

A Statistical Model of Skewed-Associativity

Pierre Michaud March 2003

It's about microarchitected "caches"

Type of object
Data/instructions block
Page translations
Branch predictions
•••

An analysis of skewed-associativity

- Cache implementation for removing conflict misses
 - introduced by André Seznec in the early 1990's
 - experimental evidences of efficacy
- Goal of this study
 - try to understand the reason of the efficacy of skewedassociativity
 - requires understanding set-associativity under randomized hashing

The conflict-miss problem

- The access to objects in the cache should be as fast as possible
 - ==> cache size limit
 - ==> access through hashing function
- Missing objects (= not in cache) ==> performance penalty
 - working-set larger than the cache ==> capacity misses
 - collisions ==> conflict misses

Set-associativity

- Split the cache into *w* banks (*w*-way set-associative)
 an object has *w* possible locations, one on each bank
- Index all *w* banks simultaneously with the same hashing function
- Trade-off: hardware complexity vs. conflict misses
 - higher associativity w ==> less conflict misses
 - if *w* equals number of cache locations ==> full associativity
 - higher associativity w ==> hardware complexity
 - *w* comparators and *w*-input multiplexor
 - access time, energy consumption per access, and cache area increase with degree of associativity *w*

Skewed-associativity

- Like set-associativity but ...
- Different hashing functions

Properties of skewed-associativity

- With a high probability,
 - 2-way skewed-associativity removes conflicts better than 4-way set-associativity under randomized hashing
 - 2-way skewed-associativity emulates full associativity for working-sets up to 50 % the cache size
 - 3-way skewed-associativity emulates full associativity for working-sets up to 90 % the cache size

Do you find it intuitive ?

- Usual explanation
 - if several objects conflict for the same location on one bank, they are unlikely to conflict on the other banks ...
- Objection: we should think globally
 - if the working-set size is close to the cache size, we should not expect to find a lot of free locations on the other banks
- Intuition fails in this kind of problem
 - optimal placement ?
 - not always better than set-associativity, statistically better

2-way set-associativity

Cache size: N = 8 locations

2-way set-associativity

Take n = 8 random objects

2-way set-associativity

Place the objects

7 objects placed1 missing object

"Orthogonal" hashing functions

Take n = 8 random objects

Place objects on one bank

Place remaining objects on the other bank

6 objects placed2 missing objects

There exists a better placement

Phase 1 of the algorithm is finished, now phase 2 starts

To continue, make an arbitrary placement

This was the **QOP** algorithm

Quasi-Optimal Placement

Optimal for w = 2

Close to optimal for w > 2

Iterative placement

- QOP useful for analysis, not a practical algorithm
 - in a real microarchitecture situation, better to place objects as soon as encountered, even if placement not optimal
- Iterative Placement
 - place object in an empty location
 - in practice, "empty" means "cold"
 - if all locations occupied, evict object already placed
 - several passes ==> converges toward an optimal placement
 - "self data reorganization"
- How many missing objects with an optimal placement ?

Hint: the worst case

2-way skewed-associativity

The average case

- Consider all the possible configurations
 - assuming fixed cache size and working-set size
- Compute the *average missing fraction (amf)*
 - average number of missing objects divided by total number of objects
 - *amf* in [0..1]
- The *amf* gives information about the typical configuration
 - amf very small ==> few missing objects for most configurations
 - what is likely to be observed with randomized hashing or without spatial locality

The classical occupancy problem

n balls into *N* bins: N^n configurations

How many configurations with (exactly) k bins containing (exactly) q balls ?

$$\mathcal{C}_{q}(k) = \binom{N}{k} \sum_{j=k}^{N-1} (-1)^{j-k} \binom{N-k}{N-j} \binom{n}{jq} \frac{(jq)!}{(q!)^{j}} (N-j)^{n-jq}$$

Example: n = N = 1000, q=1

Distribution concentrated around the mean

Average: Poisson law

$$\overline{k} \approx N \frac{\left(\frac{n}{N}\right)^{q}}{q!} e^{-\frac{n}{N}}$$

Set-associativity: average case

- n/N < 1/4: 4-way set-associativity sufficient
- n/N > 1/2: set-associativity rather inefficient
- Spatial locality ?
 - observed behavior often better than statistical average
 - sometimes much worse

Skewed-associativity: QOP algorithm

General idea: count bins containing a single ball

Intricate problem ==> heuristic reasoning

- probability β that an object cannot be placed on a given bank during phase 1
 - $\beta=0$ means all the objects can be placed during phase 1
 - $\beta=1$ means start with an arbitrary placement

Average missing fraction

$$amf \approx \max(0, \beta^{w} + w(1-\beta)\beta^{w-1} - \frac{\beta}{n/N})$$

What is observed for a typical configuration

Iterative Placement

- Number the objects from 1 to *n*
- Iterate on the objects: 1,2,...,*n*, 1,2,...,*n*, 1,2,...*n*, ...
- If object no yet placed, place it in a (random) empty location
- If no empty location, choose a victim
 - RAND: random victim
 - LRP: least recently placed

Learnings

- The efficacy of skewed-associativity is intrinsically statistical
 - spatial locality not necessary
 - just make sure that we don't make spatial locality the worst cases
- 2-way skewed-associativity emulates full associativity for working-sets up to 50% the cache size
- 3-way skewed-associativity is almost equivalent to full associativity
 - iterative placement: ~10 passes are enough
 - little gain to expect with associativity greater than 3
 - greater associativity just requires less passes

Open questions

- Frequent working-set transition ?
 - placement misses
- LRU may prevent convergence toward optimal placement
 - but hard to beat on real workloads ...

• Implementation tradeoffs

Conclusion

- Skewed-associativity works
 - more than just the effect of randomized hashing
 - 3-way skewed-associativity almost equivalent to fullassociativity with degraded LRU
- Model useful for debugging hashing functions
 - sets of random addresses
 - if measured $amf \neq$ theory ==> problem