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Abstract. Color-based trackers recently proposed in [3/4]5] have been
proved robust and versatile for a modest computational cost. They are
especially appealing for tracking tasks where the spatial structure of the
tracked objects exhibits such a dramatic variability that trackers based
on a space-dependent appearance reference would break down very fast.
Trackers in [3[4I5] rely on the deterministic search of a window whose
color content matches a reference histogram color model.

Relying on the same principle of color histogram distance, but within
a probabilistic framework, we introduce a new Monte Carlo tracking
technique. The use of a particle filter allows us to better handle color
clutter in the background, as well as complete occlusion of the tracked
entities over a few frames.

This probabilistic approach is very flexible and can be extended in a
number of useful ways. In particular, we introduce the following ingredi-
ents: multi-part color modeling to capture a rough spatial layout ignored
by global histograms, incorporation of a background color model when
relevant, and extension to multiple objects.

1 Introduction

Tracking objects, and more generally features, through the frames of an image
sequence is an omnipresent elementary task in online and offline image-based ap-
plications including visual servoing, surveillance, gestural human-machine inter-
face and smart environments, video editing and compression, augmented reality
and visual effects, motion capture, medical and meteorological imaging, etc.

The combination of tools used to accomplish a given tracking task depends on
whether one tries to track (I) objects of a given nature, e.g., cars, people, faces,
(IT) objects of a given nature with a specific attribute, e.g., moving cars, walking
people, talking heads, face of a given person, (III) objects of a priori unknown
nature but of a specific interest, e.g., moving objects, objects of semantic interest
manually picked in the first frame.

In each case part of the input video frame is searched against a reference
model describing the appearance of the object. This reference can be based on
image patches, thus describing how the tracked region should look like pixel-wise,
on contours, thus describing the overall shape, and/or on global descriptors such
as color models.
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For problems of type (I) and (II), the instantiation of this reference model is
exogenous. The reference is either chosen in an ad-hoc way, e.g., an ellipse outline
for faces [1l[18], or extracted from a set of examples like gray level appearance
templates in [2] or outlines in [S[10[12].

In contrast, in problems of type (III) the instantiation of the reference has
to arise from the sequence under consideration, thus being endogenous. In that
case the reference can be extracted from the first frame and kept frozen, as color
models in [3/4)5] and gray-level templates in [9], or adapted on the fly, using the
tracking results from the previous frames, as gray-level templates in [T4JT5[17],
deformable outlines in [I6], and color models in [I821120].

This paper falls in the category of trackers using global color reference models
and endogenous initialization. Such trackers have recently been proved robust
and versatile for a modest computational cost [BJ4[5]. They have in particular
been proved to be very useful for tracking tasks where the objects of interest
can be of any kind, and exhibit in addition drastic changes of spatial struc-
ture through the sequence, due to pose changes, partial occlusions, etc. This
type of tracking problem arises for instance in the context of video analysis and
manipulation. For such applications, most trackers based on a space-dependent
appearance reference would break down very fast. In contrast, using a global,
though sufficiently discriminant, model of the color distribution within the region
of interest is an appealing way to address such complex tracking tasks.

The techniques introduced independently by Bradski (“CamShift” in [3]) and
by Comaniciu et al. (“MeanShift” in [5]), and modified later by Chen et al. [4],
are based on the following principle: the current frame is searched for a region, a
fixed-shape variable-size window, whose color content best matches a reference
color model. The search is deterministic. Starting from the final location in the
previous frame, it proceeds iteratively at each frame so as to minimize a distance
measure to the reference color histogram. Excellent tracking results on complex
scenes are demonstrated in the three studies. This deterministic search might
however run into problems when parts of the background nearby exhibit similar
colors or when the tracked object is completely occluded for a while.

Improved handling of such situations is one of the benefits of the new color-
based probabilistic tracking we propose. Relying on the same principle of com-
paring the color content of candidate regions to a reference color histogram, we
embed it within a sequential Monte Carlo framework. This requires the building
of a color likelihood based on color histogram distances, the coupling of this data
model with a dynamical state space model, and the sequential approximation
of the resulting posterior distribution with a particle filter. These different steps
are described in Sect. 2. The use of a sample-based filtering technique permits in
particular the momentary tracking of multiple posterior modes. This is the key
to escape from background distraction and to recover after partial or complete
occlusions, as demonstrated in Sect. 3.1.

This probabilistic approach is also very versatile in that is does not impose
many constraints on the type of ingredients that can be incorporated in the state
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space, the dynamics, and the data likelihood definitions. Hence our color-based
tracking can be extended in a number of useful ways:

— Extension to multi-part color modeling as a way of incorporating a gross
spatial layout ignored by global histogramming in Sect. 3.2;

— Incorporation of a background color model when relevant in Sect. 3.3;

— Extension to multiple objects in Sect. 3.4.

The treatment of the two last items within a particle filtering approach bears
connections with the “BraMBLe” tracker introduced in [II]. We discuss these
connections in detail in Sect. 4.

2 Probabilistic Tracking

2.1 Sequential Monte Carlo Tracking

Sequential Monte Carlo techniques for filtering time series [6] and their use in
the specific context of visual tracking [10]] have been described at length in the
literature.

The starting point is a standard state space model, where a Markovian prior
on the hidden states is coupled with a conditionally independent observation
process. Denoting by x; and y; respectively the hidden state and the data at
time ¢, and fixing the order of the dynamics to one, the sequence of filtering
distributions p(x+|yo.t) to be tracked obeys the recursion

P(®es1] Yorr1) X p(Ye1] wt+1)/ P(@es1|@e)p(@e| Youe )y, (1)
Tt
with the notation xg.; = (xo,...,x;) and similarly for y. In the case of lin-

ear Gaussian state space models, () can be handled analytically yielding the
Kalman filter.

Unfortunately, in visual tracking problems the likelihood is non-linear, and
often multi-modal, with respect to the hidden state. The reason being that the
hidden variables indicate which part of the data set to look at. As a result the
Kalman filter and its approximations are usually not suitable.

The recursion can however be used within a sequential Monte Carlo frame-
work where the posterior p(x:| yo.¢) is approximated by a finite set {&}*}=1...1s
of M samples, the particles. The generation of samples from p(@;y1|Yo:t+1) is
then obtained as follows. All the particles are moved independently by sampling
from an appropriate proposal transition kernel f(@iy1; @+, Ye41). If the x*’s are
fair samples from the filtering distribution at time ¢, the new particles, denoted
by &} |, associated with the importance weights

Py | #7)p(E) | ) -
with » aft, =1, (2)

T =
o f@f e yiv1)

m=1
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approximate the new filtering distribution well. Resampling these particle ac-
cording to their weights provides a set {a}}}m=1...as of fair samples from the
filtering distribution p(@y1| Yo:t41)-

It can be shown (see [6]) that the optimal proposal density is proportional
t0 P(Ye+1| Bet1)p(@es1| 1), but its normalization [;  p(Ye1| Ter1)p(@era| )
cannot be computed analytically in our case. The chosen proposal density must
then be sufficiently close to the optimal one such that the weights do not be-
come all extremely small in the re-weighting process, resulting in a degener-
acy of the sample approximation. The default choice (bootstrap filter) consists
in taking f(@iyr1;@e, Yi+1) = p(@ir1]@:). In this case the weights become the
data-likelihood associated with each hypothesized state ;7 ;.

Based on the discrete approximation of p(x:| yo.;), different estimates of the
“best” state at time t can be devised. We use, in a standard way, the Monte
Carlo approximation of the expectation &; = 1+ 2%21 " ~ E(xt|yo.t) as the
tracker output at time t¢.

After the different ingredients of the model are defined in the next section,
the complete procedure will be summarized in Proc. 1.

2.2 State Space and Dynamics

We aim to track a region of interest in the image plane. The shape of this region
is fixed a priori through the definition of a 0-centered window W. It can be an
ellipse or a rectangular box as in [3[4J5]. In our case, there is no restriction on the
class of shapes that can be used. More complex hand-drawn or learned regions
can be used if relevant. In any case, tracking then amounts to estimating in
each frame the parameters of the transformation to be applied to W. Affinity or
similitude transforms are classically considered. Given the global nature of the
color information on which the proposed tracking relies, the choice of a simple
similitude seems appropriate. Moreover, when the aspect ratio of the chosen
region is close to one, the color information gathered over transformed regions
will be rather insensitive to the rotation component of the similitude. As in [3l/5]
we thus only consider here the location d = (z,y) in the image coordinate system
and the scale s as the hidden variables to be estimated.

A second-order auto-regressive dynamics is chosen on these parameters. In
accordance with the first-order formalism used in the previous subsection, we
define the state at time ¢ as ; = (dt, d;—1, St, $t—1). The dynamics then reads

11 = Az + By + Cvy, v ~ N(0,X). (3)

Matrices A, B, C and Y defining this dynamics could be learned from a set
of representative sequences where correct tracks have been obtained in some
way. For the time being we use an ad-hoc model composed of three independent
constant velocity dynamics on x¢, y; and s; with respective standard deviations

1 pixel/frame, 1 pixel/frame, and 0.1 frame™?.
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2.3 Color Model

Color models are obtained by histogramming techniques in the Hue-Saturation-
Value (HSV) color space [7] in order to decouple chromatic information from
shading effects. Color information is however only reliable when both the sat-
uration and the value are not too small. Hence, we populate an HS histogram
with N, N bins using only the pixels with saturation and value larger than
two thresholds set to 0.1 and 0.2 respectively in our experiments. The remain-
ing “color-free” pixels can however retain a crucial information when tracked
regions are mainly black and white. We thus found useful to populate N, ad-
ditional value-only bins with them. The resulting complete histogram is thus
composed of N = N, Ns; + N, bins. We shall denote b;(u) € {1,... , N} the bin
index associated with the color vector y;(u) at pixel location w in frame t.

Given an occurrence of the state vector ¢, the candidate region in which color
information will be gathered is defined as R(x;) =d; + s;W. Within this region
a kernel density estimate q:(x) = {q¢(n; ) }n=1...n of the color distribution at
time ¢ is given by [5]

=K Y w(lu—d|)sb(d) - n (4)

uER(x)

where § is the Kronecker delta function, K is a normalization constant ensuring
27]:[:1 ¢t(n;x) = 1, w is a weighting function, and locations wu lie on the pixel
grid, possibly sub-sampled for efficiency reasons. This model associates a proba-
bility to each of the N color bins. In [345] the weight function is a smooth kernel
such that the gradient computations required by the iterative optimization pro-
cess can be performed. This is not required by our approach where competing
hypotheses associated with the particles simply have to be evaluated. Hence we
set w = 1, which amounts to standard bin counting.

At time ¢, the color model g;(x) associated with a hypothesized state x will be
compared to the reference color model ¢* = {¢*(n)}n=1...n, with 25:1 q*(n) =
1. In our experiments, the reference distribution is gathered at an initial time
to at a location/scale 7 (Fig.[D), which is either manually selected, as in [3/4}
5], or automatically provided by a detection module (as in Sect. 3.5). In either
case:

q" = qi,(x},) (5)

The data likelihood must favor candidate color histograms close to the ref-
erence histogram, we therefore need to choose a distance D on the HSV color
distributions. Such a distance is used in the deterministic techniques [BJ4J5] as
the criterion to be minimized at each time step. In [5], D is derived from the
Bhattacharyya similarity coefficient, and defined as

Dig*, qi(x 1- Z\/ n)gi(n; ) (6)
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023456780910
q:(x)

0
12345678910
R(m;n), Yo q* = qi, (w:o)

Fig. 1. Color histograms used for tracking. A reference color histogram ¢* is
gathered at time o within a region picked either manually, or automatically if only
a given class of objects is searched and a corresponding detector can be devised. At
time ¢t and for a hypothesized state @, the candidate color histogram q.(x) is gathered
within the region R(x).

with the argument that, contrary to the Kullback-Leibler divergence, this dis-
tance between probability distributions is a proper one, is bounded within [0, 1],
and empty bins are not a source of concern.

We use the same distance. Gathering statistics on a number of window
sequences obtained from successful tracking runs (obtained by a contour-
based tracker on sequences with no background clutter), we observed a con-
sistent exponential behavior for the squared distance D?. Letting p(y:| z:) o
p(D?[q*, qt(m)]) we thus choose:

p(yel i) o exp —AD*[q", qu(1)]. (7)

Lacking a way to estimate satisfactorily the parameter )\, we fixed it to the
same value A = 20 in all the experiments reported in the paper. This value is
in good agreement with the range of values estimated on the labeled sequences
mentioned above. As for the bin numbers, we used the default setting N; =
Ny = N, = 10 in all experiments.

3 Results and Extensions

3.1 Base Tracker

The probabilistic color-based tracker introduced in the previous section is sum-
marized in Procedure M

As the deterministic color-based trackers in [3J/4[5] it allows robust tracking
of objects undergoing complex changes of shape and appearance (Fig. B). Due
to its Monte Carlo nature, however it better handles the confusion caused by
similar color spots in the background (Fig. @) and by complete occlusions (Fig.

m).

! In fact, the likelihood can only obey this relation if the mapping {b:(u), u €
R(x)} — qi«(x) — D?[q*,q¢(x)] from quantized sub-images to R™ is such that
the size of the pre-image of any distance value is independent from this value. It is
easy to exhibit counter-examples to show that this does not hold.
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Procedure 1 Particle filter iteration for single object color-based tracking

Input: ¢* = {¢"(n)}n=1...n reference color histogram

Current particle set: {&{" }m=1...1

Prediction: for m = 1--- M, draw &}, from second-order AR dynamics.

— Computation of candidate histograms: for m = 1--- M, compute g¢11(Z{},) accord-
ing to ().

Weighting: for m = 1--- M compute

N
wli = Kexpd 0 A/a (n)aus (n: @)
n=1

with K such that > 0" 7k, =1
Selection: for m = 1--- M, sample index a(m) from discrete probability {7, }+ over
{1---M}, and set =7}, = :i:?ff)

#40 464 #71 #77

Fig. 2. Color-based tracking. Using a global color reference model picked in the
initial frame, a region of interest (player 75 here) can be tracked robustly, despite large
motions, important motion blur, dramatic shape changes, and partial occlusions. These
results, similar to those obtained by MeanShift in [5], were obtained with our Monte
Carlo tracker. Note that the football sequence we used was in addition subsampled by
a factor of two in time, which makes the displacement and appearance changes from
one frame to another even more extreme.

As for the computational cost, a non-optimized implementation tracks re-
gions of average size 25 x 25 pixels at a rate of 50fps with M = 100 particles on
a 747Mhz Pentium III. The bottle-neck is the building of the M histograms at
each time-step.

Beside the nice behavior demonstrated above, our approach can be extended
in a number of useful ways. We introduce and demonstrate four extensions to
the basic model in the remainder of this section. They respectively deal with the
breaking up of tracked regions into several color patches, the introduction of a
background model in the case of a still camera, the coupling with a skin detector
for face tracking, and the extension to multi-object tracking.

3.2 Multi-part Color Model

If the tracked region contains different patches of distinct colors, e.g., the face and
clothes of a person, the histogram-based modeling will capture them. However,
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Fig. 3. Probabilistic color-based tracking under distraction. (Top) Determin-
istic color-based tracking can get stuck on local minima of the color-based metric, such
as the boxes in the background. (Bottom) In contrast, by propagating a sample-based
approximation of the filtering distribution, our Monte Carlo approach can be more
robust to distraction. It can indeed track momentarily multiple modes (e.g., in frame
50) and then escape from distraction from the background.

#101

Fig. 4. Probabilistic color-based tracking through occlusions. (Top) Complete
occlusion of the tracked region during a few frames (two in this case) can make de-
terministic color-based tracking break down. (Bottom) The ability of particle filtering
to momentarily track multiple modes of the posterior (e.g., in frame 105) allows us to
keep track of the region of interest even after the complete occlusion behind a region
of similar color.

all information about the relative spatial arrangement of these different patches
within the window will be lost. Keeping track of this coarse spatial layout might
be beneficial to improve the tracker performance. Such a goal is easily achieved
within our model by splitting the tracked region into sub-regions with individual
reference color models. Formally, we consider the partition R(x) = szle(:c)
associated with the set {q?}jzlm J of reference color histograms. These regions
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are rigidly linked in that the state space is kept unchanged with a unique location
and scale vector per hypothesized object.

Assuming conditional independence of the image data within the different
sub-regions defined by the state x;, the likelihood becomes:

J
plyil @) o exp =AY D?[q}, qje(@)] (®)

Jj=1

where the histogram g;(x) is collected in region R;(x;) of image y;.

By capturing the coarse spatial layout of colors, this multi-part extension
to our probabilistic color-based tracker is more accurate (better positioning on
the tracked object, better capturing of the scale) thus avoiding the drift, and
possible subsequent loss, experienced sometimes by the single-part version. This
is illustrated in Fig. [,

Fig. 5. Multi-part color model improves tracking. (Top) Because a single his-
togram does not capture any information on the spatial arrangement of colors, a notice-
able drift can occur in some cases. Here, the tracker shifted from the head and jumper
of the baby, to the jumper and the legs, confusing two regions with similar global color
contents but different spatial layouts. (Bottom) The splitting of the region of interest
into two parts with individual color models improved drastically the tracking in this
shaky video, with large and chaotic motions, distracting colors in the background (the
sand, the face of the mother very close in frame 209), and important scale changes at
the end.

3.3 Background Modeling

In particular situations such as surveillance, desktop interaction, or smart rooms,
where the camera is fixed and views of the background can be acquired off-
line, the robustness of tracking can be dramatically enhanced by incorporat-
ing background knowledge in the model. We assume here that a background
reference image gy is available. The incorporation of the background infor-
mation in the deterministic approach could be done by trying to minimize
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D?[q*, q:(z)] — D*[q*(x), q:(x)] where q®(x) is the counterpart of q;(x) com-
puted in the reference background image ¢ (Fig. [6).

08 0.8

0.4 0.4

0
12345678910

q*(x)

0
12345678910

qa R(x), y: q:(x)

0
12345678910

R(x), y

H($;(1 )7 Yo

Fig. 6. Color histograms for tracking with background model. The color his-
togram q:(x) associated with the hypothesized region R(x) at time ¢ is not only com-
pared to the reference ¢* but also to the color histogram q°®(zx) collected within the
same region in the reference background image .

As in Section 3.2, statistics of the difference of the squared Bhattacharyya
distance, which lies in [—1,1], are gathered on a set of cropped training se-
quences, and exhibits a shifted exponential distribution. We thus choose the
new likelihood as:

p(ye| ) o< exp —A (Dz[q*a q:(x)] — Dz[q°(a}), Qt(w)]) 9)

where the shift is absorbed in the normalization factor. The merit of this com-
plementary information will be illustrated in the challenging case of multiple
face tracking with automatic initialization (Section 3.5).

3.4 Multiple Objects

We now extend the model to the simultaneous tracking of multiple objects.
To this end, the likelihood is defined conditioned on the number of objects K
present in the scene at time t. If K; = k, then the state x; = (1, Tg,) is
a concatenation of k single-object states. Each object x;; is associated with a
reference color model q;. If the k corresponding regions R(x;), i = 1---k, do
not overlap, the data-likelihood is simply the product of single object likelihoods.
As soon as at least two objects overlap, one has to be careful not to explain the
same piece of image data several times [13]. In the overlapping case, we form the
likelihood by marginalizing out all the possible relative depth orderings for each
non-empty region intersection. For instance, for two overlapping objects indexed
1 and j the data likelihood reads:

P(Ye| @i, @) = 0.5[pi5 (Y| Tie, ) + Pjs (Y| Tit, 54)] (10)

where p;;(y¢| @+, @;,¢) is the data likelihood under the hypothesis that object ¢
occludes object j. In the absence of background subtraction, and for single-part
objects, it is defined as

Pij (Y| Xie, Tj¢) o< exp —A (D2 4}, qi(zi1)] + D [}, qi(xjlxiy)]) (11)
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where the histogram q(x;|x; ) is obtained on the subregion R(x;+) \ R(x;+).

Note that the two possible relative depth orderings of the two objects are
assumed equally likely. We could also enforce a temporal continuity constraint
that prevents the depth ordering from changing during the time that objects
cross. This would require, however, the capturing of the global depth ordering of
the whole set of objects maintained in the state space. Note that when tracking
is performed within the 3D space, as in [I1], the depth ordering is directly
accessible.

Figure [ shows an example where two persons are tracked from a manual
initialization. The ability to track an unknown and varying number of objects
without manual initialization must rely on a prior knowledge of the background
and/or a rough appearance model of the objects of interest. We already pre-
sented in Section 3.3 a simple way to incorporate background knowledge in our
approach. To achieve a full fledged multiple object tracker, we address below the
issue of appearance-based automatic initialization in the case of face tracking.

#103 #105 #107

499

Fig. 7. Multiple object tracking through occlusion. The combination of the state
space dynamics along with the definition of one color-model per tracked entity and the
averaging of the color-likelihood over possible depth orderings, permits to track objects
that cross each other, without identity swapping or loss of track, even if the two color
models are similar. This sequence is the same as in Fig. A

3.5 Automatic Initialization on Skin

A number of tracking applications focus on people. Many trackers specialized
for this use rely, at least partially, on skin color models (e.g., [IJI8]). Such a
specialization is easily incorporated within our system. A normalized HSV his-
togram q with N = N, Ng + N, bins is learned from hand-labeled face images,
20 frontal identity photographs with various illumination conditions, in our ex-
periments. At each instant pixels are labeled as skin/non-skin by thresholding
their likelihood under this skin color model. At time ¢, when a cluster of skin-
labeled pixels falls within the specified size range for the objects of interest, and
is not too close to an existing cloud of particles, if any, a new object is originated
from this cluster. The large regions of false alarms produced by, e.g., wooden
doors and desks, can be eliminated in the case of still camera, by passing de-
tected pixels through a second motion-based sieve obtained by thresholding the



672 P. Pérez et al.

frame-difference (Fig.[R)). The good performance of the multiple face tracker with
automatic initialization and reference background is illustrated in Fig.

Fig. 8. Simple color-based face detection. A color histogram model learnt offline
is used to assign each pixel with a probability to be in a skin region. (Middle) The
thresholding of this probability, at level 0.3 in this example, already provides a good
localization of skin patches, but a large number of false alarms in the background
as well. (Right) Combining this skin detection with a very crude motion detection
(thresholding the absolute frame difference, at level 10 here) permits the extraction of
correct skin patches among which faces can be detected based on the aspect ratio of
the region.

#287 #289 #343

Fig. 9. Automatic multiple face tracking in still scenes. Combining the multi-
object color-based tracker with a color modeling of the background in image 1 and
the detection of moving skin patches, faces of moving persons can be detected as they
enter the scene, and tracked without confusion even when they cross each other for a
few frames.
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4 Discussion

Embedding the color-based deterministic trackers introduced in [3J5] within a
probabilistic framework we further improve their robustness and versatility. We
achieve in particular the robust tracking of fast moving and changing regions
within color distractions (Figs.[ and Bl), as well as the simultaneous tracking of
multiple objects under temporary occlusions (Figs. dl and [J).

In the case where a background model is used for multiple object tracking, our
Monte Carlo tracker bears connections with the “Bramble” tracker introduced
n [I1]. In Bramble, an individual Gaussian mixture model capturing both col-
ors and color gradients is associated with each point (on a subsampled grid) of
the background. A generic Gaussian mixture model captures the same type of
information for the foreground (e.g., the persons). The ratio of the two likeli-
hoods over the grid-points within an hypothesized region (projection of a 3D
generalized cylinder in the image plane) provides the weights for the particles.

As for the definition of hypothesis likelihood in terms of foreground and
background models, an interesting connection can be worked out, as detailed
in the Appendix. One nice aspect of the data likelihood in Bramble is that it
explains the whole scene irrespective of the number of hypothesized objects.
This enables the inclusion of the number of objects as part of the state space,
since two particles maintaining different numbers of objects at the same instant
can be legitimately compared using the weights based on this likelihood. Using
birth and death processes, the handling of the varying object numbers can then
be done consistently within the Bayesian framework. In practice, however, our
experience of this type of approach is that after resampling, most of the particles
share the same number of objects.

Another important difference related to the color modeling is that the in-
stantiation of the foreground reference model in our approach makes it specific
to the tracked object. As demonstrated in Sects. 3.5-6, this prevents swapping
objects at crossings, a problem encountered by Bramble.

As for background modeling, the fact that it is related to individual spatial
locations in Bramble, whereas it is built on the fly within the hypothesized
region in our case, might make our use of the reference background more robust
to slight camera motions. The experimental assessment of this could be part of
the continuing exploration of our probabilistic tracking framework.

Other research perspectives concern the learning of the data likelihood, the
automatic split of tracked regions into multiple color patches, the optimal combi-
nation of the color-based likelihood with more classic contour-based likelihoods
with the following questions: how to assess adaptively which modality is the best
to rely on at a given instant, and how to make the color and/or contour reference
evolve in time for improved tracking robustness [19)].

Acknowledgments. The authors thank Andrew Blake for his comments and
encouragements.
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Appendix: A Connection with Bramble [11]

If our histogram-based likelihood was defined using an exponential distribution
on the Kullback-Leibler divergence (instead of the squared Bhattacharyya dis-
tance), but with arguments swapped as compared to the choice in [4], then the
likelihood can be re-interpreted in terms of individual grid-point contributions.
Indeed

al q(n;x) q:(x)
KL[gi(2)llg*] = > qi(n;a)log o) Eq: () {bg q*] . (12)

If the window is large enough, the expectation on the right-hand-side can be
approximated by the average log-ratio over the window, since the b;(u) for u €
R(z) can be seen as samples from g, (x):

qu( ) |:10g qi;](ic)] Z 1 qt bt ’u,),flf} (13)

| il @b ()]

n=1

Using this approximation, we obtain:

expAKLlg (@) ~ ] (qb(“”])( (14)

u€ER(x) [bt (u)7 x

In the case where background subtraction is incorporated, as described in
Sect. 3.3, the likelihood ratio is then approximated by:

exp ~A(KLlgi(z)]lq"] - KLlg:(@)q* (@) = ]] (f[bu)
ueR(x) )
(15)

This is, as in [I1] (apart from the raising to power W)\w)l) the product over the
grid points in the candidate region of the ratio of point-wise data likelihoods, un-
der the foreground model and under the location-dependent background model
respectively.
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