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Abstract— The applications in current networks require more 
and more quality of services. Hence, a routing algorithm has to 
satisfy several constraints such as delay, bandwidth or jitter.  
This is called multicriteria routing algorithm. Since the 
multicriteria routing is an NP-Hard problem, we propose 
heuristics that calculate quickly paths that satisfy Quality of 
service QoS constraints between a source node and a destination 
node. Several solutions exist in the literature; the most efficient 
algrithm is SAMCRA (Self Adaptive Multiple Constraints 
Routing Algorithm) which was proposed by Van Mieghem et al. 
in 2001. SAMCRA is an exact unicast algorithm for multiple 
constraints which has a high complexity. In our study, we 
examine the possibility to replace SAMCRA by an optimized k 
shortest paths algorithm. The simulation results show that 
applying such algorithm reduces significantly the complexity of 
the multicriteria routing algorithm, and gives efficient solutions. 

I. INTRODUCTION 

   Recently, routing problems have become increasingly 
important given the emergence of applications that require 
guarantees on a range of QoS parameters such as delay, cost, 
bandwidth, loss rate, jitter, etc. These new challenges have led 
to multicriteria routing problem. Several algorithms are 
proposed to resolve multicriteria routing problems. Some of 
these algorithms consider two main metrics: cost and delay 
[1][2].Two approaches exist for these algorithms. A first 
approach considers the multicriteria routing problem as a 
mono-objective optimization one that minimizes the cost 
under the delay constraint. A second approach uses a multi-
objective formulation: to solve this class of problems, some 
proposed works use meta-heuristics such as genetic 
algorithms [2], taboo search [3], or ant colonies [4]. Other 
works propose exact multi-objective algorithms. The most 
efficient one is SAMCRA which was proposed by Van 
Mieghem et al. in [5]. SAMCRA is an exact multicriteria 
routing algorithm. However, the major drawback of 
SAMCRA is its complexity [6]. In this paper, we examine the 
possibility to replace SAMCRA by simple heuristics that 
reduce efficiently execution time and return satisfactory 
solutions.  
In the following, we first give a formal definition of the 
multicriteria routing problem. In Section III, we present 
SAMCRA algorithm. In Section V, we give an overview of 

different algorithms for calculating the k shortest paths 
existing in the literature. We then detail the operation of Yen’s 
algorithm. In section VII, the performance of our heuristics is 
investigated through a large number of simulations. 

II. PROBLEM FORMULATION 

A communication network is modelled as a valuated 
graph ܩሺܰ,  ሻ, where N is the set of nodes and E the set ofܧ
links. Let consider a pair of a source node s and a destination 
node d. For the multicriteria routing problem, the Constraints 
are given by the vector ܮሬԦ ൌ ሺܮଵ, ,ଶܮ … ,  ௠ሻ where m is theܮ
number of metrics to consider. For each link e is associated a 
weight vector  ݓሬሬሬሬԦሺ݁ሻ ൌ ሺݓଵ

௘, ଶݓ
௘, … , ௠ݓ

௘ ሻ. 
In network, the metrics can either be additive (such as delay 

and cost), concave (typically available bandwidth), or 
multiplicative (like loss rate). Concave metrics are treated by 
omitting all links that violate the constraints, and then try to 
find, in the residual graph, a path between the source node s 
and the destination node d. On the other hand, the 
multiplicative metrics can be translated to additive metrics 
using the logarithm. Thus, the most general metrics and most 
difficult to satisfy are the additive ones. In the following, we 
only consider additive metrics. 
The weight of a path p corresponding to a metric i is equal to 
the sum of weights of its links for this metric:  

݈௜ሺ݌ሻ ൌ ෍ ௜ݓ
௘

௘א௣
 

The multicriteria routing problem was formulated in two 
different ways [6]. 
 
Definition 1. MCP problem  
The Multi-Constraint Path (MCP) problem (P) consists to find 
a feasible path p that satisfies all constraints  ܮ௜: 

                                (P): ݈௜ሺ݌ሻ ൑ ሬሬԦ for 1݅ܮ ൑ ݅ ൑ ݉      
 
Definition 2. MCOP problem 

Considering a length function l (e.g.  ݈ሺ݌ሻ ൌ
ଵ

௠
∑ ௟೔ሺ௣ሻ

௅೔

௠
௜ୀଵ ), the 

Multi-Constraint Optimal Path (MCOP) problem (P*) consists 
to find the smallest length path within the set of feasible paths 
,ݏሺݏ݄ݐܽ݌_݈ܾ݁݅ݏ݂ܽ݁ ݀ሻ between source s and destination d: 
                      (P*): ݉݅݊௣א௙௘௔௦௜௕௟௘_௣௔௧௛௦ሺ௦,ௗሻ݈ሺ݌ሻ                             



III.  SAMCRA ALGORITHM 

SAMCRA [7] is an exact unicast multicriteria routing 
algorithm that resolves the MCOP problem basing on two 
principles: non-linear length and dominance of paths. 

 
Definition 3. Non-linear length 
SAMCRA uses a non-linear length function l to calculate the 
paths. Let consider a path P with k links: ܲ ൌ ሼ݁ଵ, ݁ଶ, … , ݁௞ሽ 
The length of p proposed is: 

 ݈ሺܲሻ ൌ ଵஸ௜ஸ௠ݔܽ݉ ൭
∑ ௜ݓ

௘ೕ௞
௝ୀଵ

௜ܮ
൱                             

Definition 4. Dominance 
A path ݌ଶ is said to be dominated by a path ݌ଵif ݈௜ሺ ଵܲሻ ൑
݈௜ሺ ଶܲሻ for each metric i, and ௝݈ሺ ଵܲሻ ൏ ௝݈ሺ ଶܲሻ for at least one 
metric j. 
 
SAMCRA returns, for a nodes pair (s, d), the path with the 
smallest non-linear length that satisfies all the constraints, if 
such path exists. SAMCRA begins by exploring the 
neighbours of the source s, then goes to the neighbour with the 
smallest non-linear length, and explores its neighbours. Thus, 
SAMCRA explores all nodes from the source s, and prunes 
dominated paths. SAMCRA stops when the destination d is 
selected as the node corresponding to the shortest non-
dominated path. Thus, all paths those can improve the length 
of the best path found until now are already covered.        

IV.   OUR CONTRIBUTION 

It has been proved that multicriteria routing problem is NP-
hard [16]. SAMCRA is an exact algorithm with a high 
complexity [6]1. Multicriteria routing problems do not 
necessarily looking for the optimal solution, but a feasible 
one. Therefore, we propose heuristics based on a modified k 
shortest paths algorithm to calculate more quickly feasible 
paths. The idea of applying such an algorithm is that the 
shortest paths may be feasible. In our study, we propose the 
modification of a known algorithm (see Yen algoirithm in 
section V.B.), to calculate paths between two nodes in 
increasing order of their lengths, until a path that satisfies all 
constraints is found. These heuristics resolve the MCP 
problem but don’t guarantee to find an optimal solution. 
However, the heuristics return satisfactory solutions, and the 
simulation results presented in Section VII confirm this idea.  

V. THE K SHORTEST PATHS ALGORITHMS 

A. RELATED WORKS 

The shortest paths (e.g. in number of hops) are fundamental 
in many areas of computer science, operation research and 
engineering. Most complex applications of the shortest path 
problem, however, require more than just the calculation of a 
single shortest path.  

                                                 
1 [6]: In this paper, authors study the case when SAMCRA 
achieves the worst case. 

The k shortest paths problem is a natural and long-studied 
generalization of the shortest path problem in which not one, 
but several paths in increasing order of length are sought. The 
k shortest paths problem in which paths can contain loops 
turns out to be significantly easier. An algorithm with the 
complexity of ܱሺ|ܧ| ൅  ሻ has been known since|ܰ|݃݋݈݇
1975[8]; a recent improvement by Eppstein [9] achieves the 
optimal complexity of ܱሺ|ܧ| ൅ |ܰ|log |ܰ| ൅ ݇ሻ. But, the 
problem of determining the k shortest paths without loops 
(loopless paths) has proved to be more challenging. The 
problem was first examined by Hoffman and Pavley[10]. For 
undirected graphs, the most efficient algorithm was proposed 
by Katoh et al. [11] which has the complexity of ܱ൫݇ሺ|ܧ| ൅
|ܰ|log |ܰ|ሻ൯. For the most general case, the best known 
algorithm is that proposed by Yen in [12], and generalized by 
Lawler in [13]. This algorithm has achieved the complexity of 
ܱ൫݇|ܰ|ሺ|ܧ| ൅ |ܰ|log |ܰ|ሻ൯. 

B. YEN’S ALGORITHM 

   Yen’s algorithm belongs to the deviation algorithms class. 
The deviation of a path from a set of paths is explained by the 
example shown in Fig1. 
 

  
Let consider three paths ଵܲ, ଶܲ and ଷܲ. It should be noticed 
that these paths do not contain repeated nodes, therefore they 
are loopless paths.  ଵܲ deviates from ଶܲ in node 1. Moreover, 

ଷܲ  coincides with ଵܲ from node 1 until node 3, and coincides 
with  ଶܲ only in node 1. Therefore, ଷܲ  deviates from ሼ ଶܲ, ଷܲሽ 
in node 3. Node 3 is called deviation node. 
The pseudo-code of Yen’s algorithm is described in Fig2. The 
algorithm begins by calculating, for the chosen pair of nodes, 
the shortest path P* (line 1). The algorithm performs k 
iterations. At the ith iteration, the algorithm gets the shortest 
path stored in the candidates set D. This path is the ith shortest 
path from source to destination. Then, it calculates the 
deviation node of this path form all the (i-1) paths in X. To 
avoid recalculating already computed paths, the algorithm 
removes nodes and links as explained in lines 9 and 10. In the 
residual graph, the shortest path P’ between deviation node 
and destination is calculated. Then, P’ is concatenated with 
the sub-path of the ith shortest path from source to deviation 
node. The new constructed path is saved in the set of 
candidates D. All deleted nodes and links are restored (line 
14), and the algorithm comes to the successor of deviation 
node in the ith shortest path (line 15). 

1  3 

 2 

 4 5 

6  7 ଵܲ 

ଶܲ

ଷܲ

Deviation node 

Fig1. Paths’ deviation  



 

VI. PROPOSED ALGORITHM AND APPROACHES  

 In this paper, we propose to replace SAMCRA by a 
modified Yen's algorithm for computing the k shortest paths. 
This algorithm has a complexity much smaller than 
SAMCRA’s one. However, the calculation of k shortest paths 
uses a single metric. Therefore, to apply the proposed 
algorithm, we translate the multicriteria problem to a 
monocriterion one. For this, we propose two approaches: 

- the hop count approach: In this approach, the algorithm 
searches the shortest paths considering the number of hops 
that satisfy all the constraints  

- the metrics linearization approach: one of the most 
common approaches to the metrics linearization is that 
proposed by Jaffe [14]. This approach considers the 
weight of a link e given by: ݓሺ݁ሻ ൌ ∑ ௜ݓ௜ߙ

௘
௜ୀଵ,௠ , where 

௜ݓ
௘ is the weight of e corresponding to the ith metric. To 

calculate the parameters ߙ௜, we propose to calculate 
the m shortest paths ଵܲ, ଶܲ, … , ௠ܲ corresponding to the 
m metrics. The parameters  ߙ௜ are given by: 

௜ߙ   ൌ
∑ ௪೔

೐
೐אು೔

௅೔
   

 
Furthermore, for a pair of nodes, and for a given integer k, 
Yen’s algorithm calculates the k shortest paths. In our case, 
the proposed algorithm looks for the first feasible path or 
stops at a maximal number of calculated paths k_max given as 
an input parameter. 
 
The meta-code of the metrics linearization approach is given 
in Fig3. The algorithm begins by calculating, the shortest 
paths corresponding to each metric. At line 2, the parameters 
 ௜ associated to the weights of each metric are calculated. Atߙ 
line 3, we associate for each link e, a new mixed weight w’. 
Lines 5 to 10 illustrate how to calculate the next shortest path. 
At line 6, the ith shortest path is calculated by applying the 

same principle as in Yen’s algorithm (Fig2). At line 8, the 
algorithm checks the feasibility of the calculated path after 
initial weights are restored. If this path is feasible, the 
algorithm stops, otherwise the next shortest path has to be 
calculated. 

 

VII. PERFORMANCE ANALYSIS 

In this paper, we use a topology that represents an operator 
network with 50 nodes and 88 links [15]. For each link, we 
generate two uncorrelated weights using a uniform 
distribution on the interval [1,100]. We make this draw 100 
times. For each weight draw, we choose 100 random source-
destination pairs, and for each source-destination pair, we 
apply the three algorithms: SAMCRA, Hops count approach 
and Metrics linearization approach. The constraint vector L is 
drawn using a uniform distribution and takes its values in 
intervals which are predetermined for each weight 
distribution, and for each source-destination pair. Fig4 
illustrates the draw of the constraints ܮ௜. Let consider ଵܲ and 

ଶܲ two paths that minimize respectively the 
metrics ݓଵ and ݓଶ. The gray rectangle represents the 
constraints space. These constraints are called strict 
constraints. We use 15 constraints intervals that run 
diagonally from the strictest constraints (rectangle A) to the 
less strict ones (rectangle B). 

 

 
Fig4. Draw of constraints 
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Metrics linearization approach (G, s, t, k) 

1. Calculate ଵܲ
,כ ଶܲ

,כ … ௠ܲ
כ  the ݉ shortest paths 

between s and t for the ݉ métrics 

2. ௜ߙ  ൌ
∑ ௪೔

೐
೐אು೔

כ

௅೔
 fraction between linear length of ׷ 

      ௜ܲ
 ௜ܮ and the constraint כ

ᇱሺ݁ሻݓ  .3 ൌ ∑   ௜ݓ௜ߙ
௠
௜ୀଵ : for each link e of G        

4.  i0, found_solutionfalse 
5. While ((found_solution്  true) and (i< k_max)) 
6.      Calculate the ith shortest path  ௜ܲ   between s and t 
7.      Restore the initial weights of links   
8.      if ௜ܲ is feasible {found_solution true,   return ௜ܲ } 
9.      else {ii+1} 
10.    put back the new weights ݓᇱ to the links ݁  

 
    Fig3. Metrics linearization meta-code 

Yen’s algorithm (G, s, t, k) 

1. P*Dijkstra (s, t) 
2. D{P*} //set of candidates 
3. X{} // set of the k shortest paths 
4. For i from 1 to k 
5.      P the shortest path in D 
6.      v the deviation node  (P, X) 
7.      XX+{P} 
8.      While  v!=t 
9.          remove all nodes of P form s to v 
10.          remove all output links of v that belong to X 
11.          P’Dijkstra (v, t) 
12.          concatenate P’ with the sub-path of P      

         from s to v 
13.          DD+{P’}  
14.          restore all removed nodes and links  
15.          vsuccessor(v, P) 

                    Fig2. Yen’s  algorithm pseudo-code 



For proposed approaches, we fix the maximum number of 
paths that can be calculated to three (k ≤ 3). To evaluate the 
performance of the three algorithms, we analyze: 

- success rate: number of satisfied requests divided by the 
number of generated requests  

- absolute complexity: average number of visits of nodes 2 
for all generated requests  

- relative complexity: average number of visits of nodes for 
satisfied requests  

- non-linear length of paths: used by SAMCRA (see 
Section III)  

- average length of paths: the average sum of weights for 
each metric(see example MCOP problem section II)  

- the number of calculated paths before finding a feasible 
solution: this test is only significant for our heuristics. 

                 Fig5. Average length of found solutions 

            Fig6. Non-linear length of found solutions  
 
   In Fig6, the solutions found by our two approaches: hop 
count and metrics linearization are worse than those found by 
SAMCRA with 6.67% and 2.39% respectively. However, we 
notice that in Fig5, for average length, the solutions found by 
SAMCRA are worse than those found by metrics linearization 
approach with (1.59%), and very close to those found by the 
hop count approach. Indeed, the linearization of the metrics on 
a link involves the calculation of paths based on both two 
metrics, unlike SAMCRA which considers only the longest 
length, so do not take into account the variance between the 

                                                 
2 One visit of node represents a fundamental operation. 

values of the metrics. Moreover, the solutions found when the 
constraints are strict are very similar for the three algorithms. 
Indeed, the strict constraints reduce the number of feasible 
solutions; therefore the solutions found by our two approaches 
are close to optimal solutions found by SAMCRA. For less 
strict constraints, SAMCRA find better solutions than the 
other two approaches. Notice that, in order to do not bias the 
results, we consider only the solutions that are found by the 
three algorithms.                         

                        Fig7. Absolute complexity  
      

Relative complexity is calculated only if a solution is found 
by the three algorithms. In Fig8, we note that the complexity 
of SAMCRA is significantly larger than the other two 
algorithms. Indeed, when the constraints are not strict, 
SAMCRA has more paths to explore before returning the best 
solution, while both approaches stop at the first feasible path 
they find. This reduces the execution time of our approaches. 
In Fig7, the absolute complexity of both proposed approaches 
is greater than SAMCRA’s one for strict constraints. Indeed, 
when the constraints are strict, SAMCRA prunes faster not 
feasible requests, while both approaches explore the maximal 
number of paths (fixed to three) without finding solutions. 
When constraints become less strict; the two proposed 
approaches find feasible solutions before calculating the three 
paths, which reduces their complexity.  

                          Fig8. Relative complexity 
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                            Fig9. Success rate 

                   Fig10. Number of calculated paths 
 
   In Fig9, we note that the success rate of both approaches: 
hop count and metrics linearization approach the success rate 
of SAMCRA by 16% and 10% respectively. When constraints 
become not strict, SAMCRA achieves a success rate of 100%, 
the metrics linearization approach a success rate of 94%, and 
hop count approach a success rate of 84%. These success rates 
are very satisfactory.                          
Fig10 shows that the number of calculated paths before 
finding a feasible solution is less than two. This number 
decreases when the constraints become less strict; this 
explains the choice to set the number of paths to calculate at 3. 

 
Simulation results show that, for constraints those are not 

strict, the two proposed approaches return solutions close to 
the optimum and reduce the complexity up to 10 times, 
making their application for Multicriteria unicast routing   
problems very promising. 

                    

VII. CONCLUSIONS 

To solve Multicriteria routing problem, we proposed an 
algorithm obtained by modifying Yen’s algorithm, an efficient 
algorithm for computing the k shortest paths. Two approaches 
have been proposed to translate the routing problem from 
multicriteria problem to monocriterion one. Then, we applied 
the proposed approaches to the arising problem. The 
simulation results show that the two proposed approaches 

provide satisfactory solutions with success rates close to the 
optimum found by the exact algorithm SAMCRA. Moreover, 
the proposed approaches calculate in average 1.43 paths 
before finding a feasible solution. This reduces significantly 
their execution time. 

To resolve the multicast multicriteria routing problem, 
MAMCA (Multicast Adaptive Multiple Constraints Routing 
Algorithm) was introduced in [5]. MAMCRA uses in its first 
step SAMCRA, and thus inherits its complexity. Our aim will 
be then to include the proposed approaches in MAMCRA, and 
study their performance. Also, it is possible to improve these 
approaches by including a non-feasibility detection 
mechanism, so we can further reduce the complexity of the 
proposed algorithms.  
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