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Grenander’s pattern theory (1993)

Motivations
Frechet mean

Data : a set of n similar curves or images obtained through the
deformation of the same template

A deformable model for curves orimages :  observation of
Yn:Q—=R, m=1,...,nwhere Q ¢ RYwith d = 1, 2, 3 such that
Ym(X) = f(dm(X)) + Wmn(X), forx € Q,

where
@ f : RY — R is a common unknown template (mean pattern)
@ ¢m: RY — RY are unknown deformations, possibly random
@ W, some additive noise

Problem : torecoverf asn— +oo

@ In statistics curve alignment (Gasser, Kneip, Silverman, Ramsay...)
@ Inimage processing (Amit, Grenander, Joshi, Miller, Trouvé, Younes...)
@ Recently work by Gamboa, Loubes, Maza, Vimond, Bigot, Gadat
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Different models for the deformations

Rigid deformations

@ Translation : ¢(X) = x — b where b € R¢

@ Rotation + scaling (in R?) : ¢(x) = %Agx where a € R* and
Ay — cos(d) sin(#)
| —sin(@) cos(9)
@ Affine (Translation + rotation + scaling) : ¢(x) = 2As(x — b), either

2D or 3D
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Non-rigid deformations

@ Small deformations : ¢(x) = x + h(x) where h: RY — R%is an
unconstrained function . Problem ¢ is not necessarly invertible if
his large. (Work by Faugeras, Amit,....)

@ Large deformations (i.e. diffeomorphisms ) : ¢(x) is an invertible
and smooth deformation from RY to RY (Work by Grenander, Trouvé,
Younes, Miller,....)
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Estimating f a deconvolution problem ?

Motivations
Frechet mean

Direct mean of the observed images - blurring effect
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Kendall's shape space

Motivations
Frechet mean

Observations : Zi,...,Z, iid r.v. taking their values in R?*K,
For Z € R%*k define

cosfd —siné
h'z_a(sine cosd )Z+b’

for h = h(a, 6, b) € H, with (a,0,b) € R+ x [0, 27] x R? where H is the
group of scaling, rotations and translations acting on the plane R2.

Two vectors Z,Z’' € V represent the same shape (i.e. are equivalent) if

dn(Z,Z2) = inf Z—h(a,8,b) - Z'||gexx = 0
H( ) ) (a79,b)€R‘l*'n><[O,27r]><R2” (aa ) ) H]RZ K

Kendall's shape space : X% equivalent classes of shapes in R?*k
under the action of H.
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Since ¥ is a nonlinear manifold,

-1
zn=ﬁ§:zm¢2§
m=1

Empirical mean of n shapes :

n

Zy= argmin}Zdﬁ(Z,Zm)

ZEEE m=1
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Frechet mean

Frechet mean on general metric space

More generally, if Z;,...,Z, areiid r. v. in a general metric space M,
with a distance d : M x M — R, then the Frechet mean of
Zy,...,Zyis defined as

Zy, = argmin = Zdz (Z,Zm).

ZeM
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The large deformation framework in R

LetQ c R¥and v : © — RYt € [0, 1] be a time-dependent vector
field. For x € Q, take the solution ®* at time t = 1 of the O.D.E.

0Pt

o _ tyns 0_
it Vi o @ with @ X,

e DL(x) = X+ [5 (P!(x))alt
Under mild assumptions on (v)c[o,1 (essentially v; and its derivatives

must vanish at the boundaries of Q) then :

ol is a diffeomorphism from  Q — Q.

Work by Grenander, Trouvé, Younes, Miller,...
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Take vi(x) = e(x) for all t € [0, 1] for some function e: [0,1] — R




Start from the identity at timet =0

®O(x) = x




Compute the solution of the O.D.E. attimet=1

d(x) = x+ /1e(‘I>‘(X))dt
0




Another choice of the vector field (with a smaller amplitude)
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Examples of large deformations in 1D

Another choice of the vector field (with a smaller amplitude)

This reduces the amplitude of the deformation
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A parametric diffeomorphic deformation model

@ Let Q2 =[0,1]°. Let A> 0 and draw independent random
coefficients af(') ~i.i.d. P supported on [—A, A],
k=1,...,K, j =12 Then, define for x € [0, 1]?

K K
va) = (3~ alPed®), > alPe(x)),

k=1 k=1

where & : [0, 1]? — R are basis functions .

@ Then ®,(x) = ®,,(X) is defined as the solution at time t = 1 of the
following equation (note that the vector field is not
time-dependent) :

1
1 _ t
oL (%) = x+ /O Va(®!, (x))dt.
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A parametric diffeomorphic deformation model

Original image

Lenna image - 256 x 256 pixels
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A parametric diffeomorphic deformation model

Random deformation with a small A (amplitude of the a,(j)’s)

The basis functions g are localized in the center of the image
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A parametric diffeomorphic deformation model

Random deformation with a large A (amplitude of the a,((j)’s)

The basis functions g are localized in the center of the image

Jérémie Bigot Mean pattern estimation



Introduction A deformable model for images
M-estimation and warping for image averaging M-estimation for mean pattern estimation of images
A randomly shifted curve model Some numerical examples

A statistical model for the deformation of images

We observe nimages on a squared grid of N x N pixels. At each pixel
p we assume that the noisy image li,i = 1,...,nis given by

la(p) = 1* 0 ®% (p) +ci(p), i =1,...,n,

where
@ 1*:[0,1)2 — R is the unknown mean image to estimate,

@ a are i.i.d random vectors (in [-A; AJ%) of coefficients,
@ ¢i(p) € R are i.i.d. observation noise with zero mean and finite
variance.

Jérémie Bigot Mean pattern estimation



Introduction A deformable model for images
M-estimation and warping for image averaging M-estimation for mean pattern estimation of images
A randomly shifted curve model Some numerical examples

An example of realizations of the model
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A contrast function for estimating the mean of images

@ Let Z = {Z:[0,12 — R} be some set of images and define

Va = {v: 0,12 — R% v Z XK: g, [—A,A]}

=1
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A contrast function for estimating the mean of images

@ Let Z = {Z:]0,12 — R} be some set of images and define

K K
Va= {v: 0,12 — R% v(x) = (O alPax), > ala(x),a) € [-A, A]}

k=1 k=1
@ Letf(ae,Z) = miney, Zgil (la(p) — Z o <I>\}(p))2, where

la(p) = I* 0 ®L(p) + e(p) with a € [-A, A and ¢ € RV
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A contrast function for estimating the mean of images

@ Let Z = {Z:]0,12 — R} be some set of images and define

K K
Va= {v: 0,12 — R% v(x) = (O alPax), > ala(x),a) € [-A, A]}

k=1 k=1
@ Letf(ae,Z) = miney, Zgil (la(p) — Z o <I>\}(p))2, where

la(p) = I* 0 ®L(p) + (p) with a € [-A, A% and ¢ € RV

@ LetF(2) = j’[iA’A]kasz(a,s,Z)dP(a, e) and

Fa(2) = £ > f(@ua2)
i=1
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A contrast function for estimating the mean of images

Define the following sets of minimizers (unicity is not guaranteed!)

Qn = agminFa(Z) and Qo = aigminF(2)

Assume that the g’s are bounded, that Z is compact for the
supremum norm, and that I is uniformly Lipschitz 1 over [0, 1]2, then
Q = limp— 400 Qn is such that

Q# 0 and Q C Qo almost surely .
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A more general model

Main problem : the previous theorem supposes that the distribution
of the images is known... Some questions

@ what happens if the images do not follow this model ?

@ can we interpret the choice of A (size of the deformations) as a
regularization parameter ?
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A more general model

Let |; ~iiq Pon RV and Zy = > xea 02t be an image expanded in
some basis v, with A a finite set of indices.

Penalized M-estimator :let ©® c R*

A . H 1 n
0n — arggnelan(Zg) = argg;lgﬁ;f(|nz€)7

with
N? 5
f(1,Z5) = min X; (1(p) — Zo 0 Dy(p))~ + Awpeny (V) | + Aopeny(6),
p:

with e.g. pen,(vi) = Sx_; |a,(<i)|2 + |a§ﬁ)|2 and peny(6) = 3"\ [0
Then (under appropriate assumptions, mainly compactness of © and
V) iMoo ||0n — 0%l oo = 0 &.s. where

6* = argmingece F(Zy) = argmingee [ (1, Z)dP(l),
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Computation of a minimizer of the contrast function

Iterative procedure : (General Procrustes scheme) start with
z0 = 12, 1 li (naive estimator). Then form=2,..., M repeat the
following steps :

@ fori =1,...,nuse a gradient descent algorithm to compute the
optimal deformation ®4» which corresponds to the vector field

N2

2
v = agnin_ (1P = 2™ 0 @l(p)) " + Aapeny (v
p:
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Computation of a minimizer of the contrast function

Iterative procedure : (General Procrustes scheme) start with
z0 = 12, 1 li (naive estimator). Then form=2,..., M repeat the
following steps :

@ fori =1,...,nuse a gradient descent algorithm to compute the
optimal deformation ®4» which corresponds to the vector field

N2

2
v = agnin_ (1P = 2™ 0 @l(p)) " + Aapeny (v
p:

@ compute Z(M = argminzez >, Egil (li(p) — 2™ Yo q)éim(p))z
given by (case where X\, = 0)
S wi(p)li o@%nl(p)

200 = =

where w;(p) = | det Jac(® é\m)(p)|.
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Mean pattern of faces

Naive mean - ZM withm=7
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Yy, ... Y, coming from the model

dYm(X) = f (X — Tm)dX + edWin(x), x € [0,1], m=1,...,n
where

@ f :[0,1] — R is the unknown common shape of the curves (with
period 1)

@ W, are independent standard Brownian motions on [0, 1]

@ ¢ level of noise in each curve

Remark : ¢ — 0 corresponds to N — +oc in the model (with € = \/LN)

Ym,i = f(X| - Tm) +Uzlﬂ,i7 X| = } I = 17 .. '7N7 and Zm,i ~i.i.d. N(07 1)

L
N
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Simplest model : shifted 1D curves

Observations : independent realizations of n noisy and shifted
curves Yy, ... Y, coming from the model

dYm(X) = f (X — 7m)dX + edWin(x), x € [0,1], m=1,...,n
Different models for the shifts 7, :

@ Deterministic shifts : the r, are fixed parameters to estimate :
semi-parameteric estimation in the setting n fixed and ¢ — 0
(Gamboa, Loubes & Maza (2007), Vimond (2008), extension to 2D
images by Bigot, Gamboa & Vimond (2009))

@ 71's are unknown random shifts independent of the W's such
that
Tm~iidd m=1....n

where g is a unknown density on R
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Simplest model : shifted 1D curves
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A randomly shifted curve model

Observations : independent realizations of n noisy and shifted
curves Yy, ... Y, coming from the model

dYm(X) = f (X — Tm)dX + edWin(x), x € [0,1], m=1,...,n

9

This talk : case of random shifts 7m ~iiq g, M= 1,...,n, with known
or unknown density g.

Problem : estimation of f in the asymptotic setting :
@ n— +oo and e is fixed (This talk)

@ n— +oo and ¢ — 0 (Work in progress...)
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A simple model for randomly shifted curves

Observations : independent realizations of n noisy and randomly
shifted curves Yi, ... Y, coming from the model

dYm(X) = f (X — Tm)dX + edWin(x), x € [0,1], m=1,...,n

Main objectives : estimating the function f and to derive asymptotic
(as n — +o0) upper and lower bounds for the minimax risk

Rn(F) = inf sup R(fn, f), where
fn feF

0 R(fo,f) = Elffa — |2 =E [ [fa(x) — f(x)|%dx
@ F C L?([0,1]) e.g a Sobolev or a Besov ball
@ f, a measurable function of the processes {Ym, m=1,...,n}
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Simplest case : no shifts

Observations : independent realizations of n noisy and curves
Yi,... Y

dYm(X) = f(X)dX + edWm(x), x € [0,1], m=1,...,n

Classical result : if F = HS(A) (Sobolev ball of radius A) or
F = B} 4(A) (Besov ball of radius A) with smoothness index s
(“number of derivatives”) then

Ra(F) = inf sup R (Fn, ) ~ Cn~ =51
fon fEeF
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Model : dYm(X) = f(X — 7m)dx + edWin(X), x € [0,1], m=1,...,n

)

A deconvolution problem ? The expectation of each oberved curve
is given by E [f(x — mn)] = [ f(x—7)g(7)dr = f x g(x)

Define

Em(%) = F(X— 7o) — / f(x — )g(r)dr

€(x) = 1> °n_1 &m(x), and taking the mean of the n curves yields

/ f(x— r)g(r)drdx+ £Xdx + —=dW(x) , x € [0,1],
—— \/ﬁ
Non-Gaussian Error H/_/

Standard Gaussian Error
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Case of standard deconvolution with a Gaussian error :

/f — 7)g(7)d7dx + TdW( ) x € [0,1],

Minimax rate of convergence :  let~, = [*°° e 27*g(x)dx. Assume
that for some real v > 0

Cmin|€|7y < |W| < Cmax|€|7u~

for all ¢ € Z.

Then for 7 = HS(A) (Sobolev ball) or 7 = B; 4(A) (Besov ball) with
smoothness index s (“number of derivatives”) then

Rn(F) = inf sup R(fy, f) ~ Cn~ o (instead of n~=in the direct case)
fn feF
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Model in the Fourier domain

For ( € Z, let 6, = [, e 2™ (x)dx and cm, = [; & 2™dYm(x). Then

Cme = 0,2 47y With 2o ~ii.a. Nc (0,1)
= 0rye + Eom+ emZem With & m = 0,672 — 0y,

where with v, = E (e~277) = [T e~12rlg(x)dx,

Then, average the Fourier coefficients over the n curves

1o €
Co=— Cem=10 — with 7, ~ii.q. Nc (0,1
0 nz em= 0+ &+ R ne ~ii.d. Ne (0, 1)
m=1 Non-Gaussian Error W—/

Standard Gaussian Error
. 1 n
with gé ~n Zm:l f@,m-
Note that 1
E|¢)? = ﬁlﬁelz(l — |7el)

Problem : the variance of &, depends on the unknown |6,|2
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Assuming that the density g of the shifts is known, an estimation of 6,
is given by

with v, = E (e712707) = [ g=12mixg(x)dix.

Main assumption on g: polynomial decay of the ~,’s i.e for some
real v > 0,
Crinl?| ™" < [ye] < Crnaxl€] ™"

for all ¢ € Z.
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Linear estimator for f by spectra cut-off:  take

w G

0y = —, forall [¢(| <M

e

and R

oY =0, forall |¢| > M
where M is some integer to be chosen. For fom(x) = 3, OMe 27,
one has . R

R(fam, £) =E> [0, — 0>

LeZ
Bias-variance decomposition of the risk

1 €?
Rt - e} 5 o ()« ]
(o |[|¥M ,ES:M [yel? [yel?

N——
Bias Variance
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Filtering in the Fourier domain

Define the following Sobolev ball of radius A :

Hs(A) = {f € L2([0,2]) ;) _(1+1[%)6,[* < A, } with A>0,s>0
LEL

Proposition

IfM = Mg~ =71, then SUPt i (A) R(fn,Mn,S,f) = O(n_zwgswl)

Problem :

o fAn,Mn~s depends on the unknown regularity s (non-adaptive
estimator)

9 if f is piecewise C® with slarge, then f ¢ H,(A) for o > 1/2. So,

sup R(Famns, f) = O(n~ w0v1)
fePiece-wise C®

(non-optimal estimator in standard deconvolution)
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Meyer wavelets

Let (¢jo.k, ¥i.k)j>jo,0<k<2—1 be the periodized Meyer wavelet basis of
L*([0, 1)

Advantages : Meyer wavelets are band-limited functions since for
¢j€,k :/ e_|2W£X¢j7k(X)dX, /c Z,
0

the set G = {/ € Z; Y}* # 0} is finite with #{C; = c2}.

Then, wavelet coefficients of f can be computed from its Fourier
coefficients as

1 _ .
Bix = / () x()dx = > 9} 0, where 6, = / e 2 (x)dx.
0 teq 0

Meyer wavelets = usefull tool for deconvolution ( work by Johnstone et
al. (2004), Pensky & Sapatinas (2008), and fast WaveD algorithm by
Raimondo (2006) )
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Estimation by hard thresholding

Recall that

and estimation of the wavelet coefficients of f is then given by

Bj,k = Z ¢%’kée and ¢, x = Z Qggo’kég.

£€C LeC

Non-linear estimation by hard-thresholding

2Jo_1 j1 2-1
- o X |
= Godiok + Y D Audlys jox g ¥ik
k=0 i—=jo k=0

where )k is a threshold to be calibrated.
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Take
2nlog(n)

A k= A\ = o
Js J J n

2 —j .2 -2
for some 7 > 0and of = 273¢* 37, ., [ve 2

Theorem

|

Assume that 2t ~ (%) 7 and 2o ~ log(n). Then, for 1 < p < oo,
1<g<o0,A>0

2s
~ n T st2v+1
sup [Ify —f2=0 (—) ;
fEBs 4(A) log(n)

with s> 1/p/, (s+1/2—-1/p)p > v(2 — p) with p" = min(2, p)

Jérémie Bigot Mean pattern estimation



. A connexion with deconvolution problems in nonparametric statistics
Introduction

L . . . Upper and lower bounds for the minimax risk
M-estimation and warping for image averaging
M Estimation in the case of an unknown density g for the shifts
A randomly shifted curve model Simulations

Asymptotic lower bound

Letl1<p<oo,1<g<oo s>1/pandA> 0. Then, if

s>v+1/2andv > 1/2,

there exists a constant C > 0 depending only on A;'s, p, g such that

lim n=sR,(BS4(A) > C

n——+4oo
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Some limitations

Problem : this approach is not realistic in practice as the density g of
the random shifts is typically unknown

Model

dYm(X) = f (X — Tm)dX + edWin(x), x € [0,1], m=1,....n
falls into the setting of inverse problem with an unknown operator
(here the convolution by the density g), see Cavalier & Raimondo

(2007), Efromovich & Koltchinskii (2001), Hoffman & Reiss (2008)

Main issue : can we find data-based estimation of the ~,’s and plug
them into the previous estimates ?
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Introduction
M-estimation and warping for image averaging
A randomly shifted curve model

Define H = R as the translation group acting on periodic functions
f € L2([0, 1]) with period 1 by

7-f(x) =f(x+71), forxe0,1]andr € H.

and letYq,..., Y, € L2([0,1])

Frechet mean of thencurves Yi,..., Yy

fo = agmin =Y min ||f — 7 - Y2
: feL2([o. 1]) Z ‘rmE]R mom
= argmm = mln/ [f(X) — Y (X + 7m) |dx.
feL2([o, 1]) ‘rmG]R
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Frechet mean for randomly shifted curves

Smoothed Frechet mean in the Fourier domain :

(O_¢y,....,00) = argmin Z min > lem €T — 6,2,

n
(O—tse-,0eg) €RZ0+1 N 4 TER 0

1__ 5 z 5 ; .
where cne = [y € 2*dYin(x), o = > el<to 0,62t and ¢y is some
frequency cut-off parameter

Two step procedure : computation of f, 4, in two steps :

@ stepl:
1« . 1 _
(f1,...,70) = agmin = Z Z |Cm’£e,2|£7r'rm _ = Z Cq’eezlfﬂ'Tq|2
(ramyeR N 02 N
_ Cl %0 gq=

@ step2: 0, =213 | Cm €2,
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Upper bound for the estimation of the shifts

Model : Cmy = 0,672 +ezym, £ € Zorm=1,...,n,
Identifiability conditions

The density g has a compact support included in the interval
T = [-%,3] and has zero mean i.e. is such that [, 7g(r)dr = 0.

The unknown shape function f is such that 6; # 0.
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Upper bound for the estimation of the shifts

Define for 7 = (11,...,m) € T"
2

m=11¢|<fo

n n
Ma(T) = %Z > Cm,eem”"'—% D g
gq=1

LetTn = {(m1,...,7) € 7" such that 31, 7m = 0}, and define

F=(71,...,T) =agminM(7),
TE?n
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Upper bound for the estimation of the shifts

Suppose that Assumptions 1 and 2 hold. Then, for any t > 0

1 n
P (ﬁ Z(%m - 7-r:il)z Z C(fv éo, €, N, tv g)) S Bexp(_t)v

m=2
with C(f, 4o, €,n,t,9) =
4 max [le lo) (\/ (e,n, Lo, t) + Ca(e, n, 4o, )) ,Cs(t,n, g)}, where

2 1 &
Ca(e,n, lo,t) = €?(20p + 1) + 2634/ €°n+ it 2—t
2
Cs(t,n,g) = UZUZE s L with o2 = / 72g(7)dr.
T n " 12n S
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Lower bound for the estimation of the shifts

The function f is such that 3°,_,(2r€)?|0,|? < +oc.

Hypothesis

The density g is compactly supported on a interval 7 = [7in, Tmax|
SUCh that Iim7'—’7'min g(T) = IimT—’Tmax g(T) = 0

Theorem

Let 7" denote any estimator of the true shifts (71,...,m). Then,
under Assumptions 3 and 4

n

1 ~n
E (ﬁ Z(Tm

- ra:)2> > :
== > ez (2721602 + € [, (£ logg(r))* g(r)dr
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Plug-in into wavelet-based estimators

First estimator

2io_1 j1 .
fnl - Z Cio.k,1Pjo.k + Z Z A, kl]lﬂﬁj k1|>>‘1}’¢)J k
j=lo k=0

3 kg ,
where fik1=3ycq ¥y e and Gy = Dreay, P 60,1 with

~

1 (1
Op1=— 1= Zce,m )
Ye \N =
and ) = 6/ 2nlog(n) with 67 = 271€2 2 eeq, [Ael™

n
_1 Z o i2n b
. .
m=2
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Plug-in into wavelet-based estimators

Second estimator given by first realigning the curves using the
estimation of the shifts namely

2Jo_1 1 2—
fn2 = Z Cok2Biok ) Z Bir2ly g, 55,y ik
j=jo k=0

A kA jo,kj :
where (2 = 3 peq ¥ Or2 and oz = Ygeq, @) Or.2 With

. 1 o
Ooo = - Z Co,m€ ™.

m=2

and A = 6j,/ 21990 with 67 =273 gy [ 2
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Comparison with Procrustean mean

Iterative procedure (Kneip & Gasser (1988), Wang & Gasser
(2997))

@ Initialisation : fo = 2 S0, Ym
@ Forl<i<imado
@ For 1 < m< ncompute

Fing = &GN [Yo- +7) — fs

@ Thentake fi(x) = 237" | Ym(X + 7m;)

~n

Fast convergence (imax = 3 is enough) but it highly depends on the
initialisation f
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Simulations
Wave example

Laplace distribution g(x) = ﬁ exp (—ﬁ'gi') for x € R, and

l .
Ve = Tgorep 8V =2

True f and a sample of 10 noisy curves out of n = 200
Curves are sampled at N = 256 equally spaced points on [0, 1]
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Wave example - Comparison with Procrustean mean

Wavelet-based estimator f, (left) and f, » (right)
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Blocks example

Laplace distribution g(x) = ﬁ exp (—ﬁ'gi') for x € R, and

l .
Ve = Tgorep 8V =2

] 01 02 03 04 05 06 07 08 09 170 01 02 03 04 05 06 07 08 09 1

True f and a sample of 10 noisy curves out of n = 200
Curves are sampled at N = 256 equally spaced points on [0, 1]
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Blocks example - Comparison with Procrustean mean

Wavelet-based estimator f, (left) and f, » (right)
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Bumps example

V2o
l .
Ve = ToerneE eV = 2

Laplace distribution g(x) = —X- exp (—ﬁ'gi') for x € R, and

True f and a sample of 10 noisy curves out of n = 200
Curves are sampled at N = 256 equally spaced points on [0, 1]
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Bumps example - Comparison with Procrustean mean

Wavelet-based estimator f, (left) and f, » (right)
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Some perspectives

@ For the randomly shifted curve model :

@ consider an asymptotic setting with n — +oco and ¢ — 0 (work in
progress)

@ consistency and rate of convergence of the estimators in the case
of an unknown density g

@ Extension to images and more complex deformations (first steps
in this direction by Bigot, Gamboa & Vimond (2009), Bigot,
Loubes & Vimond (2008), Bigot, Gadat & Loubes (2009))
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