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Grenander’s pattern theory (1993)

Data : a set of n similar curves or images obtained through the
deformation of the same template

A deformable model for curves or images : observation of
Ym : Ω → R, m = 1, . . . , n where Ω ⊂ R

d with d = 1, 2, 3 such that

Ym(x) = f (φm(x)) + Wm(x), for x ∈ Ω,

where
f : R

d → R is a common unknown template (mean pattern)
φm : R

d → R
d are unknown deformations, possibly random

Wm some additive noise

Problem : to recover f as n → +∞
In statistics curve alignment (Gasser, Kneip, Silverman, Ramsay...)

In image processing (Amit, Grenander, Joshi, Miller, Trouvé, Younes...)

Recently work by Gamboa, Loubes, Maza, Vimond, Bigot, Gadat
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Different models for the deformations

Rigid deformations

Translation : φ(x) = x − b where b ∈ R
d

Rotation + scaling (in R
2) : φ(x) = 1

a Aθx where a ∈ R
+ and

Aθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

Affine (Translation + rotation + scaling) : φ(x) = 1
a Aθ(x − b), either

2D or 3D
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Different models for the deformations

Non-rigid deformations

Small deformations : φ(x) = x + h(x) where h : R
d → R

d is an
unconstrained function . Problem φ is not necessarly invertible if
h is large. (Work by Faugeras, Amit,...)

Large deformations (i.e. diffeomorphisms ) : φ(x) is an invertible
and smooth deformation from R

d to R
d (Work by Grenander, Trouvé,

Younes, Miller,...)
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Estimating f a deconvolution problem ?

Direct mean of the observed images - blurring effect
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Kendall’s shape space

Observations : Z1, . . . ,Zn iid r.v. taking their values in R
2×k.

For Z ∈ R
2×k define

h · Z = a

(
cos θ − sin θ
sin θ cos θ

)

Z + b,

for h = h(a, θ, b) ∈ H, with (a, θ, b) ∈ R
+ × [0, 2π] × R

2 where H is the
group of scaling, rotations and translations acting on the plane R

2.

Two vectors Z, Z′ ∈ V represent the same shape (i.e. are equivalent) if

dH(Z, Z′) := inf
(a,θ,b)∈R+×[0,2π]×R2

‖Z − h(a, θ, b) · Z′‖R2×k = 0

Kendall’s shape space : Σk
2 equivalent classes of shapes in R

2×k

under the action of H.
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Empirical mean in Kendall’s shape space

Since Σk
2 is a nonlinear manifold,

Zn =
1
n

n∑

m=1

Zm /∈ Σk
2

Empirical mean of n shapes :

Z̃n = arg min
Z∈Σk

2

1
n

n∑

m=1

d2
H(Z, Zm)

Jérémie Bigot Mean pattern estimation



Introduction
M-estimation and warping for image averaging

A randomly shifted curve model

Motivations
Frechet mean

Frechet mean on general metric space

More generally, if Z1, . . . ,Zn are iid r. v. in a general metric space M,
with a distance d : M×M → R

+, then the Frechet mean of
Z1, . . . ,Zn is defined as

Z̃n = arg min
Z∈M

1
n

n∑

m=1

d2(Z, Zm).
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The large deformation framework in R
d

Let Ω ⊂ R
d and vt : Ω → R

d, t ∈ [0, 1] be a time-dependent vector
field. For x ∈ Ω, take the solution Φ1 at time t = 1 of the O.D.E.

∂Φt

∂t
= vt ◦ Φt with Φ0 = x,

i.e. Φ1(x) = x +
∫ 1

0 vt(Φ
t(x))dt

Under mild assumptions on (vt)t∈[0,1] (essentially vt and its derivatives
must vanish at the boundaries of Ω) then :

Φ1 is a diffeomorphism from Ω → Ω.

Work by Grenander, Trouvé, Younes, Miller,...
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Examples of large deformations in 1D

Take vt(x) = e(x) for all t ∈ [0, 1] for some function e : [0, 1] → R
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Φ1(x) = x +

∫ 1

0
e(Φt(x))dt
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Examples of large deformations in 1D

Start from the identity at time t = 0

Φ0(x) = x
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Examples of large deformations in 1D

Compute the solution of the O.D.E. at time t = 1

Φ1(x) = x +

∫ 1

0
e(Φt(x))dt
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Examples of large deformations in 1D

Another choice of the vector field (with a smaller amplitude)
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Examples of large deformations in 1D

Another choice of the vector field (with a smaller amplitude)
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This reduces the amplitude of the deformation
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A parametric diffeomorphic deformation model

Let Ω = [0, 1]2. Let A > 0 and draw independent random
coefficients a(j)

k ∼i.i.d. P supported on [−A,A],
k = 1, . . . ,K, j = 1, 2. Then, define for x ∈ [0, 1]2

va(x) = (

K∑

k=1

a(1)
k ek(x),

K∑

k=1

a(2)
k ek(x)),

where ek : [0, 1]2 → R are basis functions .

Then Φa(x) = Φva(x) is defined as the solution at time t = 1 of the
following equation (note that the vector field is not
time-dependent) :

Φ1
va
(x) = x +

∫ 1

0
va(Φ

t
va
(x))dt.
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A parametric diffeomorphic deformation model

Original image

Lenna image - 256 × 256 pixels
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A parametric diffeomorphic deformation model

Random deformation with a small A (amplitude of the a(j)
k ’s)

The basis functions ek are localized in the center of the image
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A parametric diffeomorphic deformation model

Random deformation with a large A (amplitude of the a(j)
k ’s)

The basis functions ek are localized in the center of the image
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A statistical model for the deformation of images

We observe n images on a squared grid of N × N pixels. At each pixel
p we assume that the noisy image Ii, i = 1, . . . , n is given by

Iai(p) = I⋆ ◦ Φ1
ai
(p) + εi(p), i = 1, . . . , n,

where

I⋆ : [0, 1]2 → R is the unknown mean image to estimate,

ai are i.i.d random vectors (in [−A; A]2K) of coefficients,

εi(p) ∈ R are i.i.d. observation noise with zero mean and finite
variance.
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An example of realizations of the model
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A contrast function for estimating the mean of images

Let Z = {Z : [0, 1]2 → R} be some set of images and define

VA =

{

v : [0, 1]2 → R
2; v(x) = (

K∑

k=1

a(1)
k ek(x),

K∑

k=1

a(2)
k ek(x)), a

(j)
k ∈ [−A,A]

}

Let f (a, ε, Z) = minv∈VA

∑N2

p=1

(
Ia(p) − Z ◦ Φ1

v(p)
)2

, where

Ia(p) = I⋆ ◦ Φ1
a(p) + ε(p) with a ∈ [−A,A]2K and ε ∈ R

N2

Let F(Z) =
∫

[−A,A]k×RN2 f (a, ε, Z)dP(a, ε) and

F̂n(Z) =
1
n

n∑

i=1

f (ai, εi, Z)
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A contrast function for estimating the mean of images

Define the following sets of minimizers (unicity is not guaranteed !)

Q̂n = arg min
Z∈Z

F̂n(Z) and Q0 = arg min
Z∈Z

F(Z)

Theorem

Assume that the ek’s are bounded, that Z is compact for the
supremum norm, and that I∗ is uniformly Lipschitz 1 over [0, 1]2, then
Q̂ = limn→+∞ Q̂n is such that

Q̂ 6= ∅ and Q̂ ⊂ Q0 almost surely .
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A more general model

Main problem : the previous theorem supposes that the distribution
of the images is known... Some questions :

what happens if the images do not follow this model ?

can we interpret the choice of A (size of the deformations) as a
regularization parameter ?
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A more general model

Let Ii ∼i.i.d. P on R
N2

and Zθ =
∑

λ∈Λ θλψλ be an image expanded in
some basis ψλ with Λ a finite set of indices.

Penalized M-estimator : let Θ ⊂ R
Λ

θ̂n = arg min
θ∈Θ

Fn(Zθ) = arg min
θ∈Θ

1
n

n∑

i=1

f (Ii, Zθ),

with

f (I, Zθ) = min
v∈V





N2
∑

p=1

(
I(p) − Zθ ◦ Φ1

v(p)
)2

+ λ1pen1(v)



+ λ2pen2(θ),

with e.g. pen1(vi) =
∑K

k=1 |a
(1)
k,i |2 + |a(2)

k,i |2 and pen2(θ) =
∑

λ∈Λ |θλ|2

Then (under appropriate assumptions, mainly compactness of Θ and
V) : limn→+∞ ‖θ̂n − θ∗‖∞ = 0 a.s. where
θ∗ = arg minθ∈Θ F(Zθ) = arg minθ∈Θ

∫
f (I, Zθ)dP(I),
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Computation of a minimizer of the contrast function

Iterative procedure : (General Procrustes scheme) start with
Z(1) = 1

n

∑n
i=1 Ii (naive estimator). Then for m = 2, . . . ,M repeat the

following steps :

for i = 1, . . . , n use a gradient descent algorithm to compute the
optimal deformation Φâm

i
which corresponds to the vector field

vâm
i

= arg min
v∈V

N2
∑

p=1

(

Ii(p) − Z(m−1) ◦ Φ1
v(p)

)2
+ λ1pen1(v)

compute Z(m) = arg minZ∈Z
∑n

i=1

∑N2

p=1

(
Ii(p) − Z(m−1) ◦ Φâm

i
(p)
)2

given by (case where λ2 = 0)

Z(m)(p) =

∑n
i=1 wi(p)Ii ◦ Φ−1

âm
i

(p)
∑n

i=1 wi(p)
where wi(p) = | det Jac(Φ−1

âm
i

)(p)|.

Jérémie Bigot Mean pattern estimation



Introduction
M-estimation and warping for image averaging

A randomly shifted curve model

A deformable model for images
M-estimation for mean pattern estimation of images
Some numerical examples

Computation of a minimizer of the contrast function

Iterative procedure : (General Procrustes scheme) start with
Z(1) = 1

n

∑n
i=1 Ii (naive estimator). Then for m = 2, . . . ,M repeat the

following steps :

for i = 1, . . . , n use a gradient descent algorithm to compute the
optimal deformation Φâm
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Mean pattern of faces

Naive mean - Z(m) with m = 7
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Y1, . . .Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

where

f : [0, 1] → R is the unknown common shape of the curves (with
period 1)

Wm are independent standard Brownian motions on [0, 1]

ǫ level of noise in each curve

Remark : ǫ→ 0 corresponds to N → +∞ in the model (with ǫ = σ√
N
)

Ym,i = f (xi − τm) + σzm,i, xi =
i
N
, i = 1, . . . ,N, and zm,i ∼i.i.d. N(0, 1)
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Y1, . . .Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

Different models for the shifts τm :

Deterministic shifts : the τm are fixed parameters to estimate :
semi-parameteric estimation in the setting n fixed and ǫ→ 0
(Gamboa, Loubes & Maza (2007), Vimond (2008), extension to 2D
images by Bigot, Gamboa & Vimond (2009))

τm’s are unknown random shifts independent of the Wm’s such
that

τm ∼i.i.d g m = 1, . . . , n,

where g is a unknown density on R
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Y1, . . .Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

This talk : case of random shifts τm ∼i.i.d g, m = 1, . . . , n, with known
or unknown density g.

Problem : estimation of f in the asymptotic setting :

n → +∞ and ǫ is fixed (This talk)

n → +∞ and ǫ→ 0 (Work in progress...)
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A simple model for randomly shifted curves

Observations : independent realizations of n noisy and randomly
shifted curves Y1, . . . Yn coming from the model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

Main objectives : estimating the function f and to derive asymptotic
(as n → +∞) upper and lower bounds for the minimax risk

Rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f ), where

R(f̂n, f ) = E‖f̂n − f‖2 = E
∫ 1

0 |f̂n(x) − f (x)|2dx

F ⊂ L2([0, 1]) e.g a Sobolev or a Besov ball

f̂n a measurable function of the processes {Ym, m = 1, . . . , n}
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Simplest case : no shifts

Observations : independent realizations of n noisy and curves
Y1, . . .Yn

dYm(x) = f (x)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

Classical result : if F = Hs(A) (Sobolev ball of radius A) or
F = Bs

p,q(A) (Besov ball of radius A) with smoothness index s
(“number of derivatives”) then

Rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f ) ∼ Cn− 2s
2s+1

Jérémie Bigot Mean pattern estimation



Introduction
M-estimation and warping for image averaging

A randomly shifted curve model

A connexion with deconvolution problems in nonparametric statistics
Upper and lower bounds for the minimax risk
Estimation in the case of an unknown density g for the shifts
Simulations

A connexion with a deconvolution problem

Model : dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

A deconvolution problem ? The expectation of each oberved curve
is given by E [f (x − τm)] =

∫

R
f (x − τ)g(τ)dτ = f ⋆ g(x)

Define

ξm(x) = f (x − τm) −
∫

R

f (x − τ)g(τ)dτ,

ξ(x) = 1
n

∑n
m=1 ξm(x), and taking the mean of the n curves yields

dY(x) =

∫ 1

0
f (x − τ)g(τ)dτdx + ξ(x)dx

︸ ︷︷ ︸

Non-Gaussian Error

+
ǫ√
n

dW(x)
︸ ︷︷ ︸

Standard Gaussian Error

, x ∈ [0, 1],
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A connexion with a deconvolution problem

Case of standard deconvolution with a Gaussian error :

dY(x) =

∫ 1

0
f (x − τ)g(τ)dτdx +

ǫ√
n

dW(x) x ∈ [0, 1],

Minimax rate of convergence : let γℓ =
∫ +∞
−∞ e−i2πℓxg(x)dx. Assume

that for some real ν > 0

Cmin|ℓ|−ν ≤ |γℓ| ≤ Cmax|ℓ|−ν .

for all ℓ ∈ Z.

Then for F = Hs(A) (Sobolev ball) or F = Bs
p,q(A) (Besov ball) with

smoothness index s (“number of derivatives”) then

Rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f ) ∼ Cn− 2s
2s+2ν+1 (instead of n− 2s

2s+1 in the direct case)
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Model in the Fourier domain

For ℓ ∈ Z, let θℓ =
∫ 1

0 e−2iℓπxf (x)dx and cm,ℓ =
∫ 1

0 e−2iℓπxdYm(x). Then

cm,ℓ = θℓe−i2πℓτm + ǫmzℓ,m with zℓ,m ∼i.i.d. NC (0, 1)

= θℓγℓ + ξℓ,m + ǫmzℓ,m with ξℓ,m = θℓe−i2πℓτm − θℓγℓ,

where with γℓ = E
(
e−i2πℓτ

)
=
∫ +∞
−∞ e−i2πℓxg(x)dx.

Then, average the Fourier coefficients over the n curves

c̃ℓ =
1
n

n∑

m=1

cℓ,m = θℓγℓ+ ξℓ
︸︷︷︸

Non-Gaussian Error

+
ǫ√
n
ηℓ

︸ ︷︷ ︸

Standard Gaussian Error

, with ηℓ ∼i.i.d. NC (0, 1)

with ξℓ = 1
n

∑n
m=1 ξℓ,m.

Note that
E|ξℓ|2 =

1
n
|θℓ|2(1 − |γℓ|2)

Problem : the variance of ξℓ depends on the unknown |θℓ|2
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Deconvolution in the Fourier domain

Assuming that the density g of the shifts is known, an estimation of θℓ

is given by

θ̂ℓ =
c̃ℓ

γℓ

= θℓ +
ξℓ
γℓ

+
ǫ√
n
ηℓ

γℓ

with γℓ = E
(
e−i2πℓτ

)
=
∫ +∞
−∞ e−i2πℓxg(x)dx.

Main assumption on g : polynomial decay of the γℓ’s i.e for some
real ν > 0,

Cmin|ℓ|−ν ≤ |γℓ| ≤ Cmax|ℓ|−ν .

for all ℓ ∈ Z.
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Filtering in the Fourier domain

Linear estimator for f by spectra cut-off : take

θ̂M
ℓ =

c̃ℓ

γℓ

, for all |ℓ| ≤ M

and
θ̂M

ℓ = 0, for all |ℓ| > M

where M is some integer to be chosen. For f̂n,M(x) =
∑

ℓ∈Z
θ̂M

ℓ e−i2πℓx,
one has

R(f̂n,M , f ) = E

∑

ℓ∈Z

|θ̂ℓ − θℓ|2.

Bias-variance decomposition of the risk

R(f̂n,M , f ) =
∑

|ℓ|>M

|θℓ|2

︸ ︷︷ ︸

Bias

+
1
n

∑

|ℓ|≤M

[

|θℓ|2
(

1
|γℓ|2

− 1

)

+
ǫ2

|γℓ|2
]

︸ ︷︷ ︸

Variance

.
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Filtering in the Fourier domain

Define the following Sobolev ball of radius A :

Hs(A) =

{

f ∈ L2([0, 1]) ;
∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ|2 ≤ A,

}

with A > 0, s > 0

Proposition

If M = Mn,s ∼ n
1

2s+2ν+1 , then supf∈Hs(A) R(f̂n,Mn,s , f ) = O(n− 2s
2s+2ν+1 )

Problem :
f̂n,Mn,s depends on the unknown regularity s (non-adaptive
estimator)
if f is piecewise Cs with s large, then f /∈ Hα(A) for α > 1/2. So,

sup
f∈Piece-wise Cs

R(f̂n,Mn,s , f ) = O(n− 1
1+2ν+1 )

(non-optimal estimator in standard deconvolution)
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Meyer wavelets

Let (φj0,k, ψj,k)j≥j0,0≤k≤2j−1 be the periodized Meyer wavelet basis of
L2([0, 1]).

Advantages : Meyer wavelets are band-limited functions since for

ψj,k
ℓ =

∫ 1

0
e−i2πℓxψj,k(x)dx, ℓ ∈ Z,

the set Cj = {ℓ ∈ Z;ψj,k
ℓ 6= 0} is finite with #{Cj = c2j}.

Then, wavelet coefficients of f can be computed from its Fourier
coefficients as

βj,k =

∫ 1

0
f (x)ψj,k(x)dx =

∑

ℓ∈Cj

ψj,k
ℓ θℓ, where θℓ =

∫ 1

0
e−2iℓπxf (x)dx.

Meyer wavelets = usefull tool for deconvolution ( work by Johnstone et
al. (2004), Pensky & Sapatinas (2008), and fast WaveD algorithm by
Raimondo (2006) )
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Estimation by hard thresholding

Recall that

θ̂ℓ =
c̃ℓ

γℓ

= θℓ +
ξℓ
γℓ

+
ǫ√
n
ηℓ

γℓ

and estimation of the wavelet coefficients of f is then given by

β̂j,k =
∑

ℓ∈Cj

ψj,k
ℓ θ̂ℓ and ĉj0,k =

∑

ℓ∈Cj0

φj0,k
ℓ θ̂ℓ.

Non-linear estimation by hard-thresholding

f̂ h
n =

2j0−1∑

k=0

ĉj0,kφj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k11{|β̂j,k|>λj,k}ψj,k

where λj,k is a threshold to be calibrated.
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Adaptive estimation over Besov spaces

Take

λj,k = λj = σj

√

2η log(n)

n

for some η > 0 and σ2
j = 2−jǫ2∑

ℓ∈Ωj
|γℓ|−2.

Theorem

Assume that 2j1 ∼
(

n
log(n)

) 1
2ν+1

and 2j0 ∼ log(n). Then, for 1 ≤ p ≤ ∞,
1 ≤ q ≤ ∞, A > 0

sup
f∈Bs

p,q(A)

‖f̂ h
n − f‖2 = O

((
n

log(n)

)− 2s
2s+2ν+1

)

,

with s > 1/p′, (s + 1/2 − 1/p′)p > ν(2 − p) with p′ = min(2, p)
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Asymptotic lower bound

Theorem

Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s ≥ 1/p and A > 0. Then, if

s > ν + 1/2 and ν > 1/2,

there exists a constant C > 0 depending only on A, s, p, q such that

lim
n→+∞

n
2s

2s+2ν+1 Rn(B
s
p,q(A)) ≥ C
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Some limitations

Problem : this approach is not realistic in practice as the density g of
the random shifts is typically unknown

Model

dYm(x) = f (x − τm)dx + ǫdWm(x), x ∈ [0, 1], m = 1, . . . , n

falls into the setting of inverse problem with an unknown operator
(here the convolution by the density g), see Cavalier & Raimondo
(2007), Efromovich & Koltchinskii (2001), Hoffman & Reiss (2008)

Main issue : can we find data-based estimation of the γℓ’s and plug
them into the previous estimates ?
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Frechet mean for randomly shifted curves

Define H = R as the translation group acting on periodic functions
f ∈ L2([0, 1]) with period 1 by

τ · f (x) = f (x + τ), for x ∈ [0, 1] and τ ∈ H.

and let Y1, . . . ,Yn ∈ L2([0, 1])

Frechet mean of the n curves Y1, . . . ,Yn :

f̃n = arg min
f∈L2([0,1])

1
n

n∑

m=1

min
τm∈R

‖f − τm · Ym‖2

= arg min
f∈L2([0,1])

1
n

n∑

m=1

min
τm∈R

∫ 1

0
|f (x) − Ym(x + τm)|2dx.
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Frechet mean for randomly shifted curves

Smoothed Frechet mean in the Fourier domain :

(θ̂−ℓ0 , . . . , θ̂ℓ0) = arg min
(θ−ℓ0 ,...,θℓ0)∈R2ℓ0+1

1
n

n∑

m=1

min
τm∈R

∑

|ℓ|≤ℓ0

|cm,ℓe2iℓπτm − θℓ|2,

where cm,ℓ =
∫ 1

0 e−2iℓπxdYm(x), f̃n,ℓ0 =
∑

|ℓ|≤ℓ0
θ̂ℓe−2iℓπx, and ℓ0 is some

frequency cut-off parameter

Two step procedure : computation of f̄n,ℓ0 in two steps :

step 1 :

(τ̂1, . . . , τ̂n) = arg min
(τ1,...,τn)∈Rn

1
n

n∑

m=1

∑

|ℓ|≤ℓ0

|cm,ℓe2iℓπτm − 1
n

n∑

q=1

cq,ℓe2iℓπτq |2

step 2 : θ̂ℓ = 1
n

∑n
m=1 cm,ℓe2iℓπτ̂m .
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Upper bound for the estimation of the shifts

Model : cm,ℓ = θℓe−i2πℓτ∗

m + ǫzℓ,m, ℓ ∈ Z for m = 1, . . . , n,

Identifiability conditions

Hypothesis

The density g has a compact support included in the interval
T = [− 1

4 ,
1
4 ] and has zero mean i.e. is such that

∫

T τg(τ)dτ = 0.

Hypothesis

The unknown shape function f is such that θ1 6= 0.
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Upper bound for the estimation of the shifts

Define for τ = (τ1, . . . , τn) ∈ T n

Mn(τ ) =
1
n

n∑

m=1

∑

|ℓ|≤ℓ0

∣
∣
∣
∣
∣
∣

cm,ℓe2iℓπτm − 1
n





n∑

q=1

cq,ℓe2iℓπτq





∣
∣
∣
∣
∣
∣

2

.

Let T n = {(τ1, . . . , τn) ∈ T n such that
∑n

m=1 τm = 0}, and define

τ̂ = (τ̂1, . . . , τ̂n) = arg min
τ∈T n

Mn(τ ),
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Upper bound for the estimation of the shifts

Theorem

Suppose that Assumptions 1 and 2 hold. Then, for any t > 0

P

(

1
n

n∑

m=2

(τ̂m − τ∗m)2 ≥ C(f , ℓ0, ǫ, n, t, g)

)

≤ 3 exp(−t),

with C(f , ℓ0, ǫ, n, t, g) =

4 max
[

C1(f , ℓ0)
(√

C2(ǫ, n, ℓ0, t) + C2(ǫ, n, ℓ0, t)
)

,C3(t, n, g)
]

, where

C2(ǫ, n, ℓ0, t) = ǫ2(2ℓ0 + 1) + 2ǫ2

√

2ℓ0 + 1
n

t + 2
ǫ2

n
t,

C3(t, n, g) =

(√

2σ2
g

t
n

+
t

12n

)2

with σ2
g =

∫

T
τ 2g(τ)dτ.
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Lower bound for the estimation of the shifts

Hypothesis

The function f is such that
∑

ℓ∈Z
(2πℓ)2|θℓ|2 < +∞.

Hypothesis

The density g is compactly supported on a interval T = [τmin, τmax]
such that limτ→τmin g(τ) = limτ→τmax g(τ) = 0.

Theorem

Let τ̂ n denote any estimator of the true shifts (τ1, . . . , τn). Then,
under Assumptions 3 and 4

E

(

1
n

n∑

m=1

(τ̂ n
m − τ∗m)2

)

≥ ǫ2

∑

ℓ∈Z
(2πℓ)2|θℓ|2 + ǫ2

∫

T
(

∂
∂τ

log g(τ)
)2

g(τ)dτ
.
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Plug-in into wavelet-based estimators

First estimator

f̂n,1 =

2j0−1∑

k=0

ĉj0,k,1φj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k,111{|β̂j,k,1|>λ̂j}ψj,k

where β̂j,k,1 =
∑

ℓ∈Ωj
ψj,k

ℓ θ̂ℓ,1 and ĉj0,k,1 =
∑

ℓ∈Ωj0
φj0,k

ℓ θ̂ℓ,1 with

θ̂ℓ,1 =
1
γ̂ℓ

(

1
n

n∑

m=1

cℓ,m

)

,

and λ̂j = σ̂j

√
2η log(n)

n with σ̂2
j = 2−jǫ2

∑

ℓ∈Ωj
|γ̂ℓ|−2 and

γ̂ℓ =
1
n

n∑

m=2

e−i2πℓτ̂m .
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Plug-in into wavelet-based estimators

Second estimator given by first realigning the curves using the
estimation of the shifts namely

f̂n,2 =

2j0−1∑

k=0

ĉj0,k,2φj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k,211{|β̂j,k,2|>λ̂j}ψj,k

where β̂j,k,2 =
∑

ℓ∈Ωj
ψj,k

ℓ θ̂ℓ,2 and ĉj0,k,2 =
∑

ℓ∈Ωj0
φj0,k

ℓ θ̂ℓ,2 with

θ̂ℓ,2 =
1
n

n∑

m=2

cℓ,mei2πℓτ̂m .

and λ̂j = σ̂j

√
2η log(n)

n with σ̂2
j = 2−jǫ2

∑

ℓ∈Ωj
|γ̂ℓ|−2.
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Comparison with Procrustean mean

Iterative procedure (Kneip & Gasser (1988), Wang & Gasser
(1997))

Initialisation : f̂0 = 1
n

∑n
m=1 Ym

For 1 ≤ i ≤ imax do

For 1 ≤ m ≤ n compute

τ̂m,i = arg min
τ∈R

‖Ym(· + τ ) − f̂i−1‖
2

Then take f̂i(x) = 1
n

Pn
m=1 Ym(x + τ̂m,i)

Fast convergence (imax = 3 is enough) but it highly depends on the
initialisation f̂0
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Wave example

Laplace distribution g(x) = 1√
2σ

exp
(

−
√

2 |x|
σ

)

for x ∈ R, and

γℓ = 1
1+2σ2π2ℓ2 i.e ν = 2
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True f and a sample of 10 noisy curves out of n = 200
Curves are sampled at N = 256 equally spaced points on [0, 1]
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Wave example - Direct mean

Direct mean of the n = 200 observed curves
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Wave example - Comparison with Procrustean mean

Wavelet-based estimator f̂n,1 (left) and f̂n,2 (right)
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Blocks example

Laplace distribution g(x) = 1√
2σ

exp
(

−
√

2 |x|
σ

)

for x ∈ R, and

γℓ = 1
1+2σ2π2ℓ2 i.e ν = 2
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Curves are sampled at N = 256 equally spaced points on [0, 1]
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Blocks example - Direct mean

Direct mean of the n = 200 observed curves
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Blocks example - Comparison with Procrustean mean

Wavelet-based estimator f̂n,1 (left) and f̂n,2 (right)
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Bumps example

Laplace distribution g(x) = 1√
2σ

exp
(

−
√

2 |x|
σ

)

for x ∈ R, and

γℓ = 1
1+2σ2π2ℓ2 i.e ν = 2
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True f and a sample of 10 noisy curves out of n = 200
Curves are sampled at N = 256 equally spaced points on [0, 1]
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Bumps example - Direct mean

Direct mean of the n = 200 observed curves
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Bumps example - Comparison with Procrustean mean

Wavelet-based estimator f̂n,1 (left) and f̂n,2 (right)
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Some perspectives

For the randomly shifted curve model :

consider an asymptotic setting with n → +∞ and ǫ → 0 (work in
progress)

consistency and rate of convergence of the estimators in the case
of an unknown density g

Extension to images and more complex deformations (first steps
in this direction by Bigot, Gamboa & Vimond (2009), Bigot,
Loubes & Vimond (2008), Bigot, Gadat & Loubes (2009))

Jérémie Bigot Mean pattern estimation
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