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Introduction: problem

 New trend in copy protection

– Fight against illegal redistribution of content.

content = Hollywood movies

– Find the identity of the hackers amongst n users.

– Dissuasive weapon.

– a.k.a. : fingerprinting, content serialization, user forensics, 
transactional watermarking…
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Introduction: the collusion

 Block exchange :

– Colluders cannot create version they don‟t have.

– The i-th block in the pirated copy is one of the i-th blocks from

the colluders (« marking assumption »)
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Outlines

 Introduction

 Traitor tracing

– How to design the code?

– How to accuse gilty people?

 Digital watermarking

– How to create two versions of a block? 

 False positive probability estimation
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Code Accusation
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Traitor tracing

 Requirements

– n users, c colluders, m binary code length

 Code construction

– X  binary matrix n x m (set X  B m)

– xj codeword given to user #j

– xji i-th bit of the j-th codeword

 Collusion

– Input: C = {x1 , …, xc}  X
– Ouput: y B m pirate sequence

 Accusation

– Input: y pirate sequence

– Output: G set of guilty users
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Cryptographic contributions

 Problem statement [Fiat&Naor]

 Terminology (old) [Pfitzmann]

– Ex.: Frameproof code  C | y  X \ C

 Relationship with Error Correcting Codes [Stinson]

– Pirate sequence = codeword + noise

– Accusation  = correcting errors

– Not efficient: very very very long code

 Relaxation of the constraint [Boneh&Shaw]

– Pfa Probability of accusing at least one innocent

– Pmi Probability of missing all colluders

 Non constructive theorem [Peikert03]

m  O( c2.log( n.Pfa
-1)  )
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A revolution coming from the Statistics

 Probabilistic codes [Gabor Tardos]

– The first exhibition of a code achieving the Peikert bound

m = 100 c2.log( n.Pfa
-1)

– An unknown genius… work rediscovered 2 years after.

– No rationale, no clue, no intuition except

« the full power of randomization »

– Extremely simple : 10 lines of matlab

– Extremely flexible : n, m loosely tightened 

– Constant  „100‟  raised suspicion 
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Tardos codes

 Initialization

– Draw randomly: pi  [0,1]  , i=1:m , i.i.d., p ~f (p)

– p = (p1, …, pm)  is the secret of the code

– f (p)  = 1 / (p(1-p))1/2 (?!?)

 Code construction

– Draw randomly: xji  {0,1} , Prob[xji = 1] = pi

– If pi ~ 0+ , then almost all user have a „0‟ sparse code

– If pi ~ 1/2 , then as many „0‟ as „1‟ dense code
9
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Tardos accusation

 Accusation

– Accuse user #j if Sj > T

Sj = i g(yi, xji, pi )

– g(0,0,p) = + ( p/(1-p) )1/2 g(1,1,p) = + ( (1-p)/p )1/2

– g(0,1,p) = - ( (1-p)/p )1/2 g(1,0,p) = - ( p/(1-p) )1/2
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Tardos code

Why does it work?
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Mathematical model of the collusion

 Assumptions about the collusion

– Memoryless yi = Fi (x1i,…, xci)

– Stationary yi = F (x1i,…, xci)

– Permutation Invariant yi = F (si) si= j xji

– Probabilistic s = Prob(y = 1| s )

– Model  = (0 , 1 , …, c )

Marking assumption 0 = 0 and c = 1

Therefore, the collusion indeed lies in [0,1]c-1
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Mathematical model of the collusion

 Using the model

Prob[y=1 | p] = s Prob[y=1,s|p] = s s . (s
c) ps (1-p)c-s

Prob[y=1 | x=1, p] = s s . (s-1
c-1) ps-1 (1-p)c-s

 1st and 2nd order statistics

– Innocent:  [ Sj ] = 0  [ Sj
2 ] = m

– Colluder:  [ Sj ] = 2m/c  [ Sj
2 ] = m

( here: [ . ] =  P[ X[ Y[.] ] ] )

 Miracle: independent from 

 Markov bound: m = 100 c2.log( n.Pfa
-1)

 Asymptotics: CLT – Scores are Gaussian distributed
13



Statistical interpretations (I)

 The collusion process is a nuisance parameter

 The hypothesis test is based on a pivotal quantity…

 … at least up to 1st and 2nd order statistics.
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f (p)  = 1 / (p(1-p))1/2

g(0,0,p) = + ( p/(1-p) )1/2

g(1,1,p) = …

Innocent           [ Sj ] = 0; [ Sj
2 ] = m

Colluder   [ Sj ] = 2m/c; [ Sj
2 ] = m







Statistical interpretation  (II)

 One collusion process – Many code densities

– Dense (p=1/2): worst attack: minority vote 3 colluders

– Sparse (p=0+ or 1-): worst attack: majority vote

 The sequence p is THE secret!

 « How secret is this secret? »

– The colluders could estimate it: pi = si / c

– The colluders know f(p): a priori distribution.

 Wrong idea: already captured by our model.

 Shed more light on Tardos choice:

– f(p) is the Jeffreys prior, the less informative prior distribution 

– The less useful for the colluders.
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Statistical interpretation (III)

 Hypothesis test

– H0: Innocent Prob(y,x|p) = Prob(y|,p)   .Prob(x|p)

– H1: Colluder Prob(y,x|p) = Prob(y|x,,p).Prob(x|p)

– Performance criterion

R ( f ;  ) = P [ DKL( H1 ; H0 | P,  ) ]

 Game theory

– Between designer and colluders

– MaxMin game

R ( f* ; * ) = maxf min R ( f ;  )

 Asymptotically, c :

– Equilibrium: f*(p) = (2p(1-p))-1/2 and      * =(0,c-1,2c-1,…, 1).
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Trends

 New accusation strategy

– « Learn and Match »

– Estimate  and use Likelihood ratio test to accuse (E.-M.)

 K-uplets scores

– Inf. theory: 

I(y ; x| )   I(y ; {x1, x2} | )  …  I(y ; { x1,…,xc }| )

– Practical?  Complexity in ~ O( nc )

 Q-ary alphabet

 Other collusion models

– Erasures (cut movie scenes)
17



Outlines

 Introduction

 Traitor tracing

– How to design the code?

– How to accuse people?

 Digital watermarking

– How to create two versions of a block?

 False positive probability estimation
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Definition of digital watermarking

 Data hiding: art and science of hiding data in multimedia digital 
contents.

 A hypothesis test problem …

 … under some special constraints:

– non perceptibility (watermark, filigrane in French)

– robustness (tatouage in French)

– security

Mark Yes or NoEmbedder Detector



Assumptions: feature extraction

 Watermark Embedding

– From a content block B, extract some meaningful features

s = Ext ( B ),   with s  L 

– Modify s into x = s + w s.t.  ||w||2  L.Pw

– The vector w is the secret of the watermarking scheme

– Put back the features into the content

Bw = Ext-1( x, B )

 Attack on the watermarked image

– Distort x into z = x + n s.t.  ||n||2  L.Pn

 Detection

– H0: r0 = s + n (given by Nature)

– H1: r1 = s + w + n



Naïve idea

 Gaussian setup

r0 = s + n ~  (0, Ps+Pn) vs. r1 = s + w + n ~  (w, Ps+Pn)

– Performances limited by the Kullback-Leibler distance

DKL(r0||r1) = L.Pw / 2 (Pn+Ps)

– Data processing theorem, Stein Lemma.

Generation + +
r1xw

s

n

||w||2  L.Pw

Detection



An Information theoretic revolution [Costa]

 Gaussian setup

r0 = s + n ~  (0, Ps+Pn) vs. r1 = s + w(s) + n

– Performances limited by the Kullback-Leibler distance

maxw(.) DKL(r0||r1) = ???

Generation + +
r1xw(s)

s

n

 s||w(s)||2  L.Pw

Detection



The informed setup

 Gaussian setup

– r0 – s = n ~  (0, Pn) vs. r1 - s = w + n ~  (w, Pn)

– Performances limited by the Kullback-Leibler distance

DKL(r0||r1) = Pw / 2.Pn

Generation + +
r1xw

s

n

Detection

||w||2  L.Pw



The side informed setup [Costa]

 Gaussian setup

– Performances limited by the Kullback-Leibler distance

Pw / 2.(Pn+Ps)    max DKL(r0||r1)  Pw / 2.Pn

 Philosophical question

– Is s a channel noise      or      a channel state?
Detection Generation

Generation + +
r1xw(s)

s

n

s||w(s)||2  L.Pw

Detection



Asymptotical Gaussian case

 Suppose the following watermark embedding

x = s + w(s) = s + ( - .sTu).u with ||u||2=1

–   [0,1],  > 0

– “Push and cancel” mixed strategy

– Power constraint:

 2 + 2.Ps = L.Pw

 KL- distance

– DKL(r0||r1) = F (, ) = F ().

– Optimize : * = arg max F()

– Take to the limit

limL F(*)  = Pw / 2.Pn



How to put this into practice?

 Gaussian setup with fixed length L

– How to maximize DKL?

– How to design the detector? [Merhav]

 Real world

– Nuisance parameters: Ps, Pw, Pn, type of attack

– No longer Gaussian r.v.

– No longer Euclidean distance, but perceptual distance



Outlines

 Introduction

 Traitor tracing

– How to design the code?

– How to accuse people?

 Digital watermarking

– How to create two versions of a block? 

 False positive probabilty estimation
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False positive estimation

 2 techniques have a common issue: very very small Pfa

– Traitor tracing: probability to accuse an innocent.

Pfa =  Prob [ d(x) > T ]

with d(.) Tardos scoring

 x the sequence of a user,  Prob(xj) = i pi
xji .(1-pi)

(1-xji)

– Watermarking: probability of detecting the mark in a non 

watermarked content

Pfa =  Prob [ d(x) > T ]

 with d(.) likelihood of being watermarked

 x features extracted from a content block, x ~ pX
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Monte Carlo Method estimation

 Structure of the detector

 MCM estimation

– Run n experiments

– Increment k when d(x)>T

– Estimate Pfa = k/n

 Issues

– k0 n = O(1/Pfa)

– Relative std of Pfa = (Pfa.n)-1/2 n ~ 100/Pfa

The smaller the probability, the harder its estimation

29 10/20/2009

score threshold T Y / N
x  L d(x)  

~ pX ~ ?

^

^



Geometric interpretation
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Key idea of our algorithm
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Pfa = Pr(d(x)  T )

= Pr(d(x)  T |d(x)  TN-1).Pr(d(x)  TN-1|d(x)  TN-2)…Pr(d(x)  T1)

T > TN-1 > TN-2 > …. > T1

Pfa = âN . âN-1 . … â1

Divide and Conquer

Pfa = Pr (A) = Pr (A,AN-1)  if A implies AN-1

= Pr (A| AN-1) . Pr (AN-1) 2 estimations, less difficult

= Pr (A| AN-1) . Pr (AN-1 | AN-2) . Pr (AN-2 | AN-3) ... Pr (A1)

AAN-1 AN-2… A1

^



Our estimator

 Inputs

– Distribution of input data pX, score d(.), threshold T

 Outputs

– Estimation Pfa of Pr(d(x)>T) for x ~ pX

 Ingredients: 3 subroutines

– SCORE

Function d(.): L  

 „Smooth‟ 

– GENERATE

Generate input data x distributed ~ pX

– MODIFY

 y = f ( x ), random function

 such that y ~ pX and y is „close‟ to x

32 10/20/2009
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Our estimator

 Divide and conquer

Pfa =Pr(d(x)  T |d(x)  TN-1)...Pr(d(x)  Tj+1|d(x)  Tj)…Pr(d(x)  T1)

 Initialization

– „small‟ Monte Carlo Method Estimator

– Generate n input data (particles) x(1) ~ pX

– Count the number of times the score is above the 1st threshold

k1 = |{xi
(1) | d(xi

(1))>T1}|

â1 = k1/n
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Our estimator

 Divide and conquer

Pfa =Pr(d(x)  T |d(x)  TN-1)...Pr(d(x)  Tj+1|d(x)  Tj)…Pr(d(x)  T1)

 Iteration j  j+1

– We start with kj = |{xi
(j) | d(xi

(j))>Tj}| particles in region Aj.

– DUPLICATE: We randomly select n particles in this set

– MODIFY:  z = f (xi
(j))

– SELECTION:

 If d(z) > Tj then xi
(j+1) = z

Else xi
(j+1)  = xi

(j)

– We now have n particles ~px in Aj.



Our estimator

 Iteration j  j+1

– THRESHOLD (or MCM estimator)

Count the number of times the score is above the (j+1)th threshold

kj+1 = |{xi
(j+1) | d(xi

(j+1))>Tj+1}|

âj+1 = kj+1/n

35 10/20/2009

duplication modification selection threshold

kj kj+1n



Our estimator

 Geometric interpretation
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Our estimator

 Geometric interpretation
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Our estimator

 Last trick

– How to define the thresholds Tj ?

– Variance of the estimation Pfa is minimized if aj = cte

– Inverse: Tj is the k-th biggest score out of n: âj = k/n

 Divide and conquer

Pfa =Pr(d(x)  T |d(x)  TN-1)...Pr(d(x)  Tj+1|d(x)  Tj)…Pr(d(x)  T1)

 Stopping condition

– When TN > T.

– Count the number k’ of scores really above T

– Pfa = (k/n)N-1. k’ / n
38 10/20/2009
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Properties

 Small number of trials

nN = n[log Pfa
-1 / log (k/n)-1]

 Asymptotic consistency

Pfa  Pfa as   n  

(almost surely)

 Asymptotic Normality

n1/2.(Pfa - Pfa)   (b,2) as n  

(in law)

 Asymptotic statistics

• Relative std in O( ( log(Pfa
-1) /n )1/2  )

• Fast vanishing relative bias in O(1/n)

39 10/20/2009

^

^



Experiment #1: Digital Watermarking

 Toy example

– x ~ px isotropic (for instance, white Gaussian noise (0, IL))

– d(x) = xTu / ||x||

– Ground truth: Pfa = 1- IncBeta (T2, 1/2, (L-1)/2 )

 Ingredients

– GENERATE: Matlab randn

– MODIFY:

y = (x+q.n)/(1+q2)1/2

n ~ N(0, IL)

 q fixes the strength of the modification.
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Experiment #1: Asymptotic normality

L = 20

T = 0.95

Pfa = 4.7 . 10-11

k/n = 3/4

n=50,000

200 runs
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Experiment #2: Estimating minimum length

Tardos

m = 100.c2log(n/Pfa)

Experimental

m K1.c
2log(n/Pfa) +K0(c)

with

K1  7.6



Conclusion
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Thank you for your attention

This document is for background informational purposes only.  Some points 

may, for example, be simplified.  No guarantees, implied or otherwise, are 

intended


