

Copy protection & Statistics

teddy.furon@thomson.net teddy.furon@inria.fr

Introduction: problem

• New trend in copy protection

- Fight against illegal redistribution of content.
 content = Hollywood movies
- Find the identity of the hackers amongst *n* users.
- Dissuasive weapon.
- a.k.a. : fingerprinting, content serialization, user forensics, transactional watermarking...

Introduction: typical scenario

Introduction: the collusion

• Block exchange :

- Colluders cannot create version they don't have.
- The *i*-th block in the pirated copy is one of the *i*-th blocks from the colluders (« marking assumption »)

Outlines

- Introduction
- Traitor tracing
 - How to design the code?
 - How to accuse gilty people?
- Digital watermarking
 - How to create two versions of a block?
- False positive probability estimation

Traitor tracing

• Requirements

- n users, c colluders, m binary code length

Code construction

- X binary matrix *n* x *m*

```
(set \mathcal{X} \subset \mathcal{B}^m)
```

- \mathbf{x}_i codeword given to user #j
- x_{ii} i-th bit of the j-th codeword
- Collusion
 - Input: $C = \{\mathbf{x}_1, ..., \mathbf{x}_c\} \subset \mathcal{X}$
 - Ouput: $\mathbf{y} \subset \mathcal{B}^m$ pirate sequence

Accusation

- Input: y pirate sequence
- Output: G set of guilty users

Cryptographic contributions

 Problem statement [Fiat&Naor] Terminology (old) [Pfitzmann] - Ex.: Frameproof code $\nexists C \mid \mathbf{y} \in X \setminus C$ Relationship with Error Correcting Codes [Stinson] Pirate sequence = codeword + noise Accusation = correcting errors Not efficient: very very very long code Relaxation of the constraint [Boneh&Shaw] $- P_{fa}$ Probability of accusing at least one innocent $- P_{mi}$ Probability of missing all colluders Non constructive theorem [Peikert03] $m \gtrsim O(c^2 \log(n.P_{fa}^{-1}))$

A revolution coming from the Statistics

• Probabilistic codes

[Gabor Tardos]

- The first exhibition of a code achieving the Peikert bound $m = 100 c^2 \cdot \log(n \cdot P_{fa}^{-1})$
- An unknown genius... work rediscovered 2 years after.
- No rationale, no clue, no intuition except
 « the full power of randomization »
- Extremely simple : 10 lines of matlab
- Extremely flexible : *n*, *m* loosely tightened
- Constant '100' raised suspicion

Tardos codes

Initialization

- Draw randomly: $p_i \in [0,1]$, i=1:m, i.i.d., $p \sim f(p)$

(?!?)

- $\mathbf{p} = (p_1, ..., p_m)$ is the secret of the code

-
$$f(p) = 1 / \pi(p(1-p))^{1/2}$$

- Code construction
 - Draw randomly: $x_{ji} \in \{0,1\}$, $Prob[x_{ji} = 1] = p_i$
 - If $p_i \sim 0^+$, then almost all user have a '0'sparse code- If $p_i \sim 1/2$, then as many '0' as '1'dense code

Tardos accusation

- Accusation
 - Accuse user #j if

$$S_j > T$$

$$S_j = \Sigma_i g(y_i, x_{ji}, p_i)$$

-2

-4

-6 -8

-10 – 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

THOMSON

$$- g(0,1,p) = - ((1-p)/p)^{1/2}$$

$$g(1,1,p) = + ((1-p)/p)^{1/2}$$

$$g(1,0,p) = - (p/(1-p))^{1/2}$$
(?!

> 4 /0

Why does it work?

Mathematical model of the collusion

Assumptions about the collusion

- Memoryless
- Stationary
- Permutation Invariant
- Probabilistic

$$y_{i} = F_{i} (x_{1i}, \dots, x_{ci})$$

$$y_{i} = F(x_{1i}, \dots, x_{ci})$$

$$y_{i} = F(s_{i}) \qquad s_{i} = \Sigma_{j} x_{ji}$$

$$\theta_{s} = \operatorname{Prob}(y = 1 \mid s)$$

- Model $\theta = (\theta_0, \theta_1, \dots, \theta_c)$

Marking assumption $\theta_0 = 0$ and $\theta_c = 1$

Therefore, the collusion indeed lies in [0,1]^{c-1}

Mathematical model of the collusion

Using the model

Prob[y=1 | p] = Σ_s Prob[y=1, s | p] = $\Sigma_s \theta_s \cdot {\binom{c}{s}} p^s (1-p)^{c-s}$ Prob[y=1 | x=1, p] = $\Sigma_s \theta_s \cdot {\binom{c-1}{s-1}} p^{s-1} (1-p)^{c-s}$

• 1st and 2nd order statistics

- Innocent: $\mathbb{E} [S_j] = 0$ $\mathbb{E} [S_j^2] = m$
- Colluder: $\mathbb{E} [S_j] = 2m/\pi c$ $\mathbb{E} [S_j^2] = m$

(here: $\mathbb{E}[.] = \mathbb{E}_{P}[\mathbb{E}_{X}[\mathbb{E}_{Y}[.]]]$)

- Miracle: independent from θ
- Markov bound: $m = 100 c^2 \cdot \log(n \cdot P_{fa}^{-1})$
- Asymptotics: CLT Scores are Gaussian distributed

Statistical interpretations (I)

- The collusion process is a <u>nuisance parameter</u>
- The hypothesis test is based on a pivotal quantity...
- ... at least up to 1st and 2nd order statistics.

$$\begin{array}{l} f(p) = 1 / \pi(p(1-p))^{1/2} \\ g(0,0,p) = + (p/(1-p))^{1/2} \\ g(1,1,p) = \dots \end{array} \xrightarrow{} \begin{array}{l} \text{Innocent} & \mathbb{E}[S_j] = 0; \mathbb{E}[S_j^2] = m \\ \text{Colluder} & \mathbb{E}[S_j] = 2m/\pi c; \mathbb{E}[S_j^2] = m \end{array}$$

Statistical interpretation (II)

- One collusion process Many code densities
 - Dense (*p*=1/2): worst attack: minority vote 3 colluders
 - Sparse (p=0⁺ or 1⁻): worst attack: majority vote
- The sequence *p* is THE secret!
- « How secret is this secret? »
 - The colluders could estimate it: $p_i = s_i / c$
 - The colluders know f(p): a priori distribution.
- Wrong idea: already captured by our model.
- Shed more light on Tardos choice:
 - f(p) is the Jeffreys prior, the less informative prior distribution
 - The less useful for the colluders.

Statistical interpretation (III)

Hypothesis test

- H₀: Innocent
- H₁: Colluder

 $Prob(\mathbf{y}, \mathbf{x}|\mathbf{p}) = Prob(\mathbf{y}|\theta, \mathbf{p}) \quad .Prob(\mathbf{x}|\mathbf{p})$ $Prob(\mathbf{y}, \mathbf{x}|\mathbf{p}) = Prob(\mathbf{y}|\mathbf{x}, \theta, \mathbf{p}).Prob(\mathbf{x}|\mathbf{p})$

Performance criterion

$$R(f;\theta) = \mathbb{E}_{P}[D_{\mathsf{KL}}(\mathsf{H}_{1};\mathsf{H}_{0} | P, \theta)]$$

- Game theory
 - Between designer and colluders
 - MaxMin game

$$R(f^*;\theta^*) = \max_f \min_{\theta} R(f;\theta)$$

- Asymptotically, $c \rightarrow \infty$:
 - Equilibrium: $f^*(p) = (\pi^2 p(1-p))^{-1/2}$ and $\theta^* = (0, c^{-1}, 2c^{-1}, ..., 1)$.

Trends

New accusation strategy

- « Learn and Match »
- Estimate θ and use Likelihood ratio test to accuse (E.-M.)

• K-uplets scores

- Inf. theory:
 - $|(\mathbf{y} ; \mathbf{x} | \theta)| \leq |(\mathbf{y} ; \{\mathbf{x}_1, \mathbf{x}_2\} | \theta) \leq \ldots \leq |(\mathbf{y} ; \{\mathbf{x}_1, \ldots, \mathbf{x}_c\} | \theta)|$
- Practical? Complexity in ~ O(n^c)
- Q-ary alphabet
- Other collusion models
 - Erasures (cut movie scenes)

Outlines

- Introduction
- Traitor tracing
 - How to design the code?
 - How to accuse people?
- Digital watermarking
 - How to create two versions of a block?
- False positive probability estimation

Definition of digital watermarking

- Data hiding: art and science of hiding data in multimedia digital contents.
- A hypothesis test problem ...

- ... under some special constraints:
 - non perceptibility
 - robustness
 - security

(watermark, *filigrane* in French) (*tatouage* in French)

Assumptions: feature extraction

• Watermark Embedding

- From a content block *B*, extract some meaningful features

$$\boldsymbol{s} = \mathsf{Ext}(B), \text{ with } \boldsymbol{s} \in \mathbb{R}^{L}$$

- Modify **s** into $\mathbf{x} = \mathbf{s} + \mathbf{w}$ s.t. $||\mathbf{w}||^2 \le L.P_w$
- The vector w is the secret of the watermarking scheme
- Put back the features into the content

$$B_w = \mathsf{Ext}^{-1}(\mathbf{x}, B)$$

- Attack on the watermarked image
 - Distort **x** into $\mathbf{z} = \mathbf{x} + \mathbf{n}$ s.t. $\mathbb{E} ||\mathbf{n}||^2 \le L.P_n$
- Detection
 - $H_0: r_0 = s + n$ (given by Nature)

-
$$H_1: r_1 = s + w + n$$

Naïve idea

Gaussian setup

 $r_0 = s + n \sim \mathcal{N}(0, P_s + P_n)$ vs. $r_1 = s + w + n \sim \mathcal{N}(w, P_s + P_n)$

- Performances limited by the Kullback-Leibler distance

 $D_{KL}(r_0||r_1) = L.P_w/2(P_n+P_s)$

Data processing theorem, Stein Lemma.

An Information theoretic revolution [Costa]

• Gaussian setup

 $r_0 = s + n \sim \mathcal{N}(0, P_s + P_n)$ vs. $r_1 = s + w(s) + n$

- Performances limited by the Kullback-Leibler distance $\max_{w(.)} D_{KL}(r_0 || r_1) = ???$

The informed setup

Gaussian setup

- $r_0 - s = n \sim \mathcal{N}(0, P_n)$ vs. $r_1 - s = w + n \sim \mathcal{N}(w, P_n)$

- Performances limited by the Kullback-Leibler distance

 $D_{KL}(r_0||r_1) = P_w / 2.P_n$

The side informed setup

[Costa]

Gaussian setup

- Performances limited by the Kullback-Leibler distance $P_w/2.(P_n+P_s) \leq \max D_{KL}(r_0||r_1) \leq P_w/2.P_n$

Philosophical question

- Is **s** a channel noise Detection
- or a channel state? Generation

Asymptotical Gaussian case

Suppose the following watermark embedding

 $x = s + w(s) = s + (\alpha - \lambda . s^{T}u).u$ with $||u||^{2} = 1$

- $\lambda \in [0,1], \alpha > 0$
- "Push and cancel" mixed strategy
- Power constraint:

$$\alpha^2 + \lambda^2 P_s = L P_w$$

- KL- distance
 - $\mathsf{D}_{\mathsf{KL}}(\mathbf{r}_0||\mathbf{r}_1) = \mathsf{F}(\lambda, \alpha) = \mathsf{F}(\lambda).$
 - Optimize : $\lambda^* = \arg \max_{\lambda} F(\lambda)$
 - Take to the limit

$$\lim_{L \to \infty} F(\lambda^*) = P_w / 2.P_n$$

How to put this into practice?

• Gaussian setup with fixed length L

- How to maximize D_{KL} ?
- How to design the detector?

[Merhav]

Real world

- Nuisance parameters: P_s , P_w , P_n , type of attack
- No longer Gaussian r.v.
- No longer Euclidean distance, but perceptual distance

Outlines

- Introduction
- Traitor tracing
 - How to design the code?
 - How to accuse people?
- Digital watermarking
 - How to create two versions of a block?
- False positive probabilty estimation

False positive estimation

• 2 techniques have a common issue: very very small *P_{fa}*

- Traitor tracing: probability to accuse an innocent.

$$P_{fa} = \text{Prob} [d(\mathbf{x}) > T]$$

- with d(.) Tardos scoring
- **x** the sequence of a user, $Prob(\mathbf{x}_i) = \prod_i p_i^{x_{ji}} . (1-p_i)^{(1-x_{ji})}$
- Watermarking: probability of detecting the mark in a non watermarked content

$$P_{fa} = \operatorname{Prob} \left[d(\mathbf{x}) > T \right]$$

- with d(.) likelihood of being watermarked
- **x** features extracted from a content block, $\mathbf{x} \sim p_{\mathbf{X}}$

Monte Carlo Method estimation

\Rightarrow The smaller the probability, the harder its estimation

Geometric interpretation

Key idea of our algorithm

Divide and Conquer

$$\begin{array}{ll} P_{fa} & = \Pr(A) = \Pr(A, A_{N-1}) & \text{if A implies } A_{N-1} \\ & = \Pr(A|A_{N-1}) \cdot \Pr(A_{N-1}) & 2 \text{ estimations, less difficult} \\ & = \Pr(A|A_{N-1}) \cdot \Pr(A_{N-1} \mid A_{N-2}) \cdot \Pr(A_{N-2} \mid A_{N-3}) \dots \Pr(A_1) \\ & A \Rightarrow A_{N-1} \Rightarrow A_{N-2} \Rightarrow \dots \Rightarrow A_1 \end{array}$$

$$P_{fa} = \Pr(d(\mathbf{x}) \ge T)$$

= $\Pr(d(\mathbf{x}) \ge T | d(\mathbf{x}) \ge T_{N-1}) \cdot \Pr(d(\mathbf{x}) \ge T_{N-1} | d(\mathbf{x}) \ge T_{N-2}) \dots \Pr(d(\mathbf{x}) \ge T_1)$
 $T > T_{N-1} > T_{N-2} > \dots > T_1$

$$\hat{P}_{fa} = \hat{a}_N \cdot \hat{a}_{N-1} \cdot \ldots \cdot \hat{a}_1$$

Inputs

- Distribution of input data p_X , score d(.), threshold T
- Outputs
 - Estimation \hat{P}_{fa} of $Pr(d(\mathbf{x}) > T)$ for $\mathbf{x} \sim p_{\mathbf{x}}$
- Ingredients: 3 subroutines
 - SCORE
 - Function $d(.): \mathbb{R}^L \to \mathbb{R}$
 - 'Smooth'
 - GENERATE
 - Generate input data **x** distributed ~ p_{x}
 - MODIFY
 - $\mathbf{y} = f(\mathbf{x})$, random function
 - such that y ~ p_x and y is 'close' to x

• Divide and conquer $P_{fa} = \Pr(d(\mathbf{x}) \ge T | d(\mathbf{x}) \ge T_{N-1}) \dots \Pr(d(\mathbf{x}) \ge T_{j+1} | d(\mathbf{x}) \ge T_j) \dots \Pr(d(\mathbf{x}) \ge T_1)$

Initialization

- 'small' Monte Carlo Method Estimator
- Generate *n* input data (particles) $\mathbf{x}^{(1)} \sim p_{\mathbf{x}}$
- Count the number of times the score is above the 1st threshold

$$k_1 = |\{\mathbf{x}_i^{(1)} \mid d(\mathbf{x}_i^{(1)}) > T_1\}|$$

$$\hat{a}_1 = k_1/n$$

Divide and conquer

 $P_{fa} = \Pr(d(\mathbf{x}) \ge T \mid d(\mathbf{x}) \ge T_{N-1}) \dots \Pr(d(\mathbf{x}) \ge T_{j+1} \mid d(\mathbf{x}) \ge T_j) \dots \Pr(d(\mathbf{x}) \ge T_1)$

• Iteration $j \rightarrow j+1$

- We start with $k_j = |\{\mathbf{x}_i^{(j)} \mid d(\mathbf{x}_i^{(j)}) > T_j\}|$ particles in region A_j .
- DUPLICATE: We randomly select *n* particles in this set
- MODIFY: $z = f(x_i^{(j)})$
- SELECTION:
 - If $d(\mathbf{z}) > T_i$ then $\mathbf{x}_i^{(j+1)} = \mathbf{z}$
 - Else $\mathbf{x}_{i}^{(j+1)} = \mathbf{x}_{i}^{(j)}$
- We now have *n* particles $\sim p_x$ in A_j .

- THRESHOLD (or MCM estimator)

• Count the number of times the score is above the (j+1)th threshold

$$k_{j+1} = |\{\mathbf{x}_{i}^{(j+1)} \mid d(\mathbf{x}_{i}^{(j+1)}) > T_{j+1}\}|$$
$$\hat{a}_{j+1} = k_{j+1}/n$$

10/20/2009

• Geometric interpretation

• Geometric interpretation

- Last trick
 - How to define the thresholds T_j ?
 - Variance of the estimation P_{fa} is minimized if a_i = cte
 - Inverse: T_j is the *k*-th biggest score out of *n*: $\hat{a}_j = k/n$

Divide and conquer

 $P_{fa} = \Pr(d(\mathbf{x}) \ge T | d(\mathbf{x}) \ge T_{N-1}) \dots \Pr(d(\mathbf{x}) \ge T_{j+1} | d(\mathbf{x}) \ge T_j) \dots \Pr(d(\mathbf{x}) \ge T_1)$

Stopping condition

- When $T_N > T_{.}$
- Count the number k' of scores really above T

$$- \hat{P}_{fa} = (k/n)^{N-1}. k' / n$$

Properties

• Small number of trials

$$nN = n[\log P_{fa}^{-1} / \log (k/n)^{-1}]$$

Asymptotic consistency

$$\hat{P}_{fa} \rightarrow P_{fa}$$
 as $n \rightarrow \infty$ (almost surely)

Asymptotic Normality

$$n^{1/2}.(\hat{P}_{fa} - P_{fa}) \rightarrow \mathcal{N}(b,\sigma^2) \text{ as } n \rightarrow \infty$$

(in law)

Asymptotic statistics

- Relative std in O($(\log(P_{fa}^{-1})/n)^{1/2}$)
- Fast vanishing relative bias in O(1/n)

Experiment #1: Digital Watermarking

- Toy example
 - $\mathbf{x} \sim p_{\mathbf{x}}$ isotropic (for instance, white Gaussian noise $\mathcal{N}(\mathbf{0}, \mathbf{I}_L)$)
 - $d(\mathbf{x}) = \mathbf{x}^{\mathsf{T}}\mathbf{u} / ||\mathbf{x}||$
 - Ground truth: $P_{fa} = 1$ IncBeta (T^2 , 1/2, (L-1)/2)
- Ingredients
 - GENERATE: Matlab randn
 - MODIFY:

$$\mathbf{y} = (\mathbf{x}+q.\mathbf{n})/(1+q^2)^{1/2}$$

n ~ N(0, I_L)

• *q* fixes the strength of the modification.

Experiment #1: Asymptotic normality

 $P_{fa} = 4.7 \cdot 10^{-11}$

200 runs

Experiment #2: Estimating minimum length

Conclusion

THOMSON

Thank you for your attention

This document is for background informational purposes only. Some points may, for example, be simplified. No guarantees, implied or otherwise, are intended

