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It’s about microarchitected “caches”

Type of cache Type of object

Data/instructions cache

Translation buffer

Branch target buffer

Data/instructions block

Page translations

Branch predictions

... ...
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An analysis of skewed-associativity

• Cache implementation for removing conflict misses
– introduced by André Seznec in the early 1990’s

– experimental evidences of efficacy

• Goal of this study
– try to understand the reason of the efficacy of skewed-

associativity
• requires understanding set-associativity under randomized hashing
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The conflict-miss problem

• The access to objects in the cache should be as fast as
possible
– ==> cache size limit

– ==> access through hashing function

• Missing objects (= not in cache) ==> performance penalty
– working-set larger than the cache ==> capacity misses

– collisions ==> conflict misses
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Set-associativity

• Split the cache into Z banks (Z-way set-associative)
– an object has Z possible locations, one on each bank

• Index all Z banks simultaneously with the same hashing
function

• Trade-off: hardware complexity vs. conflict misses
– higher associativity Z ==> less conflict misses

• if Z equals number of cache locations ==> full associativity

– higher associativity w ==> hardware complexity
• Z comparators and Z-input multiplexor

• access time, energy consumption per access, and cache area increase with
degree of associativity Z
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Skewed-associativity

• Like set-associativity but ...

• Different hashing functions
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Properties of skewed-associativity

• With a high probability,

– 2-way skewed-associativity removes conflicts  better than 4-way
set-associativity under randomized hashing

– 2-way skewed-associativity emulates full associativity for
working-sets up to 50 % the cache size

– 3-way skewed-associativity emulates full associativity for
working-sets up to 90 % the cache size
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Do you find it intuitive ?

• Usual explanation
– if several objects conflict for the same location on one bank,

they are unlikely to conflict on the other banks …

• Objection: we should think globally
– if the working-set size is close to the cache size, we should not

expect to find a lot of free locations on the other banks

• Intuition fails in this kind of problem
– optimal placement ?

– not always better than set-associativity, statistically better
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2-way set-associativity

Cache size:  N = 8 locations

3-way associativity

Bank 1

Bank 2
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2-way set-associativity

Take Q = 8 random objects
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Place the objects

7 objects placed

1 missing object

2-way set-associativity
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2-way skewed-associativity

“Orthogonal” hashing functions
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2-way skewed-associativity

Take Q = 8 random objects
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Place objects on one bank 

2-way skewed-associativity
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Place remaining objects on the other bank

6 objects placed

2 missing objects

2-way skewed-associativity



��

There exists a better placement
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Phase 1 of the algorithm is finished, now phase 2 starts

To continue, make an
arbitrary placement
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This was the QOP algorithm
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Optimal for Z�= 2

Close to optimal for Z�> 2

Quasi-Optimal Placement
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Iterative placement

• QOP useful for analysis, not a practical algorithm
– in a real microarchitecture situation, better to place objects as

soon as encountered, even if placement not optimal

• Iterative Placement
– place object in an empty location

• in practice, “empty” means “cold”

– if all locations occupied, evict object already placed

– several passes ==> converges toward an optimal placement
• “self data reorganization”

• How many missing objects with an optimal placement ?
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Hint: the worst case
2-way set-associativity 2-way skewed-associativity

N

N

Q1

2N locations

Q objects

Total configurations Total configurations
Q1 2

Probability worst case Probability worst case
)1( −− Q1 )1(2 −− Q1

The probability is squared
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The average case

• Consider all the possible configurations
– assuming fixed cache size and working-set size

• Compute the DYHUDJH�PLVVLQJ�IUDFWLRQ (DPI)
– average number of missing objects divided by total number of

objects

– DPI in [0..1]

• The DPI gives information about the typical configuration
– DPI very small ==> few missing objects for most configurations

– what is likely to be observed with randomized hashing or
without spatial locality
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The classical occupancy problem
Q balls into 1 bins:    1Q  configurations

How many configurations with
(exactly) N bins containing
(exactly) T balls ?
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Set-associativity: average case
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• Q/1  <  1/4 :    4-way set-associativity sufficient

• Q/1  >  1/2 :   set-associativity rather inefficient

• Spatial locality  ?
– observed behavior often better than statistical average

– sometimes much worse

1Z <<

Q objects
1 locations
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Skewed-associativity: QOP algorithm
General idea: count bins containing a single ball

Intricate problem  ==>  heuristic reasoning
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• probability β that an object cannot be placed on a given
bank during phase 1
– β=0  means DOO�WKH�REMHFWV�FDQ�EH�SODFHG�GXULQJ�SKDVH��

– β=1 means VWDUW�ZLWK�DQ�DUELWUDU\�SODFHPHQW
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Average missing fraction
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Iterative Placement

9.0   , 3 ==
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• Number the objects from 1 to Q

• Iterate on the objects: 1,2,…,Q,  1,2,…,Q,  1,2,…Q,  ...

• If object no yet placed, place it in a (random) empty location

• If no empty location, choose a victim
– RAND: random victim

– LRP: least recently placed
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Learnings

• The efficacy of skewed-associativity is intrinsically
statistical
– spatial locality not necessary

• just make sure that we don’t make spatial locality the worst cases

• 2-way skewed-associativity emulates full associativity for
working-sets up to 50% the cache size

• 3-way skewed-associativity is almost equivalent to full
associativity
– iterative placement:  ~10 passes are enough

– little gain to expect with associativity greater than 3
• greater associativity just requires less passes
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Open questions

• Frequent working-set transition ?
– SODFHPHQW misses

• LRU may prevent convergence toward optimal placement
– but hard to beat on real workloads ...

• Implementation tradeoffs
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Conclusion

• Skewed-associativity works
– more than just the effect of randomized hashing

– 3-way skewed-associativity almost equivalent to full-
associativity with degraded LRU

• Model useful for debugging hashing functions
– sets of random addresses

– if measured DPI ≠ theory ==> problem


