Copy protection & Statistics

teddy.furon@thomson.net
teddy.furon@inria.fr
Introduction: problem

- New trend in copy protection
 - Fight against illegal redistribution of content.
 - content = Hollywood movies
 - Find the identity of the hackers amongst n users.
 - Dissuasive weapon.
 - a.k.a. : fingerprinting, content serialization, user forensics, transactional watermarking...
Main ideas:
Cutting, versioning & switching

VoD server → Peter → Paul → Jack
Introduction: the collusion

- **Block exchange:**
 - Colluders cannot create version they don’t have.
 - The \(i \)-th block in the pirated copy is one of the \(i \)-th blocks from the colluders (« marking assumption »)

\[
\begin{array}{l}
\text{Peter} & 0 & 1 & 0 & 0 & 1 & 1 \\
\text{Paul} & 1 & 0 & 0 & 1 & 0 & 1 \\
\text{Jack} & 0 & 0 & 1 & 0 & 1 & 1 \\
\text{Pirated copy} & 1 & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\]
Outlines

- **Introduction**
- **Traitor tracing**
 - How to design the code?
 - How to accuse guilty people?
- **Digital watermarking**
 - How to create two versions of a block?
- **False positive probability estimation**
Traitor tracing

● Requirements
 – n users, c colluders, m binary code length

● Code construction
 – X binary matrix $n \times m$ (set $X \subset \mathcal{B}^m$)
 – x_j codeword given to user #j
 – x_{ji} i-th bit of the j-th codeword

● Collusion
 – Input: $C = \{x_1, \ldots, x_c\} \subset X$
 – Output: $y \subset \mathcal{B}^m$ pirate sequence

● Accusation
 – Input: y pirate sequence
 – Output: G set of guilty users
Cryptographic contributions

- Problem statement [Fiat&Naor]
- Terminology (old) [Pfitzmann]
 - Ex.: Frameproof code \(\text{\#} C \mid y \in X \setminus C \)
- Relationship with Error Correcting Codes [Stinson]
 - Pirate sequence = codeword + noise
 - Accusation = correcting errors
 - Not efficient: very very very long code
- Relaxation of the constraint [Boneh&Shaw]
 - \(P_{fa} \) Probability of accusing at least one innocent
 - \(P_{mi} \) Probability of missing all colluders
- Non constructive theorem [Peikert03]
 \[m \geq O(c^2 \log(n.P_{fa}^{-1})) \]
A revolution coming from the Statistics

- Probabilistic codes [Gabor Tardos]

- The first exhibition of a code achieving the Peikert bound

\[m = 100 \ c^2.\log(n.P_{fa}^{-1}) \]

- An unknown genius… work rediscovered 2 years after.
- No rationale, no clue, no intuition except

 « the full power of randomization »

- Extremely simple: 10 lines of matlab
- Extremely flexible: \(n, m \) loosely tightened
- Constant ‘100’ raised suspicion
Tardos codes

- **Initialization**
 - Draw randomly: \(p_i \in [0,1] \), \(i=1:m \), i.i.d., \(p \sim f(p) \)
 - \(p = (p_1, \ldots, p_m) \) is the secret of the code
 - \(f(p) = 1 / \pi(p(1-p))^{1/2} \)
Tardos accusation

- **Accusation**
 - Accuse user \(j \) if \(S_j > T \)

\[
S_j = \sum_i g(y_i, x_{ji}, p_i)
\]

- \(g(0,0,p) = + \ (p/(1-p))^{1/2} \)
- \(g(0,1,p) = - \ ((1-p)/p)^{1/2} \)
- \(g(1,0,p) = - \ (p/(1-p))^{1/2} \)
- \(g(1,1,p) = + \ ((1-p)/p)^{1/2} \)
Tardos code

Why does it work?
Mathematical model of the collusion

- **Assumptions about the collusion**
 - **Memoryless**
 \[y_i = F_i(x_{1i}, \ldots, x_{ci}) \]
 - **Stationary**
 \[y_i = F(x_{1i}, \ldots, x_{ci}) \]
 - **Permutation Invariant**
 \[y_i = F(s_i) \quad s_i = \sum_j x_{ji} \]
 - **Probabilistic**
 \[\theta_s = \text{Prob}(y = 1 \mid s) \]

- **Model**
 \[\theta = (\theta_0, \theta_1, \ldots, \theta_c) \]

Marking assumption
\[\theta_0 = 0 \quad \text{and} \quad \theta_c = 1 \]

Therefore, the collusion indeed lies in \([0,1]^{c-1}\)
Mathematical model of the collusion

- **Using the model**

\[
\text{Prob}[y=1 \mid p] = \sum_s \text{Prob}[y=1,s\mid p] = \sum_s \theta_s \cdot (s^c) \ p^s \ (1-p)^{c-s}
\]

\[
\text{Prob}[y=1 \mid x=1, p] = \sum_s \theta_s \cdot (s^{-1} c^1) \ p^{s-1} \ (1-p)^{c-s}
\]

- **1st and 2nd order statistics**
 - Innocent: \(\mathbb{E} [S_j] = 0 \quad \mathbb{E} [S_j^2] = m \)
 - Colluder: \(\mathbb{E} [S_j] = 2m/\pi c \quad \mathbb{E} [S_j^2] = m \)

(here: \(\mathbb{E} [.] = \mathbb{E} \ p[\mathbb{E} \ x[\mathbb{E} \ y[.]]]] \))

- **Miracle**: independent from \(\theta \)
- **Markov bound**: \(m = 100 \ c^2.\log(n. P_{fa}^{-1}) \)
- **Asymptotics**: CLT – Scores are Gaussian distributed
Statistical interpretations (I)

- The collusion process is a **nuisance parameter**
- The hypothesis test is based on a **pivotal quantity**...
- ... at least up to 1st and 2nd order statistics.

\[
\begin{align*}
 f(p) &= \frac{1}{\pi(p(1-p))^{1/2}} \\
 g(0,0,p) &= + \left(\frac{p}{1-p} \right)^{1/2} \\
 g(1,1,p) &= \ldots
\end{align*}
\]

\[
\begin{align*}
 \mathbb{E}[S_j] &= 0; \quad \mathbb{E}[S_j^2] = m \\
 \mathbb{E}[S_j] &= 2m/\pi c; \quad \mathbb{E}[S_j^2] = m
\end{align*}
\]
One collusion process – Many code densities

- Dense ($p=1/2$): worst attack: minority vote 3 colluders
- Sparse ($p=0^+ \text{ or } 1^-$): worst attack: majority vote

The sequence p is THE secret!

« How secret is this secret? »

- The colluders could estimate it: $p_i = s_i / c$
- The colluders know $f(p)$: a priori distribution.

Wrong idea: already captured by our model.

Shed more light on Tardos choice:

- $f(p)$ is the Jeffreys prior, the less informative prior distribution
- The less useful for the colluders.
Statistical interpretation (III)

- **Hypothesis test**

 - H_0: Innocent \(\text{Prob}(y,x|p) = \text{Prob}(y|\theta,p) \cdot \text{Prob}(x|p) \)

 - H_1: Colluder \(\text{Prob}(y,x|p) = \text{Prob}(y|x,\theta,p) \cdot \text{Prob}(x|p) \)

 - Performance criterion
 \[
 R (f ; \theta) = \mathbb{E}_P \left[\text{D}_{KL}(H_1 ; H_0 | P, \theta) \right]
 \]

- **Game theory**

 - Between designer and colluders

 - MaxMin game
 \[
 R (f^* ; \theta^*) = \max_f \min_{\theta} R (f ; \theta)
 \]

- **Asymptotically, \(c \to \infty \):**

 - Equilibrium: \(f^*(p) = (\pi^2 p(1-p))^{-1/2} \) and \(\theta^* = (0, c^{-1}, 2c^{-1}, \ldots, 1) \).
Trends

● New accusation strategy
 – « Learn and Match »
 – Estimate θ and use Likelihood ratio test to accuse (E.-M.)

● K-uplets scores
 – Inf. theory:
 \[l(y ; x|\theta) \leq l(y ; \{x_1, x_2\} | \theta) \leq \ldots \leq l(y ; \{x_1, \ldots, x_c\} | \theta) \]
 – Practical? Complexity in $\sim O(n^c)$

● Q-ary alphabet

● Other collusion models
 – Erasures (cut movie scenes)
Outlines

- **Introduction**
- **Traitor tracing**
 - How to design the code?
 - How to accuse people?
- **Digital watermarking**
 - How to create two versions of a block?
- **False positive probability estimation**

```
User i → Code (0 1 1 0 ....) → Collusion (1 1 0 0 ....) → Accusation → i
```

Embedding → **Collusion** → Decoding
Definition of digital watermarking

- Data hiding: art and science of hiding data in multimedia digital contents.
- A hypothesis test problem ...

... under some special constraints:
- non perceptibility (watermark, filigrane in French)
- robustness (tatouage in French)
- security
Assumptions: feature extraction

- **Watermark Embedding**
 - From a content block B, extract some meaningful features
 $$s = \text{Ext}(B), \quad \text{with } s \in \mathbb{R}^L$$
 - Modify s into $x = s + w$ \quad s.t. $||w||^2 \leq L.P_w$
 - The vector w is the secret of the watermarking scheme
 - Put back the features into the content
 $$B_w = \text{Ext}^{-1}(x, B)$$

- **Attack on the watermarked image**
 - Distort x into $z = x + n$ \quad s.t. $\mathbb{E} ||n||^2 \leq L.P_n$

- **Detection**
 - H_0: $r_0 = s + n$ (given by Nature)
 - H_1: $r_1 = s + w + n$
Naïve idea

Gaussian setup

\[r_0 = s + n \sim \mathcal{N}(0, P_s+P_n) \quad \text{vs.} \quad r_1 = s + w + n \sim \mathcal{N}(w, P_s+P_n) \]

- Performances limited by the Kullback-Leibler distance

\[D_{KL}(r_0 \| r_1) = L.P_w / 2 (P_n+P_s) \]

- Data processing theorem, Stein Lemma.

\[||w||^2 \leq L.P_w \]
An Information theoretic revolution

Gaussian setup

\[r_0 = s + n \sim \mathcal{N}(0, P_s + P_n) \quad \text{vs.} \quad r_1 = s + w(s) + n \]

- Performances limited by the Kullback-Leibler distance

\[\max_{w(.)} D_{KL}(r_0 \| r_1) = ??? \]
The informed setup

- **Gaussian setup**
 - $r_0 - s = n \sim \mathcal{N}(0, P_n)$ vs. $r_1 - s = w + n \sim \mathcal{N}(w, P_n)$
 - Performances limited by the Kullback-Leibler distance
 \[
 D_{KL}(r_0 || r_1) = P_w / 2.P_n
 \]
The side informed setup

- **Gaussian setup**
 - Performances limited by the Kullback-Leibler distance
 \[\frac{P_w}{2(P_n + P_s)} \leq \max D_{KL}(r_0 \| r_1) \leq \frac{P_w}{2P_n} \]

- **Philosophical question**
 - Is \(s \) a channel noise or a channel state?

\[E_s \| w(s) \|^2 \leq L.P_w \]
Suppose the following watermark embedding

\[x = s + w(s) = s + (\alpha - \lambda s^T u)u \]

with \(||u||^2 = 1 \)

- \(\lambda \in [0,1], \alpha > 0 \)
- “Push and cancel” mixed strategy
- Power constraint:

\[\alpha^2 + \lambda^2 P_s = L P_w \]

KL-distance

- \(D_{KL}(r_0 || r_1) = F(\lambda, \alpha) = F(\lambda) \).
- Optimize : \(\lambda^* = \arg \max_\lambda F(\lambda) \)
- Take to the limit

\[\lim_{L \to \infty} F(\lambda^*) = P_w / 2 P_n \]
How to put this into practice?

- Gaussian setup with fixed length L
 - How to maximize D_{KL}?
 - How to design the detector? [Merhav]

- Real world
 - Nuisance parameters: P_s, P_w, P_n, type of attack
 - No longer Gaussian r.v.
 - No longer Euclidean distance, but perceptual distance
Outlines

- **Introduction**
- **Traitor tracing**
 - How to design the code?
 - How to accuse people?
- **Digital watermarking**
 - How to create two versions of a block?
- **False positive probability estimation**

![Diagram](image_url)
False positive estimation

2 techniques have a common issue: very very small P_{fa}

- Traitor tracing: probability to accuse an innocent.
 \[P_{fa} = \text{Prob} [d(x) > T] \]
 - with $d(.)$ Tardos scoring
 - x the sequence of a user, $\text{Prob}(x_j) = \prod_i p_i^{x_{ji}} \cdot (1-p_i)^{(1-x_{ji})}$

- Watermarking: probability of detecting the mark in a non watermarked content
 \[P_{fa} = \text{Prob} [d(x) > T] \]
 - with $d(.)$ likelihood of being watermarked
 - x features extracted from a content block, $x \sim p_x$
Monte Carlo Method estimation

● Structure of the detector
\[x \in \mathbb{R}^L \xrightarrow{\sim p_X} \text{score} \xrightarrow{d(x) \in \mathbb{R}} \text{threshold } T \xrightarrow{Y / N} d(x) > T \]

● MCM estimation
 – Run \(n \) experiments
 – Increment \(k \) when \(d(x) > T \)
 – Estimate \(\hat{P}_{fa} = k/n \)

● Issues
 – \(k \neq 0 \)
 – Relative std of \(\hat{P}_{fa} = (P_{fa} \cdot n)^{-1/2} \)

\[n = O(1/P_{fa}) \quad n \sim 100/P_{fa} \]

\[\Rightarrow \text{The smaller the probability, the harder its estimation} \]
Geometric interpretation
Key idea of our algorithm

Divide and Conquer

\[P_{fa} = \Pr(A) = \Pr(A, A_{N-1}) \]
\[= \Pr(A|A_{N-1}) \cdot \Pr(A_{N-1}) \quad \text{if } A \text{ implies } A_{N-1} \]
\[= \Pr(A|A_{N-1}) \cdot \Pr(A_{N-1}|A_{N-2}) \cdot \Pr(A_{N-2}|A_{N-3}) \ldots \Pr(A_1) \]
\[A \Rightarrow A_{N-1} \Rightarrow A_{N-2} \Rightarrow \ldots \Rightarrow A_1 \]

\[P_{fa} = \Pr(d(x) \geq T) \]
\[= \Pr(d(x) \geq T|d(x) \geq T_{N-1}).\Pr(d(x) \geq T_{N-1}|d(x) \geq T_{N-2})\ldots\Pr(d(x) \geq T_1) \]
\[T > T_{N-1} > T_{N-2} > \ldots > T_1 \]

\[\hat{P}_{fa} = \hat{a}_N \cdot \hat{a}_{N-1} \ldots \hat{a}_1 \]
Our estimator

● Inputs
 – Distribution of input data p_X, score $d(.)$, threshold T

● Outputs
 – Estimation \hat{P}_{fa} of $\Pr(d(x)>T)$ for $x \sim p_X$

● Ingredients: 3 subroutines
 – SCORE
 ● Function $d(.)$: $\mathbb{R}^L \rightarrow \mathbb{R}$
 ● ‘Smooth’
 – GENERATE
 ● Generate input data x distributed $\sim p_X$
 – MODIFY
 ● $y = f(x)$, random function
 ● such that $y \sim p_X$ and y is ‘close’ to x
Our estimator

- **Divide and conquer**
 \[P_{fa} = \Pr(d(x) \geq T | d(x) \geq T_{N-1}) \cdots \Pr(d(x) \geq T_{j+1} | d(x) \geq T_j) \cdots \Pr(d(x) \geq T_1) \]

- **Initialization**
 - ‘small’ Monte Carlo Method Estimator
 - Generate \(n \) input data (particles) \(x^{(1)} \sim p_x \)
 - Count the number of times the score is above the 1\(^{st} \) threshold

\[
k_1 = \left| \{ x_{i}^{(1)} \mid d(x_{i}^{(1)}) > T_1 \} \right|
\]

\[
\hat{a}_1 = \frac{k_1}{n}
\]
Our estimator

- **Divide and conquer**

 \[P_{fa} = \Pr(d(x) \geq T | d(x) \geq T_{N-1}) \cdots \Pr(d(x) \geq T_{j+1} | d(x) \geq T_j) \cdots \Pr(d(x) \geq T_1) \]

- **Iteration \(j \rightarrow j+1 \)**
 - We start with \(k_j = |\{x_i^{(j)} | d(x_i^{(j)}) > T_j\}| \) particles in region \(A_j \).
 - DUPLICATE: We randomly select \(n \) particles in this set
 - MODIFY: \(z = f(x_i^{(j)}) \)
 - SELECTION:
 - If \(d(z) > T_j \) then \(x_i^{(j+1)} = z \)
 - Else \(x_i^{(j+1)} = x_i^{(j)} \)
 - We now have \(n \) particles \(\sim p_x \) in \(A_j \).
Our estimator

- **Iteration** $j \rightarrow j+1$

- **Threshold (or MCM estimator)**

 - Count the number of times the score is above the $(j+1)^{th}$ threshold

 $$
 k_{j+1} = \left| \{ x_{i, (j+1)} \mid d(x_{i, (j+1)}) > T_{j+1} \} \right|
 $$

 $$
 \hat{a}_{j+1} = k_{j+1}/n
 $$
Our estimator

- Geometric interpretation
Our estimator

- Geometric interpretation
Our estimator

- **Last trick**
 - How to define the thresholds T_j?
 - Variance of the estimation P_{fa} is minimized if $a_j = \text{cte}$
 - Inverse: T_j is the k-th biggest score out of n: $\hat{a}_j = k/n$

- **Divide and conquer**
 \[P_{fa} = \Pr(d(x) \geq T \mid d(x) \geq T_{N-1}) \ldots \Pr(d(x) \geq T_{j+1} \mid d(x) \geq T_j) \ldots \Pr(d(x) \geq T_1) \]

- **Stopping condition**
 - When $T_N > T$.
 - Count the number k' of scores really above T
 - $\hat{P}_{fa} = (k/n)^{N-1} \cdot k' / n$
Properties

- **Small number of trials**
 \[nN = n[\log P_{fa}^{-1} / \log (k/n)^{-1}] \]

- **Asymptotic consistency**
 \[\hat{P}_{fa} \rightarrow P_{fa} \quad \text{as} \quad n \rightarrow \infty \]
 (almost surely)

- **Asymptotic Normality**
 \[n^{1/2} (\hat{P}_{fa} - P_{fa}) \rightarrow \mathcal{N}(b, \sigma^2) \quad \text{as} \quad n \rightarrow \infty \]
 (in law)

- **Asymptotic statistics**
 - Relative std in \(O((\log(P_{fa}^{-1})/n)^{1/2}) \)
 - Fast vanishing relative bias in \(O(1/n) \)
Experiment #1: Digital Watermarking

Toy example
- $x \sim p_x$ isotropic (for instance, white Gaussian noise $\mathcal{N}(0, I_L)$)
- $d(x) = x^T u / \|x\|$
- Ground truth: $P_{fa} = 1 - \text{IncBeta}(T^2, 1/2, (L-1)/2)$

Ingredients
- GENERATE: Matlab randn
- MODIFY:

 $$y = (x+qn)/(1+q^2)^{1/2}$$
 $$n \sim N(0, I_L)$$

 - q fixes the strength of the modification.
Experiment #1: Asymptotic normality

$L = 20$
$T = 0.95$
$P_{fa} = 4.7 \cdot 10^{-11}$

$k/n = 3/4$
$n = 50,000$
200 runs
Experiment #2: Estimating minimum length

Tardos
\[m = 100 \cdot c^2 \log(n/P_{fa}) \]

Experimental
\[m \approx K_1 \cdot c^2 \log(n/P_{fa}) + K_0(c) \]

with
\[K_1 \approx 7.6 \]
Conclusion