
A Statistical Model of
Skewed-Associativity

Pierre Michaud

March 2003

�

It’s about microarchitected “caches”

Type of cache Type of object

Data/instructions cache

Translation buffer

Branch target buffer

Data/instructions block

Page translations

Branch predictions

... ...

�

An analysis of skewed-associativity

• Cache implementation for removing conflict misses
– introduced by André Seznec in the early 1990’s

– experimental evidences of efficacy

• Goal of this study
– try to understand the reason of the efficacy of skewed-

associativity
• requires understanding set-associativity under randomized hashing

�

The conflict-miss problem

• The access to objects in the cache should be as fast as
possible
– ==> cache size limit

– ==> access through hashing function

• Missing objects (= not in cache) ==> performance penalty
– working-set larger than the cache ==> capacity misses

– collisions ==> conflict misses

�

Set-associativity

• Split the cache into Z banks (Z-way set-associative)
– an object has Z possible locations, one on each bank

• Index all Z banks simultaneously with the same hashing
function

• Trade-off: hardware complexity vs. conflict misses
– higher associativity Z ==> less conflict misses

• if Z equals number of cache locations ==> full associativity

– higher associativity w ==> hardware complexity
• Z comparators and Z-input multiplexor

• access time, energy consumption per access, and cache area increase with
degree of associativity Z

�

Skewed-associativity

• Like set-associativity but ...

• Different hashing functions

�

Properties of skewed-associativity

• With a high probability,

– 2-way skewed-associativity removes conflicts better than 4-way
set-associativity under randomized hashing

– 2-way skewed-associativity emulates full associativity for
working-sets up to 50 % the cache size

– 3-way skewed-associativity emulates full associativity for
working-sets up to 90 % the cache size

�

Do you find it intuitive ?

• Usual explanation
– if several objects conflict for the same location on one bank,

they are unlikely to conflict on the other banks …

• Objection: we should think globally
– if the working-set size is close to the cache size, we should not

expect to find a lot of free locations on the other banks

• Intuition fails in this kind of problem
– optimal placement ?

– not always better than set-associativity, statistically better

�

2-way set-associativity

Cache size: N = 8 locations

3-way associativity

Bank 1

Bank 2

��

2-way set-associativity

Take Q = 8 random objects

��

Place the objects

7 objects placed

1 missing object

2-way set-associativity

��

2-way skewed-associativity

“Orthogonal” hashing functions

��

2-way skewed-associativity

Take Q = 8 random objects

��

Place objects on one bank

2-way skewed-associativity

��

Place remaining objects on the other bank

6 objects placed

2 missing objects

2-way skewed-associativity

��

There exists a better placement

2

3

1

2

1 1 3 3

��

1

3

0

1

0 0 3 2

��

0

3

0

0

0 0 2 1

��

0

2

0

0

0 0 2 0

Phase 1 of the algorithm is finished, now phase 2 starts

To continue, make an
arbitrary placement

��

This was the QOP algorithm

0

0

0

0

0 0 0 0

Optimal for Z�= 2

Close to optimal for Z�> 2

Quasi-Optimal Placement

��

Iterative placement

• QOP useful for analysis, not a practical algorithm
– in a real microarchitecture situation, better to place objects as

soon as encountered, even if placement not optimal

• Iterative Placement
– place object in an empty location

• in practice, “empty” means “cold”

– if all locations occupied, evict object already placed

– several passes ==> converges toward an optimal placement
• “self data reorganization”

• How many missing objects with an optimal placement ?

��

Hint: the worst case
2-way set-associativity 2-way skewed-associativity

N

N

Q1

2N locations

Q objects

Total configurations Total configurations
Q1 2

Probability worst case Probability worst case
)1(−− Q1)1(2 −− Q1

The probability is squared

��

The average case

• Consider all the possible configurations
– assuming fixed cache size and working-set size

• Compute the DYHUDJH�PLVVLQJ�IUDFWLRQ (DPI)
– average number of missing objects divided by total number of

objects

– DPI in [0..1]

• The DPI gives information about the typical configuration
– DPI very small ==> few missing objects for most configurations

– what is likely to be observed with randomized hashing or
without spatial locality

��

The classical occupancy problem
Q balls into 1 bins: 1Q configurations

How many configurations with
(exactly) N bins containing
(exactly) T balls ?

MTQ
1

NM

NM

T M1
M

T

MT

MT

Q

M1

N1

N

1
NF −

−

=

− −−

= ∑ −
−

)(
)!(

)!(
)1(

1

)(

1 23

4

0

0.005

0.01

0.015

0.02

0.025

0.03

0 200 400 600 800 1000

N

Q1

NF)(1

Example: Q = 1 = 1000, q=1

�
�

H
T

1N
T

1
Q

−≈
!

)(

Average: Poisson law

Distribution concentrated
around the mean

��

Set-associativity: average case

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q�1

D
P

I

w=1

w=2

w=4

w=8

w=16

w=32

w=64

• Q/1 < 1/4 : 4-way set-associativity sufficient

• Q/1 > 1/2 : set-associativity rather inefficient

• Spatial locality ?
– observed behavior often better than statistical average

– sometimes much worse

1Z <<

Q objects
1 locations

��

Skewed-associativity: QOP algorithm
General idea: count bins containing a single ball

Intricate problem ==> heuristic reasoning

1
1

=+
−− Z

1
Q Z

H
ββ

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q�1

E
H

WD
w=2

w=3

w=4

• probability β that an object cannot be placed on a given
bank during phase 1
– β=0 means DOO�WKH�REMHFWV�FDQ�EH�SODFHG�GXULQJ�SKDVH��

– β=1 means VWDUW�ZLWK�DQ�DUELWUDU\�SODFHPHQW

��

Average missing fraction

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q�1

D
P

I

w=2

w=3

w=4

What is observed for a typical configuration

))1(,0max(1

1
Q

ZZ ZDPI
ββββ −−+≈ −

��

Iterative Placement

9.0 , 3 ==
1

Q
Z

• Number the objects from 1 to Q

• Iterate on the objects: 1,2,…,Q, 1,2,…,Q, 1,2,…Q, ...

• If object no yet placed, place it in a (random) empty location

• If no empty location, choose a victim
– RAND: random victim

– LRP: least recently placed

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 4 8 16 32 64 128 256

SDVVHV

D
P

I RAND

LRP

��

Learnings

• The efficacy of skewed-associativity is intrinsically
statistical
– spatial locality not necessary

• just make sure that we don’t make spatial locality the worst cases

• 2-way skewed-associativity emulates full associativity for
working-sets up to 50% the cache size

• 3-way skewed-associativity is almost equivalent to full
associativity
– iterative placement: ~10 passes are enough

– little gain to expect with associativity greater than 3
• greater associativity just requires less passes

��

Open questions

• Frequent working-set transition ?
– SODFHPHQW misses

• LRU may prevent convergence toward optimal placement
– but hard to beat on real workloads ...

• Implementation tradeoffs

1

2 3

4

��

Conclusion

• Skewed-associativity works
– more than just the effect of randomized hashing

– 3-way skewed-associativity almost equivalent to full-
associativity with degraded LRU

• Model useful for debugging hashing functions
– sets of random addresses

– if measured DPI ≠ theory ==> problem

