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Abstract

On critical applications the performance tuning requires multiple passes.
SALTO (System for Assembly Language Transformation and Optimization) is a
retargetable framework for developing all the spectrum of tools that are needed
for performance tuning on low-level codes (assembly-languages). SALTO enables
the building of profiling, tracing and optimization tools. The user is responsi-
ble for giving a machine description of the target architecture, which includes
instruction-set of the processor, precise hardware configuration and reservation-
tables for all instructions. High-level functions are provided for writing any tool
corresponding to his needs. Moreover SALTO will be a part of a global solution
for manipulating assembly-code to implement low-level code restructuration as
well as to provide a high-level code restructurer with useful information collected
from the assembly code and from instruction profiling.

1 Introduction

The increasing usage of high-performance embedded systems based on RISC/VLIW
architectures has highlighted the need for tools that allow the easy implementation
of fine-grain parallelism optimizations, assembly-code profiling and instrumentation,
along with an accurate description of the target architecture and high retargetability.

SALTO 1s a first step towards the availability of a retargetable framework for de-
veloping the whole spectrum of tools that manipulate assembly-language. Building
these tools typically implied a time consuming development phase (rewriting from
scratch large pieces of code was often needed) and required much investment. The
objective of such a system 1s to provide the user with a single environment that will
automatically perform boring and repetitive tasks and allow him to implement the
tools needed for performance tuning on low-level codes.

SALTO overcomes many limitations of previous solutions: it does not implement
any algorithm by itself, but its scope is broad enough to allow implementation of
either profiling or optimization techniques. A large amount of work needed while
working at the assembly-code level (code parsing, construction of the dependence
graph, etc.) is performed automatically by the system. To the user, SALTO pro-
vides an object-oriented interface to deal with assembly-code. The objects contain
a complete description of the control-flow graph (CFG) of the program and a model
of the target architecture. They are easily accessible through the user interface and
provide a convenient way to implement algorithms without having to worry about
infrastructure.

Section 2 reviews related works and points out how our tool provides a more
general and integrated solution for building tracers, profilers and optimizers. An



overview of the features of the system is given in section 3. Section 4 shows an
example and section 5 concludes this paper.

2 Related Work

To our knowledge no available single environment deals with the whole spectrum of
code restructuration and execution profiling and tracing. Moreover most tools are
not retargetable.

Much work has been done in the field of low-level code optimization and analy-
sis of dynamic program execution. Optimization can be done at different levels of
granularity. They range from code transformations for improving the parallelism in
each basic-block to procedure motion for improving the instruction-cache behavior.
Dynamic program execution can be analyzed by profiling (particularly interesting for
determining critical sections on which to focus) whereas tracing also furnishes the
order of instructions and addresses.

2.1 Analysis

Many techniques for analyzing program behavior depend on instrumentation of either
the source code or the executable file. PIXIE [20] is an instrumentation utility run-
ning on MIPS machines for executables. The instrumented program, which contains
additional code, counts the execution of each basic-block. A counter is added in each
block. Ball and Larus [3] studied how to improve the technique by minimizing the
number of counters required. They build a CFG of the procedure being instrumented
and compute the maximal spanning tree before deciding where to add code. They
proved this technique to be optimal. They implemented their strategy in a tool called
QpT [3].

A more flexible solution called ATOM [9, 21] was proposed for the DEC Alpha.
ATOM also depends on code instrumentation and provides common analysis and
performance tools. A partial list given in [9] contains instruction profiling, system-
call summary, memory checker, and many others. The major advantage is the ability
for the user to implement instrumentations in the C language enabling a high degree
of flexibility. ATOM can be seen as a library of predefined functions that ease the
instrumentation of the code.

Larus and Schnarr [18] have built a library called EEL (Executable Editing Li-
brary). EEL enables the building of tools to analyze and edit compiled programs
without having to worry about the underlying machine and operating system. EEL
analyzes an executable and builds some abstractions like routine, CFG, instruction
and snippets. A snippet is a piece of code to be included in the original executable for
instrumentation purpose (when saving the registers state, calling a foreign function
and restoring the previous values). This code is necessarily specific to each particular
machine and cannot be avoided when adding code to an executable. It is similar to
the architecture dependent code we add to an assembly source code.

Gordon Trlam’s SPY [16] runs on Sparc architectures under SunOs 4.x. SPY ex-
ploits special features of the Sparc microprocessor [8] to fetch the instruction to be
executed. SPY provides as output a trace composed of the instruction and data ad-
dresses. Other tools achieve analysis via instruction-set architecture (ISA) emulation.



Cmelik and Keppel chose another strategy with SHADE [7]: they dynamically compile
each instruction of the program, i.e., they build a block semantically equivalent to
each assembly instruction of the original code as if it were a complex instruction and
then execute the block. This approach enables them to simulate an ISA on a different
architecture (they can currently simulate Sparc and MIPS code on Sparc systems).

A survey of trace-driven memory simulation including trace collection, trace re-
duction and trace processing can be found in [23].

2.2 Code Generation and Optimization

Extensive work has been done on fine-grain optimization [1, 2, 4, 6, 10, 11, 14, 17]
but very few on frameworks for enabling a fast implementation of such optimiza-
tions. Furthermore, we are not aware of a retargetable system that enables the
implemention of assembly-code scheduling (with accurate resource usage models),
partial-register allocation and instrumentation. Being able to “redo” partial-register
allocation is a major capability that is necessary for achieving good performance when
using software-pipeline techniques [2].

The main drawback of having SALTO as a separate tool is that it separates the
code-generation and the optimization. Ideally, we want these phases to happen simul-
taneously [6] to be able to generate optimal code. In practice, mixing code-generation
and scheduling (especially software-pipeline and global-scheduling techniques) is a
very difficult task. Having code generation and scheduling performed at the same
time, generally, results in having a non-optimized code-generator and a weak code
scheduler that does not implement anything beyond basic-block scheduling. In the
remainder of this section we overview works that we believe are close to SALTO.

Code layout optimization is performed by CORD on MIPS based computers. CORD
rearranges procedures in an executable to reduce paging and achieve better instruction-
cache mapping. It uses a feedback file generated at run-time by an executable instru-
mented by PIXIE.

The university of Karlsruhe has developed the BEG system (Back-End Genera-
tor) [12]. Tt produces a code-generator from rule based declarative descriptions. Basic
blocks are reordered before and after global register allocation. The system is based
on a simulation of the pipeline during instruction reordering. Pipelines that schedule
more than one instruction per cycle are also supported. BEG can also produce local
register allocators suitable for a great variety of target machines.

MARION [5] is a code-generator generator been developed at the University of
Washington. The MIPS R2000, Motorola 88000 and 1860 architectures have been de-
scribed with the specific language Maril. The hardware description includes registers,
functional units, multiple issue and pipeline stages. Instructions are given properties
that influence reordering. The description is based on reservation tables and on de-
lays required to obtain the result of an instruction. MARION has been mainly used
to study the interaction between reordering and register allocation [6]. Compared to
SALTO, no user interface is provided to modify assembly-code and we believe that it
cannot be used with compilers other than lcc.

Goc is a C compiler maintained by the Free Software Foundation, Inc. [22]. Tt uses
the internal representation RTL. The good performance achieved by Gcc¢ comes from
its ability to apply the right optimization at the right moment within the compilation
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Figure 1: System Overview

process. It is improved by a last optimization specific to the target architecture at the
end of the process. Instruction reordering within the basic-blocks is performed twice,
once before and once after the register allocation stage. The machine description
includes the size of delay slots and the annulation conditions, the time needed to
compute the result of an instruction and resource conflicts between instructions.

A compiler system named SUIF [15] (which stands for Stanford University Inter-
mediate Format) is being developed at the Stanford University. It is built on top of
a kernel that preprocesses source code and produces a representation of the program
called an intermediate format. This format contains low-level description of the struc-
tures without losing useful high-level information like arrays, if-then-else structures
and loops. Many passes are performed on this representation, implementing a single
optimization or transformation at a time. The compiler performs several passes on
this representation, but insertion of new passes can easily be made. Features are pro-
vided to allow implementation of algorithms ranging from data-dependence analysis
or register allocation to symbolic analysis or detection of parallelism.

3 System Overview

SALTO is based on the former tool Oco developped at IRISA which was written using
parts of the code parser from the GNU assembler GAS. A more complete description
of SALTO can be found in [19]. SALTO is composed of three parts: a kernel, a machine
description file and an optimization or instrumentation algorithm. Figure 1 illustrates
the organization of these three components.

1. The kernel performs common required tasks that the user doesn’t want to worry
about like parsing the assembly-code and the machine-description file or the
construction of the internal representation (see section 3.1). This internal rep-
resentation is available via the user interface (see section 3.3).

2. The machine description file contains the hardware configuration and the com-
plete description of the ISA with reservation-tables. Section 3.2 details the
format of this file.



3. The optimization or instrumentation algorithm is supplied by the user. Once
the system has read the machine-description file and the assembly-code, an
internal representation 1s built and control is given to the user through the call
to a predefined function.

In this section we summarize the main features of SALTO. It is built on three com-
ponents, the data structures for representing the program, the machine description
for declaring resources usage and finally the user interface that enables the writing of
instrumentation or scheduling algorithms.

3.1 Data Structures

The data structures used in SALTO are divided into two groups, depending on their
role. The first group represents the control flow of the program, the second group
describes resource usage and data dependencies between instructions.

3.1.1 Control Flow Structures

While parsing the code, SALTO builds the list of the procedures it encounters. Each
procedure has a list of basic-blocks, and each block “knows” 1its list of instructions.
Additionally, the CFG is built for each procedure. The vertices are the basic-blocks
and the edges denote the execution order of the basic-blocks. Edges are labeled to
indicate if they correspond to the taken or not-taken branch. See figure 2 for an
example of the CFG corresponding to a simple procedure written in C language and
compiled on a Sparc workstation. A known limitation is due to the static analysis
of the assembly-code. If the target address of a branch instruction is a computed
register value, SALTO assumes every block of the current procedure can potentially
be the target. However, the basic-blocks are constructed assuming computed branches
can only target labels (this may lead to incorrect basic block computation in some
circumstances).

3.1.2 Hardware Resources and Data Dependencies

The second part of the data structures provided by SALTO gives information about
the resources needed by an instruction to complete execution. A resource is usually
a register, a functional unit or the memory, but it could be any piece of hardware
needed to describe the behavior of the machine (see section 3.2 for an explanation on
how to define resources). Each instruction needs a resource during a number of cycles
with a particular access mode: read, write or use.

Each instruction is described by a reservation-table, which indicates the list of
resources it needs and the mode and cycle a resource is accessed. This information is
used when determining the type of dependence between two instructions: RAW (read
after write), WAW (write after write), WAR (write after read).

The memory is currently seen as a unique resource and all memory accesses are
considered to be to the same memory location. SALTO is conservative when checking
data dependencies and thus two memory accesses, one of which is a write, always
leads to a dependence. However, the functions of the user interface make it possible
for the user to write his own alias analysis algorithm to detect such situations and to
implement a link with the compiler data dependence analysis.



" save %sp,-104,%sp
cmp %i0,%i1

bgel9 /*
mov %i0,%00 TAKEN
*x Computes the GCD of two integers
* using Fuclide’s method
*/
int ged(a,b)

NOT_TAKEN

xor %i0,%i1,%i0
xor %i1,%i0,%i1
xor %i0,%i1,%i0
mov %i0,%00

pE— it a, b;
mov %i1,%01 {
e
0 .
cmp %00,0 int result;

be 07. o1
sub %i0,%i1,%00 TAKEN

2N

cal _ged,0
mov'“?oi 1,%01

if (a<b) aA =b, bA =a, aA =b;
if (a%b) result = ged(a-b,b);
else result=Db;

* mov %1900 return result;

ret
restore %g0,%000,%400

Figure 2: Control Flow Graph of a Simple Program

3.2 Machine Description

SALTO is designed to be a retargetable tool. Thus, the target machine must be
described in a flexible way, permitting an accurate description while retaining the
ability to easily modify parameters. This is achieved with a Lisp-like language based
on the reservation-tables formalism. The description file is parsed by SALTO and an
internal representation is built using RTL (Register Transfer Language) [22]. The
machine description contains:

1. the syntax of the assembly-language used;
2. all the resources needed for the computation of data dependencies;

3. the list of the instructions recognized by the assembler with the applicable for-
mats and the associated reservation-tables;

4. semantical information to warn SALTO about special features implemented in
the processor like bypass-mechanism or delayed branch.

The following paragraphs describe more precisely the different steps involved in writ-
ing a machine-description file.

3.2.1 Definition of the Available Resources

The language describes the available resources as precisely as desired. A high-level
description including only an integer unit, a memory access unit and a floating point
unit may be enough to perform local reordering techniques. A lower-level descrip-
tion, with bus access and cache memories is also possible. Three types of resources



; Floating point registers
(def_ress (base_name "%f" 0 31) [(type "reg") (width 32)])

; Integer unit
(def_ress (name "alu") [(type "functional_unit")])

; Memory access
(def_ress (name "mem") [(type "memory")])

Figure 3: Definition of Hardware Resources of the Sparc

are currently recognized: registers, memory and functional units. SALTO also sup-
ports symmetric superscalar architectures: any functional unit can be replicated any
number of times. Figure 3 shows an example of such a description for the Sparc
architecture [8].

3.2.2 Instruction Set

The definition of an ISA includes a declaration of the instruction names, all the
applicable formats, and the associated reservation-tables. These reservation-tables are
used when resolving data dependencies and resource conflicts. They store information
about which functional units are needed by an instruction, the first and last cycle it
is required and when the result is written.

Although the reservation-table formalism we choose to use to describe instructions
1s almost always sufficient, it has some limitations which prevent it from describing
special features of particular processors. The push pipeline instruction of the Intel
1860 is an example of such a restriction. The tool can still be used, however in this
case the particular behavior is handled at the scheduling algorithm level.

Figure 4 is extracted from our machine description file for the Sparc architecture.
The tables are first defined as macros and then used.

; Every instruction uses ISSUE at cycle 1 : superscalar degree of the
; architecture is given by the number of ISSUE units.
#define ISSUE ( ress (name "issue") [(use) (at_cycle 1)] )

; Reservation table for integer instructions, register+immediat->register
f#tdefine R_ALU_1 (reser_table [\
ISSUE \
(ress (match_arg 0) [(read) (at_cycle 1) INT_REG])\
(ress (name "alu") [(use) (at_cycle 2))\
(ress (match_arg 2) [(write) (at_cycle 2) INT_REG]) 1)

(def_asm "add" [ (input "1,i,d") R_ALU_1 ] )

Figure 4: Description of Reservation-Tables



3.2.3 Semantical Information

Some instructions of an ISA might have a particular behavior. “Semantic” properties
can be added to these instructions. In the case of the Sparc processor, this con-
cerns delayed branch: the instruction immediately following a branch is speculatively
executed, and thus is part of the same basic-block.

3.3 User-Interface

The object-oriented user interface provides a flexible way to deal with the internal
data structures. Features of SALTO include:

e access to the code at three different levels : procedure, basic-block or instruction;
with possibility of modification: insertion, deletion;

e unparsing;

e access to the reservation-tables and computation of dependencies and delays
between instructions caused by pipeline stalls;

e addition of attributes : attributes are a flexible way to put any kind of infor-
mation on a particular basic-block or instruction.

The most important classes defined by the interface are: CFG, BB, INST which
represent respectively a procedure, a basic-block and an instruction, RES which rep-
resents a user-defined hardware resource, and TRES which implements a reservation
table. The additional class SaltoAttribute permit any kind of information to be
attached to any particular block or instruction. SALTO attributes are similar to the
attributes in the Sage++ system [13].

Figure 5 illustrates the use of the user interface with a simple example. A more
complex example is given in section 4.

// Renames register reg_s into reg_d for instruction inst.
// reg_s and reg_d are obtained for example using RES xgetResbyName(char )
void rename(INST xinst, RES #reg_s, RES #reg.d) {
int ninput, noutput, i;
ninput = inst — numberOflnput();
for(i=1; i < ninput; i++)
if (inst — getInput(i) == reg-s)
inst — setInput(i, reg_d); ;
... /] same for output

Figure 5: Use of the User-Interface



4 An Example: Local Reordering with SALTO

To illustrate SALTO usage, this section presents an application in greater detail: a local
scheduler. This example gives an idea of the range of tools that can be implemented
using SALTO, but is not intended to be representative of state-of-the-art scheduling
techniques. As an example of local reordering we have implemented a list-scheduling
algorithm using SALTO. Our program is shown in appendix A. The main function
is reorder. It builds the dependence matrix dep[i] [j] for the instructions of the
current block. The main loop computes the scheduling cycle for each instruction until
a branch is seen: verify_predecessors checks if all instructions that have a data
dependence have already been scheduled. earliest_cycle then computes the delays
before all needed results are obtained. IsConflict is used to detect resource conflicts.
The branch instruction, if it exists, and the delay slot are processed afterwards. The
blocks are effectively reordered by orderAccordingToCycles and nops are added if
necessary by addNecessaryNops to fill the empty slots.

5 Conclusion

Performance tuning of critical applications is a major issue that cannot be done by a
one-pass compiler. For many applications, e.g. embedded applications, one can afford
to pay long performance tuning costs across a multiple-pass code generation.

SALTO is a framework for developing a large range of tools dealing with perfor-
mance tuning and optimizations of low-level codes. The major advantages of SALTO
compared with already existing tools is 1ts ability to generate performance-analysis
tools as well as optimization tools and its retargetability towards any ISA.

The main goals of SALTO are to be part of a global solution for manipulating
assembly-code to implement low-level code restructuration as well as to provide a
high-level code restructurer with useful information collected from the assembly code
and from instruction profiling. To achieve this, we implemented several features that
ease integration within a compilation process:

e a high-level user interface which allows powerful transformations (ability to an-
alyze, profile and optimize a program) of the assembly-code in a simple manner
using a single tool;

e the possibility to feed gathered information to an analyzer with a simple proce-
dure call, which is far more effective than using temporary files and overcomes
the problem of large traces (which typically measure in gigabytes);

e to give the user full control over the modifications he adds to the original pro-
gram;

e to provide a highly-retargetable tool by means of accurate description of the
hardware and of the assembly-language used, giving full access to the resources
needed by an instruction.

The two examples presented in the paper and a variety of others have shown the
usage of our system. SALTO is yet robust enough to be used on real applications.
We expect it to be available soon by FTP at address ftp.irisa.fr. We strongly



believe that a SaLTO-like framework is a major software piece that is required in
hardware/software codesign of dedicated versions of processors where not only time-
to-market, but also software development cost is critical.
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Example: Optimization with List Scheduling Al-
gorithm

#include "salto.h”

int verify_predecessors(int verif, int *+dep, INST #«inst) {
for (int i=0; i<verif; i++)

if ( (dep[verif][i]) && (inst[i]—getCycle() < 0) ) return 0;

return 1;

}

int earliest_cycle(int s, int **dep, INST #*inst) {
int 1, z, max = 0;

for (i=0; i<s; i++)

if (dep[s][i]) {
z = inst[i] — getCycle() + inst[s] — getDelay (inst[i]);
if (z>max) max = z;

}

return max;

}

void build_dep_matrix(int *xdep, INST #xinst, int n) {
for (int i=0; i<n; i++) {

}
}

depli][i]=0;

for (int j=0; j<i; j++)

dep[i][j] = ( inst[i]—=IsDep(inst[j]) # 0 );

INST #*instr;
int xxdep;

void reorder(BB #bb) {
int 1, to_be_scheduled, cycle_min, nasm, offset, branch_seen,brindex,last_cycle;

TRES #res_table = new TRES; // need a reservation table



nasm = bb — numberOfAsm();
instr = new (INST «)[nasm]; // to avoid calling getAsm each time we need it
for (i=0; i<nasm; i++) instr[i] = bb — getAsm(i+1);

build_dep_matrix(dep, instr, nasm); // build the dependence matriz
branch_seen = last_cycle = 0;

to_be_scheduled = nasm; // number of instructions to be scheduled
while (to_be_scheduled && !branch seen) { // before a branch instruction
for (i=0; i < nasm; i++) {
if (instr[i] — isCTI()) {
brindex = 1;
branch_seen = 1;
break;
}
/] Is this instruction already scheduled ?
if ( (instr[i]—getCycle()) < 0 ) {
/] Are all the predecessors scheduled ?
if (verify_predecessors(i, dep, instr)) {
/] Wait for data dependencies to be resolved
cycle_min = earliest_cycle(i, dep, instr);
/] Now wait for resources to be available...
offset = 0;
while (res_table—IsConflict(instr[i],cycle_min+offset)) offset++;
/] Mark resources occupancy into reservation table
res_table — markRes(instr[i], cycle_min + offset);
if (cycle_min + offset > last_cycle) last_cycle = cycle_min+offset;
/] Specify the cycle
instr[i] — setCycle(cycle_min + offset);
to_be_scheduled--;
break;

}
}
}
}

/] The case of the branch instruction

if (branch_seen) {
instr[brindex] — setCycle(last_cycle + 1);
to_be_scheduled--;

}

/] The delay slot instruction, if any

if (to_be_scheduled) instr[nasm-1] — setCycle(last_cycle + 2);

// Reorder according to values specified by setCycle()
bb — orderAccordingToCycles();

bb — addNecessaryNops();

delete res_table;

delete instr;



