
Splitting Method for Spatio-temporal Sensors
Deployment in Underwater Systems

Mathieu Chouchane1, Sébastien Paris1,
François Le Gland2, and Mustapha Ouladsine1

1 LSIS, Aix-Marseille University, Domaine universitaire de Saint-Jérôme,
Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France
2 INRIA Rennes, Campus de Beaulieu, 263 avenue du Général Leclerc,

35042 Rennes Cedex, France

Abstract. In this paper, we present a novel stochastic optimization al-
gorithm based on the rare events simulation framework for sensors de-
ployment in underwater systems. More precisely, we focus on finding the
best spatio-temporal deployment of a set of sensors in order to maxi-
mize the detection probability of an intelligent and randomly moving
target in an area under surveillance. Based on generalized splitting tech-
nique with a dedicated Gibbs sampler, our approach does not require
any state-space discretization and rely on the evolutionary framework.

Key words: Evolutionary algorithm, Stochastic optimization, General-
ized splitting, Genetic algorithm, Gibbs sampler.

1 Introduction

Consider a randomly moving target that tries to cross a closed area or to run
away from a known position. We want to compute the best spatial and tempo-
ral deployment of sensors in order to maximize the detection probability of this
intelligent and randomly moving target. Until recently, these types of problems
were solved using operational research algorithms [8,12,14,19], which commonly
model the constraints in both discrete time and space. In order conduct a con-
tinuous optimization, we have decided to use a novel probabilistic optimization
algorithm based on the rare events simulation framework.

Probabilistic optimization algorithms are based on natural evolution processes
of a population of individuals. Each of them represent a direction in the space
of solutions to a problem. These algorithms have been developed by mimicking
natural evolution and simplifying biological knowledge. All of them follow a sim-
ple scheme: (i) first, initialize arbitrarily a population and rate the fitness of each
individual with a scoring function; (ii) using the individuals’ fitness select a pro-
portion of the population for reproduction. The selection process can be deter-
ministic (for example select the best solutions) or completely random; (iii) then,
generate a new population of solutions, from those selected previously, through
a modification process that is often used to include recombination and/or mu-
tation [1,13]. The new individual obviously shares many characteristics of its

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 243–254, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

244 M. Chouchane et al.

parents; (iv) we repeat the fitness-selection-reproduction process until certain
stopping criteria are reached. Genetic algorithms have proven their efficiency for
complex optimization problems. When the optimization is unconstrained or de-
pends on “simple” or linear constraints, we can also use parametric methods such
as covariance matrix adaptation [11] and its evolutions [6] or the cross entropy
method [3,5] which is a parametric method based on the rare events simulation
framework. However, when we are faced with a strongly constrained optimization
problem, parametric optimization methods and other classic genetic algorithms
cannot always handle the consistency of the solutions.

The goal of this paper is to present the method we have used to solve our real-
world problem. This method is similar to the non-parametric genetic algorithms,
but it is based on the generalized splitting method. This approach helped us to
conduct a continuous optimization under a heterogeneous set of constraints.
The splitting method mainly differs from a genetic algorithm in that a solution
can remain in the pool for iterations before it is modified or excluded, while in
most of evolutionary algorithms, the parents are ousted from the new generation.
Moreover, in the reproduction step, we use a dedicated Gibbs sampler as a special
mutation operator.

Along this paper, we will try to point out the commonalities and the differ-
ences between the two approaches. We will also try to justify why the splitting
method may better suit these kind of problems.

Our article is organized as follows. The first section is devoted to the pre-
sentation of the real-world spatio-temporal scheduling problem. In the next two
sections, we present our method in order to solve our optimization problem. We
then apply and illustrate the splitting algorithm with the flaming datum [17,18]
problem and offer some conclusions.

2 Problem Presentation: Spatio-temporal Search Efforts
Planning

This section deals with the presentation of our real-world problem and its asso-
ciated constraints.

Our goal is to maximize the detection probability of an intelligent and ran-
domly moving target in an area Ω under surveillance. This can be achieved by
optimizing the spatio-temporal deployment of a set of limited sensors during a
period T . A spatio-temporal deployment consists of a list of sensors activations
and a set of their associated position.

The target that we consider is not only smart but also reactive and its tra-
jectory is unknown (and depends in practice on random variables).

2.1 The Solution Constraints

We have a set of P sensors si that we may spatially and temporally deploy in
our operational theatre Ω× [0, T] in order to detect a smart and reactive target.
Let X ∈ X a solution. So we can define

X � {si(τi)}i=1,...,P with τi = {ti,1, . . . , ti,j}j=1,...,npi . (1)

Splitting Method for Spatio-temporal Sensors Deployment 245

si corresponds to the sensor i (i ∈ {1 . . . P}) position, while τi is a vector
containing its npi (npi ≤ Emax) instants of activation (in [0, T]). We also denote
by C all the spatial and temporal constraints on the feasible solutions. As soon as
a sensor is deployed (for example: dropped and set up), it is powered on and starts
consuming energy; it becomes out of service when its battery is empty. Until that
moment, it can send a limited number of pings (Emax times maximum).

Also, we assume that the sensors are only active and do not cooperate. In
other words, they can only detect a target when they send a signal. Since they
are not autonomous, they only ping when they are in the radio range of a moving
commanding station that requests it. This constraint is denoted by the “operator”
visibility parameter until time t ≤ T , ϕt(X).

2.2 The Target Constraints

A feasible trajectory of duration T is denoted by the random variable YT ∈ Y.
We are only given an a priori on the starting point of the target trajectory. This
a priori is weak if the starting point is randomly sampled in the search space
Ω. On the contrary, a strong a priori means its initial position is sampled from
a Gaussian pdf centred on the last seen position.

y0

yT

1

2

3

(a)

y0

yT

1

2

3

(b)

Fig. 1. (a) The target starts from y0. After a while, it is detected by an active sensor
(sensor 1) and immediately escapes by following a radial course. (b) The target starts
from y0. After a while, it detects an active sensor (sensor 2) and avoids it.

If the target detects a signal originating from a sensor, but is too far from it,
it is able to avoid it before being detected while simultaneously memorizing its
position. In our model, we define the target as detected if it enters the sensor’s
detection range (delimited by the red circle in figure 1). However, since the target
is smart, if it comes close enough to a sensor which has just sent a signal (in the
zone delimited by the red and orange circles in figure 1), it detects this sensor
and learns all of its specifications. Thus, it may decide to avoid this threat or to
come closer and start an avoidance later. In all cases, when the target is notified
of the existence of a sensor, it changes its course before it enters the detection

246 M. Chouchane et al.

range. The target trajectory controls (for the avoidance of a sensor) are then
directly influenced by the partial visibility (or knowledge) of the target on the
deployed search efforts μt(X).

3 The Generalized Splitting Framework

The purpose of this section is to discuss the generalized splitting framework in
the context of unconstrained (or simple constrained) optimization. This will be
used in the next section.

Consider a random object X (vector, random variable, etc.) that takes values
in some set X and is distributed according to a pdf f . Also consider a real-valued
function S on X , a threshold level γ ∈ R and assume that sampling from f is
easy. Let γ� = S(X�). Most optimization problems involve finding X�, defined
by

X� � arg max
X∈X

{S(X)}. (2)

Splitting theory is based on the observation that maximizing S(X) is similar to
estimating probabilities of the form

�(γ) = P(S(X) ≥ γ) =

∫
X
1{S(X)≥γ} f(X) dX , (3)

given that this probability reaches zero when γ converges toward the optimal
score S(X�). Maximizing S(X) is also similar to sampling the set

Xγ = {X ∈ X : S(X) ≥ γ} ⊂ X . (4)

with the idea that this set decreases toward X� when γ increases toward the
unknown value γ�. However, when γ goes to γ�, the event {S(X) ≥ γ} becomes
more rare, and consequently the CMC estimator

�(γ) =
1

C

C∑
i=1

1{S(Xi)≥γ} where Xi ∼ f(X) (5)

has a relative error

RECMC(�(γ)) =

√
1 − �(γ)√
C�(γ)

(6)

that increases to infinity. In order to reduce this relative error, we should in-
crease the sample size C, but then, we would be faced with a computationally
intractable problem. Moreover, when γ goes to γ�, it becomes increasingly more
difficult to produce samples from f(X) that would be close to X�.

To address this problem, a technique called generalized splitting [4] and de-
rived from Diaconis, Holmes and Ross researches [9] on MCMC (Markov chain
Monte Carlo) allows us to compute �(γ) in an easier and more precise way. For
an optimization problem, we will find at least one solution that maximizes our
criteria among all the solutions sampled to compute our probability of interest.

Splitting Method for Spatio-temporal Sensors Deployment 247

If we define a sequence of increasing thresholds γ, such that γ0 ≥ γ1 ≥ . . . ≥ γL

(with γL ≤ γ�), we can rewrite �(γ) as the following product of conditional
probabilities:

�(γ) = Pf (S(X) ≥ γ0)
L∏

l=1

Pf (S(X) ≥ γl|S(X) ≥ γl−1) = c0

L∏
l=1

cl . (7)

where
cl = Pg�

l−1
(S(X) ≥ γl) . (8)

and where the importance sampling density [16]

g�
l−1(X ; γl−1) =

1{S(X)≥γl−1}f(X)
�(γl−1)

(9)

is precisely the conditional density of X, given that S(X) ≥ γl−1. It is worth
noting that the support of this density g�

l−1(X; γl−1) is precisely the set {X ∈
X : S(X) ≥ γl−1}.

If we know how to draw independent and identically distributed random vari-
ables Xi over Xl−1 ∈ X from this importance sampling function, �(γ) can be
rewritten:

�(γ) = Pf (S(X) ≥ γ0)
L∏

l=1

Pg�
l−1

(S(X) ≥ γl) . (10)

With a judicious choice or a fair estimation of the {γl} sequence, the event
{S(X) ≥ γl} is no longer a rare event (generally, cl ∈

[
10−3, 10−2

]
) under the

distribution g�
l−1(X, γl−1, C) and therefore the cl quantities can now be well

approximated through a CMC estimator. Hence, a CMC estimator of �(γ) is:

�̂(γ) =
L∏

l=0

ĉl, (11)

where ĉl = 1
C

∑C
i=1 1{S(Xi)≥γl} and where Xi ∼ g�

l−1(X; γl−1).

4 Solving Our Real-World Problem

4.1 Evaluating the Detection Probability

According to what we have explained in the first part of the article, we want
to maximize the detection probability of a target until time T . This quantity is
denoted by ST (X) and is given by the following equation:

ST (X) �
∫

YT ∈Y
f (YT |ϕT (X); C) p (YT |μT (X); C) dYT . (12)

Here, f (YT |ϕT (X); C) is a cookie-cutter cost function that takes the value 1 if
the studied trajectory YT satisfies some defined criteria (such as a number of

248 M. Chouchane et al.

detections and a number of avoidances) and 0 otherwise, i.e. f (YT |ϕT (X); C) =
1{YT ∈A(X,C)} where A(X, C) is the set of trajectories which are detected by the
solution X and which respect the constraints C. It depends on the visibility of
the solution ϕT (X). p (YT |μT (X); C) is the conditional pdf used to generate
the target trajectories and depends on the target intelligence μT (X). As this
is not the goal of this article, we do not give any more information on how
we have implemented this cost function. Unfortunately, ST (X) is an integral
with respect to the probability distribution of the (random, solution-dependant)
target trajectory Y and its analytical expression is not available. A first approach
should be to use the crude Monte Carlo method to obtain an unbiased estimator
of ST (X), ŜT (X):

ŜT (X) =
1

N

N∑
i=1

f(Y i
T |ϕT (X); C), where Y i

T ∼ p(YT |μT (X);C). (13)

The trajectories Y i
T are recursively generated using a first order motion state

equation [15] as defined in [7]. To be concrete, we generate a large number of
feasible trajectories Y i

T , i = 1, . . . , N and evaluate f
(
Y i

T |ϕT (X); C)
.

Note that the relative error associated with ŜT (X) given by the CMC esti-
mator is

RECMC(ŜT (X)) =

√
1 − ST (X)√
NST (X)

. (14)

Also remark that the smaller the probability to estimate, the larger the relative
error. To reduce this error, we have to increase the number of trajectories N .
Knowing the probability we are meeting is above 10−3 (if they were below,
planning would be useless), we have chosen N ≥ 50000.

4.2 The Splitting Algorithm

To solve our problem, a customized version of the splitting method is used. The
algorithm we apply is called generalized splitting for research efforts scheduling
and is detailed below. For the sequel, we define the function q(., C) which plays
the role of f(.) in the simple case. To begin the computation, we generate an
initial pool of feasible solutions with q(.; C). Since a solution and the carrier
trajectory are closely linked, we use our trajectory generator to obtain a pool of
initial solutions that respect the whole constraints set C.

To ensure our algorithm will not converge and stay into a local extremum,
we developed a simple heuristic. If the current maximum score and the current
threshold do not increase for a chosen number of times, we automatically re-
duce the value of the threshold. Through the decrease of the threshold, we start
again to accept the feasible solutions generated by the moves and therefore, we
reintroduce some diversity in the pool of solutions.

Splitting Method for Spatio-temporal Sensors Deployment 249

Algorithm 1. The GSRES algorithm
Given parameter ρ, sample number C and number of burn-in iterations bl of the Gibbs
sampler, follow the forthcoming steps:
1: Initialization. Set a counter l = 1. Generate C feasible solutions {Xi}, i =

1, . . . , C and denote X0 the set containing them. Note that Xi ∼ q(X ; C). Evalu-
ate scores S0 = {ŜT (Xi)} and sort in decreasing order S0 such that ŜT (Xj(1)) ≥
ŜT (Xj(2)) ≥ . . . ≥ ŜT (Xj(C)). We obtain γ̂0 = ŜT (Xj(C0)) with C0 = �ρC�. Define
X̃0 = X̂0:0 = Xj(1), γ̃l = γ̂0:0 = ŜT (Xj(1)).

2: Selection. Let X̃l−1 = {X̃1, ..., X̃Cl−1} be the subset of the population
{X1, ..., XC} for which ŜT (X̃i) ≥ γ̂l−1. X̃l−1 contains ρ% of the population. Notice
that X̃i ∼ g�

l−1(X ;γl−1, C) for i = 1, . . . , Cl−1.
3: Repopulation. Apply one of these methods:

– Bootstrapping: sample uniformly with replacement C times from the popula-
tion X̃l−1 to define the temporary set of C solutions X boot

l−1 .
– ADAM Cloning: make

⌊
C
Cl

⌋
+ Bi(i = 1, . . . , Cl) copies of each population

sample X̃l−1. Here each B1, . . . , BCl are Ber(1/2) random variables conditional
on

∑Cl
i=1 Bi = C mod Cl. We then define the temporary set of C solutions

X clon
l−1 .

4: Gibbs sampler. Apply a random Gibbs sampler πl−1(X |X̃l−1; C) =
1

Cl−1

∑Cl−1
i=1 κl−1(X |X̃i; C) with bl burn-in iterations and the transition density

κl−1 to each sample of X boot/clon
l−1 (see section 4.3) to obtain Xl = {Xi} such that

Xi ∼ g�
l−1(X ; γ̂l−1, C) for i = 1, . . . , C. Notice that the Xi, i = 1, . . . , C should be

approximately iid.
5: Estimation. Evaluate scores Sl = {ŜT (Xi)}, Xi ∈ Xl. Sort in decreasing order Sl

such that ŜT (Xj(1)) ≥ ŜT (Xj(2)) ≥ . . . ≥ ŜT (Xj(C)). We obtain γ̂l = ŜT (Xj(Cl))

with Cl = �ρC�. Deduct that X̃l = Xj(1), γ̃l = ŜT (Xj(1)), X̂0:l = X̃l if γ̃l > γ̂0:l−1,
else X̂0:l = X̂0:l−1 and γ̂0:l = max{γ̃l, γ̂0:l−1}.

6: Stopping condition. If one of the stopping condition is reached, stop the algo-
rithm and give X̂0:l as an estimator of the optimal solution. Else l = l + 1 and go
back to step 2.

4.3 The Dedicated Gibbs Sampler

For our problem, we use a random Gibbs sampler πl−1(X|X̃l−1) =
1

Cl−1

∑Cl−1
i=1 κl−1(X|X̃i) with the transition density κl−1 defined by:

κl−1

(
X |X̃i

)
=

6∑
j=1

λj

bl∏
r=1

mj

(
Xr

i |X̃−r
i

)
, (15)

Here, Xr
i denotes the component r of a solution and X−r

i , all the components
of X̃i excluding r. The λj are the probabilities of updating one component at a
time, given that

∑
j λj = 1 and the mj are the conditional pdf associated to the

6 moves defined in [7].

250 M. Chouchane et al.

The random Gibbs sampler will randomly update bl times the components of
a solution X̃i. bl varies during the simulation in this way: bl = b0 + αl where
α ∈ R

�
+. For the first iterations, bl < P and therefore this approach is faster

than a systematic Gibbs sampler. On the contrary, when l is close to L, bl ≥ P .
Thus, we do more updates than a systematic Gibbs sampler would do but we
maintain more diversity in our solutions.

Since we do not know how to update a solution in a way that still satisfies the
constraints C, we first recursively propagate the modifications starting from the
sensor/activation we have modified in the sequence of activations. Then we check
its feasibility, that is, if it respects all the spatial and temporal constraints C.
We apply acceptance–rejection (for a limited amount of times) to each updated
component until we find a feasible solution. Considering that the cost function S

also verifies the consistency of a solution, an updated solution Xi from X̃ boot/clon
i,l−1

is then accepted with probability 1{S(Xi)≥γ̂l−1}.
Before we proceed further, let us introduce and recall a few notations. si �

[six ; siy]T denotes the ith sensor position (and more generally the ith sensor), P
is the number of sensors in the current solution, Pmax is the maximum number of
sensors, npi stands for the activations’ number for sensor i while ti,{1,...,npi} and
τi respectively are the instants of activation of sensor i and the set of activation
times associated with sensor i. Also denote by tsi the set up duration of the
sensor si. Remark that a sensor whose instants of activation are negative is
considered as disabled. Consequently, deleting an instant of activation consists
of assigning a negative value to this instant. Removing a sensor is then equivalent
to deleting all of its instants of activation and ignoring it. Below are the details
of the six moves.

1. Add a sensor. Sample a position s′
P+1 from U(Ω; C) for the new sensor.

Then draw its first instant of activation t′P+1,1 ∼ U([tsP+1 , T]).
2. Add an instant of activation. First, choose a sensor randomly i.e. draw

j uniformly in {1, . . . , P}. If npj < npmax then draw t′j,npj+1 ∼ U([tj,1, T]).
3. Remove a sensor. To apply the move m3, we apply the following steps :

choose a sensor randomly, i.e. draw j uniformly in {1, . . . , P}. Then delete
all of its instants of activation and mark it as disabled

4. Remove an instant of activation. Choose a sensor randomly i.e. draw
j uniformly in {1, . . . , P}. We assume that npj > 1. Choose an instant of
activation tj,k, i.e., draw k uniformly in {2, . . . , npj}. Delete t′j,k.

5. Move a sensor. Select a sensor sj randomly, i.e. draw j uniformly in
{1, . . . , P}. Then, draw s′

j ∼ ∑2
k=1 wk N (sj , Σ

2
k) with

∑2
k=1 wk = 1. Notice

that the weights wk may evolve during the optimization in order to promote
one of the move versus the other. For this mixture of two Gaussian pdf the
covariance of the first Gaussian defines a small move while the covariance of
the second Gaussian defines a larger move.

6. Swap two sensors. If we assume there are at least 2 active sensors, select
two sensors sk and sr with k uniformly drawn in {1, . . . , P} and r uniformly
drawn in {1, . . . , P} \ {k}. For all k = 2, . . . , npk, delete t′k,j and t′r,j for all
r = 2, . . . , npr. Swap their first instant of activation: t′k,1 and t′r,1.

Splitting Method for Spatio-temporal Sensors Deployment 251

5 Illustrative Example: The Flaming Datum Search
Problem

The first result we present here concerns a scenario in which a target is running
away from the position where it has just been detected. Its initial position is
drawn from a Gaussian law centred on Ω/2 and with a variance σ2

target. More-
over, the target is supposed to be smart and reactive and therefore, while it is
running away, it tries to avoid being detected another time. Considering that
the search starts with a delay of taoz

c which represents the time of arrival of the
hunter, we aim to maximize the chances to detect the target during the time T .
We use Pmax = 10 sensors that are able to ping only once. For this simulation,
we use C = 800 solutions, N = 70000 trajectories, b0 = 2, bl = b0 + 0.2 l and
decide to keep 10% of elites (ρ = 0.1). We also let the algorithm perform up
to 50 iterations. Because our algorithm is not able yet to adjust the number of
sensors considering the cost of their deployment, we have chosen to work with a
constant number of sensors. However, we have allowed the removal of a sensor
if it is directly followed by an addition of a new sensor. We have used two of the
six moves we have defined above : move a sensor and a combination of removing
a sensor followed by the addition of a new sensor. The probability of each move
to occur is 0.5.

6
5

3

1

4

2
8

7

9

10

Fig. 2. Graphic of X†: position and activation order of the 10 sensors. The red circles
delimit the sensors’ detection range.

In the best solution we obtain, the sensors position and activation describe a
spiral. This result, illustrated in figure 2, is related to the studies of Washburn
[12,18] and Son [17] for an only-spatial optimization case, i.e., when the target
is not able to avoid the sensor (“myopic” case). In this context, the best spatial
sensor deployment designs an Archimedean spiral. Note that as the algorithm
reaches the 30th iteration, it has almost converged and the solution resembles
a spiral. Figure 3 shows 3 steps of the simulation for the best solution found.
The green crosses (+) represent non detected targets, the orange stars represent
warned/avoiding targets and the red crosses (x) represent detected targets. The
red circles delimit the sensors’ detection range and the orange circles delimit the
target avoidance zone.

252 M. Chouchane et al.

Fig. 3. 3 steps of the simulation for the best solution found. (a) Beginning of the
simulation, the targets are not detected. (b) Activating of the first sensor. (c) Activation
of the fourth sensor.

Continuing, we plot the optimization evolution behaviour versus iterations
γ̂0:l = ŜT (X̂0:l) and E[ŜT (X̂l)] which represents the mean score of the current
population (figure 4). Both are smoothly increasing in a logarithmic way. On
figure 5 we see that the support of scores pdf is large at the beginning (l = 0)
but becomes thinner and converges towards a Dirac pdf as the optimization
is conducted. Moreover, γ̂0:l increases and the standard deviation of the distri-
bution decreases. Once the optimization is over, we observe that the detection
probability reaches 0.9406 whereas when l = 0, the best score is below 0.25 and
the mean scores E

[
ŜT (X)

]
is equal to 0.0187 with a large standard deviation.

This gap illustrates the efficiency of our approach, which also gives us good
results with other types of scenarii [14].

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Iterations l

p

ŜT (X̂0:l)

E[ŜT (X̂l)]

Fig. 4. In blue ŜT (X̂0:l) and in red E[ŜT (X̂l)] with C = 800, N = 70000, L = 50

Splitting Method for Spatio-temporal Sensors Deployment 253

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

̂ST (X)

P
r(
̂ S
T
(
̂ X
)
=

p
)

̂ST (Xi), {Xi}i=1,...,C ∈ X0

̂ST (Xi), {Xi}i=1,...,C ∈ X5

̂ST (Xi), {Xi}i=1,...,C ∈ X10

̂ST (Xi), {Xi}i=1,...,C ∈ X50

γ̂0:0 = 0.2142

γ̂0:10 = 0.8536

γ̂0:50 = 0.9406

Fig. 5. Scores densities support versus iterations GSRES. In black l = 0, in green l = 5,
in red l = 10 and in blue l = 50.

6 Conclusion and Prospects

In this work, we have presented an approach based on the rare events simulation
framework and the generalized splitting algorithm. We have shown that this
method is very similar to non-parametric genetic algorithms. This method has
been applied to a strongly constrained optimization problem and tested with the
flaming datum scenario.

The next step is to take the cost of each solution into account in order to ex-
tend our algorithm to the multi-objective case. To achieve this, we shall develop
a method based on a Pareto-ranking algorithm. Although using a Choquet inte-
gral [10] may also be a good choice, it requires much more information from the
decision maker. Furthermore, the Pareto-ranking method [2] has already been
used with evolutionary algorithm with success.

Acknowledgement. This work was partially supported by DGA (Direction
générale de l’armement). All four authors gratefully acknowledge Emile Vasta
(DGA/Techniques navales) for his friendly support and interest in this work.

References

1. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evol. Comput. 1, 1–23 (1993),
http://dx.doi.org/10.1162/evco.1993.1.1.1

http://dx.doi.org/10.1162/evco.1993.1.1.1

254 M. Chouchane et al.

2. Bekker, J., Aldrich, C.: The cross-entropy method in multi-objective optimisation:
An assessment. European Journal of Operational Research 211(1), 112–121 (2011)

3. de Boer, P.T., Kroese, D., Mannor, S., Rubinstein, R.: A tutorial on the cross-
entropy method. Annals of Operations Research 134(1), 19–67 (2005),
http://dx.doi.org/10.1007/s10479-005-5724-z

4. Botev, Z., Kroese, D.: An efficient algorithm for rare-event probability estimation,
combinatorial optimization, and counting. Methodology and Computing in Applied
Probability 10(4), 471–505 (2008),
http://dx.doi.org/10.1007/s11009-008-9073-7

5. Boubezoul, A., Paris, S., Ouladsine, M.: Application of the cross entropy
method to the GLVQ algorithm. Pattern Recogn. 41, 3173–3178 (2008),
http://portal.acm.org/citation.cfm?id=1385702.1385950

6. Bouzarkouna, Z., Auger, A., Ding, D.Y.: Investigating the Local-Meta-Model
CMA-ES for Large Population Sizes. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner,
M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M.,
Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024,
pp. 402–411. Springer, Heidelberg (2010),
http://hal.archives-ouvertes.fr/hal-00450238/en/

7. Chouchane, M., Paris, S., Le Gland, F., Ouladsine, M.: Splitting method for spatio-
temporal search efforts planning (May 2011), http://arxiv.org/abs/1105.3351v1

8. Dell, R.F., Eagle, J.N., Alves Martins, G.H., Garnier Santos, A.: Using multiple
searchers in constrained-path, moving-target search problems. Naval Research Lo-
gistics 43(4), 463–480 (1996)

9. Dianonis, P., Holmes, S.: Three examples of Monte-Carlo Markov chains. Discrete
Probability and Algorithms, 43–56 (1994)

10. Grabisch, M.: L’utilisation de l’int’egrale de Choquet en aide multicritère à la
décision. Newsletter of the European Working Group “Multicriteria Aid for Deci-
sion” 3(14), 5–10 (2006)

11. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: The covariance matrix adaptation, pp. 312–317. Morgan Kauf-
mann (1996)

12. Hohzaki, R., Washburn, A.: The diesel submarine flaming datum problem. Military
Operations Research 6(4), 19–30 (2001)

13. Akbari, R., Ziarati, K.: A multilevel evolutionary algorithm for optimizing numer-
ical functions. International Journal of Industrial Engineering Computations 2,
419–430 (2011)

14. Rodrigues, C., Michelon, P., Quadri, D.: Un modèle bi-niveau pour le problème de
la recherche d’une cible dynamique. MajecSTIC 2009 (2009)

15. Rong Li, X., Jilkov, V.P.: Survey of maneuvering target tracking. Part i. Dynamic
models. IEEE Transactions on Aerospace and Electronic Systems 39(4), 1333–1364
(2003), http://dx.doi.org/10.1109/TAES.2003.1261132

16. Rubinstein, R.Y.: The Gibbs cloner for combinatorial optimization, counting and
sampling. Methodology and Computing in Applied Probability 11(4), 491–549
(2009)

17. Son, B.: Tracking Spacing for an Archimedes Spiral Search by a Maritime Patrol
Aircraft (MPA) in Anti-submarine Warfare (ASW) Operations. Master’s thesis,
Naval Postgraduate School (December 2007)

18. Washburn, A.: Search and Detection. INFORMS (2002)
19. Washburn, A.: Branch and bound methods for a search problem. Naval Research

Logistics 45(3), 243–257 (1998)

http://dx.doi.org/10.1007/s10479-005-5724-z
http://dx.doi.org/10.1007/s11009-008-9073-7
http://portal.acm.org/citation.cfm?id=1385702.1385950
http://hal.archives-ouvertes.fr/hal-00450238/en/
http://arxiv.org/abs/1105.3351v1
http://dx.doi.org/10.1109/TAES.2003.1261132

	Splitting Method for Spatio-temporal Sensors Deployment in Underwater Systems
	Introduction
	Problem Presentation: Spatio-temporal Search Efforts Planning
	The Solution Constraints
	The Target Constraints

	The Generalized Splitting Framework
	Solving Our Real-World Problem
	Evaluating the Detection Probability
	The Splitting Algorithm
	The Dedicated Gibbs Sampler

	Illustrative Example: The Flaming Datum Search Problem
	Conclusion and Prospects
	References

