
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723
Published online 12 January 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1024

How to bring together fault
tolerance and data consistency
to enable Grid data sharing

G. Antoniu∗,†, J.-F. Deverge and S. Monnet

IRISA/INRIA and University of Rennes 1, Campus de Beaulieu,
35042 Rennes, France

SUMMARY

This paper addresses the challenge of transparent data sharing within computing Grids built as cluster
federations. On such platforms, the availability of storage resources may change in a dynamic way, often
due to hardware failures. We focus on the problem of handling the consistency of replicated data in the
presence of failures. We propose a software architecture which decouples consistency management from
fault tolerance management. We illustrate this architecture with a case study showing how to design a
consistency protocol using fault-tolerant building blocks. As a proof of concept, we describe a prototype
implementation of this protocol within JUXMEM, a software experimental platform for Grid data sharing,
and we report on a preliminary experimental evaluation of the proposed approach. Copyright c© 2006 John
Wiley & Sons, Ltd.

KEY WORDS: Grid computing; data sharing; fault tolerance; consistency protocols

1. INTRODUCTION

Data management in Grid environments is currently a topic of major interest to the Grid computing
community. However, as of today, no approach has been widely established for transparent data sharing
on Grid infrastructures. Currently, the most widely used approach to data management for distributed
Grid computation relies on explicit data transfers between clients and computing servers. As an
example, the Globus [1] platform provides data access mechanisms based on the GridFTP protocol [2].
Although this protocol provides authentication, parallel transfers, checkpoint/restart mechanisms, etc.,
it is still a transfer protocol which requires explicit data localization. On top of GridFTP, Globus
integrates data catalogs [2], where multiple copies of the same data can be manually registered.

∗Correspondence to: Gabriel Antoniu, IRISA/INRIA, Campus de Beaulieu, 35042 Rennes, France.
†E-mail: gabriel.antoniu@irisa.fr

Contract/grant sponsor: GDS Project of French ACI MD Initiative and the Brittany Region

Copyright c© 2006 John Wiley & Sons, Ltd.
Received 14 January 2005

Revised 10 June 2005
Accepted 8 July 2005

1706 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

The consistency of these replicas is, however, controlled by the user. IBP [3] provides a large-scale
data storage system, consisting of a set of buffers distributed over the Internet. The user can ‘rent’ these
storage areas and use them as temporary buffers for efficient data transfers across a wide-area network.
Transfer management is still controlled by the user and no consistency mechanisms are provided for
the management of multiple copies of the same data. Finally, Stork [4] is another recent example of a
system providing mechanisms to explicitly locate and move data according to the needs of a sequence
of computations. It proposes an integrated approach allowing the user to schedule data placement just
like computational jobs. Again, data location and transfer are controlled by the user.

Within the context of a growing number of applications using large amounts of distributed data, we
claim that explicit management of data locations by the programmer arises as a major limitation against
the efficient use of modern, large-scale computational Grids. Such a low-level approach makes Grid
programming extremely hard to manage. In contrast, the concept of a data sharing service for Grid
computing [5] has been proposed, with the goal of providing transparent access to data. This approach
is illustrated by the JUXMEM software experimental platform. The user only accesses data via a global
identifier. The service handles data localization and transfer without any help from the programmer.
However, it is able to use additional hints provided by the programmer, if any. The service also
transparently uses adequate replication strategies and consistency protocols to ensure data availability
and consistency. These mechanisms target a large-scale, dynamic Grid architecture. In particular, the
service supports events such as storage resources joining and leaving, or unexpectedly failing. This is
the framework within which we conducted the study presented in this paper.

Problem: keep replicated data consistent

The goal of a data-sharing service is to allow Grid applications to access data in a distributed
environment. We are considering scientific applications, typically exhibiting a code-coupling scheme:
e.g. multiple weakly coupled codes running on different sites and cooperating via periodical data
exchanges. In such applications, shared data are mutable: they can be read, but also updated by
the different codes. When accessed on multiple sites, data are often replicated to enhance access
locality. Replication is equally used for fault tolerance, as Grid nodes may crash. To ensure that read
operations do not return obsolete data, consistency guarantees have to be provided by the data service.
These guarantees are defined via consistency models and are implemented using consistency protocols.

Difficulty: handling consistency in a dynamic context

The problem of sharing mutable data in distributed environments has been studied intensively during
the past 15 years within the context of Distributed Shared Memory (DSM) systems [6,7]. These systems
provide transparent data sharing, via a unique address space accessible to physically distributed
machines. When the nodes modify the data, some consistency action is triggered (e.g. invalidation
or update), according to some consistency protocol. A large variety of DSM consistency models and
protocols [7–11] have been defined, their role being to specify which remote nodes have to be notified
of the modification, and when. They provide various trade-offs between the strength of the consistency
guarantees and the efficiency of the implementation.

However, traditional DSM systems have generally demonstrated satisfactory efficiency (i.e. near-
linear speedups) only on small-scale configurations: in practice, up to a few tens of nodes [7]. This is

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1707

often due to the intrinsic lack of scalability of the algorithms used to handle data consistency. Most of
the time, they rely on global invalidations or global updates of all existing data copies. On the
other hand, an overwhelming majority of protocols assume a static configuration where nodes do not
disconnect or fail. It is clear that these assumptions do not hold any more in the context of a large-scale,
dynamic Grid infrastructure. Faults are no longer exceptions, but they become part of the general rule;
resources may become unavailable and eventually become available again; finally, new resources can
dynamically join the infrastructure. In such a context, consistency protocols cannot rely any more on
entities supposed to be stable, as traditionally was the case. A new approach to their design is definitely
necessary to integrate these new hypotheses.

This idea is at the core of the design of the Grid data-sharing service we introduced in [5]. The service
is defined as a hybrid system inspired by DSM systems (for transparent access to data and consistency
management) and P2P systems (for their scalability and volatility tolerance). This paper makes a further
step by proposing an approach allowing consistency protocols to take into account fault tolerance
through decoupled management of these two aspects. The motivations and the general principles
are presented in Section 2. In Section 3 we describe the detailed architecture and we show how
to use traditional group communication components of fault-tolerant distributed systems [12,13] as
building blocks for consistency protocols. The approach is illustrated in Section 4 with a case study
explaining the design of a fault-tolerant consistency protocol. Section 6 shows how this protocol
has been implemented in the JUXMEM platform and presents a preliminary experimental evaluation.
Some concluding remarks and future directions are given in Section 7.

2. APPROACH: DECOUPLING FAULT TOLERANCE MANAGEMENT FROM
CONSISTENCY MANAGEMENT

Let us first note that both fault tolerance mechanisms and consistency protocols are traditionally
implemented using replication. However, the underlying motivations are totally different for each of
the two uses.

Replication in consistency protocols

Consistency protocols use data replication for performance issues, to allow multiple nodes to read the
same data in parallel via local accesses. However, when a node modifies a data copy, the consistency
protocol is activated, e.g. the other copies must be updated or invalidated to prevent subsequent read
operations from returning invalid data. Note that P2P systems also use replication to enhance access
locality, but most of them do not address consistency issues, since data are generally immutable.

Replication for fault tolerance

Replication is also commonly used by fault tolerance mechanisms [14] to enhance availability in an
environment with failures. When a node hosting a data copy crashes, other copies can be made available
by other nodes. Various replication strategies have been studied [15], leading to various trade-offs
between efficiency and the level of fault tolerance guaranteed.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1708 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

In distributed systems where both consistency and fault tolerance need to be handled, replication
can be used with a double goal. Consequently, depending on whether these two issues are addressed
separately or not, two architectural designs are possible.

• Integrated design. A possible approach consists of addressing consistency and fault tolerance at
the same time, relying on the same set of data replicas. For instance, data copies created by the
consistency protocols to enhance data locality can serve as backup if crashes occur. Conversely,
backup replicas created for fault tolerance can be used by the consistency protocol. This approach
has a major disadvantage: the design of the corresponding software layer is very complex, as
illustrated by some fault-tolerant DSM systems [16,17].

• Decoupled design. A different approach consists of designing the consistency protocol and the
fault tolerance mechanism separately. This approach has several features. First, the design of
consistency protocols is simplified, since the protocols do not have to address fault tolerance
issues at a low level. Therefore, it is possible to leverage existing consistency protocols.
Only some limited interaction between the consistency protocol and the fault tolerance
mechanism needs to be defined (see Section 3.2). Second, consistency protocols and fault
tolerance strategies can be developed independently. This favors a cleaner design, each of the
two components being dedicated to its specific role. Finally, this approach provides multiple
possibilities to couple various consistency protocols with various fault tolerance strategies.

The goal of this paper is to discuss how to manage consistency and fault tolerance at the same time,
in a decoupled way, using this second approach.

3. BUILDING CONSISTENCY PROTOCOLS BASED ON FAULT-TOLERANT
COMPONENTS

In general, traditional consistency protocols for DSM systems rely on stable entities in order to
guarantee that data accesses are correctly satisfied. For instance, a large number of protocols associate
to each item of data a node holding the most recent data copy. This is true for the very first protocols
for sequential consistency [6], but also for recent home-based protocols implementing lazy release
consistency [11] or scope consistency [10], where a home node is in charge of maintaining a reference
data copy. It is important to note that these protocols implicitly assume that the home node never
fails. Such an assumption cannot be made in a dynamic Grid environment, where faults may occur.
In such a context, it is important to avoid such single points of failure, which would compromise the
behavior of the whole system. Therefore, the role of the home node has to be played by an entity able
to transparently react to faults and disconnections, in order to maintain a given degree of availability
for the reference data copy.

Our proposal is to enhance the availability of such entities by using some basic building blocks
that have been defined within the context of fault-tolerant distributed systems [12,13]: replication
mechanisms, group membership protocols, atomic multicast, consensus, etc. We introduce these blocks
in the next section. Then, we describe the ‘glue layers’ through which the consistency protocol interacts
with these fault-tolerant blocks.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1709

3.1. Fault-tolerant components: a short overview

Failure model

We are considering two types of failures that need to be addressed in a Grid environment. First, nodes
may crash, i.e. nodes act normally (receive and send messages according to their specification) until
they fail (crash failures). This failure model is known as the fail-stop model. Second, we assume
messages can be delayed or lost, due to buffer overflows or to temporary link failures. We assume
fair-lossy communication channels. If a process p sends a message m to another process q an infinite
number of times through a fair-lossy channel, and if q does not fail, then q eventually receives m
from p. Informally, we assume that network links may duplicate or lose some messages, but not all of
them.

In our failure model, we consider two main timing aspects: the communication delays and the
computation times. We make the assumption that upper bounds upon these times exist but are
not known. Thus our algorithms assume an asynchronous timing model, using a failure detection
mechanism. Such a service is in charge of providing a list of nodes suspected to have failed.
Classical fault tolerance mechanisms are often built on these hypotheses, which are realistic in a Grid
context.

Basic abstractions

Based on the hypotheses mentioned above, a number of abstractions have been defined for the
management of different aspects related to fault tolerance in distributed systems.

• Group membership protocols. The group membership abstraction [13] is a mechanism providing
the ability to manage a set of nodes having a common interest. The nodes belonging to a group
have to store the current composition of the group (i.e. the member list). As nodes may join or
leave the group and even crash, the member lists are changing. The group membership protocol
has to ensure a certain degree of consistency of these lists by synchronizing the members’ views
of the group. Between two view synchronizations, the same set of messages should be delivered
by all the nodes within a group. In our case, the group membership mechanism applies to a group
of nodes that together play the role of a home entity of consistency protocols.

• Atomic multicast. The home entity is in charge of maintaining the reference data copy. It is
represented by a group of nodes on which the reference data copy is replicated. As in our model
nodes may crash, to ensure that an up-to-date copy will remain available we use a pessimistic
replication mechanism. Therefore, with our replication scheme, all the replicas are updated
simultaneously. This goal can be achieved by delivering all messages in the same order to all
group members. Members of the group have to agree upon an order for message delivery and
this agreement is reached using standard consensus protocols.

• Consensus protocols. A consensus protocol allows a set of nodes to agree on a common value:
each node proposes some value and the protocol ensures that (1) eventually all nodes that do not
fail decide a value, (2) that value has been proposed by some node and (3) the decided value is
the same for all unfaulty nodes. In our case the decision is about the order in which messages are
delivered to the group members. The consensus problem in asynchronous systems can be solved

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1710 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

Group communication and
group membership

Detector
Unreliable Failure Unreliable

Communications

A
da

pt
er

send/receiveget suspect list

propose/decide

Consensus

multicast/receive

join/leave/getview/send/receiveget suspect list

Atomic Multicast

Figure 1. An architecture for group communication and group membership protocols.

thanks to unreliable failure detectors [18]. The role of these detectors is to provide a list of nodes
suspected to be faulty. The consensus protocol can cope with the approximate accuracy of the
list contents.

These blocks can interact with each other in many ways. In this paper, we consider a layered,
decoupled design (Figure 1), inspired by [12]. Here, the adapter module allows higher-level software
layers to register to the failure detection service and to filter the list of suspected nodes according to
some user-specified quality of service, as in [19].

3.2. Using fault-tolerant components in consistency protocols

Our idea is to use the abstractions described above to build fault-tolerant entities able to play the
role of critical entities in consistency protocols. For instance, each home node can be replaced by a
group of nodes handled via a group membership interface and supporting atomic multicast. However,
some actions such as (1) group self-organization or (2) configuration of new group members need to
be handled by higher-level layers. Such actions are not necessarily specific to consistency protocols
(i.e. they can apply to several consistency protocols). They are situated precisely at the ‘boundary’
between fault tolerance management and consistency management. Hence, we need to introduce two
interface layers in our architecture, as shown in Figure 2.

• Group self-organization. This layer handles the composition of a group of nodes that together act
as a home node, by enriching the semantics of the traditional group membership abstraction by

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1711

management
Consistency

and Group Membership Protocol

Group Communication

Group Self organization

Consistency Protocol (CP)

management
Fault tolerance

Dynamic CP Configuration

Figure 2. Decoupled architecture for managing consistency and fault tolerance.

including a group membership policy. The layer decides when to remove from the group nodes
reported to be faulty by parameterizing the quality of service (QoS) of the failure detector. It also
removes nodes that provide notification of future disconnections. Following such removals, the
layer adds new members to the group, to maintain the availability of the home node. To do
so, it takes into account constraints specified at allocation time: the necessary memory size,
the network performance, or the replication policy (expressed in terms of number of clusters
to which data replicas are spread, number of replicas per cluster, etc.). Various trade-offs could
be expressed at this level (e.g. smaller group sizes to enhance communication efficiency versus
larger group sizes to increase the level of fault tolerance).

• Dynamic Consistency Protocol Configuration. When some new node is added to the group that
acts as a home node, the newcomer has to initialize his state in order to be consistent with the
state of the other members of the group. The Dynamic Consistency Protocol Configuration layer
defines how to instantiate a consistency protocol on such nodes. The new node must first take
into account the configuration messages generated by the other members of the group at the level
of this layer, before reacting to external messages addressed to the group.

In the decoupled architecture we propose, the Group Self-organization layer and the Dynamic
Consistency Protocol Configuration layer set up a slim interface through which the consistency
protocol interacts with the fault tolerance strategy. Thus, each of these entities can be designed
independently according to its specific goals, and only a limited interaction needs to be defined between
them.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1712 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

4. CASE STUDY: DESIGNING A HIERARCHICAL, FAULT-TOLERANT CONSISTENCY
PROTOCOL

The typical Grid applications we target are loosely code-coupling applications, in which several codes
run in parallel on different clusters and iteratively exchange data. These data exchanges can be carried
out through read or write accesses to a data-sharing service, such as JUXMEM [5]. The role of this
service is to ensure consistent access to shared data, while transparently handling failures. This is
where fault-tolerant consistency protocols relying on the approach proposed in Section 3 are useful.
To illustrate this idea, this section describes how to build such a protocol starting from a non fault-
tolerant protocol implementing the entry consistency model. We first introduce the entry consistency
model and a basic, non-fault-tolerant protocol which implements it. We then show how this protocol
can be made fault tolerant using the approach proposed in the previous section.

4.1. A non-fault-tolerant consistency protocol for the entry consistency model

Previous experience with DSM consistency protocols has shown that relaxed consistency models can
be implemented via efficient protocols at the price of restricted consistency guarantees. For instance,
the programmer must use synchronization operations, such as acquire, to make sure the subsequent
accesses are correctly satisfied, and release, to allow the local modifications to be (eagerly or
lazily) propagated to remote nodes. This general requirement is valid for models such as release
consistency [8], entry consistency [9] or scope consistency [10].

In this paper, we focus on the entry consistency model. As opposed to other relaxed models, it
requires an explicit association of data to synchronization objects. This allows the model to leverage
the relationship between a synchronization object that protects a critical section, and the data accessed
within that section. A node’s view of some data becomes up to date only when the node enters the
associated critical section. This eliminates unnecessary traffic, since only nodes that declare their
intention to access data will get updated, and only the data which will be accessed will be updated.
Such a concern for efficiency makes this model a good candidate in the context of scientific Grid
computing.

The programmer has to observe two main requirements. First, all shared data have to be associated
with at least one guarding synchronization object. Second, exclusive accesses to shared data have to
be explicitly distinguished from non-exclusive accesses by using two different primitives: acquire,
which grants mutual exclusion; acquireRead, which allows non-exclusive accesses on multiple
nodes to be performed in parallel. A detailed description of the model is given in [9].

In this case study, our starting point is a non-fault-tolerant protocol for entry consistency
(Figure 3(a)). We are considering a home-based protocol in which a home node is associated to each
item of data. This node is responsible for maintaining a reference copy for that item of data. The home
node also manages a lock associated to its item of data. When a process enters a critical section
protected by such a lock, the associated shared data are updated on the node hosting that process
(if necessary). On leaving the critical section, the local modifications (if any) are transmitted to the
home node. Consequently, accesses to shared data involve some communications with the home node.

4.2. Deriving a fault-tolerant protocol

In the protocol sketched out above, the home node is clearly a critical entity that must be available
for the protocol to be operational. Since in a Grid environment we cannot realistically assume that

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1713

C C

C C

CC

Home

Home

(a) (b)

Figure 3. Building a fault-tolerant consistency protocol.

such entities will be implemented by failure-free nodes, this is where the approach proposed in
Section 3 can be applied. Our proposal is to make these entities fault tolerant by using an enriched
version of the group membership abstraction. The home node is replaced by a group of nodes
(Figure 3(b)). This group of nodes has the following properties: (1) all messages sent to such a group
are received by all members of the group, in the same order (atomic multicast); (2) the groups are
self-organizing: they maintain some user-specified replication degree by dynamically and adding new
members when necessary in a ‘smart’ way. The selection of the new members is handled by the Group
Self-organization layer, whereas their initialization is managed by the Dynamic Consistency Protocol
Configuration layer, as explained in Section 3.2.

The number of simultaneous faults supported by this solution depends on the implementation of the
underlying fault-tolerant building blocks (consensus, atomic broadcast). Our current implementation
supports up to �(n − 1)/2� simultaneous failures within a group, where n is the group size.

Note that the consistency protocol can use the new home entity, composed of multiple nodes, exactly
as it initially used the home node in the original, non-fault-tolerant version. It still assumes the home
is always available, but this property is now achieved transparently for the protocol, thanks to the
implementation of the Self-organizing Group Membership abstraction. Thanks to this approach, the
consistency protocol implements exactly the same distributed algorithm as in its initial, non-fault-
tolerant version. The consistency protocol and the replication-based fault tolerance mechanism are
thus clearly decoupled.

4.3. Going large-scale: a hierarchical, fault-tolerant protocol

Let us note that, in a Grid consisting of clusters federation, inter-cluster latency is generally higher
then intra-cluster latency. In order to improve the protocol efficiency, a suitable approach can rely on
minimizing the inter-cluster communications. This idea has been used in some DSM systems and has
led to the design of hierarchical consistency protocols. In CLRC [20], local caches are created on
each cluster to optimize the locality of consecutive accesses to remote data modifications. In [21], this

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1714 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

LDGLDG
LDG

C
CC C

C

C
C

C

C

LDG: Local Data Group
GDG: Global Data Group

C: Client node

GDG

C
CC C

C

C
C

C

C

Local
home

Local
home

Local
home

Global home

(a) (b)

Figure 4. Building a hierarchical, fault-tolerant consistency protocol.

approach is applied to distributed lock management, by reordering lock requests: requests from the
local cluster are served before remote requests.

Let us now consider a hierarchical version of the protocol sketched out in the Section 4.1.
This version, illustrated in Figure 4(a), is inspired by the hierarchical, home-based protocol for release
consistency described in [21]. The idea is to use a two-level hierarchy of home nodes. On each cluster,
a local home will serve accesses from the local cluster, whereas a global home will serve data accesses
to the clusters, i.e. to the local homes. When a client needs to access some data, it will require the
associated lock to its local home. If this home owns the corresponding access rights to the data, it
can satisfy the access. Otherwise, it will request the lock from the global home, with an updated copy
of the data. Note that the global home only serves the requests issued by the local homes; it has no
control on what requests are subsequently served by the local homes. However, to minimize inter-
cluster communications, a local home serves local requests with higher priority than remote requests
issued on other clusters, received via the global home. To avoid starvation, a limit is set on the number
of consecutive accesses served by each local home, so that remote requests be served too.

The next step is to make this hierarchical protocol fault-tolerant. To this purpose, we use the same
technique as described in the previous section. We replace each local home by a group of nodes, which
we call a Local Data Group (LDG). At a higher level, the global home is replaced by a Global Data
Group (GDG), whose members are the LDGs (Figure 4(b)). The GDG and the LDGs have the self-
organizing properties as detailed in the previous section: they maintain some user-specified replication
degree by dynamically adding new members when necessary.

5. LIMITS OF THE PROPOSED APPROACH AND POSSIBLE EXTENSIONS

The central idea of the proposed approach consists of using replication and group communication
abstractions in order to enhance the availability of critical protocol entities. This way, the consistency

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1715

acquire
acquire
acquire

W(X)

lock ?

data X
read X

lock
lock

acquire

GDGLDG LDG client C1

Detection
Failure

client C2

Figure 5. Failure of the exclusive lock owner.

protocol could transparently tolerate two kinds of failures: (1) crashes of the nodes that implement, as
a group, the critical entity; (2) temporary failures of the communication links between these nodes.

5.1. Coping with client failures

The approach could be extended by using the same technique for enhancing the availability of other
entities involved in the protocol. For instance, the clients accessing the data could also be replicated.
However, depending on the application, this is not always possible. The unavailability of sensors
(hardware timers) or application deployment obstacles (software environment dependencies, security
policies, software license restrictions, etc.) may make it impossible to replicate the client. In such cases,
for applications where it is important to tolerate client failures, different techniques have to be used.

Let us consider a situation (illustrated in Figure 5), where a client C1 holding some lock crashes.
To ensure the liveness of the locking mechanism, the lock manager (here, the LDG) could decide to
force the lock release when it detects the client’s failure. This way, other clients having requested the
lock (e.g. C2) would be able to acquire it. However, the correctness of such a scheme is dependent
on the potential impact of the actions performed by the faulty client during its critical section on the
actions that the other clients waiting for the lock are supposed to perform. Here are a few possible
situations.

Let us suppose, for instance, that the client C1 modifies only some local data until it crashes and that
these modifications are not reflected in the globally shared data. In this case, the global data are still
valid and the client C2 could decide to ignore C1’s failure and proceed with the execution of its critical
section. This situation corresponds, for instance, to our consistency protocol, which does not perform
any global action before the end of the critical section. The modifications performed in a critical section
are globally propagated by the release operation.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1716 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

LDG GDG LDG

lock ?

lock

acquire
acquire

W(X)

acquire

acquire

lock

W(X)
data X

read X
lock

read X

release

data X

retry_acquire

client C1 client C2

Failure
Detection

Figure 6. Error of the LDG’s failure detector.

Let us now assume that the actions performed by the client C1 have some global impact and that
some globally shared data remain inconsistent if C1 fails before finishing its critical section. In this
second case, C2 cannot ignore C1’s failure, otherwise it will process inconsistent data.

Another situation that may lead to inconsistencies is related to false failure detections (remember
that the failure detector is assumed to be unreliable). In Figure 6, the LDG’s failure detector wrongly
decides that the client C1 fails. This may be caused by some badly configured timeout, or by the
slowdown of this client, due to some temporary overload. The LDG then decides to force the lock
release and lets client C2 acquire the lock and modify some shared data. Later, client C1 tries to release
the lock, but it realizes that it has already been released by force. In this case, a solution may be to try
to acquire the lock again and re-execute the critical section.

In all these cases, it is clearly important for the lock primitives (acquire/release) to return
the user some information about the possible failures that may have been detected, so that the user
may make the right decision: either ignore the failure, or trigger some rollback/recovery actions.
Such actions are generally application dependent and should not be handled at the level of the
distributed synchronization mechanism. We are currently working on an enhanced mutual exclusion
mechanism, able to track client failures and report relevant information about the failure history.

5.2. Coping with failures of cluster-level data groups

In our hierarchical scheme, the situations described above for client-level failures may also be
generalized for cluster-level failures (remember that the LDGs behave as clients of the GDG). A LDG
can tolerate a limited number of simultaneous failures of the nodes that compose it. If more faults
occur, or if the whole underlying physical cluster is down, the LDG fails. Here again, there may be two
main situations.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1717

A B
A B

C

A B

DD

c(a) (b) ()

Figure 7. Self-organizing group membership protocols have to replace faulty replicas.

If the failure occurs while some local client has modified the data protected by that lock, then the
situation is similar to the one described in the previous subsection and may generally be handled in a
similar manner.

If the whole underlying cluster is down, or if no client on that cluster holds the lock at the time of
the failure, then there will be no data inconsistencies with other clusters. Let us now assume that a
majority of the nodes that make up a LDG on some cluster L fail, while some client C accesses the
data on that cluster. The failure event is detected by the GDG, which forces the lock release, in order
to satisfy lock requests issued by other clusters. The client C may trigger the instantiation of a new
LDG on cluster L1. It can then discover that the data has been concurrently modified on cluster L (by
C itself) and on other clusters. In such a situation application-level recovery mechanisms are necessary,
similar to those mentioned in the previous section.

5.3. Tuning the group replication level

Another important aspect of our proposed approach is related to the replication degree to be used for
each group entity. Consistency protocols rely on transparent replica management by the group entities.
However, the consistency protocol user may want to tune the replication level in order to obtain a good
tradeoff between performance and fault tolerance. The Group Self-organization layer has to implement
some replica management policy, such as node selection, for the replacement of faulty nodes. This is
illustrated in Figure 7, in which the self-organizing group membership protocol chooses node D to
replace the faulty node C.

Protocol policies could point out nodes with certain properties. Quantitative policies can optimize
a tradeoff between fault tolerance and performance by carefully managing the group size (i.e. the
replication degree). Hence, a group made of many nodes will support many concurrent node failures,
but it will waste memory space and will lower the efficiency of data updates. Conversely, fewer
nodes will improve the communication performance but will yield lower fault tolerance. Currently,
the replication degree is set up explicitly by the user at data allocation time. An interesting feature

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1718 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

would be to let the user specify some application-level semantics (e.g. the data criticity), and then
let the system automate the selection of the most appropriate replication degree, also by taking into
account the reliability of the physical infrastructure.

On the other side, qualitative policies could be used to select nodes for their characteristics. As an
example, a policy may find nodes with low churn rates to increase group resiliency. Alternatively, node
sets with high bandwidth and low latency for internal communication could automatically be defined
to enhance group communication performances. As a downside, these policies would require more
complex information on the underlying physical environment.

6. IMPLEMENTATION AND PRELIMINARY EVALUATION

To test our approach, we have used the JUXMEMsoftware experimental platform for Grid data sharing,
described in [5]. We have refined its architecture according to the decoupled approach proposed in this
paper and we have implemented the fault-tolerant consistency protocol described in Section 4.2.

The general architecture of JUXMEM mirrors a federation of distributed clusters and is therefore
hierarchical (Figure 8). It consists of node sets, called cluster groups, which correspond to
physical clusters. These groups are included in a wider group, the juxmem group, which gathers
all the nodes running the data-sharing service. Note that these service groups consist of different
nodes with different states. They do not make up a replicated service and do not rely on the same
abstractions (group membership, atomic broadcast) as the groups previously described, which act as
home nodes. Any clustergroup consists of provider nodes which supply memory for data storage.
The memory available in the group is handled by a cluster manager. Any node (including providers
and cluster managers) may use the service to allocate, read or write data as clients, in a P2P approach.
This architecture has been implemented using the JXTA [22] generic P2P platform.

When allocating memory, the client has to specify on how many clusters the data should be
replicated, and on how many nodes in each cluster. This results in the instantiation of the GDG and
LDG entities used by the consistency protocol, as explained in Section 4.2. In the example shown in
Figure 8, data are replicated across two LDGs created on two different clusters. Each LDG is made up
of three physical nodes. The allocation operation returns a global data ID. To read/write a data block,
clients only need to specify this ID. The platform transparently locates the corresponding local LDG
or instantiates it if necessary. Subsequent accesses to data are directed to this LDG by the consistency
protocol.

At the low level of our architecture, the LDG and GDG components have been implemented based on
the fault-tolerant, leader-based group communication protocol proposed in [23]. Our implementation
supports node crashes and link failures. In each LDG or GDG group, up to �(n − 1)/2� failures are
supported, where n is the group size.

Preliminary evaluation

For our preliminary experiments, we have used the JDF [24] deployment suite to run our tests over a
64-node cluster of 2.4 GHz bi-Pentium IV with 1 GB RAM, interconnected through a Fast-Ethernet
network. We have partitioned our physical cluster into eight cluster groups, eight nodes each.
In order to emulate a cluster federation, Dummynet [25] has been used to add latency between the

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1719

Cluster BNode

Client

Provider

Cluster manager

Cluster CCluster A

Overlay network

Physical network

Group "cluster C"

Group "cluster B"

Group "cluster A"

Group "juxmem"

GDG
LDGLDG

Figure 8. JUXMEM: a hierarchical architecture for a Grid data service.

cluster groups. The average latency between any two nodes that belong to different groups has been
set to 15 ms, a typical value for long distance networks, whereas the intra-cluster latency is 0.25 ms.
Our software environment is JUXMEM running over JXTA 2.2.1 and Java 1.4.2.

We first analyzed the impact of the replication degree on the cost of data allocation. The allocation
procedure consists of three steps: (1) the client has to discover enough providers in the JUXMEM

network to satisfy the replication degree; (2) the client sends allocation requests to a set of discovered
providers, selected in order to satisfy the user-specified constraints (concerning replication degrees,
locality, etc.); (3) the selected providers perform the actual allocation and instantiate the consistency
protocol layer and the necessary group communication components; this results in creating the
corresponding LDGs and GDG.

We have evaluated the impact of the replication degree on the allocation cost by varying the sizes
of the GDG and LDG groups (Figure 9). We can note that: (1) the architecture initialization cost is

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1720 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

���
���
���

���
���
������
���
���
���
������

��
��
��

��
��
��

��
��
��
��
���
���
���
���

��
��
��
��
���
���
���
���

���
���
���

���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��
��

��
��
��
��
���
���
���
���

��
��
��
��
���
���
���
���

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

���
���
���
���

��
��
��
��
���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��������

��
��
��
����������������

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
�������
���
���
���

��
��
��
��
������

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1x1

Communications
Providers discovery
Consistency protocol instanciation

 40000

 35000

 30000

 25000

 20000

 15000

 10000

 5000

 0

la
te

nc
y

(m
s)

GDG and LDG group size (GDG

x

LDG)

1x2
1x3

1x4
1x5

2x1
2x2

2x3
2x4

2x5
3x1

3x2
3x3

3x4
3x5

4x1
4x2

4x3
4x4

4x5
5x1

5x2
5x3

5x4
5x5

Figure 9. Allocation costs depend on replication degree.

largely overcome by the communication involved in the first two steps described above (discovery and
allocation requests); (2) the discovery cost grows linearly with respect to the replication degree; (3) the
cost of the actual allocation is quasi-constant despite the number of required replicas, because the client
makes all these requests in parallel.

We have also measured the cost of the basic operations of the consistency protocol: data read and data
update. These operations involve communications between a client and its local LDG. We measured
the cost of these operations while varying the cluster-level replication degree (i.e. the LDG size). This is
illustrated in Figures 10 and 11. First, we can note that the overhead due to replication is significant
for small data sizes (e.g. 16 KB): the read and update operations are three times slower, because our
atomic multicast protocol uses a two-phase commit strategy. However, this cost increases very slowly
with the replication degree. Second, for large data sizes (e.g. 4 MB), the fault tolerance overhead is
negligible compared with the data transfer delay. The cost of update operations linearly increases with
the replication degree. This is due to our leader-based implementation of the group communication
protocol, where the leader node sends the data to all the group members across the network.

Further planned measurements will evaluate the service throughput while one client performs writes
and another perform reads (i.e. producer/consumer scheme). We also plan an experimental study of the
impact of failures on the performance of the service operations.

7. CONCLUSION

In this paper, we have addressed the problem of handling the consistency of replicated data in a Grid
data-sharing service. In such a context, the availability of storage resources changes dynamically.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1721

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

La
te

nc
y

(m
s)

 10
 1 5

Read 16KB
Update 16KB

 3 7
Replication degree

Figure 10. Cost of the basic primitives: 16 KB.

 500
 1

La
te

nc
y

(m
s)

Read 4MB
Update 4MB

 3 5 7
Replication degree

 1000

 1500

 2000

 2500

 3000

Figure 11. Cost of the basic primitives: 4 MB.

We have shown the advantages of a software architecture which decouples consistency management
from fault tolerance management. We have illustrated our approach by showing how to design a
fault-tolerant consistency protocol which implements the entry consistency model. As a preliminary
experimental validation, we have implemented a prototype of the proposed fault-tolerant consistency
protocol within JUXMEM, a software experimental platform for Grid data sharing.

The main advantage of the proposed approach is that it allows the consistency protocol and the
replication strategy to be designed independently, while only a small interaction has to be defined
through the Group Self-organization and the Dynamic Consistency Protocol Configuration layers.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

1722 G. ANTONIU, J.-F. DEVERGE AND S. MONNET

Thereby, existing consistency protocols can be made fault tolerant by carefully defining this interaction.
Different trade-offs (e.g. efficiency versus level of fault tolerance) can be obtained by tuning this
interface. Such studies are part of our planned future work.

The policy implemented by the Group Self-organization layer should become adaptive (e.g. by
varying the replication degree) using a monitoring module. If this policy is well tuned in order to fit the
characteristics of the physical architecture, the availability of the home nodes will be guaranteed most
of the time. This is true as long as the assumptions made about the fault types and about the number
of concurrent faults are correct. Otherwise, recovery will not be possible, and the user application will
be informed about this by the consistency protocol. It is then its responsibility to react, according to its
specific constraints (retry, rollback, etc.). Such events should, however, be extremely rare if the self-
organizing group membership policy is correctly tuned. We are currently working on extensions of our
approach in order to define an extended semantics of the consistency protocol, which should take into
account such cases.

REFERENCES

1. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. The International Journal of Supercomputer
Applications and High Performance Computing 1997; 11(2):115–128.

2. Allcock W, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel D, Tuecke S. Data
management and transfer in high-performance computational Grid environments. Parallel Computing 2002; 28(5):749–
771.

3. Bassi A, Beck M, Fagg G, Moore T, Plank J, Swany M, Wolski R. The Internet Backplane Protocol: A study in resource
sharing. Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid), Berlin,
Germany, May 2002. IEEE Computer Society Press: Los Alamitos, CA, 2002; 194–201.

4. Kosar T, Livny M. Stork: Making data placement a first-class citizen in the Grid. Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS), Tokyo, Japan, March 2004. IEEE Computer Society Press: Los
Alamitos, CA, 2004; 342–349.

5. Antoniu G, Bougé L, Jan M. JuxMem: An adaptive supportive platform for data sharing on the Grid. Proceedings of the
1st Workshop on Adaptive Grid Middleware (AGridM), New Orleans, LA, September 2003; 49–59.

6. Li K, Hudak P. Memory coherence in shared virtual memory systems. ACM Transactions on Computer Systems 1989;
7(4):321–359.

7. Protić J, Tomasević M, Milutinović V. Distributed Shared Memory: Concepts and Systems. IEEE Computer Society Press:
Los Alamitos, CA, 1997.

8. Gharachorloo K, Lenoski D, Laudon J, Gibbons P, Gupta A, Hennessy J. Memory consistency and event ordering in
scalable shared-memory multiprocessors. Proceedings of the 17th International Symposium on Computer Architecture
(ISCA), Seattle, WA, June 1990. IEEE Computer Society Press: Los Alamitos, CA, 1990; 15–26.

9. Bershad BN, Zekauskas MJ, Sawdon WA. The Midway distributed shared memory system. Proceedings of the 38th IEEE
International Computer Conference (COMPCON), February 1993. IEEE Computer Society Press: Los Alamitos, CA,
1993; 528–537.

10. Iftode L, Singh JP, Li K. Scope consistency: A bridge between release consistency and entry consistency. Proceedings of
the 8th ACM Annual Symposium on Parallel Algorithms and Architectures (SPAA), Padova, Italy, June 1996. ACM Press:
New York, 1996; 277–287.

11. Zhou Y, Iftode L, Li K. Performance evaluation of two home-based lazy release consistency protocols for shared memory
virtual memory systems. Proceedings of the 2nd Symposium on Operating Systems Design and Implementation (OSDI),
Seattle, WA, October 1996. ACM Press: New York, 1996; 75–88.

12. Mena S, Schiper A, Wojciechowski P. A step towards a new generation of group communication systems. Proceedings of
the 4th International Middleware Conference (Middleware), Rio de Janeiro, Brazil, June 2003 (Lecture Notes in Computer
Science, vol. 2672). Springer: Berlin, 2003; 414–432.

13. Chockler GV, Keidar I, Vitenberg R. Group communication specifications: A comprehensive study. ACM Computing
Surveys 2001; 33(4):427–469.

14. Schneider FB. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys
1990; 22(4):299–319.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

FAULT-TOLERANCE AND DATA CONSISTENCY FOR GRID DATA SHARING 1723

15. Guerraoui R, Schiper A. Software-based replication for fault tolerance. IEEE Computer 1997; 30(4):68–74.
16. Sultan F, Nguyen T, Iftode L. Scalable fault-tolerant distributed shared memory. Proceedings of the IEEE/ACM

Supercomputing (SC), Dallas, TX, November 2000. ACM Press: New York, 2000; 54–55.
17. Kermarrec A-M, Cabillic G, Gefflaut A, Morin C, Puaut I. A recoverable distributed shared memory integrating coherence

and recoverability. Proceedings of the 25th International Symposium on Fault-Tolerant Computing Systems (FTCS),
Pasadena, CA, June 1995. IEEE Computer Society Press: Los Alamitos, CA, 1995; 289–298.

18. Chandra TD, Toueg S. Unreliable failure detectors for reliable distributed systems. Journal of the ACM 1996; 43(2):225–
267.

19. Bertier M, Marin O, Sens P. Implementation and performance evaluation of an adaptable failure detector. Proceedings of
the International Conference on Dependable Systems and Networks (DSN), Washington, DC, June 2002. IEEE Computer
Society Press: Los Alamitos, CA, 2002; 354–363.

20. Arantes LB, Sens P, Folliot B. An effective logical cache for a clustered LRC-based DSM system. Cluster Computing
Journal 2002; 5(1):19–31.

21. Antoniu G, Bougé L, Lacour S. Making a DSM consistency protocol hierarchy-aware: An efficient synchronization scheme.
Proceedings of the 3rd IEEE/ACM International Conference on Cluster Computing an the Grid (CCGrid), Tokyo, Japan,
May 2003. IEEE Computer Society Press: Los Alamitos, CA, 2003; 516–523.

22. The JXTA project. http://www.jxta.org/ [2005].
23. Castro M, Liskov B. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems

2002; 20(4):398–461.
24. Antoniu G, Bougé L, Jan M, Monnet S. Large-scale deployment in P2P experiments using the JXTA distributed framework.

Proceedings of the 10th International Euro-Par Conference on Parallel Processing (Euro-Par), Pisa, Italy, August 2004
(Lecture Notes in Computer Science, vol. 3149). Springer: Berlin, 2004; 1038–1047.

25. Rizzo L. Dummynet: A simple approach to the evaluation of network protocols. ACM SIGCOMM Computer
Communication Review 1997; 27(1):31–41.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1705–1723

	1 INTRODUCTION
	Problem: keep replicated data consistent
	Difficulty: handling consistency in a dynamic context

	2 APPROACH: DECOUPLING FAULT TOLERANCE MANAGEMENT FROM CONSISTENCY MANAGEMENT
	Replication in consistency protocols
	Replication for fault tolerance

	3 BUILDING CONSISTENCY PROTOCOLS BASED ON FAULT-TOLERANT COMPONENTS
	3.1 Fault-tolerant components: a short overview
	Failure model
	Basic abstractions

	3.2 Using fault-tolerant components in consistency protocols

	4 CASE STUDY: DESIGNING A HIERARCHICAL, FAULT-TOLERANT CONSISTENCY PROTOCOL
	4.1 A non-fault-tolerant consistency protocol for the entry consistency model
	4.2 Deriving a fault-tolerant protocol
	4.3 Going large-scale: a hierarchical, fault-tolerant protocol

	5 LIMITS OF THE PROPOSED APPROACH AND POSSIBLE EXTENSIONS
	5.1 Coping with client failures
	5.2 Coping with failures of cluster-level data groups
	5.3 Tuning the group replication level
	6 IMPLEMENTATION AND PRELIMINARY EVALUATION

	Preliminary evaluation
	7 CONCLUSION

