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Collaborative recommendation

Collaborative recommendation is a Web information-filtering
technique that typically

⊲ gathers information about your personal interests

⊲ compares your profile to other users with similar tastes

⊲ and then gives personalized recommendations.

Examples include recommending books, people, restaurants,
movies, CDs and news.

Websites such as amazon.com, match.com, movielens.org and
allmusic.com already have recommendation systems in operation.
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Users and items

Collaborative systems deal with two types of variables: users and
items.

The problem: Estimate ratings for items that have not yet been
consumed by a user.

The recommendation process typically starts by asking users a
series of questions.

Personal ratings are then collected in a matrix.

Based on this prior information, the recommendation engine must be
able to automatically furnish ratings of as-yet unrated items.
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Example

Rocky Platoon Rambo Rio Bravo Star wars Titanic
Jim NA 6 7 8 9 NA

James 3 NA 10 NA 5 7
Steve 7 NA 1 NA 6 NA
Mary NA 7 1 NA 5 6
John NA 7 NA NA 3 1
Lucy 3 10 2 7 NA 4
Stan NA 7 NA NA 1 NA

Johanna 4 5 NA 8 3 9
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State of the art

A number of practical methods have been proposed, including

⊲ machine learning-oriented techniques (e.g., Abernethy et al.,
2009 )

⊲ statistical approaches (e.g., Sarwar et al., 2001 )

⊲ and numerous other ad hoc rules (Adomavicius and
Tuzhilin, 2005 ).

The similarity measure assessing proximity between users is
typically based on a correlation or cosine-type approach.
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Our mission
Despite wide-ranging literature, very little is known about the
statistical properties of recommendation systems.

In fact, no clear probabilistic model even exists.

To provide an initial contribution to this, we propose

⊲ to set out a general stochastic model for collaborative
recommendation

⊲ and analyze its asymptotic performance as the number of users
grows.
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Ratings matrix and new users

Suppose that there are d + 1 possible items, n users in the ratings
matrix.

Users’ ratings take values in the set ({0} ∪ [1, s])d+1.

A new user Bob reveals some of his preferences for the first time,
rating some of the first d items but not the (d + 1)th.

We want to design a strategy to predict Bob’s rating of Titanic, using

1 Bob’s ratings of some of the other d movies and

2 the ratings matrix.
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A model for the new user

We model the preferences of Bob by a random vector (X, Y )
taking values in the set [1, s]d × [1, s].

In fact, we do not observe the variable X, but instead some
“masked” version of it X⋆.

The random variable X⋆ = (X ⋆
1 , . . . , X ⋆

d ) is naturally defined by

X ⋆
j =

{
Xj if j ∈ M
0 otherwise,

where M stands for some non-empty random subset of {1, . . . , d}.

Bob NA 3 3 4 5 ?

M = {2, 3, 4, 5} X⋆ = (0, 3, 3, 4, 5).
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A first model for the ratings matrix

The preferences of users already in the database will be
represented by independent random pairs (X1, Y1), . . . , (Xn, Yn)
from the distribution (X, Y ).

A first idea for dealing with potential non-responses is to consider
in place of Xi its masked version X̃i = (X̃i1, . . . , X̃id) defined by

X̃ij =

{
Xij if j ∈ Mi ∩ M
0 otherwise.

Drawback
As time goes by, each user in the database may reveal online more
and more preferences.
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A more pertinent model

At time 1, there is only one user in the database, and the subset of
items he decides to rate is modeled by a random variable M1

1 .

At time 2, a new user enters the game and reveals his preferences
according to a variable M1

2 , with the same distribution as M1
1 .

At the same time, user 1 may update his list of preferences,
modeled by a random variable M2

1 satisfying M1
1 ⊂ M2

1 .

And so on...
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Preference updating

Time 1 Time 2 . . . Time i . . . Time n
User 1 M1

1 M2
1 . . . M i

1 . . . Mn
1

User 2 M1
2 . . . M i−1

2 . . . Mn−1
2

...
. . .

...
...

...
User i M1

i . . . Mn+1−i
i

...
. . .

...
User n M1

n

Assumptions
1 The distribution of (Mn

i )n≥1 is independent of i . It is therefore
distributed as a generic random sequence (Mn)n≥1, satisfying
M1 6= ∅ and Mn ⊂ Mn+1 for all n ≥ 1.

2 There exists a random integer n0 such that Mn0 = {1, . . . , d}.
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The sequential model

We let the masked version X(n)
i of Xi be defined as

X (n)
ij =

{
Xij if j ∈ Mn+1−i

i ∩ M
0 otherwise.

We denote by (Rn)n≥1 the subset of users who have already
provided information about Titanic at time n. It satisfies
Rn ⊂ Rn+1.

The statistical problem
Estimate the regression function η(x⋆) = E[Y |X⋆ = x⋆], based on the
database observations (X(n)

1 , Y1), . . . , (X
(n)
n , Yn).
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The cosine-type kn-NN regression method

The method estimate η(x⋆) by a local averaging over those Yi for
which

1 X(n)
i is “close” to x⋆ and

2 i ∈ Rn, that is, we effectively “see” the rating Yi .

The closeness between users is assessed by a cosine-type
similarity, defined by

S̄(x, x′) =

∑
j∈J xjx ′

j√∑
j∈J x2

j

√∑
j∈J x ′2

j

,

where J = {j ∈ {1, . . . , d} : xj 6= 0 and x ′
j 6= 0}.

If J = {1, . . . , d} then S̄(x, x′) = cos(x, x′).
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Example

S̄(Bob, Jim) = S̄((0, 3, 3, 4, 5), (0, 6, 7, 8, 9)) ≈ 0.99,

whereas

S̄(Bob, Lucy) = S̄((0, 3, 3, 4, 5), (3, 10, 2, 7, 0)) ≈ 0.89.

A key observation

If M ⊂ Mn+1−i
i , the positive real number y which maximizes the

similarity between (x⋆, y) and (X⋆
i , Yi) is given by

y =
‖x⋆‖

‖X⋆
i ‖ cos(x⋆, X⋆

i )
Yi .
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The estimate

This suggests the regression estimate

ηn(x⋆) = ‖x⋆‖
∑

i∈Rn

Wni(x⋆)
Yi

‖X(n)
i ‖

,

where

Wni(x⋆) =

{
1/kn if X(n)

i is among the kn-MS of x⋆ in {X(n)
i , i ∈ Rn}

0 otherwise.

The weights are computed according to the penalized similarity

S
(

x⋆, X(n)
i

)
= p(n)

i S̄
(

x⋆, X(n)
i

)
, with p(n)

i =
|Mn+1−i

i ∩ M|
|M| .
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The regression function

Theorem
Suppose that ηn(X⋆) → η(X⋆) in probability as n → ∞. Then

η(X⋆) = ‖X⋆‖E

[
Y

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖

]
a.s.

Fundamental requirement
The regression function η(x⋆) has the special form

η(x⋆) = ‖x⋆‖ϕ(x⋆), where ϕ(x⋆) = E

[
Y

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖ =
x⋆

‖x⋆‖

]
.

In particular, if x̃⋆ = λx⋆ with λ > 0, then η(x̃⋆) = λη(x⋆).
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1 Motivations

2 A sequential model

3 Statistical modeling

4 Consistency and rates of convergence
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Consistency

Theorem
Suppose that kn → ∞, |Rn| → ∞ a.s. and E[kn/|Rn|] → 0 as n → ∞.
Then

E |ηn(X⋆) − η(X⋆)| → 0 as n → ∞.

Thus, to achieve consistency, the number of nearest neighbors kn

should

tend to infinity

but be small with respect to the users who have already rated the
item of interest.
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Example 1

Consider, to start with, the somewhat ideal situation where all
users in the database have rated the item of interest.

In this case, Rn = {1, . . . , n}, and the asymptotic conditions on kn

become kn → ∞ and kn/n → 0 as n → ∞.

These are just the well-known conditions ensuring consistency of
the usual NN regression estimate.

Györfi, Kohler, Krzyz ȧk and Walk, 2002 .
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Example 2

Fix, for simplicity, R1 = {1}.

At step n ≥ 2, we decide or not to add one element to Rn−1 with
probability p ∈ (0, 1), independently of the data.

1 Rn is increased by picking a random variable Bn uniformly over the
set {1, . . . , n} −Rn−1, and set Rn = Rn−1 ∪ {Bn}.

2 Otherwise, Rn = Rn−1.

Clearly, |Rn| − 1 has binomial B(n − 1, p) distribution.

Consequently,

E

[
kn

|Rn|

]
=

kn [1 − (1 − p)n]

np
.

In this setting, consistency holds provided kn → ∞ and kn = o(n)
as n → ∞.
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Sketch of proof

Fact 1
Recall that, for a fixed i ∈ Rn, the random variable X⋆

i = (X ⋆
i1, . . . , X ⋆

id)
is defined by

X ⋆
ij =

{
Xij if j ∈ M
0 otherwise,

and X(n)
i = X⋆

i as soon as M ⊂ Mn+1−i
i . For each i ∈ Rn,

S(X⋆, X⋆
i ) = cos(X⋆, X⋆

i ) = 1 − 1
2

d2
(

X⋆

‖X⋆‖ ,
X⋆

i

‖X⋆
i ‖

)
,

where d is the usual Euclidean distance on R
d .
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Sketch of proof

Fact 2
Let, for all i ≥ 1,

Ti = min(k ≥ i : Mk+1−i
i ⊃ M).

Set
Ln = {i ∈ Rn : Ti ≤ n},

and define, for i ∈ Ln,

W ⋆
ni(x

⋆) =

{
1/kn if X⋆

i is among the kn-MS of x⋆ in {X⋆
i , i ∈ Ln}

0 otherwise.

Then

W ⋆
ni(x

⋆) =

{
1/kn if

X⋆

i
‖X⋆

i ‖
is among the kn-NN of x⋆

‖x⋆‖ in
{

X⋆

i
‖X⋆

i ‖
, i ∈ Ln

}

0 otherwise.
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Sketch of proof

We write

E

∣∣∣∣∣∣

∑

i∈Rn

Wni(X⋆)
Yi

‖X(n)
i ‖

− ϕ(X⋆)

∣∣∣∣∣∣

≤ E



∑

i∈Lc
n

Wni(X⋆)
Yi

‖X(n)
i ‖


+ E

∣∣∣∣∣∣

∑

i∈Ln

Wni(X⋆)
Yi

‖X(n)
i ‖

− ϕ(X⋆)

∣∣∣∣∣∣
.

Next,

E

∣∣∣∣∣∣

∑

i∈Ln

Wni(X⋆)
Yi

‖X(n)
i ‖

− ϕ(X⋆)

∣∣∣∣∣∣
≤ sP(An)+E

∣∣∣∣∣∣

∑

i∈Ln

W ⋆
ni(X

⋆)
Yi

‖X⋆
i ‖

− ϕ(X⋆)

∣∣∣∣∣∣
,

where

An =
[
∃i ∈ Lc

n : X(n)
i is among the kn-MS of X⋆ in {X(n)

i , i ∈ Rn}
]
.
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Regularity assumption

The function

ϕ(x⋆) = E

[
Y

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖ =
x⋆

‖x⋆‖

]

satisfies a Lipschitz-type property with respect to the similarity S̄. That
is, there exists a constant C > 0 such that, for all x and x′ in R

d ,

|ϕ(x) − ϕ(x′)| ≤ C
√

1 − S̄(x, x′).

In particular, for x and x′ ∈ R
d − 0 with the same null components, this

property can be rewritten as

|ϕ(x) − ϕ(x′)| ≤ C√
2

d

(
x

‖x‖ ,
x′

‖x′‖

)
.
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Rates of convergence

Theorem

Let αni = P(Mn+1−i 6⊃ M |M). Then there exists C > 0 such that, for all
n ≥ 1,

E |ηn(X⋆) − η(X⋆)|

≤ C



E


 kn

|Rn|
∑

i∈Rn

E αni


+ E



∏

i∈Rn

αni


+ E

[(
kn

|Rn|

)Pn
]

+
1√
kn



 ,

where Pn = 1/(|M| − 1) if kn ≤ |Rn|, and Pn = 1 otherwise.

⊲ The performance improves as the αni decrease, i.e., as the
proportion of rated items growths.

⊲ The term E[(kn/|Rn|)Pn ] can be interpreted as a bias term in
dimension |M| − 1, whereas 1/

√
kn represents a variance term.
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Example 1

In this ideal model, Rn = {1, . . . , n}.

Suppose in addition that M = {1, . . . , d}.

Then the upper bound becomes

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/(d−1)

+
1√
kn

)
.

There is no influence of the dynamical rating process.

In particular, the choice kn ∼ n2/(d+1) leads to

E |ηn(X⋆) − η(X⋆)| = O
(

n−1/(d+1)
)

.

G. Biau (Université Paris VI) 31 / 33



Example 1

In this ideal model, Rn = {1, . . . , n}.

Suppose in addition that M = {1, . . . , d}.

Then the upper bound becomes

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/(d−1)

+
1√
kn

)
.

There is no influence of the dynamical rating process.

In particular, the choice kn ∼ n2/(d+1) leads to

E |ηn(X⋆) − η(X⋆)| = O
(

n−1/(d+1)
)

.

G. Biau (Université Paris VI) 31 / 33



Example 1

In this ideal model, Rn = {1, . . . , n}.

Suppose in addition that M = {1, . . . , d}.

Then the upper bound becomes

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/(d−1)

+
1√
kn

)
.

There is no influence of the dynamical rating process.

In particular, the choice kn ∼ n2/(d+1) leads to

E |ηn(X⋆) − η(X⋆)| = O
(

n−1/(d+1)
)

.

G. Biau (Université Paris VI) 31 / 33



Example 1

In this ideal model, Rn = {1, . . . , n}.

Suppose in addition that M = {1, . . . , d}.

Then the upper bound becomes

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/(d−1)

+
1√
kn

)
.

There is no influence of the dynamical rating process.

In particular, the choice kn ∼ n2/(d+1) leads to

E |ηn(X⋆) − η(X⋆)| = O
(

n−1/(d+1)
)

.

G. Biau (Université Paris VI) 31 / 33



Example 1

In this ideal model, Rn = {1, . . . , n}.

Suppose in addition that M = {1, . . . , d}.

Then the upper bound becomes

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/(d−1)

+
1√
kn

)
.

There is no influence of the dynamical rating process.

In particular, the choice kn ∼ n2/(d+1) leads to

E |ηn(X⋆) − η(X⋆)| = O
(

n−1/(d+1)
)

.

G. Biau (Université Paris VI) 31 / 33



Example 2

At time 1, the user rates exactly 4 items by randomly guessing in
{1, . . . , d}.

At time 2, he updates his preferences by adding exactly one rating
among his unrated items, randomly chosen in {1, . . . , d} − M1

1 .

Similarly, at time 3, the user revises his preferences according to a
new item uniformly selected in {1, . . . , d} − M2

1 , and so on.

In such a scenario, M j = {1, . . . , d} for j ≥ d − 3. Calculations
show that

αni =





0 if i ≤ n − d + 4

1 −

(
d − 4
n − i

)

(
d

n + 4 − i

) if n − d + 5 ≤ i ≤ n.
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Example 2

We obtain

E



∏

i∈Rn

αni


 ≤ C

n
.

Also,

E

[(
kn

|Rn|

)Pn
]
≤ C

(
kn

n

)1/3

.

Putting all pieces together,

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/3

+
1√
kn

)
.

In particular, the choice kn ∼ n2/5 leads to

E |ηn(X⋆) − η(X⋆)| = O(n−1/5).
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