
Design and implementation of fully configurable
interpreter and generator of HL7 Standard protocol

messages

by
Robert Guziołowski

Poznan University of Technology, Poznan, Poland

Table of Contents
1. Introduction .. 1

1.1. Project goal and scope .. 1
1.2. Thesis structure ... 1
1.3. Typographic conventions ... 2

2. Background ... 3
2.1. HL7 Standard origins ... 3
2.2. HL7 Standard version 2.3.1 .. 3

2.2.1. Messages .. 4
2.2.2. Segments .. 4
2.2.3. Fields ... 5
2.2.4. Message delimiters .. 6
2.2.5. Data types .. 7
2.2.6. Tables .. 7

3. Design ... 9
3.1. General design .. 9

3.1.1. HL7API library ... 9
3.1.2. HL7API library internal design .. 9

3.2. Messages configuration representation .. 13
3.2.1. Tables ... 13
3.2.2. Fields .. 14
3.2.3. Segments .. 16
3.2.4. Messages .. 16

3.3. Interpreter internal configuration .. 20
3.3.1. Interpreter configurtation overview .. 20
3.3.2. Message validity configuration ... 20
3.3.3. Message treatment configuration .. 21

3.4. Generator internal configuration ... 21
3.4.1. Generator configuration overview .. 21
3.4.2. Message construction .. 21
3.4.3. Message data source .. 22

3.5. Database connectivity configuration .. 22
3.5.1. Databases ... 22
3.5.2. Relations ... 23
3.5.3. Mappings ... 23
3.5.4. Safe-storage .. 25

4. Implementation .. 27
4.1. Environment ... 27
4.2. Other sources and libraries ... 27
4.3. Algorithms .. 28

4.3.1. Current position in message ... 28

iii

4.3.2. Segment position ... 30
4.3.3. Incoming segment validity ... 32
4.3.4. Next segment candidate ... 34

4.4. Database implementation limitations .. 36
4.4.1. Writting messages ... 37
4.4.2. Reading messages ... 37

5. Conclusions ... 39
Bibliography ... 41
A. Thesis CD contents .. 43
B. Configuration examples ... 45

B.1. Table .. 45
B.2. Table index ... 45
B.3. Fields .. 46
B.4. Segments .. 46
B.5. Single-version message .. 47
B.6. Multi-version message ... 47
B.7. Databases .. 48
B.8. Relations ... 48
B.9. Mappings ... 49
B.10. Safe-storage ... 49

iv

List of Figures
2.1. HL7 message ... 4
2.2. HL7 segment ... 5
2.3. Omitting separators example .. 7
2.4. Omitting a component example .. 7
3.1. HL7API library design ... 11
3.2. Tree representation of DTD of table configuration file .. 14
3.3. Tree representation of DTD of table index configuration file 14
3.4. Tree representation of DTD of fields configuration file ... 14
3.5. Example TABLE codes ... 15
3.6. Tree representation of DTD of segments configuration file 16
3.7. Tree representation of DTD of messages configuration file 17
3.8. Tree representation of DTD of databases configuration file 22
3.9. Tree representation of DTD of relations configuration file 23
3.10. Tree representation of DTD of mappings configuration file 24
3.11. Tree representation of DTD of safe-storage relation configuration file 26
4.1. NAVIGATE algorithm ... 28
4.2. SEGMENT_ POSITION algorithm ... 30
4.3. INCOMING_ SEGMENT_ VALID algorithm ... 32
4.4. NEXT_ SEGMENT_ CANDIDATE algorithm .. 34
4.5. Storing data query type .. 37
4.6. Reading data query type .. 37
B.1. Empty user-defined table example .. 45
B.2. Non-empty Standard-defined table example ... 45
B.3. Part of a table_index.xml example .. 45
B.4. Part of a fields.xml example ... 46
B.5. Part of a segments.xml example .. 46
B.6. Single-version message example ... 47
B.7. Multi-version message example .. 47
B.8. Part of a databases.xml example ... 48
B.9. Part of a relations.xml example ... 48
B.10. Part of a mappings.xml example ... 49
B.11. Part of a safe-storage-relation.xml example .. 49

v

vi

List of Tables
2.1. Field properties ... 5
3.1. Mixed level mappings relation and column name usage ... 25

vii

viii

Introduction1
Organization and delivery of healthcare services always contain a lot of information processing
and exchange. The more of these processing and exchange is automated, the more efficent
the healthcare operations are. The problem that arises is the compatibility of data exchanged.
One of the standards concerning healthcare-related data exchange is the Health Level 7
Standard, or shortly, the HL7 Standard, which defines a communication protocol based on
messages exchange. Nevertheless, it is not easy to use as it contains a lot of possible messages,
which can appear in different versions. Thus, a framework for fast developing applications
which use HL7 Standard protocol is needed.

This project concentrates on the design and implementation issues of such a framework. All
data structures composing messages defined by the HL7 Standard are being studied. Proposed
representation of this data allows to store all the defined messages with theirs variations, as
well as gives the User the ability of adapting defined messages to protocol changes or creating
completely new messages. All message processing is then based on this representation.

Project goal and scope1.1
The aim of this project is to provide a functional, fully configurable interpreter and generator
of version 2.3.1 of the HL7 Standard protocol messages. Both interpreter and generator should
be adjustable to the needs of software or the User which uses them, as well as be able to parse
and generate user-defined messages. Software should be well structurized in order to allow
its further development for newer versions of the HL7 Standard protocol.

Developed software is not responsible for the processing of the data contained in the
interpreted and/or generated messages. Specific data values, which are defined by the HL7
Standard, can be asserted with the predefined values. Nevertheless, both checking method
and predefined values are user-configurable.

Thesis structure1.2
The structure of this thesis is the following. Chapter 2 deals with background information
related to current and previous versions of HL7 Standard. It also provides a more detailed
description of protocol messages and structures used within them.

In Chapter 3 we describe the design of the software developed during the course of this
project, with a special emphasis on configuration issues. Description of the representation
of the data defined by the HL7 Standard is provided in great details.

Chapter 4 gives details about the implementation of developed software during the course
of this project and the framework which it creates. Selected implementation problems are
also discussed.

Finally, Chapter 5 concludes the thesis.

1Chapter 1. Introduction

Typographic conventions1.3
A number of typographic conventions are used throughout this thesis to make the reading
of the text easier. Words or phrases in italics are particularly important for proper
understanding of the surrounding context and should be paid special attention to. Italics are
also used to place emphasis on a word. First occurrences of terms or definitions will be
denoted by bold face.

Margin notes
and references

Margin notes are used to mark important concepts being discussed in the paragraphs next
to them. They are also to help the Reader scan the text. Reference numbers of all figures in
the text are composed of the number of the chapter they appear in and the consecutive number
of the figure within the chapter. Thus, the fifth figure in the fourth chapter would be referenced
as Figure 4.5. Square brackets denote citations and references to other articles, books and
Internet resources listed at the back of this thesis.

2Chapter 1. Introduction

Background2
This section provides background information related to the project. We start with a general
description of the HL7 Standard, its aims and history of development. Then, we concentrate
on the version of the Standard which was studied and used in this project, providing details
of messages and its elements.

HL7 Standard origins2.1
Need of

standard
The increase of the amount of data being processed and exchanged between healthcare
facilities (i.e. hospitals, pharmacies, etc.) imposed development of many applications which
automate some aspects of these data management. Unfortunatelly, these applications have
been developed by different vendors causing data representation to be incompatible between
different institutions. The problem in fact appeared when these institutions were obliged to
exchange information between them. Thus, a need for a commonly accepted standard, which
would unify transaction and communication data structures, emerged.

HL7 Standard Development of HL7 Standard, which would face problems described above, started in March
1987, and continued through the following years, resulting in several propositions and
standards (see: [HL7 Web page]).

The primary goal of all HL7 Standards is to provide a standard for data exchange among
healthcare computer applications (see: [HL7 Standard specification]). Apart from that, the
widest variety of technical environments and evolutionary growth of the data structures
should be supported.

The great number of application concerning the HL7 Standard implementation exists, i.e.
[Chameleon] — for building the HL7-enabled applications, [Iguana] — for facilitating the
integration of different HL7-enabled applications, or simple applications like [Scan7] — for
parsing and viewing the data of the message in a User-friendly format.

HL7 Standard version 2.3.12.2
Version 2.3.1 Version 2.3.1 of the Standard addresses and documents all the mistakes and inconsistencies

discovered in previous versions, i.e. 2.0, 2.1, 2.2, and 2.3. It is also the most recent version,
which documentation could be found in the Internet in the [HL7 Web page] without charge.
In the following sections the HL7 Standard version 2.3.1 will be called shortly the HL7
Standard.

Message and its
components

The HL7 Standard defines a set of messages used to exchange data between healthcare
facilities as a string of characters. Each of the messages consists of data fields of variable
length. Fields are separated with the use of a field separator character, and are allowed to
repeat. Data fields are combined into logical groupings called segments; they start with three-
character literal value and are identified by it within the message. Segments are separated
with the use of segment separator character. Segments can be defined as optional or required,

3Chapter 2. Background

as well as allowed to repeat. Individual fields can be found in the messages by their position
within associated segment. Details follows.

Messages2.2.1
Message

definition
A message is the atomic unit of data transferred between communicating systems. It is
composed of a set of segments which appear in a defined sequence. Each message has a
message type that defines its purpose. Message type is a three-character code contained
within all the messages. See: Figure 2.1.

Figure 2.1
HL7 message

Warning

Figure 2.1 is a simplification; in fact, message type is contained in one of the
segments of the message.

Messages' local
variations

HL7 Standard reserves all messages types starting with character "Z" for locally-defined
messages. The Standard supports exchange of such messages, but does not define them.

Example ACK message type is used to transmit a "General acknowledgment message".

The full list of message types can be found in section A.2 of Appendix A of [HL7 Standard
specification].

Segments2.2.2
Segment

definition
Segment is a logical grouping of fields. Segments are the only structure that can build a
message directly. Segments can be defined as required or optional within the message, as
well as allowed to repeat. Each of the segments is given a name — a three-character code
uniquely identifying the segment. This code is know as segment ID. See: Figure 2.2.

Segments' local
variations

HL7 Standard reserves all segments ID starting with character "Z" for locally-defined segments.
Standard supports exchange of messages containing such segments, but does not define
them.

Example Following previous example, ACK message contains following segments:

• MSH - required, cannot repeat, seqence order: 1,

• MSA - required, cannot repeat, sequence order: 2, and

• ERR - optional, cannot repeat, sequence order: 3.

4Chapter 2. Background

Figure 2.2
HL7 segment

The full list of segments can be found in section A.3 of Appendix A of [HL7 Standard
specification].

Fields2.2.3
Field definition A field is a string of characters. Each of the fields within a message has to be a part of a

specified segment. A field is allowed to repeat or to be optional. Repetition of the field can
be unlimited, or specified. Within a segment, a field has its sequence number. For all properties
of a field, see Table 2.1.

Predefined fields
values

HL7 Standards defines a set of tables containing predefined field values (see: Section 2.2.6).
In such case a value contained in the field should be compared with the values appearing in
the appropriate table.

Null value Fields are allowed to contain a null value: it is send as double quote marks (""), and it is
different than omitting an optional field (see: Section 2.2.4 and [HL7 Standard specification]).

Coponents and
subcomponents

The field can be divided into components and/or subcomponents. The division is forced by
the data type of the field, and is only a logical division.

Table 2.1
Field properties

Denote asProperty descriptionProperty name

SEQOrdinal position (sequence) of a field within
a segment.

Position (sequence
within the segment)

LENMaximum number of characters which can
be contained in a field. This value is
normative, but can be negotiated between
collaborating parties. Values provided by the
HL7 Standard include counting of component
and subcomponent separators (see:
Section 2.2.4). Nevertheless, they are assumed
for a single occurence, thus repetition
separator is not included in counting of
maximum length.

Maximum length

DTRestrictions on the field contents. The HL7
Standard defines 52 different data types,
which are presented in more details in
Section 2.2.5.

Data type

5Chapter 2. Background

Denote asProperty descriptionProperty name

OPTWhether the field is required or not in the
segment. The optionality of the field is defined
as follows:

• R — required,

• O — optional,

• C — conditional on the message
type or on some other field(s),

• X — not used in sepcified message
type

• B — left for backward
compatibility with previous
versions of the HL7 Standard
protocol.

Optionality

RP or RP/#Whether the field may repeat or not. The
repetition of the field is defined as follows:

• N — no repetition,

• Y — the field can repeat an
indefinite or site-determined
number of times,

• (integer) — the field may repeat
up to the number of times
specified by the integer value
(denoted here as "#").

Repetition

TBLOptional number of table containing
predefined values; a field has to contain a
value existing in specified table to be valid. If
there is no table number specified for the field,
it can contain any valid value.

Table

ITEMInteger which identifies field within the HL7
Standard.

ID number

ELEMENT NAMEDescriptive name for the field.Name

Message delimiters2.2.4
Separators As messages are a set of characters, certain special characters have to be reserved in order to

recognize separate segments and/or fields. The HL7 Standard defines 6 special characters,
wich are: segment terminator, field separator, component separator, subcomponent
separator, repetition separator, and escape character. Nevertheless, all of the above message
delimiters, except segment separator, can be defined differently for each of the messages in
its message header (MSH) segment.

Message delimiters defined by the HL7 Standard are as follows:

• Segment terminator — Terminates a segment. This character cannot be changed
and it is always a carriage return (<cr>, or in ASCII: hex 0D).

6Chapter 2. Background

• Field separator — Separates two adjacent fields within the segment, as well as
segment ID from the first data field in each of the segments. Default character: |

• Component separator — Separates adjacent components of the field, if exist.
Default character: ^

• Subcomponent separator — Separates adjacent subcomponents of the field, if
exist. Default character: &

• Repetition separator — Separates multiply occurences of the field, if exist. Default
character: ~

• Escape character — Escape character for use in any of text fields for representing
one of all 6 message delimiters. Default character: \

Omitting
separators

In the case when field or its component or subcomponent is optional, some of the separators
may be omitted. It is possible only if after omitting such separator the field can still be parsed
properly. Omitting separators is optional.

Example Field containing an address (type AD; for field types, see: Section 2.2.5) consists of 8
components: street address, other designation (second line of address), city, state or province,
zip or postal code, country, address type, and other geographic designation.

Omitting unnecessary separators is presented on Figure 2.3 where the same address is
represented in 3 different, but equivalent ways. Parsing all of these represetnations provides
to the same result.

Figure 2.3
Omitting

separators
example

 |Piotrowo 3a^4th floor^POZNAN^WLKP^60-965^POLAND^^|

 |Piotrowo 3a^4th floor^POZNAN^WLKP^60-965^POLAND^|

 |Piotrowo 3a^4th floor^POZNAN^WLKP^60-965^POLAND|

Nevertheless, omitting a separator causing an ambiguity between data assignments to field
components is not allowed. For example, omitting a second component (other designation) in
the example above in the way shown in Figure 2.4, point a) is incorrect, as value "POZNAN"
will be recognized as other designation component. Proper way of omitting the component is
shown in Figure 2.4, point b).

Figure 2.4
Omitting a
component

example

 a) |Piotrowo 3a^POZNAN^WLKP^60-965^POLAND|

 b) |Piotrowo 3a^^POZNAN^WLKP^60-965^POLAND|

Data types2.2.5
Data type
definition

Data type of a field put restrictions on the values which a field can contain. The HL7 Standard
defines 52 different data types, which include simple data types (strings, formatted strings,
data, time, time stamps, or numeric) and complex data types (defined as a sequence of simple
data types or other complex data types).

More details about data types definitions can be found in [HL7 Standard specification].

Tables2.2.6
Tables

definition
HL7 Standards defines two sets of tables containing predefined field values. Values contained
in this tables are the only values which the field with assigned table number can contain.

7Chapter 2. Background

Nevertheless, the HL7 Standard does not define how nor when to check the values of these
fields.

Standard-defined
and user-defined

tables

The first set of tables which the HL7 Standard defines is set of standard-defined tables. These
tables are assigned a number, a name, and all the possible values. The second set is the user-
defined set of tables, which are defined by the HL7 Standard as tables with assigned number
and name. Values for this tables are user-defined and can differ in different institutions.

For all the HL7 Standard defined tables and their values refer to Sections A.4 and A.5 of
Appendix A of [HL7 Standard specification].

8Chapter 2. Background

Design3
This section gives detailed information about design of the created software. At the beginning
general design image of created software is presented and discussed. Next, information
concerning storing software configuration data is provided. Then, following two sections
give detailed configuration issues of interpreter and generator, as well as of parsing and
generation methods. Finally, optional configuration concerning storing parsed data in a
database, or using a database as a source of data to generate messages, is presented.

General design3.1
HL7API library This section gives information concerning general design of created software. At the beginning

it discusses the idea of creating the HL7API library (or shortly: HL7API) than a specific
software. Afterwards, details of main modules building the HL7API library are presented.

HL7API library3.1.1
Why library? The HL7 Standard protocol is designed to transfer data between communicating systems in

the way of well-structured messages. It provides no information concerning storing the data
in the system, nor processing them. Thus, building a specific software depends to a great
extent on the goals which the software has to accomplish, and creating such a software limits
the possibilities of its usage. The more flexible solution is to provide an API library, which
would support all needed functionality, i.e. sending and receiving messages from different
sources and to different destinations, parsing/generating them according to provided
configuration and locally-defined messages, and providing the connectivity to a database as
a source and storage for the data of processed messages.

Created HL7API library supports all of the functionality presented above. More over, it is
possible to use only necessary functionality, or even to extend it in an easy way. Thus, the
HL7API library can be used in the more variety of softwares.

HL7API library internal design3.1.2
HL7API

subsystems
The HL7API library is internally divided into 3 logical subsystems:

• Messages creation rules — Concerns the messages configuration: configuration
of all messages, segments, and fields stored in external files. Contains modules
to access the configuration (messages configuration reader and messages
configuration writer) and sets of internal representation buffers for storing it and
providing it to message interpreter and generator.

• Parsing and generating messages — Main modules are message interpreter and
message generator. Additional parts concern sending (messages writer with
ready-to-send messages buffer) and receiving messages (messages reader with
received messages buffer) to/from several messages destinations/sources, i.e.

9Chapter 3. Design

TCP connections, simple txt files, xml files, as well as user-defined and user-
implemented.

• Database connectivity — Concerns database connectivity configuration,
configuration of databases and mappings of fields of segments and messages to
a specific relations and/or columns in a relational database. Contains modules
to access the configuration (database connectivity configuration reader and
database connectivity configuration writer), access data in database (database
reader and database writer), and sets of internal representation buffers for storing
the configuration and providing it to database reader and database writer.

Internal structure and interactions between components of a subsystem and between
components of different subsystems is shown in Figure 3.1. White rectangles are concrete
components existing within HL7API, while shaded ones should be stored in the user-defined
manner. Rectangles with rounded corners represent external elements of HL7API, like files,
databases, and connections.

HL7API
subsystems'
components

Below general functionality of each of the components of presented subsystems as well as
external interaction elements, is given.

Components of messages creation rules subsystem

• Messages configuration reader — Its responsability is to read messages
configuration and store it in the sets of internal representation of messages configuration.

• Messages configuration writer — Its responsability is to write internally stored
messages configuration into files which create the messages configuration.

• Sets of internal representation of messages configuration — Sets of buffer
responsible for storing read messages configuration internally in the system. It
provides the access to this data to message interpreter and message generator of
Parsing and generating messages subsystem.

Warning

This is not a concrete component.

• Messages configuration — Set of files containing messages configuration. It
contains files describing all defined fields, segments, and messages, as well as
tables.

Warning

This is not a concrete component. This is an externally stored set of files.

Components of parsing and generating messages subsystem

• Messages reader — This component is responsible for reading/receiving messages
from different types of sources, such as: TCP connections, txt files, and xml files.
It is possible to easily extend its functionality to serve other types of message
sources (i.e. databases). Read/received messages are stored in received messages
buffer.

• Messages writer — This component is responsible for writing/sending generated
messages to different types of destinations, such as: TCP connections, txt files, and
xml files. It is possible to easily extend its functionality to serve other types of
message destinations (i.e. databases). Messages for writting/sending are taken
from ready-to-send messages buffer.

10Chapter 3. Design

Figure 3.1
HL7API library

design

11Chapter 3. Design

• Received messages buffer — Serves as a buffer for messages received by messages
reader.

• Ready-to-send messages buffer — Serves as a buffer for generated messages
which are ready to be send/written to theirs destinations by messages writer.

• Message interpreter — Interprets received messages which are taken from received
messages buffer. Type of message, its version and structural correctness are being
checked with the use of internal representation of messages configuration, provided
by Messages creation rules subsystem.

• Message generator — Generates messages from provided data and stores them
in ready-to-send messages buffer. Messages are being generated according to the
internal representation of messages configuration, provided by Messages creation
rules subsystem.

• Messages sources/destinations — Different types of messages sources and
destinations, such as TCP connections, txt files, or xml files. It is possible to use
different sources/destinations of messages, if user provide appropriate
reader/writer for the source/destination type.

Warning

This is not a concrete component. This is an external set of files, TCP
connections, databases, etc.

Components of database connectivity subsystem

• Database connectivity configuration reader — Its responsability is to read database
connectivity configuration and store it in the sets of internal representation of database
connectivity configuration.

• Database connectivity configuration writer — Its responsability is to write
internally stored database connectivity configuration into files which create the
database connectivity configuration.

• Sets of internal representation of database connectivity configuration — Sets
of buffer responsible for storing read database connectivity configuration internally
in the system. It provides the access to this data to database reader and database
writer of the same subsystem.

Warning

This is not a concrete component.

• Database reader — Its responsability is to read data from relational database as
defined in internally stored database connectivity configuration on demand of message
generator of Parsing and generating messages subsystem.

• Database writer — Its responsability is to write data from parsed messages to a
relational database as defined in internally stored database connectivity configuration
on demand of message interpreter of Parsing and generating messages subsystem.

• Safe storage — Its responsability is to commit data of incoming messages which
suppose to be interpreted later to provided safe-storage system, such as database.
Safe-storing data functionality is needed by a special mode of work of the message
interpreter of Parsing and generating messages subsystem.

• Database connectivity configuration — Set of files containing database
connectivity configuration. It contains files describing all used databases, as well

12Chapter 3. Design

as mappings between all fields of all messages and columns in appropriate
relations.

Warning

This is not a concrete component. This is an externally stored set of files.

• Database (DB) — Database or databases used by database reader and database
writer.

Warning

This is not a concrete component. This is an external database or
databases.

Messages configuration representation3.2
All configuration files described below are xml files. For each of the files, DTD (see: [Document
Type Definition]) is defined, presented in the form of a tree, and explained. All attributes are
obligatory; if attribute can be optional it is stated in the text. If attribute is assigned a default
value, it is stated, and the default value is provided as well.

Tables3.2.1
Table

configuration
files

HL7 Tables described in Section 2.2.6 store default values for some of the fields. The HL7
Standard defines 2 types of tables: Standard-defined and user-defined. Structure of these
tables do not vary, thus the representation is the same in both cases.

Data about each of the table is stored in separate file. Figure 3.2 shows the DTD tree for table
configuration file. Each table, denoted here as TABLE, has the following 3 attributes:

• NUMBER — Gives the number of the table.

Warning

The HL7 Standard defines table numbers as 4 digits numbers, i.e. table
number 120 is presented as "0120". In the presented configuration
NUMBER is limited to significant digits only, i.e. "120" instead of "0120".

• TYPE — Type of the table, which can be "HL7" for Standard-defined tables or
"User" for user-defined tables.

• NAME — Descriptive name of the table.

Table definition can be empty or contain non-limited number of ITEM elements. ITEM element
has the following 2 attributes:

• VALUE — Predefined value.

• DESCRIPTION — Description of predefined value.

Examples of table configuration files can be found in Appendix B: Figure B.1 and Figure B.2.

13Chapter 3. Design

Figure 3.2
Tree

representation of
DTD of table

configuration file

 TABLE (NUMBER, TYPE, NAME)
 |
 += ITEM* (VALUE, DESCRIPTION)

Table index
configuration

file

Apart from table configuration files another file containing table index structure exists. DTD
tree representation for table index file is presented on Figure 3.3. Table index, denoted here
as TABLE_INDEX, contains no attributes. It's definition can be empty or contain non-limited
number of TABLE entries, which has the following 2 atrributes:

• NUMBER — Number of the table.

• FILE — Filename, optionally with absolute or relative path to the file, in which
table of number NUMBER can be found.

Example of table index configuration file can be found in Appendix B on Figure B.3.

Figure 3.3
Tree

representation of
DTD of table

index
configuration file

 TABLE_INDEX
 |
 += TABLE* (NUMBER, FILE)

Fields3.2.2
Fields

configuration
file

Fields defined in Section 2.2.3 are the basic building parts of the messages. The HL7 Standard
defines over 1000 fields used in different segments. Information about them is stored in one
file, called fields configuration file, which contains all defined by the Standard fields, as
well as can contain fields defined by the user.

Figure 3.4
Tree

representation of
DTD of fields

configuration file

 FIELDS
 |
 +- FIELD_DATA* (SEQ, NAME, ITEM, SEG, CHP?, LEN, DT, REP, QTY?,
 | TABLE?, REQ, TYPE, DESCRIPTION?)
 |
 +- CM_COMPONENT* (SEQ, NAME, TYPE, REQ)
 |
 += CM_SUB_COMPONENT* (SEQ, NAME, TYPE, REQ)

DTD tree for fields configuration file is presented on Figure 3.4. There is one main element
called FIELDS. It consists of 0 or more elements FIELD_DATA, each of which represents one
field. Each field, denoted here as FIELD_DATA, has the following 13 attributes:

• SEQ — Sequence number or position within the specified segment.

• NAME — Descriptive name of the field.

• ITEM — Number uniquely identifying the field within the whole HL7 Standard.
Fields added by the user must have this attribute set, and it has to be unique.

• SEG — Segment ID identifying segment which this field belongs to.

• CHP — Number or name of the chapter in which this field is defined in the
Standard. This attribute is optional.

14Chapter 3. Design

• LEN — Maximum length of the data of the field.

• DT — Data type of the field. Details: see Section 2.2.5.

• REP — Whether the field can repeat or not. Details: see Table 2.1, Repetition.

• QTY — Maximum number of times of field repetition. This attribute is optional.
If not defined, field can repeat unlimited number of times.

• TABLE — Number or numbers of HL7 tables which has to be used to validate
the value of the field (see also: Note: TABLE code). This attribute is optional. If
it is not defined, field value validation will not take place.

• REQ — Whether the field is required or not. Details: see Table 2.1, Optionality.

• TYPE — Whether the field is defined by the HL7 Standard, or by the user.

• DESCRIPTION — Additional description of the field. This attribute is optional.

Note: TABLE code

It is important to notice that there are 2 principles of validating the field
value. First, is being conducted independently of the configuration. It is
defined in the HL7 Standard for several data types. Second, is the user-
definable by providing appropraite table numbers for the fields.

In some special cases not the whole value of the field has to be validated
with the values of the appropriate HL7 Table, but only a subcomponent of
a field. Thus, a value of TABLE is a coded string. The string is constructed
as follows:

• place a table number for component number 1 or leave blank if
table not defined; put a comma ",",

• place a table number for component number 2 or leave blank if
table not defined; put a comma ",",

• ...

• place a table number for component number n or leave blank if
table not defined.

It is possible to omit spare commas, if omitting them does not cause loosing
information about tables for components.

There is no possibility of defining a HL7 Table number to check the value
of the subcomponent of the field.

Example. Field consists of 6 components. The value of second component
should be checked with the values defined in the table number 100, and the
value of fourth component with the table 101. All TABLE code presented in
Figure 3.5 are valid.

Figure 3.5
Example TABLE

codes ,100,,101,,
 ,100,,101,
 ,100,,101

15Chapter 3. Design

CM components In the case when field is of data type CM, it can contain components, denoted here as
CM_COMPONENT elements. These elements define the structure of the CM data field, which
can be freely defined. Each of them has the following 4 attributes:

• SEQ — Sequence number or position within the specified field.

• NAME — Descriptive name of the component of the CM data typed field.

• TYPE — Data type of the component.

• REQ — Whether the component is required or not. Values are limited to: "R" -
required, and "O" - optional.

CM
subcomponent

It is also possible for the CM_COMPONENT to have a data type CM. In this case, another
level, CM_SUB_COMPONENT, is defined. Each of the CM_SUB_COMPONENT elements
has the attributes defined as CM_COMPONENT element. The only limit is given for TYPE
(data type) which can be only set to datatypes without components, i.e. DT, FT, ID, IS, NM,
SI, ST, TM, TN, TS, or TX.

Example of fields configuration file can be found in Appendix B on Figure B.4.

Segments3.2.3
Segments

configuration
file

Segments defined in Section 2.2.2 are the logical groupings of fields. The HL7 Standard defines
approximately 100 different segments. Information about them is stored in one file, called
segments configuration file, which contains all defined by the Standard segments, as well
as can contain segments defined by the user.

Figure 3.6
Tree

representation of
DTD of segments
configuration file

 SEGMENTS
 |
 += SEGMENT_DATA* (SEGMENT, DESCRIPTION, CHAPTER?, TYPE)

DTD tree for segments configuration file is presented on Figure 3.6. There is one main element
called SEGMENTS. It consists of 0 or more elements SEGMENT_DATA, each of which
represents one segment. Each segment, denoted here as SEGMENT_DATA, has the following
4 attributes:

• SEGMENT — Segment ID: 3-character unique identifier.

• DESCRIPTION — Description of the segment.

• CHAPTER — Number or name of the chapter in which this segment is defined
in the Standard. This attribute is optional.

• TYPE — Whether the segment is defined by the HL7 Standard, or by the user.

Example of segments configuration file can be found in Appendix B on Figure B.5.

Messages3.2.4
Messages

configuration
file

Messages defined in Section 2.2.1 are exchanged between participating systems. The HL7
Standard defines approximately 80 different types of messages. Information about them is
stored in one file, called messages configuration file, which contains all defined by the
Standard messages, as well as can contain messages defined by the user.

16Chapter 3. Design

Single- and
multi-version

messages

All messages of the HL7 Standard have well defined structure. Nevertheless, the Standard
allows for changing the structure of a message of a certain type under some circumstances.
Even though the message has a different structure, it is still the message of the same type.
Thus, we can talk of different versions of the same message. Such messages will be called
multi-version messages; they are recognized during interpretation and/or generation by
the specific data that they contain. The messages which structure is constant will be called
single-version messages. Both types of messages are being stored in the same file.

DTD tree for mesages configuration file is presented on Figure 3.7. There is one main element
called MESSAGES. It consists of 0 or more elements MESSAGE_DATA, each of which
represents one message. Each message, denoted here as MESSAGE_DATA, has the following
4 attributes:

• MESSAGE — Message type: 3-character unique identifier.

• DESCRIPTION — Description of the message.

• CHAPTER — Number or name of the chapter in which this message is defined
in the Standard. This attribute is optional.

• TYPE — Whether the message is defined by the HL7 Standard, or by the user.

Apart from that, 3 elements exist: SEGMENTS_DEF, COMMON_START_SEGMENTS, and
VERSION_SEGMENTS. When defining single-version message only SEGMENTS_DEF is
used, while for definition of multi-version message all above elements are used.

Figure 3.7
Tree

representation of
DTD of messages
configuration file

 MESSAGES
 |
 +- MESSAGE_DATA* (MESSAGE, DESCRIPTION, CHAPTER?, TYPE)
 |
 |- SEGMENTS_DEF
 | |
 | |= SEGMENT (SEQ, SEG, OPTIONAL, REPEAT, VALID="Yes")
 | |
 | +- GROUP_OF_SEGMENTS (NAME, OPTIONAL, REPEAT, REPEAT_QTY?,
 | | DESCRIPTION?)
 | |
 | +- SEGMENTS_DEF **
 |
 |- COMMON_START_SEGMENTS
 | |
 | +- SEGMENTS_DEF -->
 |
 +- VERSION_SEGMENTS
 |
 +- VERSION+ (NAME, DESCRIPTION?, DEFAULT?)
 |
 |- CONDITION
 | |
 | += CND_DEF+ (CND_SEQ, SEG_ID, FIELD_SEQUENCE,
 | FIELD_COMPONENT_NUMBER?,
 | FIELD_SUB_COMPONENT_NUMBER?, OPERAND, VALUE,
 | CONNECTION_OPERATOR?)
 |
 +- SEGMENTS_DEF -->

Single- and multi-version message elements
SEGMENT_DEF

element
Element SEGMENTS_DEF consists of 0 or more SEGMENT and/or GROUP_OF_SEGMENTS
elements.

SEGMENT
element

Element SEGMENT describes the segment of message. Each of the segments has the following
5 attributes:

17Chapter 3. Design

• SEQ — Sequence number or position of the segment within a message.

• SEG — Segment ID.

• OPTIONAL — Whether the segment is optional or not. Values limited only to:
"No" - required, and "Yes" - optional.

• REPEAT — Whether the segment is allowed to repeat or not. Values limited only
to: "No" - cannot repeat, and "Yes" - can repeat.

• VALID — Whether the segment is a valid segment. Unfortunatelly, in message
SUR one of the segments is not a valid segment, but a separate field of type ED.
Values limited only to: "Yes" - valid segment, and "No" - invalid segment. This
attribute, if not present, gets the default value of "Yes".

GROUP_OF_
SEGMENTS

element

The GROUP_OF_SEGMENTS element is defined as a SEGMENT_DEF element, which means
it can contain SEGMENT elements and/or GROUP_OF_SEGMENTS elements. The
GROUP_OF_SEGMENTS element has the following 5 attributes:

• NAME — Descriptive name of the group of segments.

• OPTIONAL — Whether the group of segments is optional or not. Values limited
only to: "No" - required, and "Yes" - optional.

• REPEAT — Whether the group of segments is allowed to repeat or not. Values
limited only to: "No" - cannot repeat, and "Yes" - can repeat.

• REPEAT_QTY — Maximum number of times which the group of segments is
allowed to repeat. This attribute is optional. If not present, the group of segments
can repeat unlimited number of times.

• DESCRIPTION — Additional description of the message. This attribute is
optional.

Single-version message
The single-version message consists of one element SEGMENTS_DEF.

Example of single-version message definition can be found in Appendix B on Figure B.6.

Multi-version message
The multi-version message consists of one COMMON_START_SEGMENTS followed by one
VERSION_SEGMENTS element. The details follow.

COMMON_
START_

SEGMENTS
element

The COMMON_START_SEGMENTS element is defined as one element of SEGMENTS_DEF.
It has no attributes.

The idea of this element is to group all the segments and/or group of segments common for
all the message versions that appear at the beginning of the message structure. All following
segments and/or group of segments differ throughout the versions. The message version
have to be recognized using data that appear in these segments.

As all messages are being stored in the same file, existance of this element in the message
definition determines the message for being a multi-version message.

VERSION_
SEGMENTS

element

The VERSION_SEGMENTS element consists of 1 or more VERSION elements.
VERSION_SEGMENT has no attributes.

This element stores all the data related to different versions of the multi-version message.

VERSION
element

The VERSION element defines the version of the message, providing information about
condition (or conditions) that have to be met for using a certain message structure (element

18Chapter 3. Design

CONDITION), and about the structure of the version of the message (element
SEGMENTS_DEF).

Warning

SEQ in the segments appearing in all of the VERSION elements has to start
from the number one greater than the last SEQ of the segment of
COMMON_START_BRICKS.

VERSION element has the following 3 attributes:

• NAME — The name (identifier) of the message version.

• DESCRIPTION — Description of the message version. This attribute is optional.

• DEFAULT — Whether this message version is the default version of the message
in case of lack of the possibility of recognizing the correct version. Values limited
to: "Yes", and "No". If more than one versions are set to be default, the behaviour
of interpreter and/or generator is undetermined. This attribute is optional.

CONDITION
element

The VERSION element contains one CONDITION element. This condition is given to the
value or values of the specified field, component of the field, or subcomponent of the field
of a segment contained in COMMON_START_SEGMENTS element. If the condition is met,
the version of the message is being determined. CONDITION element has 0 attributes, but
it consists of one or more CND_DEF elements, called condition bricks. CND_DEF is the brick
of the condition. It has the following 8 attributes:

• CND_SEQ — Sequence number or position of the CND_DEF element within
CONDITION element.

• SEG_ID — ID of the segment from COMMON_START_SEGMENTS which
contains the field which the condition brick has to be applied to.

• FIELD_SEQUENCE — Sequence number or position of the field of specified
segment which the condition brick has to be applied to.

• FIELD_COMPONENT_NUMBER — Number of the component of the field of
the specified segment which the condition brick has to be applied to. This attribute
is optional. Nevertheless, if it is specified, the condition brick has to be applied
to the value of the component of the field, not to the value of the field.

• FIELD_SUB_COMPONENT_NUMBER — Number of subcomponent of the
component of the field of the specified segment which the condtion brick has to
be applied to. This atrribute is optional. Nevertheless, if it is specified, the
condition brick has to be applied to the value of the subcomponent of the
component of the field, not to the value of the component of the field nor to the
value of the field. Moreover, if this atrtribute is specified,
FIELD_COMPONENT_NUMBER is not optional.

• OPERAND — Comparision operator which has to be used while comparing
specified value with the defined field, component of the field, or subcomponent
of the component of the field of the defined segment. Values limited to: "EQUAL"
(==), "LESS" (<), "GREATER" (>), "LESS_EQUAL" (<=), "GREATER_EQUAL"
(>=), and "DIFFERENT" (!=).

• VALUE — Value which should be compared to the defined field, component of
the field, or subcomponent of the component of the field of the defined segment.

• CONNECTION_OPERATOR — Operator used for connecting the result of
condition brick (true or false) with the next condition brick (if defined). Values
limited to: "AND", and "OR". This attribute is optional. Nevertheless, when more

19Chapter 3. Design

than one condition bricks are defined, this attribute is optional only for the last
(ordered by CND_SEQ) of the condition bricks.

Example of multi-version message definition can be found in Appendix B on Figure B.7.

Interpreter internal configuration3.3
Messages interpreter is one of the most crucial parts of the HL7API library. Thus, providing
it with the correct configuration is very important. The configuration of messages parser is
presented below.

Interpreter configurtation overview3.3.1
Configuration of the message interpreter can be divided into 2 groups:

• Message validity — Configuration allowing to check whether incoming message
is of proper type, and whether it follows the defined for this type of message
structure.

• Message treatment — Configuration allowing performing some operations after
and/or before interpreting a message.

Details are provided below.

Message validity configuration3.3.2
Needed

information
For the validity of message checking, data concerning structure of messages has to be provided
to the interpreter. It can be easily done with the use of Messages creation rules subsystem. It
provides all data concerning structure of a message, its segments, fields, and tables containing
default values for the field data.

Validation
levels

Three levels of validation for a message are being defined:

1. Field level — Validation of stored data, if it follows the order and structure
defined for a certain data type, as well as validation of the value of the field, or
its component with the predefined values of certain HL7 tables.

Warning

Testing value of the field or its component on the field level follows the
rules defined in the HL7 Standard for field construction. It is impossible
to switch it off with the use of configuration files.

2. Segment level — Whether segments contain proper number of fields, in correct
order, and of correct type. Also, if user defines the number of table from which
the field should have a value, it is being tested on the segment level for each of
the fields.

3. Message level — Whether the message contains correct segments in correct
positions, and if the required segments and/or group of segments are present.

Field level
validation

Validation of the field level takes place during data interpretation. First, before setting the
data, it is being tested if it follows the rules of the specified data type. If yes, then its value is
tested with the values defined in the appropriate HL7 table.

20Chapter 3. Design

Warning

Testing the field value on the field level is independent on the configuration
and cannot be switched off.

Segment level
validation

Segment level validation is conducted to all of the segments that are being constructed. First,
it is checked if the segment with the given segment ID exists within the configuration. Next,
if the number of fields of the constructed segment is correct. Lastly, if the data types of the
fields are correct and in correct order, and, if user defines additional HL7 tables numbers,
validity of the contained data.

Message level
validation

Message segment validation is being conducted after constructing all the segments of the
message. At the beginning it is checked if the message with the given message type or ID
exists in the configuration. Following, correct order, repetition, and optionality of the segments
is checked.

Message treatment configuration3.3.3
ACK modes Messages interpreter can work in 2 modes of intepretation: original and enhanced. In original

mode, the incoming message is interpreted immediately. In the enhanced mode the message
is firstly commited to the safe storage, and then interpreted immediately or later.

Safe storage If the mode of interpreter is set to enhanced mode, it has to be provided with the appropriate
linker to the safe storage object (with the use of Database connectivity subsystem), which allows
the interpreter to commit the data of the message. Moreover, it is possible to only safe-store
the data without interpreting them, or do both actions.

Database
storing

After interpreting the message it is possible to automatically store the interpreted data in the
database(s). For doing this action an appropriate object from Database connectivity subsystem
has to be configured and provided to the interpreter (see: Section 3.5).

Generator internal configuration3.4
Messages generator is second of the most crucial parts of the HL7API library. Thus, providing
it with the correct configuration is very important. Below the configuration of messages
generator is presented.

Generator configuration overview3.4.1
Configuration of message generator is very similar to configuration of message interpreter
(described in Section 3.3), and can also be divided into 2 subgroups:

• Message construction — Configuration allowing to determine the structure of
the generated message.

• Message data source — Configuration allowing retrievieng data for the generated
message directly from the database.

Details are provided below.

Message construction3.4.2
The messages are constructed according to the configuration provided by the Messages creation
rules subsystem. The validity of them is also being checked while construction in the manner
analogous to the one described in Section 3.3.

21Chapter 3. Design

Message data source3.4.3
It is possible for the message generator to generate messages using the data stored in the
database(s). For doing this an appropriate object from Database connectivity subsystem has to
be configured and provided to the message generator (see: Section 3.5).

Database connectivity configuration3.5
Database connectivity configuration is needed by the components of Database connectivity
subsystem to perform operations on database(s). The configuration consists of description of
available database(s), relations defined in the database(s), and mappings between fields of
certain segment of certain message and the columns of the specified relation in the specified
database. There is one special relation considered as the relation for use in safe-storaging the
messages, if the interpreter works in enhanced mode (see: Section 3.3.3).

All described below configuration files are xml files. For each of the files, DTD is defined,
presented in the form of a tree, and explained. All attributes are obligatory; if attribute can
be optional it is stated in the text. If attribute is assigned a default value, it is stated, and the
default value is provided as well.

Databases3.5.1
Databases

configuration
file

The Database connectivity subsystem is able to provide connection to database(s). For this, it
needs information of the databases which are available in the system for the usage. This
information is stored in the databases configuration file.

DTD tree for databases configuration file is presented on Figure 3.8. There is one main element
called DATABASES. It consists of 0 or more DATABASE elements, each of which represents
one database configuration. Each database, denoted here as DATABASE, has the following
3 attributes:

• ID — Unique identifier of the database throughout the HL7API library.

• TYPE — Type of the mode of access to the database. Currently, values are limited
to: "OCI" — dedicated Oracle Call Interaface for the use with Oracle database, and
"ODBC" for other databases. (For OCI, see: [OCI Web page]; for Oracle, see: [Oracle
Web page]).

• DESCRIPTION — Description of the database. This attribute is optional.

Figure 3.8
Tree

representation of
DTD of databases
configuration file

 DATABASES
 |
 +- DATABASE* (ID, TYPE, DESCRIPTION?)
 |
 |= DB_OCI (USER, PASS, DBLINK?)
 |
 += DB_ODBC (DATA_SOURCE_NAME)

Each DATABASE element has defined as its child one DB_OCI element, or one DB_ODBC
element, providing all needed configuration parameters for making a connection with the
specified database type.

DB_OCI
element

The DB_OCI element provides parameters of connection for the OCI-typed database. It
contains the following 3 attributes:

22Chapter 3. Design

• USER — Name of the user of the database.

• PASS — Password of the defined user of the database.

Warning

Special care and/or special measures has to be takes, as in current version
password of the user is stored as plain text only.

• DBLINK — Name of the database link which has to be used for creating
connections. This attribute is optional. If the attribute is empty, the connections
will be made to the default instance of the database.

DB_ODBC
element

The DB_ODBC element provides parameters of connection for the ODBC-typed database. It
contains the following 1 attribute:

• DATA_SOURCE_NAME — Name of the defined ODBC data source.

Example of databases configuration file can be found in Appendix B on Figure B.8.

Relations3.5.2
Relations

configuration
file

All operations which are made by the Database connectivity subsystem in databases has to be
made on some relation(s). For this, it is needed to know the available relation(s) in defined
database(s). This information is stored in the relations configuration file.

DTD tree for database relations configuration file is presented on Figure 3.9. There is one
main element called RELATIONS. It consists of 0 or more RELATION elements, each of
which represents one database relation configuration. Each database relation, denoted here
as RELATION, has the following 4 attributes:

• ID — Unique identifier of the relation throughout the HL7API library.

• DATABASE — Identifier of the database defined in the databases configuration
file (attribute: ID).

• NAME — Name of the relation as it appears in the database.

• DESCRIPTION — Description of the relation. This attribute is optional.

Figure 3.9
Tree

representation of
DTD of relations
configuration file

 RELATIONS
 |
 += RELATION* (ID, DATABASE, NAME, DESCRIPTION?)

Example of relations configuration file can be found in Appendix B on Figure B.9.

Mappings3.5.3
Mappings

configuration
file

For the automatical storing of interpreted messages (see: Section 3.3.3) and/or generating
messages taking data directly from the database (see: Section 3.4.3), mappings between fields
of the specified segments of the specified messages and column name of the specified relation
in the specified database have to be defined. These mappings are stored in the mappings
configuration file.

Mapping definition is divided into 2 steps: firstly, the mapping between each of the segments
of the message or message version (if exists) is defined; secondly, detail mappings between
fields of the defined segment of the message can be defined.

23Chapter 3. Design

DTD tree for mappings configuration file is presented on Figure 3.10. There is one main
element called MAPPINGS. It consists of 0 or more MAPPING elements, each of which
represents one mapping between specified segment of a specified version (if exists) of a
specified message. Each mapping, denoted here as MAPPING, has the following 6 attributes:

• MESSAGE — Identifier of the message.

• VERSION — Name of the version of the multi-version message. This attribute
is optional only if the stored data concerns single-version message. In other case,
it is required for proper functioning.

• SEGMENT — Identifier of the segment.

• SEGMENT_POSITION — Segment position within the message, as defined in
messages configuration file. This field is crucial, as segments of the same identifier
can appear in the message in different positions concerning different data.

• DEFAULT_DBRELATION — Identifier of the database relation defined in the
database relations configuration file (attribute: ID). This attribute is optional. For
more deatails of usage, see: "Database relations terms of use" at the end of this
subsection.

• DESCRIPTION — Description of the mapping. This attribute is optional.

Figure 3.10
Tree

representation of
DTD of mappings
configuration file

 MAPPINGS
 |
 +- MAPPING* (MESSAGE, VERSION?, SEGMENT, SEGMENT_POSITION,
 | DEFAULT_DBRELATION?, DESCRIPTION?)
 |
 += MAPPING_ITEM (DBRELATION?, ITEM, COLUMN?, DESCRIPTION?)

MAPPING_
ITEM element

Additionally, each of the MAPPING elements can contain 0 or more MAPPING_ITEM
elements, which specifies the mapping between each of the fields and the column of the
relation in the database. The MAPPING_ITEM element has the following 4 attributes:

• DBRELATION — Identifier of the database relation defined in the database
relations configuration file (attribute: ID). This attribute is optional. For more
details of usage, see: "Database relations terms of use" at the end of this subsection.

• ITEM — Number of the field of the segment.

• COLUMN — Name of the column of the database relation. This attribute is
optional. See also: "Database relations terms of use" at the end of this subsection.

• DESCRIPTION — Description of the mapping. This attribute is optional..

Example of mappings configuration file can be found in Appendix B on Figure B.10.

Database relations terms of use

There are 3 possible levels of defining the mappings for the message data
and columns:

1. Segment level — Allowing for storing all the fields of a defined
segment in one database relation.

2. Field level — Allowing to define the column and the database
relation separately for all of the fields of the segment.

24Chapter 3. Design

3. Mixed level — Allowing to use above ways in the same
moment.

Segment level
mappings

Segment level mapping allows to drastically limit the amount of defined
MAPPING_ITEM elements, as it allows to define only a mapping between
a specified segment on a specified position of the message and the database
relation. In such case, the DEFAULT_DBRELATION of the MAPPING
element has to be defined and is used as a relation for storing the message
segment. Element MAPPING contain no MAPPING_ITEM elements. Name
of columns for all the fields of the message are generated automatically in
the following fashion:

 FLD_xx

where xx is the number of the field within the segment without the leading
0 (zero).

Field level
mappings

Field level mappings are the most detailed mappings, as they allow to define
a separate database, relation, and column for each of the fields of the message
segment. In such case, DEFAULT_DBRELATION element of MAPPING
element is optional, but MAPPING element has to have defined
MAPPING_ITEM elements for all of the fields of the segment. The
DBRELATION attribute of each of the MAPPING_ITEM elements is required
and has to be set as well.

Mixed level
mappings

Mixed mappings allow the user to define both the segment and field level
mappings for the same message. Used database relation and column name
differs, depending on data provided by the user, and are presented in
Table 3.1.

Table 3.1
Mixed level

mappings relation
and column name

usage

UsedProvided by user

Column nameRelationCOLUMNDBRELATIONDEFAULT_
DBRELATION

COLUMNDBRELATIONYesYesYes
FLD_xxDBRELATIONNoYesYes

COLUMNDEFAULT_
DBRELATIONYesNoYes

FLD_xxDEFAULT_
DEBRELATIONNoNoYes

COLUMNDBRELATIONYesYesNo
FLD_xxDBRELATIONNoYesNo

errorerrorYesNoNo
errorerrorNoNoNo

Safe-storage3.5.4
Safe-storage

configuration
file

The message interpreter for its proper functioning may need a safe-storage functionality (see:
Section 3.3.3). Thus, a special relation for safe-storing messages is needed. The information
about this relation is stored in the safe-storage relation configuration file.

DTD tree for safe-storage relation configuration file is presented on Figure 3.11. There is one
main element called SAFE_STORAGE_RELATION. It consists of 1 SSRELATION element,

25Chapter 3. Design

which represents one database relation configuration used for safe-storing the messages. The
SSRELATION has the following 4 attributes:

• DATABASE — Identifier of the database defined in the databases configuration
file (attribute: ID).

• NAME — Name of the relation as it appears in the database.

• COLUMN — Name of the column of the database relation.

• DESCRIPTION — Description of the safe-storage relation. This attribute is
optional.

Figure 3.11
Tree

representation of
DTD of

safe-storage
relation

configuration file

 SAFE_STORAGE_RELATION
 |
 += SSRELATION (DATABASE, NAME, COLUMN, DESCRIPTION?)

Example of safe-storage relation configuration file can be found in Appendix B on Figure B.11.

26Chapter 3. Design

Implementation4
This section provides detailed information concerning selected implementation issues and
limitations. In the first section, the developing environment as well as the target environment
of the HL7API is presented. Following sections gives information about used 3rd-party
sources and libraries. Then, details concerning developed algorithms used in the process of
validation of the structure of the message and automated generation of them are presented.
Lastly, specific limitations of the structure of the database relations used during automatic
storing and generating messages are presented.

Environment4.1
Developing

environment
The developing environment consisted of Borland C++ Builder 5 with the Oracle8i Database
Server. The basic database connection is being dedicated to Oracle databases, which are using
OCI interface.

The HL7API library has been developed as a static linked library.

Target
environment

Basic taget environment is similar to the one described above: Borland C++ Builder 5 with
the Oracle8i Database Server. Nevertheless, there are no limitations put on the internal
structure of the library preventing of compiling sources as a dynamic linked library, nor
using the sources directly in the developed application. Moreover, the User can implement
connection routines to databases different the Oracle; there are prepared classes which can
facilitate the developing process for ODBC-based conenctions. More features can also be
added to all of the classes of the HL7API library.

More information concerning Borland, see: [Borland Web page], C++ Builder, see: [Borland
C++ Builder Web page], Oracle, see: [Oracle Web page].

Other sources and libraries4.2
OCI The Oracle Call Interface (OCI) is an application programming interface (API) that allows

applications to interact with one or more Oracle servers. The OCI gives the capability to
perform the full range of database operations that are possible with an Oracle Database
Server.

The used version of the OCI library was provided with the Oracle8i Database Server as a
statically linked library.

More information about Oracle databases can be found in [Oracle Web page]. More
information about OCI can be found in [OCI Web page] and [OCI Programmer's Guide].

TinyXml TinyXml is a simple C++ XML parser. It reads XML and creates C++ objects representing the
XML document. The objects can be manipulated, changed, and saved again as XML.

27Chapter 4. Implementation

The used version of the TinyXml is 2.4.3. It comes as a set of source files. It was used without
sources modifications.

More inforamtion about TinyXml can be found in [TinyXml Web page].

Algorithms4.3
During message interpretation and generation not only the validity of some specified fields
or its components has to be conducted (as described in Section 3.3.2, field level), but also the
overall structure of the message has to be checked (defined in Section 3.3.2, message level).

Within the created and implemented algorithms, 2 groups of them can be distinguished:
parsing-time algorithm, and generation-time algorithm. Both of these groups of algorithms
are presented and described below. Moreover, one specialized algorithm used by the
algorithms of the above groups is presented, too.

Parsing-time
algorithms

Parsing-time algorithms are used during or just after finishing the process of interpreting
the message. The function of these algorithms is to check if the interpreted message has the
structure as defined in the Message configuration. This kind of algorithm can also be used
during the process of generation the message, to check if the generated message has valid
structure.

Generation-time
algoritm

Generation-time algorithms are used in the process of automatic messages generation (see:
Section 3.4). They are not used to validate the structure of the message, but to provide the
order of construction of segments of a message.

Recursive
algorithms

The structure of a message and the Messages configuration structures are recursive (for
reminding: a message is defined as ordered list of segments and/or group of segments, and
the group of segments is constructed of an ordered list of segments and/or group of segments,
and so on; for details see Section 3.2.4). Thus, the most natural way of processing this data
is also recursive, as iterative processing could cause some crucial data loss (i.e. whether the
segment is in the group, and how deep). For this reason all the algorithms presented here
are recursive.

Current position in message4.3.1
Determining a sequence number of the segment within a message is very easy. Nevertheless,
this information is not enough for correct functioning of the algorithms presented below.
Thus, a recursive navigating to the current position in the message is needed.

The algorithm of navigating through the message to the current position in it, NAVIGATE,
is presented in Figure 4.1.

Important

For preserving all the information obtained by the NAVIGATE algorithm
and for taking advantage of the recursive nature of this algorithm, it has to
be integrated with the algorithms presented below.

Figure 4.1
NAVIGATE

algorithm
Input
brick — the first element (message-brick) of the proper message (with determined version, if
exists) configuration; it can only be a segment, as all messages have to start with MSH segment

position — position up to where to navigate

28Chapter 4. Implementation

Output
brick (message-brick) up to which the algorithm has navigated, (possibly) with all the
information concerning depth of the group(s) and its (theirs) optionality and possibility of
repetition, as well as the position (sequence number within a message) of the returned segment

Stop condition
Algorithm stops in the case of:

• successfully navigating to the given position (lines: 13-14, and 16)

• returning an ERROR value (lines: 2, and 18)

• navigating until the end of the message without finding given position; detection
of this state is denoted below as: MessageFinished() condition (line: 3)

 NAVIGATE(brick, position)

 1 if NULL = brick
 2 then return ERROR

 3 while not FinishedScanning() and not MessageFinished()

 4 if Type(brick) = GROUP_OF_SEGMENTS
 5 TreatBrickAsGroup(brick)
 6 brick := GetFirstBrickOfGroup(brick)
 7 NAVIGATE(brick, position)
 8 if not FinishedScanning() then
 9 brick := GetNextBrick(brick)

10 else if Type(brick) = SEGMENT
11 TreatBrickAsSegment(brick)
12 if position = 0
13 then position = 1
14 FinishedScanning()
15 else if position = SequenceOfSegment(brick)
16 then FinishedScanning()
17 else brick := GetNextBrick(brick)

18 else return ERROR

NAVIGATE algorithm notes

lines 1-2: check if the brick is a valid object

line 3: main loop of the algorithm, working until the message is fully scanned

lines 4-9: if the considered brick is a group, it has to be treated as a group
(line 5); starting with the first brick of the considered group (line 6) launch
NAVIGATE algorithm recuresively (line 7); after returning from recursive
call, check if the scanning was not finished (line 8) and if not, get another
brick (line 9)

lines 10-17: if the considered brick is a segment, it has to be treated as a
segment (line 11); if the searched position is equal to 0 (zero) means, that
this algorithm is called for the first time; thus the first element to which can
navigate is of position equal to 1 (one) (lines: 12-14), which is a valid message
position, and the algorithm is finishing the work; else check if the sequence
number of the segment (position within a message) is equal to the searched
position (line 15); if yes, algorithm is finishing the work (line 16); otherwise,
get next brick of the message (line 17)

29Chapter 4. Implementation

line 18: return an ERROR if the brick type is not recognized

Segment position4.3.2
After interpreting the message, which comes as a string of characters, an object representing
the message is created. Even though this message and its segments follows the rules of
message creation, the information about the position of the segment is lost, as it is not a crucial
in the point of view of a system processing data carried by the message. Thus, a position of
the segment within a message has to be regenerated.

For regenerating the sequence number of the segment within the message, an algorithm
SEGMENT_POSITION presented on Figure 4.2 is being used.

Figure 4.2
SEGMENT_

POSITION
algorithm

Input
brick — the first element (message-brick) of the proper message (with determined version, if
exists) configuration; it can only be a segment, as all messages have to start with MSH segment

position — position of the last detected segment position, or 0, when no positions where
detected up to now.

Warning

For correct functioning of this algorithm, feedback of the calling routine is
necessary for this parameter. Thus, first call to SEGMENT_POSITION should
be with the position equal to 0 (zero), while next with the position equal to
the one which was returned in the previous call to this function for a specified
message or message version (if defined).

segment ID — ID of the segment which position within a message should be determined.

Output
Position on which the desired segment has been found.

Stop condition
Algorithm stops in the case of:

• successfully determining the position of the searched segment (lines: 20, and 24)

• returning an ERROR value (lines: 2, and 26)

• navigating until the end of the message without finding the given segment;
detection of this state is denoted below as: MessageFinished() condition (line: 4)

 SEGMENT_POSITION(brick, position, segment_id)

 1 if NULL = brick
 2 then return ERROR

 // Phase 1: navigate to appropriate position
 3 NAVIGATE(brick, position)

 // Phase 2: find a position of a provided segment
 4 while not FinishedScanning() and not MessageFinished()

 5 if Type(brick) = GROUP_OF_SEGMENTS
 6 TreatBrickAsGroup(brick)
 7 brick := GetFirstBrickOfGroup(brick)
 8 SEGMENT_POSITION(brick, position, segment_id)
 9 if not FinishedScanning() then

30Chapter 4. Implementation

10 if GroupCanRepeat(brick) = false then return;
11 else if GroupWasScannedTwoTimes(brick) = false
12 then GroupWasScannedTwoTimes(brick) := true
13 ScanGroupAgain(brick)
14 else return

15 else if Type(brick) = SEGMENT
16 TreatBrickAsSegment(brick)
17 if FirstFoundSegment(brick) = true
18 if SegmentID(brick) = segment_id
19 and SegmentCanRepeat(brick) = true
20 then FinishedScanning()
21 else brick := GetNextBrick(brick)
22 else
23 if SegmentID(brick) = segment_id
24 then FinishedScanning()
25 else brick := GetNextBrick(brick)

26 else return ERROR

SEGMENT_POSITION algorithm notes

lines 1-2: check if the brick is a valid object

line 3: navigate to current position in the message (see: Section 4.3.1);

Warning

This function is being called only once during the whole
algorithm. In the recursive calls of SEGMENT_POSITION,
call to NAVIGATE should be omitted.

line 4: main loop of the algorithm

lines 5-14: if the considered brick is a group of segments, it has to be treated
as a group (line 6); starting with the first brick of the considered group (line
7) launch SEGMENT_POSITION algorithm recuresively (line 8), but starting
from phase 2 of the algorithm; after recursive call return, if not yet
FinishedScanning() (line 9) check the following conditions:

• if group cannot repeat, finish the recursive call and return (line
10)

• otherwise, if group was not scanned to the end second time, scan
the group again (lines 11-13)

• else finish the recursive call and return (line 14)

lines 15-25: if the considered brick is a segment, it has to be treated as a
segment (line 16); two cases are considered:

• if this segemnt is the segment which was found for the first time
(line 17) after the call to NAVIGATE in line 3, then if segment ID
of the brick is equal to searched segment ID and the brick is
allowed to repeat, then the searched segment has been found
(lines 18-20); otherwise, get next brick and repeat procedure (line
21)

• in the other case, if the the considered segment is not the first
segment found after NAVIGATE call (line 22), then if segment
ID of the considered brick is equal to searched segment ID (line
23), the searched segment has been found (line 24); otherwise,
get next brick and repeat procedure (line 25)

31Chapter 4. Implementation

line 26: return an ERROR if the brick type is not recognized

Incoming segment validity4.3.3
During the process of interpretation, an interpretet message is being built from the incoming
data field by field and segment by segment. Validating the structure of the certain segment
is not complicated. Nevertheless, as message have more sophisticated structure, a special
algorithm, checking if the incoming segment is valid or not, is needed

Checking the validity of incoming segment, i.e. if the segment of known ID can be added at
the end of the message being constructed without violating the structure of it, is done by the
algorithm INCOMING_SEGMENT_VALID presented on Figure 4.3.

Figure 4.3
INCOMING_
SEGMENT_

VALID algorithm

Input
brick — the first element (message-brick) of the proper message (with determined version, if
exists) configuration; it can only be a segment, as all messages have to start with MSH segment

position — position of the last detected segment position, or 0, when no positions where
detected up to now.

Warning

For correct functioning of this algorithm, feedback of the calling routine is
necessary for this parameter. Thus, f irst call to
INCOMING_SEGMENT_VALID should be with the position equal to 0
(zero), while next with the position equal to the one which was returned in
the previous call to this function for a specified message or message version
(if defined).

segment ID — ID of the segment which suppose to be added at the end of message being
constructed

Output
true or false, as well as the position of the new segment within a message

Stop condition
Algorithm stops in the case of:

• successfully determining whether the segment can be added to the message (lines:
20-21, and 25-26) or not (lines: 28-29, and 32)

• returning an ERROR value (lines: 2, and 31)

• navigating until the end of the message without finding the given segment;
detection of this state is denoted below as: MessageFinished() condition (line: 4)

 INCOMING_SEGMENT_VALID(brick, position, incoming_segment_id)

 1 if NULL = brick
 2 then return ERROR

 // Phase 1: navigate to appropriate position
 3 NAVIGATE(brick, position)

 // Phase 2: find a position of a provided segment
 4 while not FinishedScanning() and not MessageFinished()

 5 if Type(brick) = GROUP_OF_SEGMENTS

32Chapter 4. Implementation

 6 TreatBrickAsGroup(brick)
 7 brick := GetFirstBrickOfGroup(brick)
 8 INCOMING_SEGMENT_VALID(brick, position, incoming_segment_id)
 9 if not FinishedScanning() then
10 if GroupCanRepeat(brick) = false then return;
11 else if GroupWasScannedTwoTimes(brick) = false
12 then GroupWasScannedTwoTimes(brick) := true
13 ScanGroupAgain(brick)
14 else return

15 else if Type(brick) = SEGMENT
16 TreatBrickAsSegment(brick)
17 if FirstFoundSegment(brick) = true
18 if SegmentID(brick) = incoming_segment_id
19 and SegmentCanRepeat(brick) = true
20 then FinishedScanning()
21 return TRUE
22 else brick := GetNextBrick(brick)
23 else
24 if SegmentID(brick) = incoming_segment_id
25 then FinishedScanning()
26 return TRUE
27 else if SegmentIsOptional(brick) == false
28 then FinishedScanning()
29 return FALSE
30 else brick := GetNextBrick(brick)

31 else return ERROR

32 return FALSE

INCOMING_SEGMENT_VALID algorithm notes

lines 1-2: check if the brick is a valid object

line 3: navigate to current position in the message (see: Section 4.3.1);

Warning

This function is being called only once during the whole
a lgor i thm. In the recurs ive ca l l s o f
INCOMING_SEGMENT_VALID, call to NAVIGATE should
be omitted.

line 4: main loop of the algorithm

lines 5-14: if the considered brick is a group of segments, it has to be treated
as a group (line 6); starting with the first brick of the considered group (line
7) launch INCOMING_SEGMENT_VALID algorithm recursively (line 8),
but starting from phase 2 of the algorithm; after recursive call return, if not
yet FinishedScanning() (line 9) check the following conditions:

• if group cannot repeat, finish the recursive call and return (line
10)

• otherwise, if group was not scanned to the end second time, scan
the group again (lines 11-13)

• else finish the recursive call and return (line 14)

lines 15-30: if the considered brick is a segment, it has to be treated as a
segment (line 16); two cases are considered:

• if this segemnt is the segment which was found for the first time
(line 17) after the call to NAVIGATE in line 3, then if segment ID
of the brick is equal to searched segment ID and the brick is

33Chapter 4. Implementation

allowed to repeat, then the searched segment can be validly
added to the message (lines 18-21); otherwise, get next brick and
repeat procedure (line 22)

• in the other case, if the the considered segment is not the first
segment found after NAVIGATE call (line 24), then if segment
ID of the considered brick is equal to searched segment ID (line
24), the segment can be validly added to the message (lines 25-
26); otherwise, if the considered segment is not optional (line 27),
then the segment cannot be added to the message (lines 28-29);
in the other case, get next brick and repeat procedure (line 30)

line 31: return an ERROR if the brick type is not recognized

line 32: ID of the incoming segment could not be found in the message
structure; therefore the segment cannot be validly added to the message
being constructed

Next segment candidate4.3.4
In the process of automatic generation the messages a completely different type of information
is needed: possible segments which can be added to the message in the current moment of
generation. This information is provided by the algorithm NEXT_SEGMENT_CANDIDATE,
presented on Figure 4.4.

Figure 4.4
NEXT_

SEGMENT_
CANDIDATE

algorithm

Input
brick — the first element (message-brick) of the proper message (with determined version, if
exists) configuration; it can only be a segment, as all messages have to start with MSH segment

position — position of the last detected segment, or 0, when no positions where detected up
to now.

Warning

For correct functioning of this algorithm, feedback of the calling routine is
necessary for this parameter. Thus, f irst call to
NEXT_SEGMENT_CANDIDATE should be with the position equal to 0
(zero), while next with the position equal to the one which was returned in
the previous call to this function for a specified message or message version
(if defined).

forbidden segments set — a set of segments which cannot be returned as a result of the
algorithm

Warning

For correct functioning of this algorithm, feedback of the calling routine is
necessary for this parameter. The calling routine should maintain a set of
forbidden segments, i.e. segments which are not able to be generated in the
current moment. As the result of this algorithm is the candidate segment ID,
the calling routine should determine if it is possible to generate a segment
of this ID. If it is possible, the calling routine should clear the forbidden
segments set. If it is not possible, the returned candidate segment ID should
be added to the set of forbidden segments, and
NEXT_SEGMENT_CANDIDATE algorithm should be called again with the
updated set.

34Chapter 4. Implementation

Output
candidate segment ID — ID of the segment which is the valid candidate to generate in the
particular moment

Stop condition
Algorithm stops in the case of:

• successfully determining ID of candidate segment (lines: 21-22, and 26-27)

• returning an ERROR value (lines: 2, 15, 30, and 31)

• navigating until the end of the message without finding the candidate segment;
detection of this state is denoted below as: MessageFinished() condition (line: 4)

 NEXT_SEGMENT_CANDIDATE(brick, position, forbidden_segments_set)

 1 if NULL = brick
 2 then return ERROR

 // Phase 1: navigate to appropriate position
 3 NAVIGATE(brick, position)

 // Phase 2: find a position of a provided segment
 4 while not FinishedScanning() and not MessageFinished()

 5 if Type(brick) = GROUP_OF_SEGMENTS
 6 TreatBrickAsGroup(brick)
 7 brick := GetFirstBrickOfGroup(brick)
 8 NEXT_SEGMENT_CANDIDATE(brick, position, forbidden_segments_set)
 9 if not FinishedScanning() then
10 if GroupCanRepeat(brick) = false then return;
11 else if GroupWasScannedTwoTimes(brick) = false
12 then GroupWasScannedTwoTimes(brick) := true
13 ScanGroupAgain(brick)
14 else if GroupIsOptional(brick) = true then return
15 else return ERROR

16 else if Type(brick) = SEGMENT
17 TreatBrickAsSegment(brick)
18 if FirstFoundSegment(brick) = true
19 if SegmentCanRepeat(brick) = true
20a and SegmentIsForbidden(forbidden_segments_set, brick)
20b = false
21 then FinishedScanning()
22 return SegmentID(brick)
23 else brick := GetNextBrick(brick)
24 else
25a if SegmentIsForbidden(forbidden_segments_set, brick)
25b = false
26 then FinishedScanning()
27 return SegmentID(brick)
28 else if SegmentIsOptional(brick) == true
29 then brick := GetNextBrick(brick)
30 else return ERROR

31 else return ERROR

NEXT_SEGMENT_CANDIDATE algorithm notes

lines 1-2: check if the brick is a valid object

line 3: navigate to current position in the message (see: Section 4.3.1);

35Chapter 4. Implementation

Warning

This function is being called only once during the whole
a lgor i thm. In the recurs ive ca l l s o f
NEXT_SEGMENT_CANDIDATE, call to NAVIGATE should
be omitted.

line 4: main loop of the algorithm

lines 5-15: if the considered brick is a group of segments, it has to be treated
as a group (line 6); starting with the first brick of the considered group (line
7) launch NEXT_SEGMENT_CANDIDATE algorithm recuresively (line 8),
but starting from phase 2 of the algorithm; after recursive call return, if not
yet FinishedScanning() (line 9) check the following conditions:

• if group cannot repeat, finish the recursive call and return (line
10)

• otherwise, if group was not scanned to the end second time, scan
the group again (lines 11-13)

• otherwise, if group is optional, finish the recursive call and return
(line 14)

• else there is an error or in the strucutre, or in the forbidden
segments set, or in the data used for generating the message —
return ERROR (line 15)

lines 16-30: if the considered brick is a segment, it has to be treated as a
segment (line 17); two cases are considered:

• if this segment is the segment which was found for the first time
(line 18) after the call to NAVIGATE in line 3, then if segment is
allowed to repeat (line 19) and is not forbidden (line 20a and b),
then the segment is a valid candidate and can be returned (lines
21-22); otherwise, get next brick and repeat procedure (line 23)

• in the other case, if the the considered segment is not the first
segment found after NAVIGATE call (line 24), then if it is not
forbidden (lines 25a and b), then the segment is a valid candidate
and can be returned (lines 26-27); else if the segment is optional
(line 28), get next brick and repeat procedure (line 29); in the
other case there is an error or in the strucutre, or in the forbidden
segments set, or in the data used for generating the message —
return ERROR (line 30)

line 31: return an ERROR if the brick type is not recognized

Database implementation limitations4.4
Mapping presented in Section 3.5.3 give the possibility of storing the data of the field of the
message in different storage column in different relation in (possibly different) database(s).
Nevertheless, such possibility has to put some limitations on the database, or on the structure
of the relation, as processing database queries has to be done in field-by-field fashion. These
limitations are presented below.

36Chapter 4. Implementation

Writting messages4.4.1
HL7 Message

Identifier
column

As the database queries are being processed in field-by-field fashion, several fields of a
message can be stored in the same relation. In order not to add each time a new tuple to a
relation, a unique message identifier has to be provided, and called HL7 Message Identifier.
Thus, all relation used for storing the data from interpreted messages have to define a column
named: HL7_IG_MESSAGE_ID.

Caching
DBRelations

Each time data is being written to the database, a proper Database writer should remember
the relation and database in which it had written the data. This is called DBRelation Cache

Determining
query type

Depending on if the DBRelation which suppose to be used while storing the data is in the
DBRelation Cache, the proper query is being generated, in a manner shown on Figure 4.5.

Figure 4.5
Storing data

query type
 1 Determine the DBRelation which suppose to be used
 2 If the DBRelation is in the DBRelation Cache then
 3a query := UPDATE :relation SET :column_name = :data_to_be_written
 3b WHERE HL7_IG_MESSAGE_ID = :hl7_ig_message_id
 4 else
 5 Put DBRelation into DBRelation Cache
 6a query := INSERT INTO :relation (:column_name, HL7_IG_MESSAGE_ID)
 6b VALUES(:data_to_be_written, :hl7_ig_message_id)

Reading messages4.4.2
HL7 Message

Identifier
column

During the process of reading the data from database for automatic generation of the messages,
the same type of HL7 Message Identifier, as defined in the section above, is used. It implies
existance of the column HL7_IG_MESSAGE_ID in all the relations which store the data used
for generating the messages.

field_name
_HL7IGEN

column

Nevertheless, as the reading data is also conducted in field-by-field fashion, each of the fields
has to have an additional column, data_column_name_HL7IGEN, for determining if this field
was already used or not for generating a message. The values of this field are: GENERATE
— use this field for generating message data, and GENERATED — this field was already
used for generating the message data.

ROWID-like
column

Another limitation is that the relation used for generating messages data has to have a ROWID-
like column. This column allows to generate repetitions of the same segment. It should be
managed automatically by the database.

Sub-queries In order to be able to generate repeated segments, the database should allow sub-queries in
the WHERE clause.

Determining
query type

Thus, the proper query is being generated in a manner shown on Figure 4.6.

Important

When reading the data from database for generating the message data, 2
queries have to be run: first, reading the data indeed, second, updating the
appropriate field disallowing use of the same field in other repetition of the
segment.

Figure 4.6
Reading data

query type
SELECT query:

 1 control_column_name := column_name + "_HL7IGEN"

37Chapter 4. Implementation

 2 SELECT :column_name FROM :relation WHERE
 3 HL7_IG_MESSAGE_ID = :hl7_ig_message_id AND
 4 ROWID_LIKE_COLUMN =
 5 (SELECT MIN(ROWID_LIKE_COLUMN) WHERE
 6 HL7_IG_MESSAGE_ID = :hl7_ig_message_id AND
 7 control_column_name = "GENERATE"
 8)

 UPDATE query:

 1 control_column_name := column_name + "_HL7IGEN"
 2 UPDATE :relation SET control_column_name = "GENERATED" WHERE
 3 HL7_IG_MESSAGE_ID = :hl7_ig_message_id AND
 4 ROWID_LIKE_COLUMN =
 5 (SELECT MIN(ROWID_LIKE_COLUMN) WHERE
 6 HL7_IG_MESSAGE_ID = :hl7_ig_message_id AND
 7 control_column_name = "GENERATE"
 8)

38Chapter 4. Implementation

Conclusions5
Building an interpreter and generator of the HL7 Standard messages is not an easy task. Even
though the HL7 Standard itself is well defined, it allows many exceptions, and is not free of
errors and inconsistencies. Nevertheless, some assumptions which have been taken allowed
to provide a functional interpreter and generator of the HL7 Standard messages.

Presented Messages configuration allows to store information about all the messages defined
in the HL7 Standard, with all the versions of the messages, and local variations. It is possible
to define and add new segments and messages, as well as adapt existing messages to the
specific needs of the healthcare organization. Apart from that, the Database connectivity
configuration allows in a highly flexible manner to store all the data which are being exchanged
with the use of the HL7 Standard messages protocol.

Moreover, the functionality of the HL7API library can be easily broaden. Addition of new
databases being used and/or data sources/destinations for receiving/sending messages is
as simple as implementing new classes serving a new type of database, source and/or
destination. The User has direct access to all the existing classes, and is able to add new,
correct exisitng, or even change the functionality of them.

39Chapter 5. Conclusions

40Chapter 5. Conclusions

Bibliography

[Borland Web page] http://www.borland.com/us/.

[Borland C++ Builder Web page] http://www.borland.com/us/products/cbuilder/.

[Chameleon] http://www.interfaceware.com/chameleon.html.

[Document Type Definition] http://www.w3.org/XML/.

[HL7 Standard specification] Larry Reis, Mark Shafarman, and Mark Tucker. HL7 Standard
specification. HL7 Standard specification.

[HL7 Web page] http://www.hl7.org/.

[Iguana] http://www.interfaceware.com/iguana.html.

[OCI Programmer's Guide] http://lbd.epfl.ch/f/teaching/courses/oracle8i/server.815/a67846/toc.htm.

[OCI Web page] http://www.oracle.com/technology/tech/oci/.

[Oracle Web page] http://www.oracle.com/.

[Scan7] http://www.7scan.com/.

[TinyXml Web page] http://sourceforge.net/projects/tinyxml/.

41

http://www.borland.com/us/
http://www.borland.com/us/products/cbuilder/
http://www.interfaceware.com/chameleon.html
http://www.w3.org/XML/
http://www.hl7.org/
http://www.interfaceware.com/iguana.html
http://lbd.epfl.ch/f/teaching/courses/oracle8i/server.815/a67846/toc.htm
http://www.oracle.com/technology/tech/oci/
http://www.oracle.com/
http://www.7scan.com/
http://sourceforge.net/projects/tinyxml/

42

Thesis CD contentsA
The encloded CD-ROM contains:

• /bin — HL7API library compiled in DEBUG and RELEASE mode

• /doc — usage instruction (in polish) and the API documentation

• /examples — examples of use of the HL7API library

• /hl7api-conf — all configuration files described in the thesis

• /src — sources of the HL7API library

• /thesis — thesis in Adobe PDF format and its sources

43Appendix A. Thesis CD contents

44Appendix A. Thesis CD contents

Configuration examplesB
This appendix contains several configuration examples.

TableB.1
Figure B.1 presents an example of empty, user-defined table configuration file.

Figure B.1
Empty

user-defined table
example

 <?xml version="1.0" standalone="no" ?>
 <TABLE NUMBER="44" TYPE="User" NAME="Contract code" />

Figure B.2 presents an example of non-empty, Standard-defined table configuration file.

Figure B.2
Non-empty

Standard-defined
table example

 <?xml version="1.0" standalone="no" ?>
 <TABLE NUMBER="27" TYPE="HL7" NAME="Priority">
 <ITEM VALUE="S" DESCRIPTION="Stat (do immediately)" />
 <ITEM VALUE="A" DESCRIPTION="As soon as possible (a priority lower
 than stat)" />
 <ITEM VALUE="R" DESCRIPTION="Routine" />
 <ITEM VALUE="P" DESCRIPTION="Preoperative (to be done prior to
 surgery)" />
 <ITEM VALUE="T" DESCRIPTION="Timing criticial (do as near as
 possible to requested time)" />
 </TABLE>

Table indexB.2
Figure B.3 presents an example of a part of table index configuration file.

Figure B.3
Part of a

table_index.xml
example

 <?xml version="1.0" standalone="no"?>
 <TABLE_INDEX>
 <TABLE NUMBER="1" FILE="tab_0001.xml"/>
 <TABLE NUMBER="2" FILE="tab_0002.xml"/>
 <TABLE NUMBER="3" FILE="tab_0003.xml"/>
 <TABLE NUMBER="4" FILE="tab_0004.xml"/>
 <TABLE NUMBER="5" FILE="tab_0005.xml"/>
 (...)
 <TABLE NUMBER="4000" FILE="tab_4000.xml"/>
 </TABLE_INDEX>

45Appendix B. Configuration examples

FieldsB.3
Figure B.4 presents an example of a part of fields configuration file.

Figure B.4
Part of a

fields.xml example <?xml version="1.0" standalone="no"?>
 <FIELDS>
 <FIELD_DATA SEQ="01" NAME=""Authorizing Payor, Plan
 Code"" ITEM="1146" SEG="AUT" CHP="11" LEN="200" DT="CE"
 REP="No" TABLE="72,,,72" REQ="O" TYPE="HL7"/>
 <FIELD_DATA SEQ="01" NAME="Accident Date/Time" ITEM="527" SEG="ACC"
 CHP="6" LEN="26" DT="TS" REP="No" REQ="O" TYPE="HL7"/>
 (...)
 <FIELD_DATA SEQ="01" NAME="Error Code and Location" ITEM="24"
 SEG="ERR" CHP="2" LEN="80" DT="CM" REP="Yes" TABLE=",,,357"
 REQ="R" TYPE="HL7">
 <CM_COMPONENT SEQ="01" TYPE="ST" NAME="segment ID" REQ="R"/>
 <CM_COMPONENT SEQ="02" TYPE="NM" NAME="sequence" REQ="R"/>
 <CM_COMPONENT SEQ="03" TYPE="NM" NAME="field position" REQ="R"/>
 <CM_COMPONENT SEQ="04" TYPE="CE" NAME="code identifying error"
 REQ="R"/>
 </FIELD_DATA>
 (...)
 <FIELD_DATA SEQ="06" NAME="Reference (Normal) Range - Ordinal &
 Continuous Obs" ITEM="631" SEG="OM2" CHP="8" LEN="200" DT="CM"
 REP="No" REQ="O" TYPE="HL7">
 <CM_COMPONENT SEQ="01" TYPE="CM" NAME="reference (normal) range"
 REQ="R">
 <CM_SUB_COMPONENT SEQ="01" TYPE="ST" NAME="low value"
 REQ="R"/>
 <CM_SUB_COMPONENT SEQ="02" TYPE="ST" NAME="high value"
 REQ="R"/>
 </CM_COMPONENT>
 <CM_COMPONENT SEQ="02" TYPE="IS" NAME="sex" REQ="R"/>
 <CM_COMPONENT SEQ="03" TYPE="CM" NAME="age range" REQ="R">
 <CM_SUB_COMPONENT SEQ="01" TYPE="ST" NAME="low value"
 REQ="R"/>
 <CM_SUB_COMPONENT SEQ="02" TYPE="ST" NAME="high value"
 REQ="R"/>
 </CM_COMPONENT>
 </FIELD_DATA>
 (...)
 </FIELDS>

SegmentsB.4
Figure B.5 presents an example of a part of segments configuration file.

Figure B.5
Part of a

segments.xml
example

 <?xml version="1.0" standalone="no"?>
 <SEGMENTS>
 <SEGMENT_DATA SEGMENT="ACC" DESCRIPTION="Accident segment"
 CHAPTER="6" TYPE="HL7" />
 <SEGMENT_DATA SEGMENT="ADD" DESCRIPTION="Addendum segment"
 CHAPTER="2" TYPE="HL7" />
 <SEGMENT_DATA SEGMENT="AIG" DESCRIPTION="Appointment information
 - general resource" CHAPTER="10" TYPE="HL7" />
 <SEGMENT_DATA SEGMENT="AIL" DESCRIPTION="Appointment information -
 location resource segment" CHAPTER="10" TYPE="HL7" />
 <SEGMENT_DATA SEGMENT="AIP" DESCRIPTION="Appointment information -
 personnel resource segment" CHAPTER="10" TYPE="HL7" />

46Appendix B. Configuration examples

 <SEGMENT_DATA SEGMENT="AIS" DESCRIPTION="Appointment information -
 service segment" CHAPTER="10" TYPE="HL7" />
 (...)
 </SEGMENTS>

Single-version messageB.5
Figure B.6 presents an example of a part of messages configuration file containing single-
version message.

Figure B.6
Single-version

message example <MESSAGE_DATA MESSAGE="VXX" DESCRIPTION="Vaccination query response
 with multiple PID matches" CHAPTER="4" TYPE="HL7">
 <SEGMENTS_DEF>
 <SEGMENT SEQ="01" SEG="MSH" OPTIONAL="No" REPEAT="No"/>
 <SEGMENT SEQ="02" SEG="MSA" OPTIONAL="No" REPEAT="No"/>
 <SEGMENT SEQ="03" SEG="QRD" OPTIONAL="No" REPEAT="No"/>
 <SEGMENT SEQ="04" SEG="QRF" OPTIONAL="Yes" REPEAT="No"/>
 <GROUP_OF_SEGMENTS NAME="Group1" OPTIONAL="No" REPEAT="Yes">
 <SEGMENTS_DEF>
 <SEGMENT SEQ="05" SEG="PID" OPTIONAL="No" REPEAT="No"/>
 <SEGMENT SEQ="06" SEG="NK1" OPTIONAL="Yes" REPEAT="Yes"/>
 </SEGMENTS_DEF>
 </GROUP_OF_SEGMENTS>
 </SEGMENTS_DEF>
 </MESSAGE_DATA>

Multi-version messageB.6
Figure B.7 presents an example of a part of messages configuration file containing multi-
version message.

Figure B.7
Multi-version

message example <MESSAGE_DATA MESSAGE="DSR" DESCRIPTION="Display response" CHAPTER="2"
 TYPE="HL7">
 <COMMON_START_SEGMENTS>
 <SEGMENTS_DEF>
 <SEGMENT SEQ="01" SEG="MSH" OPTIONAL="No" REPEAT="No"/>
 </SEGMENTS_DEF>
 </COMMON_START_SEGMENTS>
 <VERSION_SEGMENTS>
 <VERSION NAME="DSR_Q01" DESCRIPTION="DSR/Q01 - QRY/DSR -
 original mode display query - immediate response (event Q01)"
 DEFAULT="Yes">
 <CONDITION>
 <CND_DEF CND_SEQ="01" SEG_ID="MSH" FIELD_SEQUENCE="09"
 FIELD_COMPONENT_NUMBER="2" OPERAND="EQUAL"
 VALUE="Q01"/>
 </CONDITION>
 <SEGMENTS_DEF>
 <SEGMENT SEQ="02" SEG="MSA" OPTIONAL="No" REPEAT="No"/>
 <SEGMENT SEQ="03" SEG="ERR" OPTIONAL="Yes" REPEAT="No"/>
 <SEGMENT SEQ="04" SEG="QAK" OPTIONAL="Yes" REPEAT="No"/>
 <SEGMENT SEQ="05" SEG="QRD" OPTIONAL="No" REPEAT="No"/>
 <SEGMENT SEQ="06" SEG="QRF" OPTIONAL="Yes" REPEAT="No"/>
 <SEGMENT SEQ="07" SEG="DSP" OPTIONAL="No" REPEAT="Yes"/>
 <SEGMENT SEQ="08" SEG="DSC" OPTIONAL="Yes" REPEAT="No"/>

47Appendix B. Configuration examples

 </SEGMENTS_DEF>
 </VERSION>
 <VERSION NAME="DSR_Q03" DESCRIPTION="DSR/Q03 - DSR/ACK -
 deferred response to a query (event Q03)">
 <CONDITION>
 <CND_DEF CND_SEQ="01" SEG_ID="MSH" FIELD_SEQUENCE="09"
 FIELD_COMPONENT_NUMBER="2" OPERAND="EQUAL"
 VALUE="Q03"/>
 </CONDITION>
 <SEGMENTS_DEF>
 <SEGMENT SEQ="02" SEG="MSA" OPTIONAL="Yes" REPEAT="No"/>
 <SEGMENT SEQ="03" SEG="QRD" OPTIONAL="No" REPEAT="No"/>
 <SEGMENT SEQ="04" SEG="QRF" OPTIONAL="Yes" REPEAT="No"/>
 <SEGMENT SEQ="05" SEG="DSC" OPTIONAL="Yes" REPEAT="No"/>
 </SEGMENTS_DEF>
 </VERSION>
 </VERSION_SEGMENTS>
 </MESSAGE_DATA>

DatabasesB.7
Figure B.8 presents an example of a part of databases configuration file.

Figure B.8
Part of a

databases.xml
example

 <?xml version="1.0" standalone="no"?>
 <DATABASES>
 <DATABASE ID="GOO" TYPE="OCI" DESCRIPTION="Test database for
 developping in OCI connection">
 <DB_OCI USER="goo" PASS="123"/>
 </DATABASE>
 <DATABASE ID="GOOMYSQL" TYPE="ODBC" DESCRIPTION="Test database for
 developping in ODBC connection">
 <DB_ODBC DATA_SOURCE_NAME="HL7APIDB"/>
 </DATABASE>
 </DATABASES>

RelationsB.8
Figure B.9 presents an example of a part of relations configuration file.

Figure B.9
Part of a

relations.xml
example

 <?xml version="1.0" standalone="no"?>
 <RELATIONS>
 <RELATION ID="R_ACK" DATABASE="GOO" NAME="ACK_MESSAGES"
 DESCRIPTION="Test relation for ACK messages"/>
 <RELATION ID="R_ACK_01" DATABASE="GOO"
 NAME="ACK_MESSAGES_SOME_DATA"
 DESCRIPTION="Test relation for ACK messages number 2"/>
 </RELATIONS>

48Appendix B. Configuration examples

MappingsB.9
Figure B.10 presents an example of a part of mappings configuration file.

Figure B.10
Part of a

mappings.xml
example

 <?xml version="1.0" standalone="no"?>
 <MAPPINGS>
 <MAPPING MESSAGE="ACK" SEGMENT="MSH" SEGMENT_POSITION="01"
 DEFAULT_DBRELATION="R_ACK"/>
 <MAPPING MESSAGE="ACK" SEGMENT="MSA" SEGMENT_POSITION="01"
 DEFAULT_DBRELATION="R_ACK">
 <MAPPING_ITEM DBRELATION="R_ACK_01" ITEM="18" COLUMN="MSA_01"/>
 <MAPPING_ITEM DBRELATION="R_ACK_01" ITEM="10" COLUMN="MSA_02"/>
 <MAPPING_ITEM ITEM="20" COLUMN="MSA_03"/>
 <MAPPING_ITEM ITEM="21" COLUMN="MSA_04"/>
 <MAPPING_ITEM ITEM="22" COLUMN="MSA_05"/>
 <MAPPING_ITEM ITEM="23" COLUMN="MSA_06"/>
 </MAPPING>
 </MAPPINGS>

Safe-storageB.10
Figure B.11 presents an example of a part of safe-storage configuration file.

Figure B.11
Part of a

safe-storage-relation.xml
example

 <?xml version="1.0" standalone="no"?>
 <SAFE_STORAGE_RELATION>
 <SSRELATION DATABASE="GOO" NAME="SAFE_STORAGE" COLUMN="MSGS"
 DESCRIPTION="Test relation for safe storage"/>
 </SAFE_STORAGE_RELATION>

49Appendix B. Configuration examples

	Design and implementation of fully configurable interpreter and generator of HL7 Standard protocol messages
	Table of Contents
	Chapter 1. Introduction
	1.1. Project goal and scope
	1.2. Thesis structure
	1.3. Typographic conventions

	Chapter 2. Background
	2.1. HL7 Standard origins
	2.2. HL7 Standard version 2.3.1
	2.2.1. Messages
	2.2.2. Segments
	2.2.3. Fields
	2.2.4. Message delimiters
	2.2.5. Data types
	2.2.6. Tables

	Chapter 3. Design
	3.1. General design
	3.1.1. HL7API library
	3.1.2. HL7API library internal design
	3.1.2.1. Components of messages creation rules subsystem
	3.1.2.2. Components of parsing and generating messages subsystem
	3.1.2.3. Components of database connectivity subsystem

	3.2. Messages configuration representation
	3.2.1. Tables
	3.2.2. Fields
	3.2.3. Segments
	3.2.4. Messages
	3.2.4.1. Single- and multi-version message elements
	3.2.4.2. Single-version message
	3.2.4.3. Multi-version message

	3.3. Interpreter internal configuration
	3.3.1. Interpreter configurtation overview
	3.3.2. Message validity configuration
	3.3.3. Message treatment configuration

	3.4. Generator internal configuration
	3.4.1. Generator configuration overview
	3.4.2. Message construction
	3.4.3. Message data source

	3.5. Database connectivity configuration
	3.5.1. Databases
	3.5.2. Relations
	3.5.3. Mappings
	3.5.4. Safe-storage

	Chapter 4. Implementation
	4.1. Environment
	4.2. Other sources and libraries
	4.3. Algorithms
	4.3.1. Current position in message
	4.3.2. Segment position
	4.3.3. Incoming segment validity
	4.3.4. Next segment candidate

	4.4. Database implementation limitations
	4.4.1. Writting messages
	4.4.2. Reading messages

	Chapter 5. Conclusions
	Bibliography
	Appendix A. Thesis CD contents
	Appendix B. Configuration examples
	B.1. Table
	B.2. Table index
	B.3. Fields
	B.4. Segments
	B.5. Single-version message
	B.6. Multi-version message
	B.7. Databases
	B.8. Relations
	B.9. Mappings
	B.10. Safe-storage

