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Abstract-In this paper, we address the problem of tracking 
one or several targets in a Track-Before-Detect (TBD) context 
using particle filters. These filters require the computation of the 
likelihood of the complex measurement given the target states. 
This likelihood depends on the complex amplitudes of the targets. 
When the complex amplitude fluctuates over time, time coherence 
of the target cannot be taken into account. However, for the single 
target case, spatial coherence of this amplitude can be taken 
into account to improve the filter performance, by marginalizing 
the likelihood of the complex measurement over the amplitude 
parameter. The marginalization depends on the fluctuation law 
considered. We consider in this article Swerling 0 and Swerling 
1 fluctuation models. We show that for the Swerling 1 model 
the likelihood of the complex measurement can be obtained 
analytically in the multi-target case. For the Swerling 0 model no 
closed form can be obtained in the general multi-target setting. 
Therefore we resort to some approximations to solve the problem. 
Finally, we demonstrate with Monte-Carlo simulations the gain 
of this method both in detection and in estimation compared to 
the classic method that works with the square modulus of the 
complex signal. 

I. INTRODUCTION 

The radar tracking problem consists in detecting and track­
ing one or several targets from the measurements provided by 
the radar. Usually, the problem is divided into two steps. First 
a pre-detection step that consists in thresholding the raw radar 
data and provides detection "hits" that correspond to potential 
targets or false alarms. Then, according to these detection 
"hits", the tracking stage is performed and allows to update, 
create or delete target tracks. This procedure performs well 
at high target Signal to Noise Ratios (SNR). However at low 
SNR, either the detection threshold is chosen too large and the 
detection probability is then small, or the threshold is set too 
low, leading to a large false alarm probability that makes the 
association problem very hard to solve. 

To avoid these limits, a new approach, known as Track­
Before-Detect (TBD), has been proposed [1]. In this frame­
work, detection and tracking are performed jointly from the 
raw radar data. As all the information is kept, this strategy is 
expected to provide better performance for low target SNRs. 
Unfortunately, due to the non linearity of the measurement 
equation and possibly to the non Gaussianity of the noise, 
classic tracking methods based on Kalman filter such as PDAF, 
JPDAF [2] cannot be used in this context. Thus, to overcome 
these difficulties, solutions based on particle filters have been 
proposed in the literature, first in the single target case [3], 
then in the multiple target case [4]. In these particle filters, the 
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computation of the particle weights requires the computation of 
the likelihood of the measurement given the particle states, [5] 
that depends, in radar application, on the complex amplitudes 
of the targets that are unknown and may fluctuate over time. 
Generally the phase of the complex amplitude is supposed to 
be, at each iteration, uniformly distributed over [0, 27f) and 
the modulus is often modeled with Swerling models [6]. We 
consider, in this paper, that target amplitude modulus are either 
modeled by the Swerling 0 model - in this case modulus is 
assumed constant over time -, or by the Swerling 1 model 
- the modulus is then distributed according to a Rayleigh 
distribution. 

Since these amplitude parameters are unknown, the likeli­
hood of the measurement cannot be computed directly. A first 
possible solution often encountered in the literature consists in 
working on the square modulus of the complex measurement 
[7], thus allowing to remove the dependency on the phase. In 
that case, if the modulus also fluctuates, the likelihood can be 
numerically integrated with respect to the modulus fluctuation 
distribution. Note that, in the Swerling 1 case, Boers et al. 
have derived a closed form expression for the likelihood [8]. 
However, this method does not take into account the fact that 
the complex amplitude is constant from cell to cell on the 
overall signal and thus induces a loss of sensitivity of the 
filters. To avoid such a loss, Davey et al. proposed, in the 
single target case and in the Swerling 0 model, to directly 
marginalize the likelihood of the complex measurement over 
the phase [9]. In that specific case they obtain a closed form for 
the likelihood and show a significant gain both in estimation 
and in detection. 

In this paper, we first propose to extend this method to the 
multi-target case in Swerling O. Unfortunately, in that difficult 
case, a closed form cannot be obtained analytically for close 
targets. We therefore propose approximations to solve this 
problem. Second, we propose to exploit the spatial coherence 
of the amplitude modulus in the Swerling 1 case, that is usually 
discarded as well in the literature [8]. In that case, we show 
that a closed form expression can be achieved in the general 
multi-target case. 

This paper is organized as follows. In section II we present 
the radar signal model. Then in section III we present the 
classic method to compute the likelihood from the square 
modulus of the complex signal. In section IV we show 
that the likelihood can be computed directly from complex 
measurement in Swerling 0 and Swerling 1 models. Finally 
in sections V and VI we present simulation results that show 



the gain both in detection and in estimation for this method 
compared to the classic one. 

II. PROBLEM FORMULATION 

In this section we present the framework for tracking 
targets from complex measurements in a Track-Before-Detect 
context. 

A. Multi-target state 
In a Bayesian framework, the aim is to calculate at a 

given time step k the a posteriori density of the hidden 
state Xk conditionally to the observation Zu (where the 
notation 1 : k represents the collection of elements from 
1 to k, for instance Zl:k = {Zl, " "  Zk}). In a multi-target 
setting, the hidden state Xk consists of the concatenation of 
all the individual target state vectors [4]. So, if we assume 
at step k that Nt targets are present, the multi-target state is 

then given by Xk = [xr,p . . .  , xr,Nt ] T (which can also be 

denoted by Xk,l:N,) where each Xk,i = [Xk,i, Xk,i, Yk,i, Yk,i]T, 
i E {1, . . .  , Nt}, is the individual state of target i at time 
k that consists of the position and the velocity in Cartesian 
coordinates. 

B. Measurement model 
We suppose here that observations consist of range and 

bearing raw radar data obtained after range matched filtering 
and adaptive beam forming. Thus, at step k, the measurement 
Zk consists of N = Nr x Ne range-bearing cells, with a given 
resolution D.r in range and D.e in bearing. For convenience, we 
t f . t t - [ 11 1 2 1m NrNo ]T rans orm Zk In 0 a vec or Zk - Zk , Zk , . . . , Zk , . . . , Zk ' 
with zLm the signal measured in the range-bearing cell (l, m) 
(rather than a bi-dimensional array). Then, given the target 
state Xb the measurement Zk is given by the following 
nonlinear equation: 

Nt 
Zk = L Pk,iej'Pk,ih(Xk,i) + llk, (1) 

i=l 
where: 

• h( Xk,i) represents the 2D range-bearing ambiguity 
function of the ith target centered on the target lo­
cation (Xk,i, Yk,i) and unfolded in the same way as 
Zk. For the sake of clarity, h(Xk,i) will be denoted 
hk,i in the rest of the paper. 

• llk is a circular symmetric complex Gaussian vector 
with invertible covariance matrix r. 

• 'Pk,i and Pk,i are respectively the phase and the 
modulus of the ith target complex amplitude. All 
variables 'Pk,l:N, and Pk,l:Nt are supposed mutually 
independent, and independent from llk. 

Each phase 'Pk,i is supposed to be unknown and uniformly 
distributed over the interval [0, 27f). Under these conditions, it 
is not possible to estimate it precisely over time. Concerning 
the modulus Pk,i, we consider in this article two cases. Either 
the modulus follows the fluctuation model Swerling 0, that is to 
say it is constant over time, or the fluctuation model Swerling I, in which case the modulus is distributed according to a 
Rayleigh distribution. 
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C. Measurement likelihood 
Most of the time TBD tracking algorithms require the 

computation of the likelihood P (Zk I Xk) of the observation 
conditionally to the multi-target state. However, the measure­
ment equation (1) does not permit to compute P (Zk I Xk) as 
it depends on the unknown parameters Pk,l:N, and 'Pk,l:Nt .  
In fact, equation (1) allows us to compute the density 
P (Zk I Xk, Pk,l:Nt , 'Pk,l:Nt ) which is a circular complex Gaus-

N, 
sian density with mean J.Lk = L Pk,iej'Pk,i hk,i and covariance 

i=l 
matrix r, i. e. 

P (Zk I Xk, Pk,l:Nt , 'Pk,l:N,) = 

7fN d�t (r) exp { -(Zk - J.Lk)H r-1 (Zk - J.Lk) } . 
(2) 

Then by developing (2) we obtain the following expression: 

P (Zk I Xk, Pk,l:N" 'Pk,l,N,) = JrN d�t (r) exp { -Zkr-1 Zk} x 

exp {-� p�,ih�ir-lhk,i -�2Pk'ilh�ir-lzkl cos ('Pk,i - �k,i) 

- � l�l 
2Ih�ir-lhk'll cos ('Pk,i - 'Pk,l + 1Jk'il)}' 

where �k,i arg (hf,ir-1zk ) and cPk,il 
(3) 

arg (hf,ir-1 hk'l) ' In all cases, the ignorance of the 
variables Pk,l:Nt and 'Pk,l:Nt is problematic to compute 
the likelihood P (Zk I Xk). So, many authors have proposed 
different strategies to eliminate these variables from the 
likelihood. 

III. LIKELIHOOD COMPUTATION FROM SQUARE MODULUS 

OF THE COMPLEX MEASUREMENT 

The first strategy, very common in the literature, con­
sists in working on real samples instead of complex sam­
ples [8], [10]. With a slight abuse of notation, let IZkl2 
be the vector of square modulus of the complex signal, 
IZkl2 = [lzFI2, . . .  , Izk"rNo I2]T and assume that samples are 
mutually independent. Note that this last assumption imposes 
r = 20'2IN. The density p(lzLml2 I Xk, Pk,l:Nu'Pk,l:Nt ) in 
each cell (I, m) does not depend, in this case, on variables 
'Pk,l:Nt and is a non central chi-square distribution with two 
degrees of freedom, given by: 

(4) 

where 10 is the modified Bessel function of the first kind and "Nt 2,lh1m12 1m L..,t=l Pk,t k,t . h l' Th 'Y = 2 IS t e non centra Ity parameter. en 0' 
by integrating with respect to the density P(Pk,l:N,) [10] which 
depends on the fluctuation model considered, we obtain 

p(IZLmI2 I Xk) = / P(Pk,l:Nt )p(lzLmI2 I Pk,l:N" Xk)dpk,l:N,. (5) 



In practice this integral is often intractable and has to be 
estimated by numerical integration. Finally, the density of IZkl2 
conditionally on Xk is given by 

Nr No 
P(IZkI2 1 Xk) = II II p(lz�mI2 1 Xk). (6) 

l=lm=l 
Note that most of the TBD algorithms require only the 
computation of the likelihood up to a constant. Therefore, to 
avoid unnecessary computation it is better to use the likelihood 
ratio: 

£ (I 12 1 X ) = 

P (IZkI2 1 Xk) Zk k Po (IZkI2) , 

where Po (IZkI2) is the density of IZkl2 under the assumption 
that no target is present, given by 

Indeed, for pixels far away from the target location, the non 
centrality parameter ,lm is almost equal to zero and therefore 
the likelihood ratio can be considered as equal to one. Finally, 
the overall likelihood ratio can just be computed in the cells 
where target ambiguity functions remain significant, i. e. 

£ (IZkI2 1 Xk) = II £ (lz�mI2 1 Xk) , (7) 
(l,m)EVk 

where Vk is the set of pixels where the target ambiguity 
functions are not negligible. 

In the Swerling 0 case, the modulus Pk,i of each target 
does not fluctuate and is equal to the unknown parameter 
Pi. Consequently, computing the likelihood ratio from the 
square modulus measurement just consists here in substituting 
values Pk,l:N, by constants Pl:N,. Although these constants are 
unknown, they can be estimated over time and the estimates 
injected into the likelihood ratio. For instance, in particle 
filter, amplitude parameters Pl:N, can be inserted in the state 
vector, with artificial dynamics, and sampled as the other state 
parameters [11]. 

In the Swerling 1 model, at each step k, the modulus Pk,i 
is distributed according to a Rayleigh distribution ( 2 ) Pk,i Pk,i PSWI (Pk,i) = -2- exp --2- , ap,i 2ap,i 
where a �,i is the parameter of the Rayleigh distribution such 
that lE[Pk,il = 2a�,i' Then the integral (5) can be computed 
analytically. However, it is easier to notice, as did Boers et al. 
in [8], that, when the noise is uncorrelated (i. e. r = 2a2IN), 
samples Iz�ml2 are distributed according to an exponential dis-

N, 
tribution with parameter 2vlm 

= 2a2 + L 2a�,ilh��12. Thus, 
i=l 

assuming independent square modulus samples, the likelihood 
ratio can be written as follows: 
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IV. LIKELIHOOD COM PUTATION FROM COMPLEX 

MEASUREMENT 

The computation of the likelihood from square modulus 
is not optimal in the sense that it does not take into account 
the spatial coherence of the complex amplitude and that it 
implicitly makes the hypothesis that phase and modulus are 
independent from cell to cell, which is not the case. Moreover, 
this method requires assuming r = 2a2IN, an hypothesis 
that is not always verified. For instance, in radar processing, 
when windowing is used to reduce sidelobes but the signal 
is still sampled at the signal bandwidth, the mainlobe width 
is increased and the noise cannot be assumed white anymore. 
To avoid these drawbacks, Davey et al. have proposed in [9] 
a method for the computation of the likelihood that takes 
into account the spatial coherence of the phase 'Pk and can 
address spatially correlated noise. However this strategy has 
been developed only in the single target case and for the 
Swerling 0 model. In this section, we propose to extend this 
method to the multi-target case and for the Swerling 0 model 
and the Swerling 1 model. 

A. Single target likelihood ratio computation 
In this section, we first consider the single target case. 

Thus, the subscript i that refers to the target number will be 
dropped out for simplicity. For a single target, equation (3) 
becomes 

P (Zk 1 Xk, Pk, 'Pk) = 1fN d�t (r) exp {-Zkr-1zk} x 

exp (-p%h�r-lhk + 2pklh�r-lzkl COS('Pk - �k))' 
(9) 

where �k arg(h�r-1zk)' The likelihood ratio 
£ (Zk 1 Xk, Pk? 'Pk) is then obtained by dividing (9) by 

Po (Zk) = 1fN d�t (r) exp {-Zkr-1zk}. 

Davey et al. then proposed to integrate this likelihood ratio 
with respect to the phase distribution (i. e. the uniform dis­
tribution over [0, 21f», leading to the marginalized likelihood 
ratio: 

£ (Zk 1 Xk, Pk) = 127r 
£(zklxk' 'Pk, Pk)P('Pk)d'Pk, 

= exp{-p%h�r-1 hk}Io (2pk Ih�r-1zkl)· 
(10) 

Note that the quantity Ih�r-lzkl can be approximated by 
setting a zero value where the vector hk has not a significant 
contribution, thus allowing the computation of Ih�r-1zkl 
only over a small set of pixels in the vicinity of the target. 

In Swerling 0, the modulus is constant and equal to a 
certain value p. So no further integration is required. The 
parameter P can be estimated similarly than in the square 
modulus case, for instance by the method presented in [11]. 
Note that, as highlighted in [9], whereas the square modulus 
strategy requires the computation of several Bessel functions, 
here only one Bessel function is required. 

We propose now to extend the method of Davey et al. to the 
Swerling 1 model. This requires to marginalize the likelihood 



ratio (10) with respect to the Rayleigh distribution: 

£SWI (Zk I Xk) {= £(Zk IXk, Pk)PSWl (Pk)dpk, Jo = � { Pk exp (-p�o:)lo (/3Pk) dpk, (Jp Jo 
(11) 

where 0: = 2�� + hftr-1 hk and /3 = 2 Ihftr-1zkl. This 
integral can be computed analytically and is equal to 

1= 1 (/32 ) Pk exp (-p�o:) 10 (/3Pk) dPk = - exp - . 
o 20: 40: 

Finally the likelihood ratio is given by: 

1 ( 20"�lh:r-lZk I 2 ) 
1+20"2h:r-1hk 

exp 1+20"2h:r-1hk . 
(12) 

B. Multi-target likelihood ratio computation for distant targets 
(Swerling 0 and Swerling 1) 

As we said previously, the vector hk,i can be approximated 
by setting zeros in all cells where the ambiguity function is 
almost zero. Then, if all targets are far away from each other 
and if the noise spatial correlation decreases rapidly, we have, 

Thus the likelihood ratio becomes the product of the individual 
target likelihood ratios and, as all variables Pk,l:N, and CPk,l:N, 
are assumed mutually independent, the marginalized likelihood 
ratio is just the product of the individual marginalized likeli­
hood ratios: 

i=l 
(13) 

This is an interesting property because most of the time targets 
are well separated and in this case, the multi-target likelihood 
ratio is just the product of the single target likelihood ratios 
of the different targets taken individually, thus reducing the 
computational cost. 

C. Multi-target likelihood ratio computation for close targets 
in Swerling 0 model 

H
Wh�� tar�ets are c�ose to each other,

. 
the assu�nption that Ihk,ir hk,l l � 0, V t, l E {I, . . .  , Nt} IS not vaLId anymore 

and we cannot consider the overall likelihood ratio as the 
product of the single target likelihood ratios. Unfortunately, 
marginalizing over phases CPk,l:N, leads to an intractable 
expression, even for two targets. Then an approximation must 
be used to compute the likelihood ratio. A first solution is 
to do a numerical integration over the domain [0, 27r )N,. 
However, this solution is computationally intensive and the 
size of the integration domain increases exponentially with the 
number of targets. To avoid this drawback, we propose a quite 
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simple approximation based on importance sampling. The 
marginalized likelihood ratio can be seen as an expectation: 

£swo (Zk I Xk,l:Nt, Pl:N,) = 

IEp('Pk.lN,) [£ (Zk I Xk,l:Nt, CPk,l:N" Pl:N,)], 

and the approximation in this case is given by, 

LSWO (Zk I Xk,LNt, Pl:N,) � 

NJS (U) (U ) "'"""' P 'Pk,l ... p 'Pk,N, L ( I U ) D (u) (u ) Zk Xk,l:Nt, 'Pk,l:N" Pl:N, , u=l ql 'Pk,l ... qN, 'Pk,N, 
(14) 

where N1S is the number of samples and qi (. ) is the ins­
trumental density used to draw samples CP'k i. We propose 
as instrumental density for each variable cP�,i the uniform 
distribution over the interval [-0'1' + CPk,i, CPk,i + 0'1']' where CPk,i is an estimator of CPk,i. Concerning this estimator, in the 
general Nt target case (Nt ?: 2), the maximum likelihood 
estimator cannot be computed analytically from (3). It can 
be obtained by a gradient descent method but this solution 
is computationally expensive. We therefore propose to use a 
different estimator. Let Hk = [P1 hk,l, . . .  , PN,hk,N,] and let 
\}J k = [ej'Pk.l, . . .  , ej'Pk.N,]T. Equation (2) can be rewritten as 
follows: 

P (Zk I Xk, Pl:N" CPk,l:N,) = 

7rN d�t (r) exp { -(Zk - HkWk)H r-1 (Zk - HkWk)} . 
Then maximizing with respect to the vector W k leads to the 
classic least square estimator 

� � 

(15) 

Note that each component \}J k i of vector \}J k does not respect 
the constraint I i'h,i I = 1. Th�refore, this estimator is clearly 
not the maximum likelihood estimator for the phases CPk,l:N" 
but it is relatively close to it. Thus, we propose to estimate the 
phase CPk,i by 

(16) 

Obviously, the proposed method should lead to slightly worse 
performance in terms of estimation than the numerical integra­
tion but it is much faster. Moreover the number of operations 
of this method evolves linearly with the number of targets. 

D. Multi-target likelihood ratio computation for the Swerling 
1 model 

In the Swerling 1 model, each variable Pk,iej'Pk,i in the 
measurement equation (1) is a zero-mean circular symme­
tric complex Gaussian variable with variance 2(J},i (i. e. Pk,i 
follows a Rayleigh distribution of parameter (J p,i and CPk,i 
is uniformly distributed over [0, 27r)). Therefore the vector 
Pk,iej'Pk,i hk,i is also complex Gaussian with zero-mean and 
covariance matrix 2(J�,ihk,ihf,i. Since Zk is the sum of inde­
pendent Gaussian vectors with zero-mean, it is also a complex 
Gaussian vector with zero-mean and covariance matrix �N, 
given by 

Nt 
�N, = r + L 2(J�,ihk,ihf,i· 

i=l 
(17) 



Clearly, this matrix is definite positive, so that the multi-target 
likelihood ratio is finally given in closed form by: 

LSWI (Zk I Xk) = 

det (r) ( H (-I -I)) 
det (�N,) 

exp -zk � Nt - r Zk· 
(18) 

Note that here we have not made any hypothesis about the 
closeness of the targets and therefore this closed form expres­
sion is valid both for distant and close targets. However when 
targets are well separated, it is faster to compute the likelihood 
ratio of each target individually with (12) because it does not 
require the computation of the determinant det (�N,) and the 
inversion of the matrix �Nt that can be costly. 

V. SINGLE TARGET SIMULATIONS AND RESULTS 

We compare performance in detection and in estimation 
with a particle filter that either computes weights from square 
modulus measurements, or directly from complex measure­
ments. For the Swerling 0 model, Davey et al. have already 
shown the gain in detection and in estimation by using in­
tegrated likelihood ratio instead of square modulus measure­
ments [9], so we focus here only on the Swerling 1 model. 

A. Radar signal 
We consider a range and bearing surveillance radar that 

covers the area defined, in polar coordinates, by the pavement 
['min"max] X [Bmin, Bmax]. The radar transmits, at each 
iteration, a linear frequency modulated signal ( 

I _ • 

( _ld) sin (7rBTI (1 - �)) 
hr(Xk) - ITtl::;Te 1 T ( ITll ) ' e 7rBTI 1--Te 

with TI = ('k - II) %, c the celerity of the electromagnetic 
wave, 'k = y'x% + y% the range between the radar and the 
target and 'I the range of the cell considered. At the reception 
side the radar consists of a linear phased array with Na 
antennas spaced by � where A is the wavelength of the carrier 
frequency. Finally the ambiguity function along the bearing 
axis is given by [12]: 

m sin (� ) 
he (Xk) = . ( <pm ) ' Na sm 2 

with .pm 
= 27r)..da [COS(Bk) - cos (Bm)], Bk = arctan( �) the 

target bearing and Bm the cell bearing. Finally, the range­
bearing ambiguity function in cell (t, m) can be expressed as 
hlm(Xk) = h�(Xk) x he(Xk)' 

B. Single target scenario 
We consider here a point target with a rectilinear trajectory 

and a constant velocity uniformly drawn in [Vmin, vmax]. The 
target SNR is defined as SNR = 10 10glO (�) where CT� 
is the parameter of the Rayleigh distribution and 2CT2 is the 
noise power in the range-bearing cell. We suppose that the 
target appears at time step kb = 10 and disappears at time 
step ke = 75. The total duration of the experiment is set to 
kmax = 100. 
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C. Single target TBD particle filter 

We briefly present here the classic TBD particle filter for a 
single target case used for the simulations [7]. As the presence 
of the target at each iteration is unknown, a variable Sk is 
added to the particle state vector that takes value 1 if the 
target is present and 0 otherwise. This allows to compute 
the target probability of existence PI: = P (Sk = 1 I Zk). To 
keep the Markovian structure, (skhEN follows a Markov chain 
with transition probabilities Pb = p(Sk = 1 I Sk- I = 0) 
(birth probability) and Pd = P(Sk = 0 I Sk- I = 1) (death 
probability). The particle target state of the pth is only defined 
when sf = 1. In that case, if sf_ 1 = 1 the particle target state 
xf evolves according to the following linear equation: 

(19) 

where vf is a white Gaussian noise with covariance matrix 

and F is the transition matrix defined by: 

Here T represents the sampling period of the measurement. If 
sf_ 1 = 0, the target state is drawn uniformly over its definition 
set: 

• the posItIon [xf, y�] is uniformly distributed in the 
radar observation window; 

• the velocity [:i:f, y�] is uniformly distributed in the area 
C = {(:i:f,yf) I Vmin � y'(:i:f)2 + (y�)2 � vmax}. 

As for the parameter CT�, we use the method proposed in [11] 
to estimate it and therefore sample it with the particles. For 
the birth case, this parameter is uniformly distributed over 
the interval corresponding to a target SNR between SNRmin 
and SNRmax while for the survival case, the parameter is 
propagated with variance CT;. 

At each iteration, the particle filter propagates Nc particles 
(continuing particles) according to equation (19) (from previ­
ous iteration) and initializes Nb new particles (birth particles) 
in the radar observation window. Note that initializing the 
particle positions with the prior is not relevant, and we prefer 
using the instrumental density proposed in [13] that initializes 
particle positions in the cells that exceed a given threshold 
vPIa = -2CT2!Og(Pfa) [13] (where Pfa is a given probability 
of false alarm). Then it is possible to compute un normalized 
weights for the pth continuing and the qth birth particles as: 

(20) 

where N PIa is the number of cells exceeding the threshold 
vp!a' The approximate posterior density can be seen as a 
mixture with two components, one for the birth particles and 



the other one for the continuing particles. The probability of 
each component is given by, 

where Nc 
Me = (1 - Pd)Pk-1 L wk,p, 

p=l 
Nb - ' ""  b Mb = Pb( l - Pk

-d � Wk,q, 
q=l 

(21) 

(22) 

with Pk
-

1 the estimated probability of target existence at step 
k - 1. Finally the estimated probability Pk of target existence 
can be computed from these quantities by 

Pk = _ _ 

,
Me + Mb , . (23) 

Me + Mb + PdPk-1 + (1 - Pb)(l - Pk-1) 
The un normalized weights are then normalized such that the 
sum of the normalized weights equals Pc for the continuing 
particles and equals Pb for the birth particles. Finally, Ne 
particles are resampled from the Ne + Nb particle cloud. 

D. Simulations 
The target SNR is fixed to 5dB. For the simulations the 

following parameters are used: T = 1 s, Vmin = 0.1 km.s-l, 
Vmax = 0.3km.s-

1
, SNRmin = 2 dB, SNRmax = 20 dB, qs = 

1O-3,Pfa = 0.1 and (T; = 0.1. The transition probabilities for 
the jump Markov process are set to Pb = Pd = 0.05. We 
choose Ne = 2000 and Nb = 1000. For the simulation of the 
radar measurements, we use: 'min = 100 km, 'max = 120 km, 
�r = 0.5km, emin = -10°, emax = +10°, �() = 1.45°, 
Nr = 40, N() = 14, r = 2(T2IN with (T2 = 0.5, B = 150 kHz, 
Te = 6.67 X 10-5 s, Na = 70, ,\ = 3 cm, c = 3 X 108 m.s-

1
. 

Note that a small radar window is chosen here to avoid using 
an important number of particles. 

We estimate the probability of presence, the probability 
of detection and the Root Mean Square Error (RMSE) in 
position and velocity via N Me = 5000 Monte-Carlo runs. 
These quantities are computed for the two following filters: the 
first one computes particle weights from the square modulus 
of the complex measurement and is denoted by SMPF, while 
the second one computes the particle weights directly from 
the complex measurement and is denoted by CMPF. Then, the 
probability of presence is directly provided by each particle 
filter and averaged over the N Me simulations. We propose 
the following detection strategy based on this probability of 
presence. Let us call dk the decision at time step k that can take 
value 0 (no detection) or 1 (detection). We propose to take the 
decision by thresholding the probability Pk with an adaptive 
threshold T(dk-1) depending on the previous decision dk-1 
(dk = 1 if Pk > T(dk-1) ). As the value of the estimator 
Pk

-
1 can take low values, this avoids to declare no detection 

whereas the position estimated by the filter is very close to 
the actual target position. For the simulation, T(dk-1 = 1) is 
set to 0.2 and T(dk_1 = 0 ) is set to 0.9. Then, we estimate 
the false alarm probability Pfa,k as follows. When the target 
is absent, it is the average over the N Me simulations of the 
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Fig. 1. Monte-Carlo simulations results for the single target case with the 
Sweriing 1 model. Top: average probability of presence. Bottom: detection 
and false alarm probabilities. SNR = 5 dB. 

detection variable dk and when the target is present, it is the 
average of the variable dk where the estimated position of the 
target is outside a vicinity of two range-bearing cells from the 
actual target position. The target detection probability PD,k at 
step k is obtained in a similar way: when the target is present, 
it is the mean of the variable dk where the estimated position 
of the target is located in a vicinity of two range-bearing cells 
from the real target position. Finally the RMSEs in position 
and velocity are calculated only when the detection variable 
dk is equal to 1 and when the estimated position of the target 
is located in a vicinity of two range-bearing cells from the real 
target position. We present in figure 1 the performance of the 
two filters in terms of estimated probability of presence and in 
terms of probability of detection and false alarm. In figure 2 we 
present the performances in terms of RMSE in position and in 
velocity for the two filters. Clearly, the filter that computes the 
weights from the complex measurement provides much better 
performance than the filter using the square modulus of the 
complex signal. 

VI. MULTI-TARGET SIMULATIONS AND RESULTS 

We consider in this section the crossing of two targets 
that follow rectilinear trajectories. The angle between the two 
velocity target vectors is set to %. We denote by dmin the 
minimum distance between the two targets and assume that it 
is reached at time step ke. 

A. Multi-target particle filter 
We used for these simulations the multi-target particle filter 

proposed by Kreucher et al. in [4]. This filter allows to estimate 
the number of targets. However as we are concerned here 
mainly by the likelihood computation when the targets are 
close to each other, we assume that the number of targets is 
known. So the particle filter is composed of Np multi-target 
particle state vectors that contain two targets, i. e. each particle 
state vector is defined by X� = [x� I' x� 2lT where x� 1 is the 
single state vector belonging to the' first 'target and X�'

2 is the 
single state vector belonging to the second target. Moreover, 
we assume that the tracks have already been initialized, so 
that at step k = 0 each target state x� i of particle P is 
initialized from the actual target state. This initialization is 
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Fig. 2. Monte-Carlo simulations results for the single target case with the 
Swerling 1 model. Top: RMSE in position. Bottom: RMSE in velocity. SNR = 

5 dB. 

done as follows: for the position we add a small Gaussian noise 
with variance 0'; on the actual target range rO,i = J X6,i + Y6,i 
and a small Gaussian noise with variance O'� on the true target 
bearing BO,i = arctan (;�::). For the velocity, we initialize 
it around the true velocity in Cartesian coordinates and we 
add a small Gaussian noise with covariance matrix 0'�I2' For 
the particle propagation, we use as instrumental density the 
Independent Partition (lP) method defined by Kreucher et 
al. [4]. This method consists in computing likelihood ratios 
separately for each target when they are well separated and 
sample the state of the particles according to the distributions 
defined by the likelihood ratios of each target. In the other case, 
i. e. when target are too close to each other, we just propagate 
particles according to the prior distribution (19). Finally the 
particle filter used can be summarized as follows: first, at step 
k = 0, initialize particles from the actual target positions. 
Then, propagate particles according to IP if particles belonging 
to each target are sufficiently disjoint, or according to the prior 
if not, and finally compute weights and resample. 

B. Simulations 
For the simulations, the SNR is set to 10 dB for each target. 

The trajectories of both targets are randomly simulated such 
that their velocity vector form an angle of % and cross at 
step kc = 35 with dmin = 0.5 km. For the filter we use the 
following parameters: T = 1 s, qs = 10-3, 0'; = 0.0625, O'� = 

3.9952 X 10-5, O'� = 0.01 and 0'; = 0.1. For the simulation 
of the radar measurements, we use: r min = 100 krn, r max = 

150 km, �r = 0.5 km, Bmin = -20° , Bmax = +20° , �e = 

0. 72° , NT = 40, Ne = 56, r = 20'2IN with 0'2 = 0.5, 
B = 150 kHz, Te = 6.67 X 10-5 s, Na = 140, ,\ = 3 cm, 
c = 3 X 108 m.s-I. 

The mean RMSE of the two targets in position and velocity 
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and the probability of track loss are estimated from N Me = 

2000 Monte-Carlo runs. These quantities are estimated both 
for the Swerling 0 model and the Swerling 1 model. For the 
Swerling 0 model we use three different particle filters: 

• The first one that uses the complex measurement 
to compute the weights. When the targets are too 
close to be supposed independent, the likelihood ratio 
is approximated with a numerical integration over 
[0, 27r )2 and we use 20 samples per interval; we denote 
this filter by IntPF SWO. 

• The second one that uses also complex measurement 
but when the targets are too close, the likelihood ratio 
is approximated with the strategy based on importance 
sampling (14). We set NIs = 1 and 1j'P = �; we 
denote this filter by ISPF SWO. 

• The third filter that computes the weights according 
to the square modulus measurement; we denote this 
filter SMPF SWO. 

For the Swerling 1 model, we use two different particle filters: 

• The first one that uses the complex measurement to 
compute the weights with the equation (18); we denote 
this filter CMPF SW 1. 

• The second one that uses the square modulus mea­
surement to compute the weights; we denote this filter 
SMPF SWI. 

Note that in the case of close targets, assuming independent 
targets would lead to poor performance. At each iteration, we 
obtain an estimator of the target state for each target: 

and we associate each estimator to a target such that the sum 
of the Euclidean distances between the estimates and the actual 
state is minimum. Finally, we take for the RMSE (in position 
and velocity) the mean of the RMSE of the two targets. To 
evaluate the probability of track loss, we use the following 
methodology. For each Monte-Carlo run, at each time step k 
and for each target, we compute the loss variable lk,i that takes 
value 1 (target loss) if, 

G::: = �:::) P G::: = �:::) > 0, 

and 0 otherwise. We define rk,i = J xL + fj�,i as the range 

estimator and (h,i = arctan (t::) as the bearing estimator, 

P = (i 10) and 0 = 5.99 is the value of the quantile 

function of the chi-square distribution with two degrees of 
freedom evaluated at 0.95. In other words, at each iteration, 
we check if the position estimator for each target is located 
within the 0.95% confidence ellipse around the true target 
position. Finally, a track is declared to be lost if at least one 
of the variables lk,i equals 1 during at least five consecutive 
iterations. We define f m the loss variable for the m th Monte­
Carlo run that takes value 1 if the filter failed to track the two 
targets during all the experiment and 0, otherwise. Then, the 
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Fig. 3. Monte-Carlo simulations results in a multi-target setting with the 
Swerling 0 model. Top: RMSE in position. Bottom: RMSE in velocity. 
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Fig. 4. Monte-Carlo simulations results in a multi-target setting with the 
Swerling 1 model. Top: RMSE in position. Bottom: RMSE in velocity. 

A 1 NMC 
probability of track loss is given by Pzoss = � L 1m. Me m=1 
We present in figure 3 the performance in terms of RMSE 
in position and velocity for the three filters in the Swerling 
o case. For the Sweriing 1 model, the performance in terms 
of RMSE in position and velocity is presented in figure 4. We 
can notice that the RMSE tends to increase around time sample 
40 seconds. This corresponds to the moment where the targets 
are the closest. Finally, we provide in table I the probability of 
track loss for all the filters considered in this section. As for the 
single target case, filters that compute the weights according 
to the complex measurement provide much better performance 
than filters that work with the square modulus of the complex 
signal. Note also that the performance is slightly better for the 
Swerling 0 model than for the Swerling 1 model. Indeed, as 
the modulus fluctuates, the instantaneous SNR may take low 
values, thus making the tracking more difficult. 

VII. CONCLUSION 

In this paper, we have proposed different methods for 
computing the likelihood of the complex raw radar data that 
take into account the spatial coherence of the target complex 
amplitudes. For the Swerling 0 model, we have presented two 
approximations for computing the likelihood of the complex 
measurement in a multi-target setting. For the Swerling 1 case, 
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Probability of track loss 
IntPF SWO 1 X 10 -0 

ISPF SWO 1 X 10 -0 

SMPF SWO 4.6 X 10-0 

CMPF SWI 6 X 10 -0 

SMPF SWI 2.41 X 10 " 

TABLE 1. ESTIMATED PROBABILITY OF TRACK LOSS FOR THE 
DIFFERENT MULTI-TARGET PARTICLE FILTERS CONSIDERED. 

we have shown that a closed form can be obtained to com­
pute the multi-target likelihood of the complex measurement. 
Finally, we have demonstrated with Monte-Carlo simulations 
the benefits of taking into account the spatial coherence of 
the complex amplitudes both in detection and in estimation 
compared to the classic method that works on the square 
modulus of the complex signal. 
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