools achieve analysis via instruction-set emulation.
Cmelik and Keppel chose another strategy with Shade [9]: they dynamically compile each instruction of the
program, i.e., they build a block semantically equivalent to each assembly instruction of the original code
as if it were a complex instruction and then execute the block. This approach enables them to simulate an
instruction-set on a di�erent architecture (they can currently simulate Sparc and MIPS code on Sparc systems).

A survey of trace-driven memory simulation including trace collection, trace reduction and trace processing
can be found in [29].

2.2 Code Generation and Optimization

Extensive work has been done on �ne-grain optimization [23, 14, 1, 8, 24, 17, 13, 19, 25, 15, 18, 2, 30, 10, 5, 4]
but very few on frameworks for enabling a fast implementation of such optimizations. Furthermore, we are
not aware of a retargetable system that enables the implemention of assembly-code scheduling (with accurate
resource usage models), partial-register allocation and instrumentation. Being able to \redo" partial-register
allocation is a major capability that is necessary for achieving good performance when using software-pipeline
techniques [2].

The main drawback of having Salto as a separate tool is that it separates the code-generation and the
optimization. Ideally, we want these phases to happen simultaneously [8] to be able to generate optimal code. In
practice, mixing code-generation and scheduling (especially software-pipeline and global-scheduling techniques)
is a very di�cult task. Having code generation and scheduling performed at the same time, generally, results
in having a non-optimized code-generator (compared to the one provided by the native compiler) and a weak
code scheduler that does not implement anything beyond basic-block scheduling. Section 3 covers how we plan
to couple the phases. In the remainder of this section we overview works that we believe are close to Salto.

Code layout optimization is performed by cord on MIPS based computers. cord rearranges procedures in
an executable to reduce paging and achieve better instruction-cache mapping. It uses a feedback �le generated
at run-time by an executable instrumented by Pixie.

Oco [6] is an assembly-language optimizer which was developped at IRISA. It takes an assembly source
code as input and produces an optimized version of the code. Optimization is based on local reordering and
software pipelining. Oco has been used as a basis for Salto.

The university of Karlsruhe has developed the Beg system (Back-End Generator) [21]. It produces a code-
generator from rule based declarative descriptions. Basic blocks are reordered before and after global register
allocation. The system is based on a simulation of the pipeline during instruction reordering. Pipelines that
schedule more than one instruction per cycle are also supported. Beg can also produce local register allocators
suitable for a great variety of target machines.

Marion [7] has been developed at the University of Washington. It is a code-generator generator. The
MIPS R2000, Motorola 88000 and i860 architectures have been described with the speci�c language Maril. The
hardware description includes registers, functional units, multiple issue and pipeline stages. Instructions are
given properties that inuence reordering. The description is based on reservation tables and on delays required
to obtain the result of an instruction. Marion has been mainly used to study the interaction between reordering
and register allocation [8]. Compared to Salto, no user interface is provided to modify assembly-code and we
believe that it cannot be used with compilers other than lcc.

gcc is a C compiler maintained by the Free Software Foundation, Inc. [28]. It uses the internal representation
RTL. The good performance achieved by gcc comes from its ability to apply the right optimization at the right
moment within the compilation process. It is improved by a last optimization speci�c to the target architecture
at the end of the process. Instruction reordering within the basic-blocks is performed twice, once before and once

Irisa

Salto: System for Assembly-Language Transformation and Optimization 5

after the register allocation stage. The machine description includes the size of delay slots and the annulation
conditions, the time needed to compute the result of an instruction and resource conicts between instructions.

A compiler system named SUIF [20] (which stands for Stanford University Intermediate Format) is being
developed at the Stanford University. It is built on top of a kernel that preprocesses source code and produces
a representation of the program called an intermediate format. This format contains low-level description of
the structures without losing useful high-level information like arrays, if-then-else structures and loops. Many
passes are performed on this representation, implementing a single optimization or transformation at a time.
The compiler performs several passes on this representation, but insertion of new passes can easily be made.
Features are provided to allow implementation of algorithms ranging from data-dependence analysis or register
allocation to symbolic analysis or detection of parallelism.

3 Motivation for Salto

The complexity of today's architectures require that the compiler masters many parameters to produce e�cient
code. The impact of the modi�cation of some parameters might not be straightforward. We believe that an
e�cient optimization can be achieved only with an iterative process where di�erent tools exchange information.
This section explains how we conceive such a multiple pass code-generation process and why retargetability is
an important feature to implement in optimizers.

3.1 Multiple Pass Code Generation Process

The e�ective performance of an application on a superscalar or VLIW processor (embedded or otherwise)
depends on many parameters which cannot be easily managed by a single-pass code-generation process. For
instance, the e�ective performance depends on the instruction-cache behavior and on the interaction of basic-
blocks. Pro�ling and tracing tools may provide the user (or a high level code restructurer or a compiler)
with information on critical-code sections that should be highly optimized or, for instance, information for an
accurate memory layout of basic-blocks, etc.

It is our belief that the code-generation process for performance critical applications must be iterative.
It is also our belief, that such an iterative process can be a�orded for many embedded applications where
time-consuming techniques may be used because of the performance requirement and the long lifetime of the
code.

For such a multiple-pass code-generation process, a few tools directly working on the assembly-language are
required: a code scheduler, a basic-block pro�ler, an instruction tracer, an instruction-layout optimizer, etc.
The Salto system we present in this paper is the main component of a uni�ed framework for developing this
spectrum of tools for manipulating assembly-languages, which we believe are needed for performance tuning.
Salto is highly retargetable with the assembly-language description as well as with the precise description of
the targeted hardware.

3.2 The Optimization Loop

In this section, we illustrate the optimization loop of the code-generation of an application. Figure 1 illustrates
the information ow between the di�erent components in the optimization loop:

� Control ow and data dependencies are passed from the high-level code restructurer to the low-level code
instrumenter. For feeding back information, links to the source code are also propagated during the
compilation and code-generation phases.

� The low-level code optimizer feedbacks information to the high-level code restructurer: size, ideal execution
time of basic-blocks, register pressure, etc.

� When instrumented, the execution forwards pro�ling information to the high-level code restructurer.

Figure 2 illustrates the optimization process:

1. The program is instrumented and pro�led to determine statements execution time. The optimization will
be focused on the most time consuming statements.

2. Information from the low-level code is forwarded to high-level code restructurer.

PI n�1032

6 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

Assembly
CodeAssembly

Code

Source
Code

High Level
Restructurer

Source
Code

Compiler

Assembly
Code

Low Level Code
Optimizer, Instrumenter

Execution

Profiling
Information

size of basic blocks (in VLIW)
register pressure

control flow
data dependence
link to source code

SALTO

Figure 1: Iterative Compilation Process

statements
Select time consuming

optimization
Instruction cache

technique
Vectorisation

fusion
Loop distribution

Unrolling Inlining

Global scheduling Software pipelining

Execution

High level transformations

Low level transformations

feedback loop

feedback loop

Guided by SALTO outcomes

SALTO use

Figure 2: Optimization Process Used by Salto

Irisa

Salto: System for Assembly-Language Transformation and Optimization 7

3. The high-level code restructurer uses this information as a guide for applying (or not applying) speci�c
transformations. For instance, loop distribution or fusion is guided by information on register pressure as
well as information on the execution time of the loop(s) body. Unrolling will be guided by the execution
time of the loop body, but also by the size of the code.

A code size criterion is applied to maintain correct behavior of the instruction-cache.

4. A new low-level code is generated. Then, low-level code optimizations are applied (basic-block scheduling,
software-pipeline, etc.) and new information are fed back to the high-level code restructurer. Instruction-
cache behavior is estimated. Phases 3 and 4 are reiterated to reach satisfactory performance.

Note that most constructors do not provide the user with the ability to use such an optimization loop.

3.3 Motivation for Retargetability

Retargetability is a major issue when building prototypes (for academic uses). It also becomes a major issue in
industrial applications, particularly in the domain of embedded systems. Although with the advance of VLSI
integration and CAD design reliability, the time to dedicate a new processor to a special-purpose application
is shrinking, most object-code schedulers are only optimized for a single hardware con�guration. Retargeting
such an object-code scheduler generally implies a major rewriting of code.

We believe that tools manipulatingassembly-codes (and eventually object code) should be highly retargetable
with the precise hardware description of the targeted processor, but also with the instruction-set architecture
(ISA).

Being able to retarget tools for manipulating assembler codes with precise hardware description of the
targeted processor permits the object-code scheduler to focus on a precise hardware con�guration. In an
hardware/software codesign approach, it enables tuning the hardware to the correct performance level.

Retargeting tools for manipulating assembler codes with di�erent ISAs is not a straightforward idea. Ne-
vertheless, dedicated hardware solutions derived from commodity core processors may use special instructions.
Being able to add such instructions in a "closed" ISA requires major code rewriting.

The costs of retargetability are not negligable, especially in terms of CPU time. However we feel that in
many cases users can a�ord to pay for this retargetability. For instance: for determining the best processor
con�guration, for choosing a processor and for prototyping new optimization algorithms.

4 System Overview

Salto is composed of three parts: a kernel, a machine description �le and an optimization or instrumentation
algorithm. Figure 3 illustrates the organization of these three components.

SALTO

ex.s

ex.salto.s

to
ol

.s
o

tool.cc

g++

User tool test programSalto system

machine
description

Figure 3: System Overview

PI n�1032

8 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

1. The kernel performs common required tasks that the user doesn't want to worry about. The parsing of
the assembly-code and of the machine-description �le are done automatically, as are the construction of
the internal representation (see section 5.1). This internal representation is available via the user interface
(see section 5.3).

2. The machine description �le contains the hardware con�guration and the complete description of the
instruction-set with reservation-tables. Section 5.2 details the format of this �le.

3. The optimization or instrumentation algorithm is supplied by the user. Once the system has read the
machine-description �le and the assembly-code, an internal representation is built and control is given to
the user through the call to a prede�ned function.

Salto is based on the former tool Oco [6] developped at IRISA which was written using parts of the code
parser from the GNU assembler Gas.

5 Salto Features

In this section we summurize the main features of Salto. It is built on three components, the data structures
for representing the program, the machine description for declaring resources usage and �nally the user interface
that enables the writing of instrumentation or scheduling algorithms.

5.1 Data Structures

The data structures used in Salto are divided into two groups, depending on their role. The �rst group
represents the control ow of the program, the second group describes resource usage and data dependencies
between instructions.

5.1.1 Control Flow Structures

A program written in assembly-language can be viewed as consisting of several procedures, each of which is a
list of instructions. Within a procedure, instructions are grouped into basic-blocks.

While parsing the code, Salto builds the list of the procedures it encounters. Each procedure has a list
of basic-blocks, and each block \knows" its list of instructions. Figure 4 illustrates this organization. The
procedures, basic-blocks and instructions are internally managed as cyclic lists, but the internal representation
is hidden by the user interface, as shown in section 5.3. Markers are added by the analyzer to give useful
information about the piece of code being processed: basic-blocks frontiers (shaded instructions in �gure 4), or
procedures frontiers, name of current segment, etc.

CFG 3

CFG 4

BB 2

Inst. 2

List of instructions

LABEL

ASM

ASM

BB 1
Inst. 1

Inst. 1

List of basic blocksList of procedures

BLOCK_END

BLOCK_BEGIN

BLOCK_BEGIN

BLOCK_END

First block

Last block

First instruction

Last instruction

First instruction

Last instruction

Figure 4: Organization of Control-Flow Structures

Irisa

Salto: System for Assembly-Language Transformation and Optimization 9

Additionally, the control ow graph (CFG) is built for each procedure. The vertices are the basic-blocks
and the edges denote the execution order of the basic-blocks. Edges are labeled to indicate if they correspond
to the taken or not-taken branch. See �gure 5 for an example of the graph corresponding to a simple procedure
written in C language. A known limitation is due to the static analysis of the assembly-code. If the target
address of a branch instruction is a computed register value, Salto leaves the target undetermined. However,
the basic-blocks are constructed assuming computed branches can only target labels1.

 cmp %o0,0
 be L7
 sub %i0,%i1,%o0

 call .rem,0
 mov %i1,%o1

L7:
 mov %i1,%o0

 xor %i0,%i1,%i0
 xor %i1,%i0,%i1
 xor %i0,%i1,%i0
 mov %i0,%o0

 cmp %i0,%i1
 bge L9
 mov %i0,%o0

 save %sp,-104,%sp

 ret
 restore %g0,%o0,%o0

TAKEN

TAKEN

TAKEN

NOT_TAKEN

L9:

 b,a L8

 mov %i1,%o1
 call _gcd,0

TAKEN

TAKEN TAKEN

NOT_TAKEN

TAKEN

TAKEN

_gcd:

L8:

by the delay slot instructioncall and conditional branch instructions are followed

=�
� Computes the GCD of two integers
� using Euclide's method
�=
int gcd(a,b)

int a, b;
f
int result;

if (a<b) a^ =b, b^ =a, a^ =b;
if (a%b) result = gcd(a-b,b);
else result=b;
return result;

g

Figure 5: Control Flow Graph of a Simple Program

5.1.2 Hardware Resources and Data Dependencies

The second part of the data structures provided by Salto gives information about the resources needed by an
instruction to complete execution. A resource is usually a register, a functional unit or the memory, but it could
be any piece of hardware needed to describe the behavior of the machine (see section 5.2 for an explanation on
how to de�ne resources). Each instruction needs a resource during a number of cycles with a particular access
mode: three modes are available for a resource: read, write or use.

Each instruction is described by a reservation-table, which indicates the list of resources it needs and the
mode and cycle a resource is accessed. This information is used when determining the type of dependence
between two instructions: RAW (read after write), WAW (write after write), WAR (write after read).

The memory is currently seen as a unique resource and all memory accesses are considered to be to the same
memory location. Salto is conservative when checking data dependencies and thus two memory accesses, one
of which is a write, always leads to a dependence. However, the functions of the user interface make it possible
for the user to write his own alias analysis algorithm to detect such situations and to implement a link with the
compiler data dependence analysis.

5.2 Machine Description

Salto is designed to be a retargetable tool. Thus, the target machine must be described in a exible way,
permitting an accurate description while retaining the ability to easily modify parameters. This is achieved

1This may lead to incorrect basic block computation in some circumstances.

PI n�1032

10 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

with a Lisp-like language based on the reservation-tables formalism. The description �le is parsed by Salto
and an internal representation is built using RTL (Register Transfer Language) [28]. The machine description
contains:

1. the syntax of the assembly-language used, that is, how does a comment start, how many registers are
there, and what are their names;

2. all the resources needed for the computation of data dependencies;

3. the list of the instructions recognized by the assembler with the applicable formats and the associated
reservation-tables;

4. semantical information to warn Salto about special features implemented in the processor like bypass-
mechanism or delayed branch.

The following paragraphs describe more precisely the di�erent steps involved in writing a machine-description
�le.

5.2.1 De�nition of the Available Resources

The language describes the available resources as precisely as desired. A high-level description including only
an integer unit, a memory access unit and a oating point unit may be enough to perform local reordering
techniques. A lower-level description, with bus access and cache memories is also possible. Three types of
resources are currently recognized: registers, memory and functional units. Salto also supports symmetric
superscalar architectures: any functional unit can be replicated any number of times. Figure 6 shows an
example of such a description for the Sparc architecture [11].

; Floating point registers

(def_ress (base_name "%f" 0 31) [(type "reg") (width 32)])

; Integer unit

(def_ress (name "alu") [(type "functional_unit")])

; Memory access

(def_ress (name "mem") [(type "memory")])

; Class of the out-registers (%o0 - %o7)

(def_class "OUT_reg" "reg" [(ress (base_name "%o" 0 7) [])])

Figure 6: De�nition of Hardware Resources of the Sparc

5.2.2 Instruction Set

The de�nition of an instruction-set includes a declaration of the instruction names, all the applicable formats,
and the associated reservation-tables. These reservation-tables are used when resolving data dependencies.
They store information about which functional units are needed by an instruction, for how many cycles and
when the result is written. Figure 7 illustrates the reservation-table of the ld [%o1],%o2 instruction of the
Sparc [11]. Although the reservation-table formalism we choose to use to describe instructions is almost always
su�cient, it has some limitations which prevent it from describing special features of particular processors. The
push pipeline instruction of the Intel i860 is an example of such a restrictions. The tool can still be used [30],
however in this case the particular behavior is handled at the scheduling algorithm level.

Figures 8 and 9 are extracted from our machine description �le for the Sparc architecture. The tables are
�rst de�ned as macros (�g. 8) and then used (�g. 9).

5.2.3 Semantical Information

Some instructions of an instruction-set may have a particular behavior. \Semantic" properties can be added
to these instructions. In the case of the Sparc processor, this concerns delayed branch. The corresponding
declaration can be seen in �gure 10.

Irisa

Salto: System for Assembly-Language Transformation and Optimization 11

Resources Cycles
1 2 3 4

FU issue use

register %o1 read

FU alu use

Memory mem read

register %o2 write

Figure 7: Reservation-Table of the ld instruction of a Model of the Sparc

; Every instruction uses ISSUE at cycle 1 : superscalar degree of the

; architecture is given by the number of ISSUE units.

#define ISSUE (ress (name "issue") [(use) (at_cycle 1)])

; Reservation table for integer instructions, reg+imm -> reg

#define R_ALU_1 (reser_table [\

ISSUE \

(ress (match_arg 0) [(read) (at_cycle 1) INT_REG])\

(ress (name "alu") [(use) (at_cycle 2)])\

(ress (match_arg 2) [(write) (at_cycle 2) INT_REG])\

])

; Reservation table for memory access instructions, [reg] -> reg

#define R_LD_1(RTYPE) (reser_table [\

ISSUE \

(ress (match_arg 0) [(read) (at_cycle 1) INT_REG])\

(ress (name "alu") [(use) (at_cycle 2)])\

(ress (name "mem") [(read) (at_cycle 3)])\

(ress (match_arg 1) [(write) (from_cycle 2) (to_cycle LOAD_DELAY)\

RTYPE LOAD_INTERLOCK])\

])

; Reservation table for branch instructions

#define R_BR (reser_table [\

ISSUE \

(ress (name "icc") [(read) (at_cycle 1)])\

(ress (name "alu") [(use) (at_cycle 2)])\

])

Figure 8: Description of Reservation-Tables

(def_asm "ld" [(input "[1],g") R_LD_1(FP_REG)])

(def_asm "add" [(input "1,i,d") R_ALU_1])

(def_asm "bge" [(input "l") (sem [S_BRANCH(0) DELAY_SLOT]) R_BR])

Figure 9: De�nition of the Processor Instruction-Set

;-- Special case for the delay slot --

#define DELAY_SLOT (delay_slot 1)

;-- Instructions in the delay slot must not be reordered

#define NOREORDER (noreorder)

Figure 10: Semantics of Special Instructions

PI n�1032

12 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

5.3 User-Interface

The object-oriented user interface provides a exible way to deal with the internal data structures. Features of
Salto include:

� access to the code at three di�erent levels : procedure, basic-block or instruction;

� modi�cation of the code : insertion, deletion;

� unparsing;

� access to the reservation-tables;

� computation of dependencies and delays between instructions caused by pipeline stalls;

� addition of attributes : attributes are a exible way to put any kind of information on a particular
basic-block or instruction.

The object classes and types provided by the interface are the following:

CFG This object represents a function. It is the control ow graph. The vertices of this graph are objects of
class BB (see below) and the edges are labeled depending on the type the branch instruction (TAKEN or
NOT TAKEN).

BB This object represents basic-blocks.

INST corresponds to an instruction of the assembly-code being processed. It is not necessarily a mnemonic of
the processor's instruction set, but it can be a macro instruction, a pseudo instruction, a label or some
information added by Salto for further analysis (by example: basic-block begin , basic-block end, loop
begin, etc.). An instruction can compute the type of dependence it has with another one.

RES This object represents one of the user-de�ned hardware resources present in the simulated architecture.
It may be a functional unit, a register, a bus, etc.

CRES Classes of resources provide a means for grouping some resources and to refer to them with a single
name. They are de�ned by the user in the machine-description �le. For example: registers are often
grouped together within a class of registers.

TRES This object implements a reservation-table. It is used for code-scheduling algorithms.

SaltoAttribute Attributes can be seen as hooks on instructions (INST) and basic-blocks (BB). They permit
any kind of information to be attached to any particular block or instruction. A number of attributes
are prede�ned for internal use. Salto attributes are similar to the attributes in the Sage++ system [16].
Some attributes have a prede�ned value:

COMMENT ATT: the string attached to the instruction or block is considered as a comment and is
printed before the block or at the end of the line while unparsing;

UNPARSE ATT: the string is printed instead of the real assembly-code while unparsing;

NOCYCLE ATT: an integer is attached to the instruction or block, it is the cycle when the instruction
must be scheduled within the basic block. It is used by reorder algorithms.

A representative subset of the general and member functions is shown is appendix A. Figure 11 illustrates
the use of the user interface with a simple example. More complex examples are given in section 6.

6 Two Examples of Tools Written with Salto

To illustrate Salto usage, this section presents in greater detail two programs: basic-block count instrumen-
tation and local scheduler. These examples give an idea of the range of tools that can be implemented using
Salto, but are not representative of state-of-the-art pro�ling or scheduling techniques.

Irisa

Salto: System for Assembly-Language Transformation and Optimization 13

== renames register reg s into reg d for instruction inst
== reg s and reg d can be obtained for example using
== RES �getResbyName(char �)
void rename(INST �inst, RES �reg s, RES �reg d) f
int ninput, i;
RES �res;

ninput = inst ! numberOfInput();
for(i=1; i � ninput; i++) f
res = inst ! getInput(i);
if (res == reg s) f
inst ! setInput(i, reg d);

g
: : : == same for output

g

Figure 11: Use of the User-Interface

6.1 Instrumentation

Appendix B.1 shows a small example of assembly-code instrumentation. The goal of this piece of code is to
instrument basic-blocks to obtain a basic-block count. Salto adds a comment before each basic-block using
the COMMENT ATT attribute and adds instrumentation code at the beginning of each block. This code saves
some register values before calling the function bbcount which performs the counting. This function may be
written in a high-level language. In our example, it is written in the C language. The function is linked with
the generated assembly-code to produce an executable.

6.2 Local Reordering

As an example of local reordering we have implemented a list-scheduling algorithm using Salto. Our program
is shown in appendix B.2. The main function is reorder. It builds the dependence matrix for the instructions
of the current block: dep[i][j] equals to 1 if instruction number i depends on instruction number j. The main
loop computes the scheduling cycle for each instruction until a branch is seen: verify predecessors checks
if all instructions that have a data dependence have already been scheduled. earliest cycle then computes
the delays before all previous results are obtained. IsConflict is used to detect resource conicts. The branch
instructions, if they exist, and the delay slot are processed afterwards. The blocks are e�ectively reordered by
orderAccordingToCycles and nops are added if necessary by addNecessaryNops.

7 Conclusion

Performance tuning of critical applications is a major issue that cannot be by a one pass compiler. For many
applications, e.g. embedded applications, one can a�ord to pay long performance tuning costs accross a multiple-
pass code generation.

Salto is a framework for developing a large range of tools dealing with performance tuning and optimizations
of low-level codes. The major advantages of Salto compared with already existing tools is its ability to generate
performance-analysis tools as well as optimization tools and in its retargetability towards any instruction-set.

The main goals of Salto are to be part of a global solution for manipulating assembly-code to implement low-
level code restructuration as well as to provide a high-level code restructurer with useful information collected
from the assembler code and from instruction pro�ling. To achieve this, we implemented several features that
ease integration within a compilation process:

� a high-level user interface which allows powerful transformations of the assembly-code in a simple manner,

� the ability to analyze, pro�le and optimize a program using the same tool and hence using the same user
interface,

PI n�1032

14 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

� the possibility to feed gathered information to an analyzer with a simple procedure call, which is more
e�ective than using temporary �les and overcomes the problem of large traces (which typically measure
in gigabytes),

� to give the user full control over the modi�cations he adds to the original program and avoid problems
like register reallocation created by Pixie, and

� to provide a highly-retargetable tool by means of accurate description of the hardware and of the assembly-
language used, giving full access to the resources needed by an instruction.

The two examples presented in the paper and a variety of others have shown the usage of our system.
Salto yet robust enough to be used on real applications. We expect it to be available soon by FTP at address
ftp.irisa.fr.

We strongly believe that a Salto-like framework is a major software piece that is required in hard-
ware/software codesign of dedicated versions of processors where not only time-to-market, but also software
development cost is critical.

References

[1] A. Aiken and A. Nicolau. Perfect pipelining : a new loop parallelization technique. In Lecture Note In
Computer Science, pages 221{235, 1988.

[2] Vicki H Allan, Reese B Jones, Randall M Lee, and Stephen J Allan. Software pipelining. ACM Computing
Surveys, 27:367{432, September 1995.

[3] Thomas Ball and James R Larus. Optimally pro�ling and tracing programs. In ACM Transactions on
Programming Languages and Systems, volume 16, pages 1319{1360, July 1994.

[4] F. Bodin, F. Charot, and C. Wagner. Overview of a high-performance programmable pipeline architecture.
In ACM Supercomputing, 1988.

[5] Fran�cois Bodin. Optimisation de microcode pour une architecture horizontale et synchrone, �Etude et mise
en �uvre d'un compilateur. PhD thesis, Universit�e de Rennes 1, June 1989.

[6] Fran�cois Bodin, Gwendal Le Fol, and Fr�ed�erique Raimbault. Oco manuel de l'utilisateur (version pr�elimi-
naire). Technical Report 930, Irisa, May 1995.

[7] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. The marion system for retargetable instruction
scheduling. In Programming Languages and Systems, 1991.

[8] David G. Bradlee, Robert R. Henry, and Susan J. Eggers. Integrating register allocation and instruction
scheduling for riscs. In 4th International Conference on Architecture Support for Programming Languages
and Operating Systems, pages 122{131, April 1991.

[9] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for execution pro�ling. In ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 1994.

[10] Lucile Cognard. Mod�elisation du comportement dynamique des processeurs pour la g�en�eration automatique
de r�eordonnanceurs de code. PhD thesis, Universit�e d'Orl�eans, 1995.

[11] LSI Logic Corporation. SPARC Architecture Manual (Version 7), 1990.

[12] DEC. ATOM User Manual, March 1994.

[13] K. Ebcioglu and T. Nakatani. A new compilation technique for parallelizing loops with unpredictable
branches on a vliw architecture. In Languages and Compilers for Parallel Comuting, pages 213{229, 1989.

[14] Christine Eisenbeis, WilliamJalby, and Alain Lichnewski. Compiler techniques for optimizing memory and
register usage on the cray 2. In International Journal on High Speed Computing, June 1990.

[15] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, 1985.

Irisa

Salto: System for Assembly-Language Transformation and Optimization 15

[16] Bodin F., Beckman P., Gannon D., and Srinivas J.G.S. Sage++: A class library for building fortran and
c++ restructuring tools. In Object-Oriented Numerics Conference, April 1994.

[17] J.A. Fisher. Trace scheduling: a technique for global microcode compaction. In IEEE Transactions on
Computers, pages 478{490, July 1981.

[18] Franco Gasperoni. Scheduling for horizontal systems : the VLIW paradigm in perspective. PhD thesis,
New-York University, 1991.

[19] R. Govindarajan, Erik R. Altman, and Guang R. Gao. Minimizing register requirements under resource-
constrained rate-optimal software pipelining. In 27th Annual International Symposium on Microarchitec-
ture, pages 85{94, 1994.

[20] Stanford Compiler Group. Suif compiler system. Web pages available from http://suif.stanford.edu.

[21] H.Emmelmann, F-W.Schroeer, and R.Landwehr. Beg - a generator for e�cient back ends. In SIGPLAN
Conference on Programming Language Design and Implementation, volume 24, July 1989.

[22] Gordon Irlam. Spa package. Electronically available at ftp://chook.cs.adelaide.edu.au/pub/sparc/spa-1.0.tar.gz,
1991.

[23] Monica Lam. Software pipelining: an e�ective scheduling technique for vliw machines. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 318{328. ACM SIGPLAN, June
1988.

[24] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining loops. In 27th ternational
Symposium on Microarchitecture, pages 63{74, December 1994.

[25] J. Ruttenberg, G. Gao, A. Stoutchinin, and W. Lichtenstein. Software pipelining showdown: Optimal vs.
heuristic methods in a production compiler. In Sigplan Conference on Programming Language Design and
Implementation, May 1996.

[26] Michael D. Smith. Tracing with pixie. Technical report, Harvard university, 1991.

[27] Amitabh Srivastava and Alan Eustace. Atom: a system for building customized program analysis tools. In
SIGPLAN Conference on Programming Language Design and Implementation, 1994.

[28] R. M. Stallman. Using and porting GNU CC. Free Software Foundation, Jun 1993.

[29] Richard Uhlig and Trevor Mudge. Trace-driven memory simulation : A survey. Technical report, University
of Michigan, 1995.

[30] Daniel Windheiser. Optimisation de la localit�e de donn�ees et du parall�elisme �a grain �n. PhD thesis,
Universit�e de Rennes 1, May 1992.

A Member Functions Provided by the User Interface

The member functions described in this appendix are a subset of the complete user interface. It is intended to
show the extent of capabilities provided by Salto.

A.1 General Functions

char *getTargetFlag() returns the name of the target architecture (for example \Sparc").
int numberOfCFG() gives the number of procedures.

CFG *getCFG(int i) returns a pointer on the control ow graph of the ith procedure.

void removeCFG(int i) removes a procedure.
void produceCode(FILE *fg) writes in the �le fg the complete code of the program
RES *getResbyName(char *n) returns the RES object corresponding to the given name

PI n�1032

16 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

A.2 Class CFG

These functions are member functions of the class CFG.
int numberOfBB() number of basic-blocks of this procedure.
BB *getBB(int i) returns a pointer on the block number i.
void deleteBB(int i) deletes a basic-block and its associated instructions.

BB *createNewBB() create a new basic-block.

BB *extractBB(int i) the ith block is extracted from the list of blocks of this procedure.

void insertBB(int pos, BB *b) insert a block at the posth position within the procedure.
void linkBB(BB *source, BB *sink,

enum cft type t)

adds a link between the basic-blocks source and sink. The
parameter t speci�es if the branch is taken (TAKEN) or not
(NOT TAKEN).

void produceCode(FILE *fg) writes in the �le fg the assembly code of this procedure.

A.3 Class TRES

These functions are member functions of the class TRES.
void reset() destroys all the reservations of the table.
markRes(INST *inst, int cycle) adds entries in the reservation-table corresponding to the

instruction resources usage.
int IsConflict(int from, int to, enum

access mode mode, RES *res)

checks if the given reservation would lead to a resource
conict.

A.4 Class INST

These functions are member functions of the class INST.
INST *copy() duplicates the instruction and returns a pointer to the copy.

Attributes attached to the instruction are not copied.

int [get/set]Cycle() [reads/sets] the scheduling cycle of this instruction.
char *getName() gets the name of the instruction, i.e. the mnemonic without

parameters.
int numberOf[Input/Output/Use]() gets the number of resources [read/written/used] by this ins-

truction while executing.

RES *get[Input/Output/Use](int i) returns a pointer to the ith [input/output/use] resource.

int isBranch() checks if this instruction is a conditional branch instruction.
int isCTI() checks if this instruction has an e�ect on the control ow.
int isNop() checks if it is a no-operation instruction.
enum dependence IsDep(INST *ii) computes the data dependence between the current instruction

and the parameter (NONE, RAW, WAW, WAR).
int getDelay(INST *ii) computes the lowest number of cycles needed to resolve the data

dependencies.
void addAttribute(int type, void *a,

int size)

adds an attribute of type type to this instruction whose data
�eld is pointed to by a.

A.5 Class BB

These functions are member functions of the class BB.
int numberOfAsm() returns the number of assembly mnemonics in the block.

INST *getAsm(int i) returns a pointer to the ith instruction in this basic-block.

void removeAsm(int i) deletes the ith instruction of this basic-block.
void insertAsm(int pos, INST *st) inserts a new instruction at position pos within the block.

void orderAccordingToCycles() swaps instructions within the block according to the scheduling
cycles speci�ed with setCycle().

void addNecessaryNops() add nop-operation instructions in the block to �ll the cycles for
which no instruction is to be scheduled.

int numberOf[Suc/Pred]() returns the number of [successors/predecessors] of a block in the
control ow graph.

BB *get[Suc/Pred](int i) returns the ith [successor/predecessor] of this block.
int isMemberOf(INST *st) checks if the given instruction is part of this basic-block.

void addAttribute(int type, void

*a, int size)

adds an attribute to this block whose data �eld is pointed to by
a.

Irisa

Salto: System for Assembly-Language Transformation and Optimization 17

B Examples

B.1 Basic-Block Instrumentation

Here is the code of a Salto tool which instruments the basic-blocks of a program. The function called for each block is
listed below.

#include "salto.h"

void add code(BB �bb, int cpt) f
INST �nop;
char instcode[STR MAX];

nop = bb ! newNOP();
sprintf(ch, "nt save register values"

"nt mov %d,%%o0"

"nt call bbcount nn"
"nt restore values", cpt);

nop !addAttribute(UNPARSE ATT, strdup(ch), strlen(ch));
bb ! insertAsm(1, nop);

g

void Salto hook() f
CFG �proc;
BB �bb;
int i, j, ncfg, nbb, cpt=0;
char ch[20];

ncfg = numberOfCFG();
for(i=1; i � ncfg; i++) f == for each procedure
proc = getCFG(i);
nbb = proc ! numberOfBB();
for(j=1; j � nbb; j++) f == for each basic block
bb = proc ! getBB(j);
sprintf(ch, "bb %d", ++cpt);
bb ! addAttribute(COMMENT ATT, strdup(ch), strlen(ch)); == adds a comment at the beginning of the BB
add code(bb, cpt);

g
g
produceCode(stdout); == Finished, now dumps instrumented code on stdout

g

Function bbcount. It must be linked with the produced code.

#include<stdio.h>

void bbcount(int n)
f
printf("block %d reachednn", n);

g

B.2 Optimization with List Scheduling Algorithm

Implementation of a list scheduling algorithm using Salto.

#include "salto.h"

int verify predecessors(int verif, int ��dep, INST ��inst)
f
for(int i=0; i<verif; i++)
if ((dep[verif][i]) && (inst[i]!getCycle() < 0)) return 0;

return 1;
g

PI n�1032

18 Erven Rohou, Fran�cois Bodin, Andr�e Seznec, Gwendal Le Fol, Fran�cois Charot, Fr�ed�eric Raimbault

int earliest cycle(int s, int ��dep, INST ��inst)
f
int i, z, max = 0;
for(i=0; i<s; i++) f
if (dep[s][i]) f
z = inst[i] ! getCycle() + inst[s] ! getDelay(inst[i]);
if (z>max) max = z;

g
g
return max;

g

void build dep matrix(int ��dep, INST ��inst, int n)
f
for(int i=0; i<n; i++) f
dep[i][i]=0;
for(int j=0; j<i; j++) f
if (inst[i]!IsDep(inst[j])) dep[i][j]=1;
else dep[i][j]=0;

g
g

g

INST ��instr;
int ��dep;

void reorder(BB �bb)
f
int i, to be scheduled, cycle min, nasm, o�set, branch seen,brindex,last cycle;
TRES �res table = new TRES; == need a reservation table

nasm = bb ! numberOfAsm();
instr = new (INST �)[nasm]; == to avoid calling getAsm each time we need it
for(i=0; i<nasm; i++) instr[i] = bb ! getAsm(i+1);

build dep matrix(dep, instr, nasm); == build the dependence matrix
branch seen = last cycle = 0;

to be scheduled = nasm; == number of instructions to be scheduled
while (to be scheduled && !branch seen) f == before a branch instruction
for(i=0; i < nasm; i++) f
if (instr[i] ! isCTI()) f
brindex = i;
branch seen = 1;
break;

g
if ((instr[i]!getCycle()) < 0) f == not already scheduled ?
if (verify predecessors(i, dep, instr)) f == Do all the predecessors have been scheduled ?
cycle min = earliest cycle(i, dep, instr); == wait for data dependencies to be resolved
o�set = 0; == now wait for resources to be available...
while (res table!IsConict(instr[i],cycle min+o�set)) o�set++;
res table ! markRes(instr[i], cycle min + o�set); == mark resources occupancy into reservation table
if (cycle min + o�set > last cycle) last cycle = cycle min+o�set;
instr[i] ! setCycle(cycle min + o�set); == specify the cycle
to be scheduled--;
break;

g
g

g
g
if (branch seen) f == the branch instruction
instr[brindex] ! setCycle(last cycle + 1);

Irisa

Salto: System for Assembly-Language Transformation and Optimization 19

to be scheduled--;
g
if (to be scheduled) instr[nasm-1] ! setCycle(last cycle + 2); ==delay slot instruction
bb ! orderAccordingToCycles(); == reorder block according to values speci�ed by setCycle()
bb ! addNecessaryNops();
delete res table;
delete instr;

g

PI n�1032

