Mean pattern estimation in deformable models for curve and image warping

Jérémie Bigot

Insitut de Mathématiques de Toulouse Université de Toulouse

Journées STAR - INRIA Rennes & IRISA Octobre 2009

Joint work with Sébastien Gadat & Jean-Michel Loubes and also Fabrice Gamboa & Myriam Vimond on related topics

Introduction

- Motivations
- Frechet mean
- M-estimation and warping for image averaging
 - A deformable model for images
 - M-estimation for mean pattern estimation of images
 - Some numerical examples

A randomly shifted curve model

- A connexion with deconvolution problems in nonparametric statistics
- Upper and lower bounds for the minimax risk
- Estimation in the case of an unknown density g for the shifts
- Simulations

Grenander's pattern theory (1993)

Data : a set of *n* similar curves or images obtained through the deformation of the same template

A deformable model for curves or images : observation of $Y_m : \Omega \to \mathbb{R}, \ m = 1, \dots, n$ where $\Omega \subset \mathbb{R}^d$ with d = 1, 2, 3 such that

$$Y_m(x) = f(\phi_m(x)) + W_m(x), \text{ for } x \in \Omega,$$

where

- $f: \mathbb{R}^d \to \mathbb{R}$ is a common unknown template (mean pattern)
- $\phi_m : \mathbb{R}^d \to \mathbb{R}^d$ are unknown deformations, possibly random
- W_m some additive noise

Problem : to recover f as $n \to +\infty$

- In statistics curve alignment (Gasser, Kneip, Silverman, Ramsay...)
- In image processing (Amit, Grenander, Joshi, Miller, Trouvé, Younes...)
- Recently work by Gamboa, Loubes, Maza, Vimond, Bigot, Gadat

Motivations Frechet mean

Different models for the deformations

Rigid deformations

- Translation : $\phi(x) = x b$ where $b \in \mathbb{R}^d$
- Rotation + scaling (in \mathbb{R}^2) : $\phi(x) = \frac{1}{a}A_{\theta}x$ where $a \in \mathbb{R}^+$ and

$$A_{ heta} = \left[egin{array}{cc} \cos(heta) & \sin(heta) \ -\sin(heta) & \cos(heta) \end{array}
ight]$$

• Affine (Translation + rotation + scaling) : $\phi(x) = \frac{1}{a}A_{\theta}(x-b)$, either 2D or 3D

Motivations Frechet mean

Mean pattern estimation for rigid deformations

Motivations Frechet mean

Mean pattern estimation for rigid deformations

Different models for the deformations

Non-rigid deformations

Small deformations : φ(x) = x + h(x) where h : ℝ^d → ℝ^d is an unconstrained function . Problem φ is not necessarly invertible if h is large. (Work by Faugeras, Amit,...)

 Large deformations (i.e. diffeomorphisms) : φ(x) is an invertible and smooth deformation from R^d to R^d (Work by Grenander, Trouvé, Younes, Miller,...)

Motivations Frechet mean

Mean pattern estimation for non-rigid deformations

Motivations Frechet mean

Estimating f a deconvolution problem?

Direct mean of the observed images - blurring effect

Kendall's shape space

Observations : Z_1, \ldots, Z_n iid r.v. taking their values in $\mathbb{R}^{2 \times k}$.

For $Z \in \mathbb{R}^{2 \times k}$ define

$$h \cdot Z = a \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} Z + b,$$

for $h = h(a, \theta, b) \in H$, with $(a, \theta, b) \in \mathbb{R}^+ \times [0, 2\pi] \times \mathbb{R}^2$ where *H* is the group of scaling, rotations and translations acting on the plane \mathbb{R}^2 .

Two vectors $Z, Z' \in V$ represent the same shape (i.e. are equivalent) if

$$d_H(Z,Z') := \inf_{(a,\theta,b) \in \mathbb{R}^+ \times [0,2\pi] \times \mathbb{R}^2} \|Z - h(a,\theta,b) \cdot Z'\|_{\mathbb{R}^{2 \times k}} = 0$$

Kendall's shape space : Σ_2^k equivalent classes of shapes in $\mathbb{R}^{2 \times k}$ under the action of *H*.

Motivations Frechet mean

Empirical mean in Kendall's shape space

Since Σ_2^k is a nonlinear manifold,

$$\overline{Z}_n = \frac{1}{n} \sum_{m=1}^n Z_m \notin \Sigma_2^k$$

Empirical mean of *n* shapes :

$$ilde{Z}_n = rgmin_{Z\in\Sigma_2^k} rac{1}{n} \sum_{m=1}^n d_H^2(Z,Z_m)$$

Motivations Frechet mean

Frechet mean on general metric space

More generally, if Z_1, \ldots, Z_n are iid r. v. in a general metric space \mathcal{M} , with a distance $d : \mathcal{M} \times \mathcal{M} \to \mathbb{R}^+$, then the **Frechet mean** of Z_1, \ldots, Z_n is defined as

$$ilde{Z}_n = \operatorname*{arg\,min}_{Z\in\mathcal{M}} \frac{1}{n} \sum_{m=1}^n d^2(Z,Z_m).$$

Introduction

- Motivations
- Frechet mean

2) M-estimation and warping for image averaging

- A deformable model for images
- M-estimation for mean pattern estimation of images
- Some numerical examples

3) A randomly shifted curve model

- A connexion with deconvolution problems in nonparametric statistics
- Upper and lower bounds for the minimax risk
- Estimation in the case of an unknown density g for the shifts
- Simulations

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

The large deformation framework in \mathbb{R}^d

Let $\Omega \subset \mathbb{R}^d$ and $v_t : \Omega \to \mathbb{R}^d$, $t \in [0, 1]$ be a time-dependent vector field. For $x \in \Omega$, take the solution Φ^1 at time t = 1 of the O.D.E.

$$\frac{\partial \Phi^t}{\partial t} = v_t \circ \Phi^t \text{ with } \Phi^0 = x,$$

i.e. $\Phi^1(x) = x + \int_0^1 v_t(\Phi^t(x)) dt$

Under mild assumptions on $(v_t)_{t \in [0,1]}$ (essentially v_t and its derivatives must vanish at the boundaries of Ω) then :

Φ^1 is a diffeomorphism from $\Omega \to \Omega$.

Work by Grenander, Trouvé, Younes, Miller,...

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

Examples of large deformations in 1D

Take $v_t(x) = e(x)$ for all $t \in [0, 1]$ for some function $e : [0, 1] \rightarrow \mathbb{R}$

$$\Phi^1(x) = x + \int_0^1 e(\Phi^t(x))dt$$

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

Examples of large deformations in 1D

Start from the identity at time t = 0

 $\Phi^0(x) = x$

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

Examples of large deformations in 1D

Compute the solution of the O.D.E. at time t = 1

$$\Phi^1(x) = x + \int_0^1 e(\Phi^t(x))dt$$

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

Examples of large deformations in 1D

Another choice of the vector field (with a smaller amplitude)

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

Examples of large deformations in 1D

Another choice of the vector field (with a smaller amplitude)

This reduces the amplitude of the deformation

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A parametric diffeomorphic deformation model

• Let $\Omega = [0, 1]^2$. Let A > 0 and draw independent random coefficients $a_k^{(j)} \sim_{i.i.d.} \mathbb{P}$ supported on [-A, A], $k = 1, \ldots, K, j = 1, 2$. Then, define for $x \in [0, 1]^2$

$$v_a(x) = (\sum_{k=1}^{K} a_k^{(1)} e_k(x), \sum_{k=1}^{K} a_k^{(2)} e_k(x)),$$

where $e_k: [0,1]^2 \to \mathbb{R}$ are basis functions .

Then Φ_a(x) = Φ_{va}(x) is defined as the solution at time t = 1 of the following equation (note that the vector field is not time-dependent) :

$$\Phi^{1}_{v_{a}}(x) = x + \int_{0}^{1} v_{a}(\Phi^{t}_{v_{a}}(x)) dt.$$

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A parametric diffeomorphic deformation model

Original image

Lenna image - 256×256 pixels

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A parametric diffeomorphic deformation model

Random deformation with a small A (amplitude of the $a_k^{(j)}$'s)

The basis functions e_k are localized in the center of the image

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A parametric diffeomorphic deformation model

Random deformation with a large A (amplitude of the $a_k^{(j)}$'s)

The basis functions e_k are localized in the center of the image

A statistical model for the deformation of images

We observe *n* images on a squared grid of $N \times N$ pixels. At each pixel *p* we assume that the noisy image I_i , i = 1, ..., n is given by

$$I_{a_i}(p) = I^* \circ \Phi^1_{a_i}(p) + \varepsilon_i(p), \ i = 1, \dots, n,$$

where

- $I^{\star}: [0,1]^2 \to \mathbb{R}$ is the unknown mean image to estimate,
- a_i are i.i.d random vectors (in $[-A;A]^{2K}$) of coefficients,
- $\varepsilon_i(p) \in \mathbb{R}$ are i.i.d. observation noise with zero mean and finite variance.

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

An example of realizations of the model

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A contrast function for estimating the mean of images

• Let $\mathcal{Z} = \{Z : [0,1]^2 \to \mathbb{R}\}$ be some set of images and define

$$\mathcal{V}_A = \left\{ v : [0,1]^2 \to \mathbb{R}^2; \ v(x) = \left(\sum_{k=1}^K a_k^{(1)} e_k(x), \sum_{k=1}^K a_k^{(2)} e_k(x)\right), a_k^{(j)} \in [-A,A] \right\}$$

• Let $f(a, \varepsilon, Z) = \min_{v \in \mathcal{V}_A} \sum_{p=1}^{N^2} (I_a(p) - Z \circ \Phi_v^1(p))^2$, where

 $I_a(p) = I^{\star} \circ \Phi^1_a(p) + \varepsilon(p)$ with $a \in [-A, A]^{2K}$ and $\varepsilon \in \mathbb{R}^{N^2}$

• Let $F(Z) = \int_{[-A,A]^k \times \mathbb{R}^{N^2}} f(a,\varepsilon,Z) dP(a,\varepsilon)$ and

$$\hat{F}_n(Z) = \frac{1}{n} \sum_{i=1}^n f(a_i, \varepsilon_i, Z)$$

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A contrast function for estimating the mean of images

• Let $\mathcal{Z} = \{Z : [0,1]^2 \to \mathbb{R}\}$ be some set of images and define

$$\mathcal{V}_A = \left\{ v : [0,1]^2 \to \mathbb{R}^2; \ v(x) = \left(\sum_{k=1}^K a_k^{(1)} e_k(x), \sum_{k=1}^K a_k^{(2)} e_k(x)\right), a_k^{(j)} \in [-A,A] \right\}$$

• Let
$$f(a, \varepsilon, Z) = \min_{v \in \mathcal{V}_A} \sum_{p=1}^{N^2} (I_a(p) - Z \circ \Phi_v^1(p))^2$$
, where

 $I_a(p) = I^\star \circ \Phi^1_a(p) + \varepsilon(p)$ with $a \in [-A, A]^{2K}$ and $\varepsilon \in \mathbb{R}^{N^2}$

• Let $F(Z) = \int_{[-A,A]^k \times \mathbb{R}^{N^2}} f(a,\varepsilon,Z) dP(a,\varepsilon)$ and

$$\hat{F}_n(Z) = \frac{1}{n} \sum_{i=1}^n f(a_i, \varepsilon_i, Z)$$

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A contrast function for estimating the mean of images

• Let $\mathcal{Z} = \{Z : [0,1]^2 \to \mathbb{R}\}$ be some set of images and define

$$\mathcal{V}_A = \left\{ v : [0,1]^2 \to \mathbb{R}^2; \ v(x) = \left(\sum_{k=1}^K a_k^{(1)} e_k(x), \sum_{k=1}^K a_k^{(2)} e_k(x)\right), a_k^{(j)} \in [-A,A] \right\}$$

• Let
$$f(a, \varepsilon, Z) = \min_{v \in \mathcal{V}_A} \sum_{p=1}^{N^2} (I_a(p) - Z \circ \Phi_v^1(p))^2$$
, where

 $I_a(p) = I^\star \circ \Phi^1_a(p) + \varepsilon(p)$ with $a \in [-A, A]^{2K}$ and $\varepsilon \in \mathbb{R}^{N^2}$

• Let $F(Z) = \int_{[-A,A]^k \times \mathbb{R}^{N^2}} f(a,\varepsilon,Z) dP(a,\varepsilon)$ and

$$\hat{F}_n(Z) = \frac{1}{n} \sum_{i=1}^n f(a_i, \varepsilon_i, Z)$$

A contrast function for estimating the mean of images

Define the following sets of minimizers (unicity is not guaranteed !)

$$\hat{Q}_n = rg\min_{Z\in\mathcal{Z}}\hat{F}_n(Z)$$
 and $Q_0 = rg\min_{Z\in\mathcal{Z}}F(Z)$

Theorem

Assume that the e_k 's are bounded, that \mathcal{Z} is compact for the supremum norm, and that I^* is uniformly Lipschitz 1 over $[0,1]^2$, then $\hat{Q} = \lim_{n \to +\infty} \hat{Q}_n$ is such that

 $\hat{Q}
eq \emptyset$ and $\hat{Q} \subset Q_0$ almost surely .

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A more general model

Main problem : the previous theorem supposes that the distribution of the images is known... **Some questions** :

- what happens if the images do not follow this model?
- can we interpret the choice of *A* (size of the deformations) as a regularization parameter?

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

A more general model

Let $I_i \sim_{i.i.d.} \mathbb{P}$ on \mathbb{R}^{N^2} and $Z_{\theta} = \sum_{\lambda \in \Lambda} \theta_{\lambda} \psi_{\lambda}$ be an image expanded in some basis ψ_{λ} with Λ a finite set of indices.

Penalized M-estimator : let $\Theta \subset \mathbb{R}^{\Lambda}$

$$\hat{\theta}_n = \arg\min_{\theta\in\Theta} F_n(Z_{\theta}) = \arg\min_{\theta\in\Theta} \frac{1}{n} \sum_{i=1}^n f(I_i, Z_{\theta}),$$

with

$$f(I, Z_{\theta}) = \min_{v \in \mathcal{V}} \left[\sum_{p=1}^{N^2} \left(I(p) - Z_{\theta} \circ \Phi_v^1(p) \right)^2 + \lambda_1 \operatorname{pen}_1(v) \right] + \lambda_2 \operatorname{pen}_2(\theta),$$

with e.g. $\text{pen}_1(v_i) = \sum_{k=1}^{K} |a_{k,i}^{(1)}|^2 + |a_{k,i}^{(2)}|^2$ and $\text{pen}_2(\theta) = \sum_{\lambda \in \Lambda} |\theta_{\lambda}|^2$

Then (under appropriate assumptions, mainly compactness of Θ and \mathcal{V}): $\lim_{n \to +\infty} \|\hat{\theta}_n - \theta^*\|_{\infty} = 0$ *a.s.* where $\theta^* = \arg \min_{\theta \in \Theta} F(Z_{\theta}) = \arg \min_{\theta \in \Theta} \int f(I, Z_{\theta}) d\mathbb{P}(I)$,

Computation of a minimizer of the contrast function

Iterative procedure : (General Procrustes scheme) start with $Z^{(1)} = \frac{1}{n} \sum_{i=1}^{n} I_i$ (naive estimator). Then for m = 2, ..., M repeat the following steps :

for *i* = 1,..., *n* use a gradient descent algorithm to compute the optimal deformation Φ_{âⁿ/_n} which corresponds to the vector field

$$v_{\hat{a}_i^m} = \arg\min_{v \in \mathcal{V}} \sum_{p=1}^{N^2} \left(I_i(p) - Z^{(m-1)} \circ \Phi_v^1(p) \right)^2 + \lambda_1 \operatorname{pen}_1(v)$$

• compute $Z^{(m)} = \arg \min_{Z \in \mathcal{Z}} \sum_{i=1}^{n} \sum_{p=1}^{N^2} (I_i(p) - Z^{(m-1)} \circ \Phi_{\hat{a}_i^m}(p))^2$ given by (case where $\lambda_2 = 0$)

$$Z^{(m)}(p) = \frac{\sum_{i=1}^{n} w_i(p) I_i \circ \Phi_{\hat{a}_i^m}^{-1}(p)}{\sum_{i=1}^{n} w_i(p)} \text{ where } w_i(p) = |\det Jac(\Phi_{\hat{a}_i^m}^{-1})(p)|.$$

Computation of a minimizer of the contrast function

Iterative procedure : (General Procrustes scheme) start with $Z^{(1)} = \frac{1}{n} \sum_{i=1}^{n} I_i$ (naive estimator). Then for m = 2, ..., M repeat the following steps :

for *i* = 1,..., *n* use a gradient descent algorithm to compute the optimal deformation Φ<sub>*a*^{*n*}_{*n*} which corresponds to the vector field
</sub>

$$v_{\hat{a}_i^m} = \arg\min_{v \in \mathcal{V}} \sum_{p=1}^{N^2} \left(I_i(p) - Z^{(m-1)} \circ \Phi_v^1(p) \right)^2 + \lambda_1 \operatorname{pen}_1(v)$$

• compute $Z^{(m)} = \arg \min_{Z \in \mathcal{Z}} \sum_{i=1}^{n} \sum_{p=1}^{N^2} (I_i(p) - Z^{(m-1)} \circ \Phi_{\hat{a}_i^m}(p))^2$ given by (case where $\lambda_2 = 0$)

$$Z^{(m)}(p) = \frac{\sum_{i=1}^{n} w_i(p) I_i \circ \Phi_{\hat{a}_i^m}^{-1}(p)}{\sum_{i=1}^{n} w_i(p)} \text{ where } w_i(p) = |\det Jac(\Phi_{\hat{a}_i^m}^{-1})(p)|.$$

A deformable model for images M-estimation for mean pattern estimation of images Some numerical examples

Mean pattern of faces

Naive mean - $Z^{(m)}$ with m = 7

Jérémie Bigot

Introduction

- Motivations
- Frechet mean
- 2 M-estimation and warping for image averaging
 - A deformable model for images
 - M-estimation for mean pattern estimation of images
 - Some numerical examples

A randomly shifted curve model

- A connexion with deconvolution problems in nonparametric statistics
- Upper and lower bounds for the minimax risk
- Estimation in the case of an unknown density g for the shifts
- Simulations

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Simplest model : shifted 1D curves

Observations : independent realizations of *n* noisy and shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

where

- $f:[0,1] \rightarrow \mathbb{R}$ is the unknown common shape of the curves (with period 1)
- W_m are independent standard Brownian motions on [0, 1]
- ϵ level of noise in each curve

Remark : $\epsilon \to 0$ corresponds to $N \to +\infty$ in the model (with $\epsilon = \frac{\sigma}{\sqrt{N}}$)

$$Y_{m,i} = f(x_i - \tau_m) + \sigma z_{m,i}, \ x_i = \frac{i}{N}, \ i = 1, \dots, N, \ \text{and} \ z_{m,i} \sim_{i.i.d.} N(0,1)$$

Simplest model : shifted 1D curves

Observations : independent realizations of *n* noisy and shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, ..., n$$

Different models for the shifts τ_m :

- Deterministic shifts : the τ_m are fixed parameters to estimate : semi-parameteric estimation in the setting *n* fixed and ε → 0 (Gamboa, Loubes & Maza (2007), Vimond (2008), extension to 2D images by Bigot, Gamboa & Vimond (2009))
- τ_m 's are unknown **random shifts** independent of the W_m 's such that

```
	au_m \sim_{i.i.d} g \quad m = 1, \ldots, n,
```

where g is a unknown density on \mathbb{R}

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Simplest model : shifted 1D curves

Observations : independent realizations of *n* noisy and shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

This talk : case of random shifts $\tau_m \sim_{i.i.d} g$, m = 1, ..., n, with **known** or **unknown** density g.

Problem : estimation of *f* in the asymptotic setting :

• $n \to +\infty$ and ϵ is fixed (This talk)

• $n \to +\infty$ and $\epsilon \to 0$ (Work in progress...)

A simple model for randomly shifted curves

Observations : independent realizations of *n* noisy and randomly shifted curves Y_1, \ldots, Y_n coming from the model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, ..., n$$

Main objectives : estimating the function *f* and to derive asymptotic (as $n \rightarrow +\infty$) upper and lower bounds for the minimax risk

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}_n, f), ext{ where }$$

- $\mathcal{R}(\hat{f}_n, f) = \mathbb{E} \|\hat{f}_n f\|^2 = \mathbb{E} \int_0^1 |\hat{f}_n(x) f(x)|^2 dx$
- $\mathcal{F} \subset L^2([0,1])$ e.g a Sobolev or a Besov ball
- \hat{f}_n a measurable function of the processes $\{Y_m, m = 1, ..., n\}$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Simplest case : no shifts

Observations : independent realizations of *n* noisy and curves Y_1, \ldots, Y_n

$$dY_m(x) = f(x)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, \dots, n$$

Classical result : if $\mathcal{F} = H^s(A)$ (Sobolev ball of radius *A*) or $\mathcal{F} = B^s_{p,q}(A)$ (Besov ball of radius *A*) with smoothness index *s* ("number of derivatives") then

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}_n, f) \sim Cn^{-rac{2s}{2s+1}}$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

A connexion with a deconvolution problem

Model :
$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, ..., n$$

A deconvolution problem ? The expectation of each observed curve is given by $\mathbb{E}[f(x - \tau_m)] = \int_{\mathbb{R}} f(x - \tau)g(\tau)d\tau = f \star g(x)$

Define

$$\xi_m(x) = f(x-\tau_m) - \int_{\mathbb{R}} f(x-\tau)g(\tau)d\tau,$$

 $\xi(x) = \frac{1}{n} \sum_{m=1}^{n} \xi_m(x)$, and taking the mean of the *n* curves yields

$$dY(x) = \int_0^1 f(x-\tau)g(\tau)d\tau dx + \underbrace{\xi(x)dx}_{\text{Non-Gaussian Error}} + \underbrace{\frac{\epsilon}{\sqrt{n}}dW(x)}_{\text{Standard Gaussian Error}}, x \in [0,1],$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

A connexion with a deconvolution problem

Case of standard deconvolution with a Gaussian error :

$$dY(x) = \int_0^1 f(x-\tau)g(\tau)d\tau dx + \frac{\epsilon}{\sqrt{n}}dW(x) \ x \in [0,1],$$

Minimax rate of convergence : let $\gamma_{\ell} = \int_{-\infty}^{+\infty} e^{-i2\pi\ell x} g(x) dx$. Assume that for some real $\nu > 0$

$$C_{\min}|\ell|^{-\nu} \leq |\gamma_{\ell}| \leq C_{\max}|\ell|^{-\nu}.$$

for all $\ell \in \mathbb{Z}$.

Then for $\mathcal{F} = H^s(A)$ (Sobolev ball) or $\mathcal{F} = B^s_{p,q}(A)$ (Besov ball) with smoothness index *s* ("number of derivatives") then

$$\mathcal{R}_n(\mathcal{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} \mathcal{R}(\hat{f}_n, f) \sim Cn^{-\frac{2s}{2s+2\nu+1}} \text{ (instead of } n^{-\frac{2s}{2s+1}} \text{ in the direct case)}$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk

Estimation in the case of an unknown density $\ensuremath{\textit{g}}$ for the shifts Simulations

Model in the Fourier domain

For
$$\ell \in \mathbb{Z}$$
, let $\theta_{\ell} = \int_0^1 e^{-2i\ell\pi x} f(x) dx$ and $c_{m,\ell} = \int_0^1 e^{-2i\ell\pi x} dY_m(x)$. Then

$$c_{m,\ell} = \theta_{\ell} e^{-i2\pi\ell\tau_m} + \epsilon_m z_{\ell,m} \text{ with } z_{\ell,m} \sim_{i.i.d.} N_{\mathbb{C}} (0,1)$$

= $\theta_{\ell} \gamma_{\ell} + \xi_{\ell,m} + \epsilon_m z_{\ell,m} \text{ with } \xi_{\ell,m} = \theta_{\ell} e^{-i2\pi\ell\tau_m} - \theta_{\ell} \gamma_{\ell},$

where with $\gamma_{\ell} = \mathbb{E}\left(e^{-i2\pi\ell\tau}\right) = \int_{-\infty}^{+\infty} e^{-i2\pi\ell x} g(x) dx$.

Then, average the Fourier coefficients over the *n* curves

with $\xi_{\ell} = \frac{1}{n} \sum_{m=1}^{n} \xi_{\ell,m}$.

Note that

$$\mathbb{E}|\xi_{\ell}|^2 = \frac{1}{n}|\theta_{\ell}|^2(1-|\gamma_{\ell}|^2)$$

Problem : the variance of ξ_{ℓ} depends on the unknown $|\theta_{\ell}|^2$

Jérémie Bigot

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Deconvolution in the Fourier domain

Assuming that the density *g* of the shifts is known, an estimation of θ_{ℓ} is given by

$$\hat{ heta}_\ell = rac{ ilde{c}_\ell}{\gamma_\ell} = heta_\ell + rac{\xi_\ell}{\gamma_\ell} + rac{\epsilon}{\sqrt{n}}rac{\eta_\ell}{\gamma_\ell}$$

with
$$\gamma_{\ell} = \mathbb{E}\left(e^{-i2\pi\ell\tau}\right) = \int_{-\infty}^{+\infty} e^{-i2\pi\ell x} g(x) dx.$$

1

Main assumption on *g* : polynomial decay of the γ_{ℓ} 's i.e for some real $\nu > 0$,

$$C_{\min}|\ell|^{-\nu} \leq |\gamma_{\ell}| \leq C_{\max}|\ell|^{-\nu}.$$

for all $\ell \in \mathbb{Z}$.

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Filtering in the Fourier domain

Linear estimator for f by spectra cut-off : take

$$\hat{ heta}_\ell^M = rac{ ilde{c}_\ell}{\gamma_\ell}, ext{ for all } |\ell| \leq M$$

and

$$\hat{ heta}_\ell^M = 0, ext{ for all } |\ell| > M$$

where *M* is some integer to be chosen. For $\hat{f}_{n,M}(x) = \sum_{\ell \in \mathbb{Z}} \hat{\theta}_{\ell}^{M} e^{-i2\pi\ell x}$, one has

$$\mathcal{R}(\hat{f}_{n,M},f) = \mathbb{E}\sum_{\ell\in\mathbb{Z}}|\hat{ heta}_{\ell} - heta_{\ell}|^2.$$

Bias-variance decomposition of the risk

$$\mathcal{R}(\hat{f}_{n,M},f) = \underbrace{\sum_{|\ell| > M} |\theta_{\ell}|^2}_{Bias} + \underbrace{\frac{1}{n} \sum_{|\ell| \le M} \left[|\theta_{\ell}|^2 \left(\frac{1}{|\gamma_{\ell}|^2} - 1 \right) + \frac{\epsilon^2}{|\gamma_{\ell}|^2} \right]}_{Variance}.$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Filtering in the Fourier domain

Define the following Sobolev ball of radius A :

$$H_s(A) = \left\{ f \in L^2([0,1]) ; \sum_{\ell \in \mathbb{Z}} (1+|\ell|^{2s}) |\theta_\ell|^2 \le A, \right\} \text{ with } A > 0, s > 0$$

Proposition

If
$$M = M_{n,s} \sim n^{\frac{1}{2s+2\nu+1}}$$
, then $\sup_{f \in H_s(A)} \mathcal{R}(\hat{f}_{n,M_{n,s}},f) = \mathcal{O}(n^{-\frac{2s}{2s+2\nu+1}})$

Problem :

- $\hat{f}_{n,M_{n,s}}$ depends on the unknown regularity *s* (non-adaptive estimator)
- if f is piecewise C^s with s large, then $f \notin H_{\alpha}(A)$ for $\alpha > 1/2$. So,

$$\sup_{f \in \mathsf{Piece-wise } C^{s}} \mathcal{R}(\hat{f}_{n,M_{n,s}},f) = \mathcal{O}(n^{-\frac{1}{1+2\nu+1}})$$

(non-optimal estimator in standard deconvolution)

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Meyer wavelets

Let $(\phi_{j_0,k}, \psi_{j,k})_{j \ge j_0, 0 \le k \le 2^j - 1}$ be the periodized Meyer wavelet basis of $L^2([0, 1])$.

Advantages : Meyer wavelets are band-limited functions since for

$$\psi_{\ell}^{j,k} = \int_0^1 e^{-i2\pi\ell x} \psi_{j,k}(x) dx, \ \ell \in \mathbb{Z},$$

the set $C_j = \{\ell \in \mathbb{Z}; \psi_\ell^{j,k} \neq 0\}$ is finite with $\#\{C_j = c2^j\}$.

Then, wavelet coefficients of f can be computed from its Fourier coefficients as

$$\beta_{j,k} = \int_0^1 f(x)\psi_{j,k}(x)dx = \sum_{\ell \in C_j} \psi_\ell^{j,k} \theta_\ell, \text{ where } \theta_\ell = \int_0^1 e^{-2i\ell\pi x} f(x)dx.$$

Meyer wavelets = usefull tool for deconvolution (work by Johnstone *et al.* (2004), Pensky & Sapatinas (2008), and fast WaveD algorithm by Raimondo (2006))

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Estimation by hard thresholding

Recall that

$$\hat{ heta}_\ell = rac{ ilde{c}_\ell}{\gamma_\ell} = heta_\ell + rac{\xi_\ell}{\gamma_\ell} + rac{\epsilon}{\sqrt{n}} rac{\eta_\ell}{\gamma_\ell}$$

and estimation of the wavelet coefficients of f is then given by

$$\hat{eta}_{j,k} = \sum_{\ell \in C_j} \psi_\ell^{j,k} \hat{ heta}_\ell$$
 and $\hat{c}_{j_0,k} = \sum_{\ell \in C_{j_0}} \phi_\ell^{j_0,k} \hat{ heta}_\ell.$

Non-linear estimation by hard-thresholding

$$\hat{f}_n^h = \sum_{k=0}^{2^{j_0}-1} \hat{c}_{j_0,k} \phi_{j_0,k} + \sum_{j=j_0}^{j_1} \sum_{k=0}^{2^j-1} \hat{\beta}_{j,k} \mathbf{1}_{\{|\hat{\beta}_{j,k}| \ge \lambda_{j,k}\}} \psi_{j,k}$$

where $\lambda_{j,k}$ is a threshold to be calibrated.

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Adaptive estimation over Besov spaces

Take

$$\lambda_{j,k} = \lambda_j = \sigma_j \sqrt{rac{2\eta \log(n)}{n}}$$

for some $\eta > 0$ and $\sigma_j^2 = 2^{-j} \epsilon^2 \sum_{\ell \in \Omega_j} |\gamma_\ell|^{-2}$.

Theorem

Assume that
$$2^{j_1} \sim \left(\frac{n}{\log(n)}\right)^{\frac{1}{2\nu+1}}$$
 and $2^{j_0} \sim \log(n)$. Then, for $1 \leq p \leq \infty$, $1 \leq q \leq \infty$, $A > 0$

$$\sup_{f\in B^s_{p,q}(A)}\|\hat{f}^h_n-f\|^2=\mathcal{O}\left(\left(\frac{n}{\log(n)}\right)^{-\frac{2s}{2s+2\nu+1}}\right),$$

with s>1/p' , $(s+1/2-1/p')p>\nu(2-p)$ with $p'=\min(2,p)$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Asymptotic lower bound

Theorem

Let $1 \le p \le \infty$, $1 \le q \le \infty$, $s \ge 1/p$ and A > 0. Then, if

 $s > \nu + 1/2$ and $\nu > 1/2$,

there exists a constant C > 0 depending only on A, s, p, q such that

$$\lim_{n \to +\infty} n^{\frac{2s}{2s+2\nu+1}} \mathcal{R}_n(B^s_{p,q}(A)) \ge C$$

Some limitations

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Problem : this approach is not realistic in practice as the density g of the random shifts is typically unknown

Model

$$dY_m(x) = f(x - \tau_m)dx + \epsilon dW_m(x), \ x \in [0, 1], \ m = 1, ..., n$$

falls into the setting of inverse problem with an unknown operator (here the convolution by the density g), see Cavalier & Raimondo (2007), Efromovich & Koltchinskii (2001), Hoffman & Reiss (2008)

Main issue : can we find data-based estimation of the γ_{ℓ} 's and plug them into the previous estimates ?

Frechet mean for randomly shifted curves

Define $H = \mathbb{R}$ as the translation group acting on periodic functions $f \in L^2([0,1])$ with period 1 by

 $\tau \cdot f(x) = f(x + \tau), \text{ for } x \in [0, 1] \text{ and } \tau \in H.$

and let $Y_1, ..., Y_n \in L^2([0, 1])$

Frechet mean of the *n* curves Y_1, \ldots, Y_n :

$$\tilde{f}_n = \arg \min_{f \in L^2([0,1])} \frac{1}{n} \sum_{m=1}^n \min_{\tau_m \in \mathbb{R}} \|f - \tau_m \cdot Y_m\|^2 \\ = \arg \min_{f \in L^2([0,1])} \frac{1}{n} \sum_{m=1}^n \min_{\tau_m \in \mathbb{R}} \int_0^1 |f(x) - Y_m(x + \tau_m)|^2 dx.$$

Frechet mean for randomly shifted curves

Smoothed Frechet mean in the Fourier domain :

$$(\hat{\theta}_{-\ell_0},\ldots,\hat{\theta}_{\ell_0}) = \operatorname*{arg\,min}_{(\theta_{-\ell_0},\ldots,\theta_{\ell_0})\in\mathbb{R}^{2\ell_0+1}} \frac{1}{n} \sum_{m=1}^n \min_{\tau_m\in\mathbb{R}} \sum_{|\ell|\leq \ell_0} |c_{m,\ell}e^{2i\ell\pi\tau_m} - \theta_\ell|^2,$$

where $c_{m,\ell} = \int_0^1 e^{-2i\ell\pi x} dY_m(x)$, $\tilde{f}_{n,\ell_0} = \sum_{|\ell| \le \ell_0} \hat{\theta}_{\ell} e^{-2i\ell\pi x}$, and ℓ_0 is some frequency cut-off parameter

Two step procedure : computation of \bar{f}_{n,ℓ_0} in two steps :

• step 1 :

$$(\hat{\tau}_1, \dots, \hat{\tau}_n) = \operatorname*{arg\,min}_{(\tau_1, \dots, \tau_n) \in \mathbb{R}^n} \frac{1}{n} \sum_{m=1}^n \sum_{|\ell| \le \ell_0} |c_{m,\ell} e^{2i\ell \pi \tau_m} - \frac{1}{n} \sum_{q=1}^n c_{q,\ell} e^{2i\ell \pi \tau_q}|^2$$

• step 2 :
$$\hat{ heta}_\ell = rac{1}{n}\sum_{m=1}^n c_{m,\ell}e^{2i\ell\pi\hat{ au}_m}$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Upper bound for the estimation of the shifts

Model :
$$c_{m,\ell} = \theta_\ell e^{-i2\pi\ell\tau_m^*} + \epsilon z_{\ell,m}, \ \ell \in \mathbb{Z}$$
 for $m = 1, \ldots, n$,

Identifiability conditions

Hypothesis

The density *g* has a compact support included in the interval $\mathcal{T} = [-\frac{1}{4}, \frac{1}{4}]$ and has zero mean i.e. is such that $\int_{\mathcal{T}} \tau g(\tau) d\tau = 0$.

Hypothesis

The unknown shape function f is such that $\theta_1 \neq 0$.

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Upper bound for the estimation of the shifts

Define for $\boldsymbol{\tau} = (\tau_1, \ldots, \tau_n) \in \mathcal{T}^n$

$$M_n(m{ au}) \;\;=\;\; rac{1}{n} \sum_{m=1}^n \sum_{|\ell| \leq \ell_0} \left| c_{m,\ell} e^{2i\ell\pi au_m} - rac{1}{n} \left(\sum_{q=1}^n c_{q,\ell} e^{2i\ell\pi au_q}
ight)
ight|^2.$$

Let $\overline{\mathcal{T}}_n = \{(\tau_1, \dots, \tau_n) \in \mathcal{T}^n \text{ such that } \sum_{m=1}^n \tau_m = 0\}$, and define

$$\hat{\boldsymbol{ au}} = (\hat{ au}_1, \dots, \hat{ au}_n) = rgmin_n M_n(\boldsymbol{ au}), \ \boldsymbol{ au} \in \overline{\mathcal{T}}_n$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Upper bound for the estimation of the shifts

Theorem

Suppose that Assumptions 1 and 2 hold. Then, for any t > 0

$$\mathbb{P}\left(\frac{1}{n}\sum_{m=2}^{n}(\hat{\tau}_m-\tau_m^*)^2\geq C(f,\ell_0,\epsilon,n,t,g)\right)\leq 3\exp(-t),$$

with $C(f, \ell_0, \epsilon, n, t, g) = 4 \max \left[C_1(f, \ell_0) \left(\sqrt{C_2(\epsilon, n, \ell_0, t)} + C_2(\epsilon, n, \ell_0, t) \right), C_3(t, n, g) \right]$, where

$$C_2(\epsilon, n, \ell_0, t) = \epsilon^2 (2\ell_0 + 1) + 2\epsilon^2 \sqrt{\frac{2\ell_0 + 1}{n}t} + 2\frac{\epsilon^2}{n}t,$$

$$C_3(t,n,g) = \left(\sqrt{2\sigma_g^2 \frac{t}{n}} + \frac{t}{12n}\right)^2 \text{ with } \sigma_g^2 = \int_{\mathcal{T}} \tau^2 g(\tau) d\tau.$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Lower bound for the estimation of the shifts

Hypothesis

The function f is such that $\sum_{\ell \in \mathbb{Z}} (2\pi \ell)^2 |\theta_\ell|^2 < +\infty$.

Hypothesis

The density g is compactly supported on a interval $\mathcal{T} = [\tau_{\min}, \tau_{\max}]$ such that $\lim_{\tau \to \tau_{\min}} g(\tau) = \lim_{\tau \to \tau_{\max}} g(\tau) = 0.$

Theorem

Let $\hat{\tau}^n$ denote **any estimator** of the true shifts (τ_1, \ldots, τ_n) . Then, under Assumptions 3 and 4

$$\mathbb{E}\left(\frac{1}{n}\sum_{m=1}^{n}(\hat{\tau}_{m}^{n}-\tau_{m}^{*})^{2}\right)\geq\frac{\epsilon^{2}}{\sum_{\ell\in\mathbb{Z}}(2\pi\ell)^{2}|\theta_{\ell}|^{2}+\epsilon^{2}\int_{\mathcal{T}}\left(\frac{\partial}{\partial\tau}\log g(\tau)\right)^{2}g(\tau)d\tau}.$$

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Plug-in into wavelet-based estimators

First estimator

$$\hat{f}_{n,1} = \sum_{k=0}^{2^{j_0}-1} \hat{c}_{j_0,k,1} \phi_{j_0,k} + \sum_{j=j_0}^{j_1} \sum_{k=0}^{2^{j}-1} \hat{\beta}_{j,k,1} \mathbf{1}_{\{|\hat{\beta}_{j,k,1}| \ge \hat{\lambda}_j\}} \psi_{j,k}$$

where
$$\hat{\beta}_{j,k,1} = \sum_{\ell \in \Omega_j} \psi_{\ell}^{j,k} \hat{\theta}_{\ell,1}$$
 and $\hat{c}_{j_0,k,1} = \sum_{\ell \in \Omega_{j_0}} \phi_{\ell}^{j_0,k} \hat{\theta}_{\ell,1}$ with

$$\hat{\theta}_{\ell,1} = \frac{1}{\hat{\gamma}_{\ell}} \left(\frac{1}{n} \sum_{m=1}^{n} c_{\ell,m} \right),\,$$

and
$$\hat{\lambda}_j = \hat{\sigma}_j \sqrt{rac{2\eta \log(n)}{n}}$$
 with $\hat{\sigma}_j^2 = 2^{-j} \epsilon^2 \sum_{\ell \in \Omega_j} |\hat{\gamma}_\ell|^{-2}$ and

$$\hat{\gamma}_{\ell} = \frac{1}{n} \sum_{m=2}^{n} e^{-i2\pi\ell\hat{\tau}_m}$$

•

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Plug-in into wavelet-based estimators

Second estimator given by first realigning the curves using the estimation of the shifts namely

$$\hat{f}_{n,2} = \sum_{k=0}^{2^{j_0}-1} \hat{c}_{j_0,k,2} \phi_{j_0,k} + \sum_{j=j_0}^{j_1} \sum_{k=0}^{2^j-1} \hat{\beta}_{j,k,2} \mathbf{1}_{\{|\hat{\beta}_{j,k,2}| \ge \hat{\lambda}_j\}} \psi_{j,k}$$

where $\hat{\beta}_{j,k,2} = \sum_{\ell \in \Omega_j} \psi_{\ell}^{j,k} \hat{\theta}_{\ell,2}$ and $\hat{c}_{j_0,k,2} = \sum_{\ell \in \Omega_{j_0}} \phi_{\ell}^{j_0,k} \hat{\theta}_{\ell,2}$ with

$$\hat{\theta}_{\ell,2} = \frac{1}{n} \sum_{m=2}^{n} c_{\ell,m} e^{i2\pi \ell \hat{\tau}_m}$$

and
$$\hat{\lambda}_j = \hat{\sigma}_j \sqrt{rac{2\eta \log(n)}{n}}$$
 with $\hat{\sigma}_j^2 = 2^{-j} \epsilon^2 \sum_{\ell \in \Omega_j} |\hat{\gamma}_\ell|^{-2}$.

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Comparison with Procrustean mean

Iterative procedure (Kneip & Gasser (1988), Wang & Gasser (1997))

- Initialisation : $\hat{f}_0 = \frac{1}{n} \sum_{m=1}^n Y_m$
- For $1 \le i \le i_{\max}$ do

• For $1 \le m \le n$ compute

$$\hat{\tau}_{m,i} = \arg\min_{\tau\in\mathbb{R}} \|Y_m(\cdot+\tau) - \hat{f}_{i-1}\|^2$$

• Then take
$$\hat{f}_i(x) = \frac{1}{n} \sum_{m=1}^n Y_m(x + \hat{\tau}_{m,i})$$

Fast convergence ($i_{max} = 3$ is enough) but it highly depends on the initialisation \hat{f}_0

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Wave example

Laplace distribution
$$g(x) = \frac{1}{\sqrt{2\sigma}} \exp\left(-\sqrt{2\frac{|x|}{\sigma}}\right)$$
 for $x \in \mathbb{R}$, and $\gamma_{\ell} = \frac{1}{1+2\sigma^2\pi^2\ell^2}$ i.e $\nu = 2$

True *f* and a sample of 10 noisy curves out of n = 200Curves are sampled at N = 256 equally spaced points on [0, 1]

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Wave example - Direct mean

Direct mean of the n = 200 observed curves

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Wave example - Comparison with Procrustean mean

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Blocks example

Laplace distribution
$$g(x) = \frac{1}{\sqrt{2\sigma}} \exp\left(-\sqrt{2}\frac{|x|}{\sigma}\right)$$
 for $x \in \mathbb{R}$, and $\gamma_{\ell} = \frac{1}{1+2\sigma^2\pi^2\ell^2}$ i.e $\nu = 2$

True *f* and a sample of 10 noisy curves out of n = 200Curves are sampled at N = 256 equally spaced points on [0, 1]

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Blocks example - Direct mean

Direct mean of the n = 200 observed curves

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Blocks example - Comparison with Procrustean mean

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Bumps example

Laplace distribution
$$g(x) = \frac{1}{\sqrt{2\sigma}} \exp\left(-\sqrt{2}\frac{|x|}{\sigma}\right)$$
 for $x \in \mathbb{R}$, and $\gamma_{\ell} = \frac{1}{1+2\sigma^2\pi^2\ell^2}$ i.e $\nu = 2$

True *f* and a sample of 10 noisy curves out of n = 200Curves are sampled at N = 256 equally spaced points on [0, 1]

Jérémie Bigot

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Bumps example - Direct mean

Direct mean of the n = 200 observed curves

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Bumps example - Comparison with Procrustean mean

Wavelet-based estimator $\hat{f}_{n,1}$ (left) and $\hat{f}_{n,2}$ (right)

A connexion with deconvolution problems in nonparametric statistics Upper and lower bounds for the minimax risk Estimation in the case of an unknown density g for the shifts Simulations

Some perspectives

- For the randomly shifted curve model :
 - consider an asymptotic setting with $n \to +\infty$ and $\epsilon \to 0$ (work in progress)
 - consistency and rate of convergence of the estimators in the case of an unknown density *g*
- Extension to images and more complex deformations (first steps in this direction by Bigot, Gamboa & Vimond (2009), Bigot, Loubes & Vimond (2008), Bigot, Gadat & Loubes (2009))