# Statistical Analysis of $k$-Nearest Neighbor Collaborative Recommendation 

G. Biau, B. Cadre and L. Rouvière

University Paris VI - ENS Cachan - ENSAI


Journées STAR, October 2009

## Outline

(1) Motivations
(2) A sequential model
(3) Statistical modeling

44 Consistency and rates of convergence

## (2) A sequential model

4 Consistency and rates of convergence

## Collaborative recommendation

- Collaborative recommendation is a Web information-filtering technique that typically
gathers information about your personal interests
compares your profile to other users with similar tastes
and then gives personalized recommendations.
- Examples include recommending books, people, restaurants, movies, CDs and news.
- Websites such as amazon.com, match.com, movielens.org and allmusic.com already have recommendation systems in operation.


## Collaborative recommendation

- Collaborative recommendation is a Web information-filtering technique that typically
$\triangleright$ gathers information about your personal interests
compares your profile to other users with similar tastes
and then gives personalized recommendations.
- Examples include recommending books, people, restaurants, movies, CDs and news.
- Websites such as amazon.com, match.com, movielens.org and allmusic.com already have recommendation systems in operation.


## Collaborative recommendation

- Collaborative recommendation is a Web information-filtering technique that typically
$\triangleright$ gathers information about your personal interests
$\triangleright$ compares your profile to other users with similar tastes
and then gives personalized recommendations.
- Examples include recommending books, people, restaurants, movies, CDs and news.
- Websites such as amazon.com, match.com, movielens.org and allmusic.com already have recommendation systems in operation.


## Collaborative recommendation

- Collaborative recommendation is a Web information-filtering technique that typically
$\triangleright$ gathers information about your personal interests
$\triangleright$ compares your profile to other users with similar tastes
$\triangleright$ and then gives personalized recommendations.
- Examples include recommending books, people, restaurants, movies, CDs and news.
- Websites such as amazon.com, match.com, movielens.org and allmusic.com already have recommendation systems in operation.


## Collaborative recommendation

- Collaborative recommendation is a Web information-filtering technique that typically
$\triangleright$ gathers information about your personal interests
$\triangleright$ compares your profile to other users with similar tastes
$\triangleright$ and then gives personalized recommendations.
- Examples include recommending books, people, restaurants, movies, CDs and news.
- Websites such as amazon.com, match.com, movielens.org and allmusic.com already have recommendation systems in operation.


## Collaborative recommendation

- Collaborative recommendation is a Web information-filtering technique that typically
$\triangleright$ gathers information about your personal interests
$\triangleright$ compares your profile to other users with similar tastes
$\triangleright$ and then gives personalized recommendations.
- Examples include recommending books, people, restaurants, movies, CDs and news.
- Websites such as amazon.com, match.com, movielens.org and allmusic.com already have recommendation systems in operation.


## Users and items

- Collaborative systems deal with two types of variables: users and items.
- The problem: Estimate ratings for items that have not yet been consumed by a user.
- The recommendation process typically starts by asking users a series of questions.
- Personal ratings are then collected in a matrix.


## Based on this prior information, the recommendation engine must be able to automatically furnish ratings of as-yet unrated items.

## Users and items

- Collaborative systems deal with two types of variables: users and items.
- The problem: Estimate ratings for items that have not yet been consumed by a user.
- The recommendation process typically starts by asking users a series of questions.
- Personal ratings are then collected in a matrix.


## Based on this prior information, the recommendation engine must be able to automatically furnish ratings of as-yet unrated items.

## Users and items

- Collaborative systems deal with two types of variables: users and items.
- The problem: Estimate ratings for items that have not yet been consumed by a user.
- The recommendation process typically starts by asking users a series of questions.
- Personal ratings are then collected in a matrix.


## Based on this prior information, the recommendation engine must be able to automatically furnish ratings of as-yet unrated items.

## Users and items

- Collaborative systems deal with two types of variables: users and items.
- The problem: Estimate ratings for items that have not yet been consumed by a user.
- The recommendation process typically starts by asking users a series of questions.
- Personal ratings are then collected in a matrix.

Based on this prior information, the recommendation engine must be able to automatically furnish ratings of as-yet unrated items.

## Users and items

- Collaborative systems deal with two types of variables: users and items.
- The problem: Estimate ratings for items that have not yet been consumed by a user.
- The recommendation process typically starts by asking users a series of questions.
- Personal ratings are then collected in a matrix.

Based on this prior information, the recommendation engine must be able to automatically furnish ratings of as-yet unrated items.

## Users and items

- Collaborative systems deal with two types of variables: users and items.
- The problem: Estimate ratings for items that have not yet been consumed by a user.
- The recommendation process typically starts by asking users a series of questions.
- Personal ratings are then collected in a matrix.

Based on this prior information, the recommendation engine must be able to automatically furnish ratings of as-yet unrated items.

## Users and items

- Collaborative systems deal with two types of variables: users and items.
- The problem: Estimate ratings for items that have not yet been consumed by a user.
- The recommendation process typically starts by asking users a series of questions.
- Personal ratings are then collected in a matrix.

Based on this prior information, the recommendation engine must be able to automatically furnish ratings of as-yet unrated items.

## Example

|  | Rocky | Platoon | Rambo | Rio Bravo | Star wars | Titanic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jim | NA | 6 | 7 | 8 | 9 | NA |
| James | 3 | NA | 10 | NA | 5 | 7 |
| Steve | 7 | NA | 1 | NA | 6 | NA |
| Mary | NA | 7 | 1 | NA | 5 | 6 |
| John | NA | 7 | NA | NA | 3 | 1 |
| Lucy | 3 | 10 | 2 | 7 | NA | 4 |
| Stan | NA | 7 | NA | NA | 1 | NA |
| Johanna | 4 | 5 | NA | 8 | 3 | 9 |

## Example

|  | Rocky | Platoon | Rambo | Rio Bravo | Star wars | Titanic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jim | NA | 6 | 7 | 8 | 9 | NA |
| James | 3 | NA | 10 | NA | 5 | 7 |
| Steve | 7 | NA | 1 | NA | 6 | NA |
| Mary | NA | 7 | 1 | NA | 5 | 6 |
| John | NA | 7 | NA | NA | 3 | 1 |
| Lucy | 3 | 10 | 2 | 7 | NA | 4 |
| Stan | NA | 7 | NA | NA | 1 | NA |
| Johanna | 4 | 5 | NA | 8 | 3 | 9 |
| Bob | NA | 3 | 3 | 4 | 5 | $?$ |

## State of the art

- A number of practical methods have been proposed, including
machine learning-oriented techniques (e.g., Abernethy et al., 2009)
statictical approaches (e.g., Sarwar et al., 2001)
and numerous other ad hoc rules (Adomavicius and
Tuzhilin, 2005).
- The similarity measure assessing proximity between users is typically based on a correlation or cosine-type approach.


## State of the art

- A number of practical methods have been proposed, including
$\triangleright$ machine learning-oriented techniques (e.g., Abernethy et al., 2009)
statistical approaches (e.g., Sarwar et al., 2001)
and numerous other ad hoc rules (Adomavicius and
Tuzhilin, 2005).
- The similarity measure assessing proximity between users is typically based on a correlation or cosine-type approach.


## State of the art

- A number of practical methods have been proposed, including
$\triangleright$ machine learning-oriented techniques (e.g., Abernethy et al., 2009)
$\triangleright$ statistical approaches (e.g., Sarwar et al., 2001)
and numerous other ad hoc rules (Adomavicius and Tuzhilin, 2005).
- The similarity measure assessing proximity between users is typically based on a correlation or cosine-type approach.


## State of the art

- A number of practical methods have been proposed, including
$\triangleright$ machine learning-oriented techniques (e.g., Abernethy et al., 2009)
$\triangleright$ statistical approaches (e.g., Sarwar et al., 2001)
$\triangleright$ and numerous other ad hoc rules (Adomavicius and Tuzhilin, 2005).
- The similarity measure assessing proximity between users is typically based on a correlation or cosine-type approach.


## State of the art

- A number of practical methods have been proposed, including
$\triangleright$ machine learning-oriented techniques (e.g., Abernethy et al., 2009)
$\triangleright$ statistical approaches (e.g., Sarwar et al., 2001)
$\triangleright$ and numerous other ad hoc rules (Adomavicius and Tuzhilin, 2005).
- The similarity measure assessing proximity between users is typically based on a correlation or cosine-type approach.

Jim
Lucy

Steve
Stan

Johanna

John

Mary
James

Rio Bravo

Jim

$$
\begin{array}{lc} 
& \text { Lucy } \\
\text { Steve } & \text { Stan } \\
\\
& \\
\text { Mary John } & \\
& \\
& \\
& \text { Job }
\end{array}
$$




## Our mission

- Despite wide-ranging literature, very little is known about the statistical properties of recommendation systems.
- In fact, no clear probabilistic model even exists.
- To provide an initial contribution to this, we propose
to set out a general stochastic model for collaborative recommendation
and analyze its asymptotic performance as the number of users grows.


## Our mission

- Despite wide-ranging literature, very little is known about the statistical properties of recommendation systems.
- In fact, no clear probabilistic model even exists.
- To provide an initial contribution to this, we propose to set out a general stochastic model for collaborative recommendation
and analyze its asymptotic performance as the number of users grows.


## Our mission

- Despite wide-ranging literature, very little is known about the statistical properties of recommendation systems.
- In fact, no clear probabilistic model even exists.
- To provide an initial contribution to this, we propose
to set out a general stochastic model for collaborative recommendation
and analyze its asymptotic performance as the number of users grows.


## Our mission

- Despite wide-ranging literature, very little is known about the statistical properties of recommendation systems.
- In fact, no clear probabilistic model even exists.
- To provide an initial contribution to this, we propose
$\triangleright$ to set out a general stochastic model for collaborative recommendation
and analyze its asymptotic performance as the number of users grows.


## Our mission

- Despite wide-ranging literature, very little is known about the statistical properties of recommendation systems.
- In fact, no clear probabilistic model even exists.
- To provide an initial contribution to this, we propose
$\triangleright$ to set out a general stochastic model for collaborative recommendation
$\triangleright$ and analyze its asymptotic performance as the number of users grows.


## (1) Motivations

(2) A sequential model

## (3) Statistical modeling

## 4. Consistency and rates of convergence

## Ratings matrix and new users

- Suppose that there are $d+1$ possible items, $n$ users in the ratings matrix.
- Users' ratings take values in the set $(\{0\} \cup[1, s])^{d+1}$.
- A new user Bob reveals some of his preferences for the first time, rating some of the first $d$ items but not the $(d+1)$ th.

We want to design a strategy to predict Bob's rating of Titanic, using
(1) Bob's ratings of some of the other $d$ movies and
(3) the ratings matrix.

## Ratings matrix and new users

- Suppose that there are $d+1$ possible items, $n$ users in the ratings matrix.
- Users' ratings take values in the set $(\{0\} \cup[1, s])^{d+1}$.
- A new user Bob reveals some of his preferences for the first time, rating some of the first $d$ items but not the $(d+1)$ th.

We want to design a strategy to predict Bob's rating of Titanic, using
(1) Bob's ratings of some of the other $d$ movies and
(a) the ratings matrix.

## Ratings matrix and new users

- Suppose that there are $d+1$ possible items, $n$ users in the ratings matrix.
- Users' ratings take values in the set $(\{0\} \cup[1, s])^{d+1}$.
- A new user Bob reveals some of his preferences for the first time, rating some of the first $d$ items but not the $(d+1)$ th.

We want to design a strategy to predict Bob's rating of Titanic, using
(4) Bob's ratings of some of the other $d$ movies and
(2) the ratings matrix.

## Ratings matrix and new users

- Suppose that there are $d+1$ possible items, $n$ users in the ratings matrix.
- Users' ratings take values in the set $(\{0\} \cup[1, s])^{d+1}$.
- A new user Bob reveals some of his preferences for the first time, rating some of the first $d$ items but not the $(d+1)$ th.

We want to design a strategy to predict Bob's rating of Titanic, using
(1) Bob's ratings of some of the other $d$ movies and
(2) the ratings matrix.

## Ratings matrix and new users

- Suppose that there are $d+1$ possible items, $n$ users in the ratings matrix.
- Users' ratings take values in the set $(\{0\} \cup[1, s])^{d+1}$.
- A new user Bob reveals some of his preferences for the first time, rating some of the first $d$ items but not the $(d+1)$ th.

We want to design a strategy to predict Bob's rating of Titanic, using
(1) Bob's ratings of some of the other $d$ movies and
(2) the ratings matrix.

## Ratings matrix and new users

- Suppose that there are $d+1$ possible items, $n$ users in the ratings matrix.
- Users' ratings take values in the set $(\{0\} \cup[1, s])^{d+1}$.
- A new user Bob reveals some of his preferences for the first time, rating some of the first $d$ items but not the $(d+1)$ th.

We want to design a strategy to predict Bob's rating of Titanic, using
(1) Bob's ratings of some of the other $d$ movies and
(2) the ratings matrix.

## A model for the new user

- We model the preferences of Bob by a random vector $(\mathbf{X}, Y)$ taking values in the set $[1, s]^{d} \times[1, s]$.
- In fact, we do not observe the variable X, but instead some "masked" version of it $\mathbf{X}^{\star}$.

The random variab'e $\mathbf{X}^{+}=\left(X_{1}^{*}, \ldots, X_{d}^{*}\right)$ is naturally defined by

where $M$ stands for some non-empty random subset of $\{1$

| Bob | NA | 3 | 3 | 4 | 5 | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
M=\{2,3,4,5\} \quad \mathbf{X}^{\star}=(0,3,3,4,5) .
$$

## A model for the new user

- We model the preferences of Bob by a random vector $(\mathbf{X}, Y)$ taking values in the set $[1, s]^{d} \times[1, s]$.
- In fact, we do not observe the variable $\mathbf{X}$, but instead some "masked" version of it $\mathbf{X}^{\star}$.
- The random variable $X^{\star}=\left(X_{1}^{\star}, \ldots, X_{d}^{\star}\right)$ is naturally defined by

where $M$ stands for some non-empty random subset of $\{1$

| Bob | NA | 3 | 3 | 4 | 5 | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
M=\{2,3,4,5\} \quad \mathbf{X}^{\star}=(0,3,3,4,5) .
$$

## A model for the new user

- We model the preferences of Bob by a random vector $(\mathbf{X}, Y)$ taking values in the set $[1, s]^{d} \times[1, s]$.
- In fact, we do not observe the variable $\mathbf{X}$, but instead some "masked" version of it $\mathbf{X}^{\star}$.
- The random variable $\mathbf{X}^{\star}=\left(X_{1}^{\star}, \ldots, X_{d}^{\star}\right)$ is naturally defined by

$$
X_{j}^{\star}=\left\{\begin{array}{cl}
X_{j} & \text { if } j \in M \\
0 & \text { otherwise }
\end{array}\right.
$$

where $M$ stands for some non-empty random subset of $\{1, \ldots, d\}$.

| Bob | NA | 3 | 3 | 4 | 5 | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
M=\{2,3,4,5\} \quad \mathbf{X}^{\star}=(0,3,3,4,5)
$$

## A first model for the ratings matrix

- The preferences of users already in the database will be represented by independent random pairs $\left(\mathbf{X}_{1}, Y_{1}\right), \ldots,\left(\mathbf{X}_{n}, Y_{n}\right)$ from the distribution $(\mathbf{X}, Y)$.
- A first idea for dealing with potential non-responses is to consider in place of $\mathbf{X}_{i}$ its masked version $\mathbf{X}_{i}=\left(X_{i 1}, \ldots, X_{i d}\right)$ defined by



## Drawback <br> As time goes by, each user in the database may reveal online more and more preferences.

## A first model for the ratings matrix

- The preferences of users already in the database will be represented by independent random pairs $\left(\mathbf{X}_{1}, Y_{1}\right), \ldots,\left(\mathbf{X}_{n}, Y_{n}\right)$ from the distribution $(\mathbf{X}, Y)$.
- A first idea for dealing with potential non-responses is to consider in place of $\mathbf{X}_{i}$ its masked version $\widetilde{\mathbf{X}}_{i}=\left(\widetilde{X}_{i 1}, \ldots, \widetilde{X}_{i d}\right)$ defined by

$$
\widetilde{X}_{i j}=\left\{\begin{array}{cl}
X_{i j} & \text { if } j \in M_{i} \cap M \\
0 & \text { otherwise }
\end{array}\right.
$$

## Drawback <br> As time goes by, each user in the database may reveal online more and more preferences.

## A first model for the ratings matrix

- The preferences of users already in the database will be represented by independent random pairs $\left(\mathbf{X}_{1}, Y_{1}\right), \ldots,\left(\mathbf{X}_{n}, Y_{n}\right)$ from the distribution $(\mathbf{X}, Y)$.
- A first idea for dealing with potential non-responses is to consider in place of $\mathbf{X}_{i}$ its masked version $\widetilde{\mathbf{X}}_{i}=\left(\widetilde{X}_{i 1}, \ldots, \widetilde{X}_{i d}\right)$ defined by

$$
\widetilde{X}_{i j}=\left\{\begin{array}{cl}
X_{i j} & \text { if } j \in M_{i} \cap M \\
0 & \text { otherwise } .
\end{array}\right.
$$

## Drawback

As time goes by, each user in the database may reveal online more and more preferences.

## A more pertinent model

- At time 1, there is only one user in the database, and the subset of items he decides to rate is modeled by a random variable $M_{1}^{1}$.
- At time 2, a new user enters the game and reveals his preferences according to a variable $M_{2}^{1}$, with the same distribution as $M_{1}^{1}$.
- At the same time, user 1 may undate his list of preferences, modeled by a random variable $M_{1}^{2}$ satisfying $M_{1}^{1} \subset M_{1}^{2}$.
- And so on...


## A more pertinent model

- At time 1, there is only one user in the database, and the subset of items he decides to rate is modeled by a random variable $M_{1}^{1}$.
- At time 2, a new user enters the game and reveals his preferences according to a variable $M_{2}^{1}$, with the same distribution as $M_{1}^{1}$.
- At the same time, user 1 may update his list of preferences, modeled by a random variable $M_{1}^{2}$ satisfying $M_{1}^{1}$
- And so on...


## A more pertinent model

- At time 1, there is only one user in the database, and the subset of items he decides to rate is modeled by a random variable $M_{1}^{1}$.
- At time 2, a new user enters the game and reveals his preferences according to a variable $M_{2}^{1}$, with the same distribution as $M_{1}^{1}$.
- At the same time, user 1 may update his list of preferences, modeled by a random variable $M_{1}^{2}$ satisfying $M_{1}^{1} \subset M_{1}^{2}$.


## A more pertinent model

- At time 1, there is only one user in the database, and the subset of items he decides to rate is modeled by a random variable $M_{1}^{1}$.
- At time 2, a new user enters the game and reveals his preferences according to a variable $M_{2}^{1}$, with the same distribution as $M_{1}^{1}$.
- At the same time, user 1 may update his list of preferences, modeled by a random variable $M_{1}^{2}$ satisfying $M_{1}^{1} \subset M_{1}^{2}$.
- And so on...


## Preference updating

|  | Time 1 | Time 2 | $\ldots$ | Time $i$ | $\ldots$ | Time $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User 1 | $M_{1}^{1}$ | $M_{1}^{2}$ | $\ldots$ | $M_{1}^{1}$ | $\ldots$ | $M_{1}^{n}$ |
| User 2 |  | $M_{2}^{1}$ | $\ldots$ | $M_{2}^{i-1}$ | $\ldots$ | $M_{2}^{n-1}$ |
| $\vdots$ |  |  | $\ddots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| User $i$ |  |  |  | $M_{i}^{1}$ | $\ldots$ | $M_{i}^{n+1-i}$ |
| $\vdots$ |  |  |  |  | $\ddots$ | $\vdots$ |
| User $n$ |  |  |  |  |  | $M_{n}^{1}$ |

## Assumptions

a The distribution of $\left(M_{i}^{n}\right)_{n \geq 1}$ is independent of $i$. It is therefore distributed as a generic random sequence $\left(M^{n}\right)_{n \geq 1}$, satisfying $M^{1} \neq \emptyset$ and $M^{n} \subset M^{n+1}$ for all $n \geq 1$.
(5) There exists a random integer $n_{0}$ such that $M^{n_{0}}=\{1, \ldots, d\}$.

## Preference updating

|  | Time 1 | Time 2 | $\ldots$ | Time $i$ | $\ldots$ | Time $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User 1 | $M_{1}^{1}$ | $M_{1}^{2}$ | $\ldots$ | $M_{1}^{1}$ | $\cdots$ | $M_{1}^{n}$ |
| User 2 |  | $M_{2}^{1}$ | $\ldots$ | $M_{2}^{i-1}$ | $\ldots$ | $M_{2}^{n-1}$ |
| $\vdots$ |  |  | $\ddots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| User $i$ |  |  |  | $M_{i}^{1}$ | $\ldots$ | $M_{i}^{n+1-i}$ |
| $\vdots$ |  |  |  |  | $\ddots$ | $\vdots$ |
| User $n$ |  |  |  |  |  | $M_{n}^{1}$ |

## Assumptions

(1. The distribution of $\left(M_{i}^{n}\right)_{n \geq 1}$ is independent of $i$. It is therefore distributed as a generic random sequence $\left(M^{n}\right)_{n \geq 1}$, satisfying $M^{1} \neq \emptyset$ and $M^{n} \subset M^{n+1}$ for all $n \geq 1$.
(2) There exists a random integer $n_{0}$ such that $M^{n_{0}}=\{1$

## Preference updating

|  | Time 1 | Time 2 | $\ldots$ | Time $i$ | $\ldots$ | Time $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| User 1 | $M_{1}^{1}$ | $M_{1}^{2}$ | $\ldots$ | $M_{1}^{1}$ | $\cdots$ | $M_{1}^{n}$ |
| User 2 |  | $M_{2}^{1}$ | $\ldots$ | $M_{2}^{i-1}$ | $\ldots$ | $M_{2}^{n-1}$ |
| $\vdots$ |  |  | $\ddots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| User $i$ |  |  |  | $M_{i}^{1}$ | $\ldots$ | $M_{i}^{n+1-i}$ |
| $\vdots$ |  |  |  |  | $\ddots$ | $\vdots$ |
| User $n$ |  |  |  |  |  | $M_{n}^{1}$ |

## Assumptions

(1) The distribution of $\left(M_{i}^{n}\right)_{n \geq 1}$ is independent of $i$. It is therefore distributed as a generic random sequence $\left(M^{n}\right)_{n \geq 1}$, satisfying $M^{1} \neq \emptyset$ and $M^{n} \subset M^{n+1}$ for all $n \geq 1$.
(2) There exists a random integer $n_{0}$ such that $M^{n_{0}}=\{1, \ldots, d\}$.

## The sequential model

- We let the masked version $\mathbf{X}_{i}^{(n)}$ of $\mathbf{X}_{i}$ be defined as

$$
X_{i j}^{(n)}=\left\{\begin{array}{cl}
X_{i j} & \text { if } j \in M_{i}^{n+1-i} \cap M \\
0 & \text { otherwise }
\end{array}\right.
$$

- We denote by $\left(\mathcal{R}_{n}\right)_{n \geq 1}$ the subset of users who have already provided information about Titanic at time $n$. It satisfies


## The statistical problem

Estimate the regression function $\eta\left(\mathbf{x}^{\star}\right)=\mathbb{E}\left[Y \mid \mathbf{X}^{\star}=\mathbf{x}^{\star}\right]$, based on the database observations $\left(\mathbf{X}_{1}^{(n)}, Y_{1}\right), \ldots,\left(\mathbf{X}_{n}^{(n)}, Y_{n}\right)$.

## The sequential model

- We let the masked version $\mathbf{X}_{i}^{(n)}$ of $\mathbf{X}_{i}$ be defined as

$$
X_{i j}^{(n)}=\left\{\begin{array}{cl}
X_{i j} & \text { if } j \in M_{i}^{n+1-i} \cap M \\
0 & \text { otherwise }
\end{array}\right.
$$

- We denote by $\left(\mathcal{R}_{n}\right)_{n \geq 1}$ the subset of users who have already provided information about Titanic at time $n$. It satisfies $\mathcal{R}_{n} \subset \mathcal{R}_{n+1}$.


## The statistical problem

Estimate the regression function $\eta\left(\mathbf{X}^{\star}\right)=\mathbb{E}\left[Y \mid \mathbf{X}^{\star}=\mathbf{X}^{\star}\right]$, based on the database observations $\left(\mathbf{X}_{1}^{(n)}, Y_{1}\right), \ldots,\left(\mathbf{X}_{n}^{(n)}, Y_{n}\right)$.

## The sequential model

- We let the masked version $\mathbf{X}_{i}^{(n)}$ of $\mathbf{X}_{i}$ be defined as

$$
X_{i j}^{(n)}=\left\{\begin{array}{cl}
X_{i j} & \text { if } j \in M_{i}^{n+1-i} \cap M \\
0 & \text { otherwise }
\end{array}\right.
$$

- We denote by $\left(\mathcal{R}_{n}\right)_{n \geq 1}$ the subset of users who have already provided information about Titanic at time $n$. It satisfies $\mathcal{R}_{n} \subset \mathcal{R}_{n+1}$.


## The statistical problem

Estimate the regression function $\eta\left(\mathbf{x}^{\star}\right)=\mathbb{E}\left[Y \mid \mathbf{X}^{\star}=\mathbf{x}^{\star}\right]$, based on the database observations $\left(\mathbf{X}_{1}^{(n)}, Y_{1}\right), \ldots,\left(\mathbf{X}_{n}^{(n)}, Y_{n}\right)$.

## (2) A sequential model

(3) Statistical modeling

## 4 Consistency and rates of convergence

## The cosine-type $k_{n}$-NN regression method

- The method estimate $\eta\left(\mathbf{x}^{\star}\right)$ by a local averaging over those $Y_{i}$ for which
(1) $\mathbf{X}_{i}^{(n)}$ is "close" to $\mathbf{X}^{\star}$ and
(2) $i \in \mathcal{R}_{n}$, that is, we effectively "see" the rating $Y_{i}$.
- The closeness between users is assessed by a cosine-type similarity, defined by

where $\mathcal{J}=\left\{j \in\{1, \ldots, d\}: x_{j} \neq 0\right.$ and $\left.x_{j}^{\prime} \neq 0\right\}$.
- If $\mathcal{I}=\{1, \ldots, d\}$ then $\bar{S}\left(x, x^{\prime}\right)=\cos \left(x, x^{\prime \prime}\right)$.


## The cosine-type $k_{n}$-NN regression method

- The method estimate $\eta\left(\mathbf{x}^{\star}\right)$ by a local averaging over those $Y_{i}$ for which
(1) $\mathbf{X}_{i}^{(n)}$ is "close" to $\mathbf{x}^{\star}$ and
(2) $i \in \mathcal{R}_{n}$, that is, we effectively "see" the rating $Y_{i}$.
- The closeness between users is assessed by a cosine-type similarity, defined by

where $\mathcal{J}=\left\{j \in\{1, \ldots, d\}: x_{j} \neq 0\right.$ and $\left.x_{j}^{\prime} \neq 0\right\}$.
- If $\mathcal{I}=\{1, \ldots, d\}$ then $\bar{S}\left(x, x^{\prime}\right)=\cos ^{( }\left(x, x^{\prime \prime}\right)$.


## The cosine-type $k_{n}$-NN regression method

- The method estimate $\eta\left(\mathbf{x}^{\star}\right)$ by a local averaging over those $Y_{i}$ for which
(1) $\mathbf{X}_{i}^{(n)}$ is "close" to $\mathbf{x}^{\star}$ and
(2) $i \in \mathcal{R}_{n}$, that is, we effectively "see" the rating $Y_{i}$.
- The closeness between users is assessed by a cosine-type similarity, defined by

where $\mathcal{J}=\left\{j \in\{1, \ldots, d\}: x_{j} \neq 0\right.$ and $\left.x_{j}^{\prime} \neq 0\right\}$.
$\square$


## The cosine-type $k_{n}$-NN regression method

- The method estimate $\eta\left(\mathbf{x}^{\star}\right)$ by a local averaging over those $Y_{i}$ for which
(1) $\mathbf{X}_{i}^{(n)}$ is "close" to $\mathbf{x}^{\star}$ and
(2) $i \in \mathcal{R}_{n}$, that is, we effectively "see" the rating $Y_{i}$.
- The closeness between users is assessed by a cosine-type similarity, defined by

$$
\bar{S}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\sum_{j \in \mathcal{J}} x_{j} x_{j}^{\prime}}{\sqrt{\sum_{j \in \mathcal{J}} x_{j}^{2}} \sqrt{\sum_{j \in \mathcal{J}} x_{j}^{\prime 2}}}
$$

where $\mathcal{J}=\left\{j \in\{1, \ldots, d\}: x_{j} \neq 0\right.$ and $\left.x_{j}^{\prime} \neq 0\right\}$.

## The cosine-type $k_{n}$-NN regression method

- The method estimate $\eta\left(\mathbf{x}^{\star}\right)$ by a local averaging over those $Y_{i}$ for which
(1) $\mathbf{X}_{i}^{(n)}$ is "close" to $\mathbf{x}^{\star}$ and
(2) $i \in \mathcal{R}_{n}$, that is, we effectively "see" the rating $Y_{i}$.
- The closeness between users is assessed by a cosine-type similarity, defined by

$$
\bar{S}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{\sum_{j \in \mathcal{J}} x_{j} x_{j}^{\prime}}{\sqrt{\sum_{j \in \mathcal{J}} x_{j}^{2}} \sqrt{\sum_{j \in \mathcal{J}} x_{j}^{\prime 2}}}
$$

where $\mathcal{J}=\left\{j \in\{1, \ldots, d\}: x_{j} \neq 0\right.$ and $\left.x_{j}^{\prime} \neq 0\right\}$.

- If $\mathcal{J}=\{1, \ldots, d\}$ then $\bar{S}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\cos \left(\mathbf{x}, \mathbf{x}^{\prime}\right)$.


## Example

$$
\bar{S}(\operatorname{Bob}, \operatorname{Jim})=\bar{S}((0,3,3,4,5),(0,6,7,8,9)) \approx 0.99
$$

whereas

$$
\bar{S}(\text { Bob, Lucy })=\bar{S}((0,3,3,4,5),(3,10,2,7,0)) \approx 0.89 .
$$

## A key observation

If $M \subset M_{i}^{n+1-i}$, the positive real number $y$ which maximizes the similarity between $\left(\mathbf{x}^{\star}, y\right)$ and $\left(\mathbf{X}_{i}^{\star}, Y_{i}\right)$ is given by

## Example

$$
\bar{S}(\mathrm{Bob}, \operatorname{Jim})=\bar{S}((0,3,3,4,5),(0,6,7,8,9)) \approx 0.99
$$

whereas

$$
\bar{S}(\text { Bob, Lucy })=\bar{S}((0,3,3,4,5),(3,10,2,7,0)) \approx 0.89
$$

## A key observation

If $M \subset M_{i}^{n+1-i}$, the positive real number $y$ which maximizes the similarity between $\left(\mathbf{x}^{\star}, y\right)$ and $\left(\mathbf{X}_{i}^{\star}, Y_{i}\right)$ is given by

$$
y=\frac{\left\|\mathbf{x}^{\star}\right\|}{\left\|\mathbf{X}_{i}^{\star}\right\| \cos \left(\mathbf{x}^{\star}, \mathbf{X}_{i}^{\star}\right)} Y_{i}
$$

## The estimate

- This suggests the regression estimate

$$
\eta_{n}\left(\mathbf{x}^{\star}\right)=\left\|\mathbf{x}^{\star}\right\| \sum_{i \in \mathcal{R}_{n}} W_{n i}\left(\mathbf{x}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}
$$

where
$W_{n i}\left(\mathbf{x}^{\star}\right)= \begin{cases}1 / k_{n} & \text { if } \mathbf{X}_{i}^{(n)} \text { is among the } k_{n}-\mathrm{MS} \text { of } \mathbf{x}^{\star} \text { in }\left\{\mathbf{X}_{i}^{(n)}, i \in \mathcal{R}_{n}\right\} \\ 0 & \text { otherwise. }\end{cases}$

- The weights are computed according to the penalized similarity



## The estimate

- This suggests the regression estimate

$$
\eta_{n}\left(\mathbf{x}^{\star}\right)=\left\|\mathbf{x}^{\star}\right\| \sum_{i \in \mathcal{R}_{n}} W_{n i}\left(\mathbf{x}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}
$$

where
$W_{n i}\left(\mathbf{x}^{\star}\right)= \begin{cases}1 / k_{n} & \text { if } \mathbf{X}_{i}^{(n)} \text { is among the } k_{n}-\mathrm{MS} \text { of } \mathbf{x}^{\star} \text { in }\left\{\mathbf{X}_{i}^{(n)}, i \in \mathcal{R}_{n}\right\} \\ 0 & \text { otherwise. }\end{cases}$

- The weights are computed according to the penalized similarity

$$
S\left(\mathbf{x}^{\star}, \mathbf{X}_{i}^{(n)}\right)=p_{i}^{(n)} \bar{S}\left(\mathbf{x}^{\star}, \mathbf{X}_{i}^{(n)}\right), \quad \text { with } p_{i}^{(n)}=\frac{\left|M_{i}^{n+1-i} \cap M\right|}{|M|} .
$$

## The regression function

## Theorem

Suppose that $\eta_{n}\left(\mathbf{X}^{\star}\right) \rightarrow \eta\left(\mathbf{X}^{\star}\right)$ in probability as $n \rightarrow \infty$. Then

$$
\eta\left(\mathbf{X}^{\star}\right)=\left\|\mathbf{X}^{\star}\right\| \mathbb{E}\left[\frac{Y}{\left\|\mathbf{X}^{\star}\right\|} \left\lvert\, \frac{\mathbf{X}^{\star}}{\left\|\mathbf{X}^{\star}\right\|}\right.\right] \quad \text { a.s. }
$$

## Fundamental requirement <br> The regression function $\eta\left(\mathbf{x}^{\star}\right)$ has the special form



$$
\text { In particular, if } \tilde{\mathbf{x}}^{\star}=\lambda \mathbf{x}^{\star} \text { with } \lambda>0 \text {, then } \eta\left(\tilde{\mathbf{x}}^{\star}\right)=\lambda \eta\left(\mathbf{x}^{\star}\right) \text {. }
$$

## The regression function

## Theorem

Suppose that $\eta_{n}\left(\mathbf{X}^{\star}\right) \rightarrow \eta\left(\mathbf{X}^{\star}\right)$ in probability as $n \rightarrow \infty$. Then

$$
\eta\left(\mathbf{X}^{\star}\right)=\left\|\mathbf{X}^{\star}\right\| \mathbb{E}\left[\frac{Y}{\left\|\mathbf{X}^{\star}\right\|} \left\lvert\, \frac{\mathbf{X}^{\star}}{\left\|\mathbf{X}^{\star}\right\|}\right.\right] \quad \text { a.s. }
$$

## Fundamental requirement

The regression function $\eta\left(\mathbf{x}^{\star}\right)$ has the special form

$$
\eta\left(\mathbf{x}^{\star}\right)=\left\|\mathbf{x}^{\star}\right\| \varphi\left(\mathbf{x}^{\star}\right), \quad \text { where } \quad \varphi\left(\mathbf{x}^{\star}\right)=\mathbb{E}\left[\frac{Y}{\left\|\mathbf{X}^{\star}\right\|} \left\lvert\, \frac{\mathbf{X}^{\star}}{\left\|\mathbf{X}^{\star}\right\|}=\frac{\mathbf{x}^{\star}}{\left\|\mathbf{x}^{\star}\right\|}\right.\right] .
$$

In particular, if $\tilde{\mathbf{x}}^{\star}=\lambda \mathbf{x}^{\star}$ with $\lambda>0$, then $\eta\left(\tilde{\mathbf{x}}^{\star}\right)=\lambda \eta\left(\mathbf{x}^{\star}\right)$.

## (2) A sequential model

## (3) Statistical modeling

4. Consistency and rates of convergence

## Consistency

## Theorem

Suppose that $k_{n} \rightarrow \infty,\left|\mathcal{R}_{n}\right| \rightarrow \infty$ a.s. and $\mathbb{E}\left[k_{n} /\left|\mathcal{R}_{n}\right|\right] \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Thus, to achieve consistency, the number of nearest neighbors $k_{n}$ should

- tend to infinity
- but be small with respect to the users who have already rated the item of interest.


## Consistency

## Theorem

Suppose that $k_{n} \rightarrow \infty,\left|\mathcal{R}_{n}\right| \rightarrow \infty$ a.s. and $\mathbb{E}\left[k_{n} /\left|\mathcal{R}_{n}\right|\right] \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Thus, to achieve consistency, the number of nearest neighbors $k_{n}$ should

- tend to infinity
- but be small with respect to the users who have already rated the item of interest.


## Consistency

## Theorem

Suppose that $k_{n} \rightarrow \infty,\left|\mathcal{R}_{n}\right| \rightarrow \infty$ a.s. and $\mathbb{E}\left[k_{n} /\left|\mathcal{R}_{n}\right|\right] \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Thus, to achieve consistency, the number of nearest neighbors $k_{n}$ should

- tend to infinity
- but be small with respect to the users who have already rated the item of interest.


## Consistency

## Theorem

Suppose that $k_{n} \rightarrow \infty,\left|\mathcal{R}_{n}\right| \rightarrow \infty$ a.s. and $\mathbb{E}\left[k_{n} /\left|\mathcal{R}_{n}\right|\right] \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Thus, to achieve consistency, the number of nearest neighbors $k_{n}$ should

- tend to infinity
- but be small with respect to the users who have already rated the item of interest.


## Example 1

- Consider, to start with, the somewhat ideal situation where all users in the database have rated the item of interest.
- In this case, $\mathcal{R}_{n}=\{1, \ldots, n\}$, and the asymptotic conditions on $k_{n}$ become $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$.
- These are just the well-known conditions ensuring consistency of the usual NN regression estimate.
- Györfi, Kohler, Krzyzȧk and Walk, 2002.


## Example 1

- Consider, to start with, the somewhat ideal situation where all users in the database have rated the item of interest.
- In this case, $\mathcal{R}_{n}=\{1, \ldots, n\}$, and the asymptotic conditions on $k_{n}$ become $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$.
- These are just the well-known conditions ensuring consistency of the usual NN regression estimate.


## Example 1

- Consider, to start with, the somewhat ideal situation where all users in the database have rated the item of interest.
- In this case, $\mathcal{R}_{n}=\{1, \ldots, n\}$, and the asymptotic conditions on $k_{n}$ become $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$.
- These are just the well-known conditions ensuring consistency of the usual NN regression estimate.


## Example 1

- Consider, to start with, the somewhat ideal situation where all users in the database have rated the item of interest.
- In this case, $\mathcal{R}_{n}=\{1, \ldots, n\}$, and the asymptotic conditions on $k_{n}$ become $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$.
- These are just the well-known conditions ensuring consistency of the usual NN regression estimate.
- Györfi, Kohler, Krzyzàk and Walk, 2002.


## Example 2

- Fix, for simplicity, $\mathcal{R}_{1}=\{1\}$.
- At step $n \geq 2$, we decide or not to add one element to $\mathcal{R}_{n-1}$ with probability $p \in(0,1)$, independently of the data.
a $\mathcal{R}_{n}$ is increased by nicking a random variable $B_{n}$ uniformly over the set $\{1, \ldots, n\}-\mathcal{R}_{n-1}$, and set $\mathcal{R}_{n}=\mathcal{R}_{n-1} \cup\left\{B_{n}\right\}$.
(2) Otherwise, $\mathcal{R}_{n}=\mathcal{R}_{n-1}$.
- Clearly, $\left|\mathcal{R}_{n}\right|-1$ has binomial $\mathcal{B}(n-1, p)$ distribution.
- Consequently,

$$
\mathbb{E}\left[\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right]=\frac{k_{n}\left[1-(1-p)^{n}\right]}{n p}
$$

- In this setting, consistency holds provided $k_{n} \rightarrow \infty$ and $k_{n}=o(n)$ as $n \rightarrow \infty$.


## Example 2

- Fix, for simplicity, $\mathcal{R}_{1}=\{1\}$.
- At step $n \geq 2$, we decide or not to add one element to $\mathcal{R}_{n-1}$ with probability $p \in(0,1)$, independently of the data.
(1) $\mathcal{R}_{n}$ is increased by picking a random variable $B_{n}$ uniformly over the set $\{1, \ldots, n\}-\mathcal{R}_{n-1}$, and set $\mathcal{R}_{n}=\mathcal{R}_{n-1} \cup\left\{B_{n}\right\}$
(2) Otherunise, $\mathcal{R}_{n}=\mathcal{R}_{n-1}$.
- Clearly, $\left|\mathcal{R}_{n}\right|-1$ has binomial $\mathcal{B}(n-1, p)$ distribution.
- Consequently,

- In this setting, consistency holds provided $k_{n} \rightarrow \infty$ and $k_{n}=o(n)$
as $n$


## Example 2

- Fix, for simplicity, $\mathcal{R}_{1}=\{1\}$.
- At step $n \geq 2$, we decide or not to add one element to $\mathcal{R}_{n-1}$ with probability $p \in(0,1)$, independently of the data.
(1) $\mathcal{R}_{n}$ is increased by picking a random variable $B_{n}$ uniformly over the set $\{1, \ldots, n\}-\mathcal{R}_{n-1}$, and set $\mathcal{R}_{n}=\mathcal{R}_{n-1} \cup\left\{B_{n}\right\}$.
(2) Otherwise, $\mathcal{R}_{n}=\mathcal{R}_{n-1}$
- Clearly, $\left|\mathcal{R}_{n}\right|-1$ has binomial $\mathcal{B}(n-1, p)$ distribution.
- Consequently,

- In this setting, consistency holds provided $k_{n} \rightarrow \infty$ and $k_{n}=o(n)$
as $n$


## Example 2

- Fix, for simplicity, $\mathcal{R}_{1}=\{1\}$.
- At step $n \geq 2$, we decide or not to add one element to $\mathcal{R}_{n-1}$ with probability $p \in(0,1)$, independently of the data.
(1) $\mathcal{R}_{n}$ is increased by picking a random variable $B_{n}$ uniformly over the set $\{1, \ldots, n\}-\mathcal{R}_{n-1}$, and set $\mathcal{R}_{n}=\mathcal{R}_{n-1} \cup\left\{B_{n}\right\}$.
(2) Otherwise, $\mathcal{R}_{n}=\mathcal{R}_{n-1}$.
- Clearly, $\left|\mathcal{R}_{n}\right|-1$ has binomial $\mathcal{B}(n-1, p)$ distribution.
- Consequently,

- In this setting, consistency holds provided $k_{n} \rightarrow \infty$ and $k_{n}=o(n)$


## Example 2

- Fix, for simplicity, $\mathcal{R}_{1}=\{1\}$.
- At step $n \geq 2$, we decide or not to add one element to $\mathcal{R}_{n-1}$ with probability $p \in(0,1)$, independently of the data.
(1) $\mathcal{R}_{n}$ is increased by picking a random variable $B_{n}$ uniformly over the set $\{1, \ldots, n\}-\mathcal{R}_{n-1}$, and set $\mathcal{R}_{n}=\mathcal{R}_{n-1} \cup\left\{B_{n}\right\}$.
(2) Otherwise, $\mathcal{R}_{n}=\mathcal{R}_{n-1}$.
- Clearly, $\left|\mathcal{R}_{n}\right|-1$ has binomial $\mathcal{B}(n-1, p)$ distribution.
- Consequently,

- In this setting, consistency holds provided $k_{n} \rightarrow \infty$ and $k_{n}=o(n)$
as $n$


## Example 2

- Fix, for simplicity, $\mathcal{R}_{1}=\{1\}$.
- At step $n \geq 2$, we decide or not to add one element to $\mathcal{R}_{n-1}$ with probability $p \in(0,1)$, independently of the data.
(1) $\mathcal{R}_{n}$ is increased by picking a random variable $B_{n}$ uniformly over the set $\{1, \ldots, n\}-\mathcal{R}_{n-1}$, and set $\mathcal{R}_{n}=\mathcal{R}_{n-1} \cup\left\{B_{n}\right\}$.
(2) Otherwise, $\mathcal{R}_{n}=\mathcal{R}_{n-1}$.
- Clearly, $\left|\mathcal{R}_{n}\right|-1$ has binomial $\mathcal{B}(n-1, p)$ distribution.
- Consequently,

$$
\mathbb{E}\left[\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right]=\frac{k_{n}\left[1-(1-p)^{n}\right]}{n p}
$$

- In this setting, consistency holds provided $k$


## Example 2

- Fix, for simplicity, $\mathcal{R}_{1}=\{1\}$.
- At step $n \geq 2$, we decide or not to add one element to $\mathcal{R}_{n-1}$ with probability $p \in(0,1)$, independently of the data.
(1) $\mathcal{R}_{n}$ is increased by picking a random variable $B_{n}$ uniformly over the set $\{1, \ldots, n\}-\mathcal{R}_{n-1}$, and set $\mathcal{R}_{n}=\mathcal{R}_{n-1} \cup\left\{B_{n}\right\}$.
(2) Otherwise, $\mathcal{R}_{n}=\mathcal{R}_{n-1}$.
- Clearly, $\left|\mathcal{R}_{n}\right|-1$ has binomial $\mathcal{B}(n-1, p)$ distribution.
- Consequently,

$$
\mathbb{E}\left[\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right]=\frac{k_{n}\left[1-(1-p)^{n}\right]}{n p}
$$

- In this setting, consistency holds provided $k_{n} \rightarrow \infty$ and $k_{n}=o(n)$ as $n \rightarrow \infty$.


## Sketch of proof

## Fact 1

Recall that, for a fixed $i \in \mathcal{R}_{n}$, the random variable $\mathbf{X}_{i}^{\star}=\left(X_{i 1}^{\star}, \ldots, X_{i d}^{\star}\right)$ is defined by

$$
X_{i j}^{\star}=\left\{\begin{array}{cl}
x_{i j} & \text { if } j \in M \\
0 & \text { otherwise },
\end{array}\right.
$$

and $\mathbf{X}_{i}^{(n)}=\mathbf{X}_{i}^{\star}$ as soon as $M \subset M_{i}^{n+1-i}$. For each $i \in \mathcal{R}_{n}$,


## where $d$ is the usual Euclidean distance on $\mathbb{R}^{d}$.

## Sketch of proof

## Fact 1

Recall that, for a fixed $i \in \mathcal{R}_{n}$, the random variable $\mathbf{X}_{i}^{\star}=\left(X_{i 1}^{\star}, \ldots, X_{i d}^{\star}\right)$ is defined by

$$
X_{i j}^{\star}=\left\{\begin{array}{cl}
X_{i j} & \text { if } j \in M \\
0 & \text { otherwise }
\end{array}\right.
$$

and $\mathbf{X}_{i}^{(n)}=\mathbf{X}_{i}^{\star}$ as soon as $M \subset M_{i}^{n+1-i}$. For each $i \in \mathcal{R}_{n}$,

$$
S\left(\mathbf{X}^{\star}, \mathbf{X}_{i}^{\star}\right)=\cos \left(\mathbf{X}^{\star}, \mathbf{X}_{i}^{\star}\right)=1-\frac{1}{2} \mathrm{~d}^{2}\left(\frac{\mathbf{X}^{\star}}{\left\|\mathbf{X}^{\star}\right\|}, \frac{\mathbf{X}_{i}^{\star}}{\left\|\mathbf{X}_{i}^{\star}\right\|}\right)
$$

where d is the usual Euclidean distance on $\mathbb{R}^{d}$.

## Sketch of proof

## Fact 2

Let, for all $i \geq 1$,

$$
T_{i}=\min \left(k \geq i: M_{i}^{k+1-i} \supset M\right)
$$

Set

$$
\mathcal{L}_{n}=\left\{i \in \mathcal{R}_{n}: T_{i} \leq n\right\},
$$

and define, for $i \in \mathcal{L}_{n}$,

$$
W_{n i}^{\star}\left(\mathrm{x}^{\star}\right)= \begin{cases}1 / k_{n} & \text { if } \mathrm{X}_{j}^{\star} \text { is among the } k_{n}-\mathrm{MS} \text { of } \mathrm{X}^{\star} \text { in }\left\{\mathrm{X}_{i}^{\star}, i \in \mathcal{L}_{n}\right\} \\ 0 & \text { otherwise. }\end{cases}
$$

## Then

$W_{n i}^{\star}\left(\mathbf{x}^{\star}\right)= \begin{cases}1 / k_{n} & \text { if } \frac{\mathbf{x}_{i}^{\star}}{\left\|\mathbf{X}_{i}^{\star}\right\|} \text { is among the } k_{n-} \text { NN of } \frac{\mathbf{x}^{\star}}{\left\|\mathbf{x}^{\star}\right\|} \text { in }\left\{\frac{\mathbf{x}_{i}^{\star}}{\left\|X_{i}^{*}\right\|}, i \in \mathcal{L}_{n}\right\} \\ 0\end{cases}$ otherwise.

## Sketch of proof

## Fact 2

Let, for all $i \geq 1$,

$$
T_{i}=\min \left(k \geq i: M_{i}^{k+1-i} \supset M\right)
$$

Set

$$
\mathcal{L}_{n}=\left\{i \in \mathcal{R}_{n}: T_{i} \leq n\right\}
$$

and define, for $i \in \mathcal{L}_{n}$,

$$
W_{n i}^{\star}\left(\mathbf{x}^{\star}\right)= \begin{cases}1 / k_{n} & \text { if } \mathbf{X}_{i}^{\star} \text { is among the } k_{n}-\mathrm{MS} \text { of } \mathbf{x}^{\star} \text { in }\left\{\mathbf{X}_{i}^{\star}, i \in \mathcal{L}_{n}\right\} \\ 0 & \text { otherwise. }\end{cases}
$$

## Sketch of proof

## Fact 2

Let, for all $i \geq 1$,

$$
T_{i}=\min \left(k \geq i: M_{i}^{k+1-i} \supset M\right)
$$

Set

$$
\mathcal{L}_{n}=\left\{i \in \mathcal{R}_{n}: T_{i} \leq n\right\}
$$

and define, for $i \in \mathcal{L}_{n}$,

$$
W_{n i}^{\star}\left(\mathbf{x}^{\star}\right)= \begin{cases}1 / k_{n} & \text { if } \mathbf{X}_{i}^{\star} \text { is among the } k_{n}-\mathrm{MS} \text { of } \mathbf{x}^{\star} \text { in }\left\{\mathbf{X}_{i}^{\star}, i \in \mathcal{L}_{n}\right\} \\ 0 & \text { otherwise. }\end{cases}
$$

## Then

$W_{n i}^{\star}\left(\mathbf{x}^{\star}\right)= \begin{cases}1 / k_{n} & \text { if } \frac{\mathbf{X}_{i}^{\star}}{\left\|\mathbf{X}_{i}^{\star}\right\|} \text { is among the } k_{n} \text {-NN of } \frac{\mathbf{x}^{\star}}{\left\|\mathbf{x}^{\star}\right\|} \text { in }\left\{\frac{\mathbf{X}_{i}^{\star}}{\left\|\mathbf{x}_{i}^{\star}\right\|}, i \in \mathcal{L}_{n}\right\} \\ 0 & \text { otherwise. }\end{cases}$

## Sketch of proof

- We write

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{i \in \mathcal{R}_{n}} W_{n i}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}-\varphi\left(\mathbf{X}^{\star}\right)\right| \\
& \quad \leq \mathbb{E}\left[\sum_{i \in \mathcal{L}_{n}^{c}} W_{n i}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}\right]+\mathbb{E}\left|\sum_{i \in \mathcal{L}_{n}} W_{n i}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}-\varphi\left(\mathbf{X}^{\star}\right)\right| .
\end{aligned}
$$

- Next,



## where

## Sketch of proof

- We write

$$
\begin{aligned}
& \mathbb{E}\left|\sum_{i \in \mathcal{R}_{n}} W_{n i}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}-\varphi\left(\mathbf{X}^{\star}\right)\right| \\
& \quad \leq \mathbb{E}\left[\sum_{i \in \mathcal{L}_{n}^{c}} W_{n i}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}\right]+\mathbb{E}\left|\sum_{i \in \mathcal{L}_{n}} W_{n i}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}-\varphi\left(\mathbf{X}^{\star}\right)\right| .
\end{aligned}
$$

- Next,
$\mathbb{E}\left|\sum_{i \in \mathcal{L}_{n}} W_{n i}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{(n)}\right\|}-\varphi\left(\mathbf{X}^{\star}\right)\right| \leq s \mathbb{P}\left(\mathcal{A}_{n}\right)+\mathbb{E}\left|\sum_{i \in \mathcal{L}_{n}} W_{n i}^{\star}\left(\mathbf{X}^{\star}\right) \frac{Y_{i}}{\left\|\mathbf{X}_{i}^{\star}\right\|}-\varphi\left(\mathbf{X}^{\star}\right)\right|$
where

$$
\mathcal{A}_{n}=\left[\exists i \in \mathcal{L}_{n}^{c}: \mathbf{X}_{i}^{(n)} \text { is among the } k_{n}-\mathrm{MS} \text { of } \mathbf{X}^{\star} \text { in }\left\{\mathbf{X}_{i}^{(n)}, i \in \mathcal{R}_{n}\right\}\right] .
$$

## Regularity assumption

The function

$$
\varphi\left(\mathbf{x}^{\star}\right)=\mathbb{E}\left[\frac{Y}{\left\|\mathbf{X}^{\star}\right\|} \left\lvert\, \frac{\mathbf{X}^{\star}}{\left\|\mathbf{X}^{\star}\right\|}=\frac{\mathbf{x}^{\star}}{\left\|\mathbf{X}^{\star}\right\|}\right.\right]
$$

satisfies a Lipschitz-type property with respect to the similarity $\bar{S}$. That is, there exists a constant $C>0$ such that, for all $\mathbf{x}$ and $\mathbf{x}^{\prime}$ in $\mathbb{R}^{d}$,

$$
\left|\varphi(\mathbf{x})-\varphi\left(\mathbf{x}^{\prime}\right)\right| \leq C \sqrt{1-\bar{S}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}
$$

In particular, for $\mathbf{x}$ and $\mathbf{x}^{\prime} \in \mathbb{R}^{d}-\mathbf{0}$ with the same null components, this property can be rewritten as

## Regularity assumption

The function

$$
\varphi\left(\mathbf{x}^{\star}\right)=\mathbb{E}\left[\frac{Y}{\left\|\mathbf{X}^{\star}\right\|} \left\lvert\, \frac{\mathbf{X}^{\star}}{\left\|\mathbf{X}^{\star}\right\|}=\frac{\mathbf{x}^{\star}}{\left\|\mathbf{x}^{\star}\right\|}\right.\right]
$$

satisfies a Lipschitz-type property with respect to the similarity $\bar{S}$. That is, there exists a constant $C>0$ such that, for all $\mathbf{x}$ and $\mathbf{x}^{\prime}$ in $\mathbb{R}^{d}$,

$$
\left|\varphi(\mathbf{x})-\varphi\left(\mathbf{x}^{\prime}\right)\right| \leq C \sqrt{1-\bar{S}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}
$$

In particular, for $\mathbf{x}$ and $\mathbf{x}^{\prime} \in \mathbb{R}^{d}-\mathbf{0}$ with the same null components, this property can be rewritten as

$$
\left|\varphi(\mathbf{x})-\varphi\left(\mathbf{x}^{\prime}\right)\right| \leq \frac{C}{\sqrt{2}} \mathrm{~d}\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}, \frac{\mathbf{x}^{\prime}}{\left\|\mathbf{x}^{\prime}\right\|}\right)
$$

## Rates of convergence

## Theorem

Let $\alpha_{n i}=\mathbb{P}\left(M^{n+1-i} \not \supset M \mid M\right)$. Then there exists $C>0$ such that, for all $n \geq 1$,
$\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|$

$$
\leq C\left\{\mathbb{E}\left[\frac{k_{n}}{\left|\mathcal{R}_{n}\right|} \sum_{i \in \mathcal{R}_{n}} \mathbb{E} \alpha_{n i}\right]+\mathbb{E}\left[\prod_{i \in \mathcal{R}_{n}} \alpha_{n i}\right]+\mathbb{E}\left[\left(\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right)^{P_{n}}\right]+\frac{1}{\sqrt{k_{n}}}\right\},
$$

where $P_{n}=1 /(|M|-1)$ if $k_{n} \leq\left|\mathcal{R}_{n}\right|$, and $P_{n}=1$ otherwise.
The performance improves as the $\alpha_{n i}$ decrease, i.e., as the proportion of rated items growths.
The term $\mathbb{E}\left[\left(k_{n} /\left|\mathcal{R}_{n}\right|\right)^{\left.P_{n}\right]}\right.$ can be interpreted as a bias term in dimension $|M|-1$, whereas $1 / \sqrt{k_{n}}$ represents a variance term.

## Rates of convergence

## Theorem

Let $\alpha_{n i}=\mathbb{P}\left(M^{n+1-i} \not \supset M \mid M\right)$. Then there exists $C>0$ such that, for all $n \geq 1$,
$\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|$

$$
\leq C\left\{\mathbb{E}\left[\frac{k_{n}}{\left|\mathcal{R}_{n}\right|} \sum_{i \in \mathcal{R}_{n}} \mathbb{E} \alpha_{n i}\right]+\mathbb{E}\left[\prod_{i \in \mathcal{R}_{n}} \alpha_{n i}\right]+\mathbb{E}\left[\left(\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right)^{P_{n}}\right]+\frac{1}{\sqrt{k_{n}}}\right\},
$$

where $P_{n}=1 /(|M|-1)$ if $k_{n} \leq\left|\mathcal{R}_{n}\right|$, and $P_{n}=1$ otherwise.
$\triangleright$ The performance improves as the $\alpha_{n i}$ decrease, i.e., as the proportion of rated items growths.

The term $\mathbb{E}\left[\left(k_{n} /\left|\mathcal{R}_{n}\right|\right)^{P_{n}}\right]$ can be interpreted as a bias term in
dimension $|M|-1$, whereas $1 / \sqrt{k_{n}}$ represents a variance term.

## Rates of convergence

## Theorem

Let $\alpha_{n i}=\mathbb{P}\left(M^{n+1-i} \not \supset M \mid M\right)$. Then there exists $C>0$ such that, for all $n \geq 1$,
$\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|$

$$
\leq C\left\{\mathbb{E}\left[\frac{k_{n}}{\left|\mathcal{R}_{n}\right|} \sum_{i \in \mathcal{R}_{n}} \mathbb{E} \alpha_{n i}\right]+\mathbb{E}\left[\prod_{i \in \mathcal{R}_{n}} \alpha_{n i}\right]+\mathbb{E}\left[\left(\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right)^{P_{n}}\right]+\frac{1}{\sqrt{k_{n}}}\right\}
$$

where $P_{n}=1 /(|M|-1)$ if $k_{n} \leq\left|\mathcal{R}_{n}\right|$, and $P_{n}=1$ otherwise.
$\triangleright$ The performance improves as the $\alpha_{n i}$ decrease, i.e., as the proportion of rated items growths.
$\triangleright$ The term $\mathbb{E}\left[\left(k_{n} /\left|\mathcal{R}_{n}\right|\right)^{P_{n}}\right]$ can be interpreted as a bias term in dimension $|M|-1$, whereas $1 / \sqrt{k_{n}}$ represents a variance term.

## Example 1

- In this ideal model, $\mathcal{R}_{n}=\{1, \ldots, n\}$.
- Suppose in addition that $M=\{1, \ldots, d\}$.
- Then the upper bound becomes

- There is no influence of the dynamical rating process.
- In particular, the choice $k n \sim n^{2 /(d+1)}$ leads to

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathrm{O}\left(n^{-1 /(d+1)}\right) .
$$

## Example 1

- In this ideal model, $\mathcal{R}_{n}=\{1, \ldots, n\}$.
- Suppose in addition that $M=\{1, \ldots, d\}$.
- Then the upper bound becomes

- There is no influence of the dynamical rating process.
- In panticular, the choice $k n \sim n^{2 /(d+1)}$ leads to



## Example 1

- In this ideal model, $\mathcal{R}_{n}=\{1, \ldots, n\}$.
- Suppose in addition that $M=\{1, \ldots, d\}$.
- Then the upper bound becomes

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathrm{O}\left(\left(\frac{k_{n}}{n}\right)^{1 /(d-1)}+\frac{1}{\sqrt{k_{n}}}\right) .
$$

- There is no influence of the dynamical rating process.
- In narticular the choice $k_{n} \sim n^{2 /(d+1)}$ leads to



## Example 1

- In this ideal model, $\mathcal{R}_{n}=\{1, \ldots, n\}$.
- Suppose in addition that $M=\{1, \ldots, d\}$.
- Then the upper bound becomes

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathrm{O}\left(\left(\frac{k_{n}}{n}\right)^{1 /(d-1)}+\frac{1}{\sqrt{k_{n}}}\right) .
$$

- There is no influence of the dynamical rating process.
- In particular, the choice $k_{n} \sim n^{2 /(d+1)}$ leads to



## Example 1

- In this ideal model, $\mathcal{R}_{n}=\{1, \ldots, n\}$.
- Suppose in addition that $M=\{1, \ldots, d\}$.
- Then the upper bound becomes

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathrm{O}\left(\left(\frac{k_{n}}{n}\right)^{1 /(d-1)}+\frac{1}{\sqrt{k_{n}}}\right) .
$$

- There is no influence of the dynamical rating process.
- In particular, the choice $k_{n} \sim n^{2 /(d+1)}$ leads to

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathbf{O}\left(n^{-1 /(d+1)}\right) .
$$

## Example 2

- At time 1 , the user rates exactly 4 items by randomly guessing in $\{1, \ldots, d\}$.
- At time 2, he updates his preferences by adding exactly one rating among his unrated items, randomly chosen in $\{1, \ldots, d\}-M_{1}^{1}$.
- Similarly, at time 3, the user revises his preferences according to a new item uniformly selected in $\{1, \ldots, d\}-M_{1}^{2}$, and so on.
- In such a scenario, $M^{j}=\{1, \ldots, d\}$ for $j \geq d-3$. Calculations show that



## Example 2

- At time 1 , the user rates exactly 4 items by randomly guessing in $\{1, \ldots, d\}$.
- At time 2, he updates his preferences by adding exactly one rating among his unrated items, randomly chosen in $\{1, \ldots, d\}-M_{1}^{1}$.
- Similarly, at time 3, the user revises his preferences according to a new item uniformly selected in $\{1, \ldots, d\}-M_{1}^{2}$, and so on.
- In such a sconario, $M i=\{1, \ldots, d\}$ for $; \geq d-3$. Calculations show that


## Example 2

- At time 1 , the user rates exactly 4 items by randomly guessing in $\{1, \ldots, d\}$.
- At time 2, he updates his preferences by adding exactly one rating among his unrated items, randomly chosen in $\{1, \ldots, d\}-M_{1}^{1}$.
- Similarly, at time 3, the user revises his preferences according to a new item uniformly selected in $\{1, \ldots, d\}-M_{1}^{2}$, and so on.
- In such a scenario, $M^{j}=\{1, \ldots, d\}$ for $j \geq d-3$. Calculations show that



## Example 2

- At time 1 , the user rates exactly 4 items by randomly guessing in $\{1, \ldots, d\}$.
- At time 2, he updates his preferences by adding exactly one rating among his unrated items, randomly chosen in $\{1, \ldots, d\}-M_{1}^{1}$.
- Similarly, at time 3, the user revises his preferences according to a new item uniformly selected in $\{1, \ldots, d\}-M_{1}^{2}$, and so on.
- In such a scenario, $M^{j}=\{1, \ldots, d\}$ for $j \geq d-3$. Calculations show that

$$
\alpha_{n i}= \begin{cases}0 & \text { if } i \leq n-d+4 \\ 1-\frac{\binom{d-4}{n-i}}{\binom{d}{n+4-i}} & \text { if } n-d+5 \leq i \leq n\end{cases}
$$

## Example 2

- We obtain

$$
\mathbb{E}\left[\prod_{i \in \mathcal{R}_{n}} \alpha_{n i}\right] \leq \frac{C}{n}
$$

- Also,

- Putting all pieces together,

- In particular, the choice $k_{n} \sim n^{2 / 5}$ leads to



## Example 2

- We obtain

$$
\mathbb{E}\left[\prod_{i \in \mathcal{R}_{n}} \alpha_{n i}\right] \leq \frac{C}{n}
$$

- Also,

$$
\mathbb{E}\left[\left(\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right)^{P_{n}}\right] \leq C\left(\frac{k_{n}}{n}\right)^{1 / 3}
$$

- Putting all pieces together,

- In particular, the choice $k_{n} \sim n^{2 / 5}$ leads to



## Example 2

- We obtain

$$
\mathbb{E}\left[\prod_{i \in \mathcal{R}_{n}} \alpha_{n i}\right] \leq \frac{C}{n}
$$

- Also,

$$
\mathbb{E}\left[\left(\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right)^{P_{n}}\right] \leq C\left(\frac{k_{n}}{n}\right)^{1 / 3}
$$

- Putting all pieces together,

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathrm{O}\left(\left(\frac{k_{n}}{n}\right)^{1 / 3}+\frac{1}{\sqrt{k_{n}}}\right)
$$

- In particular, the choice $k_{n} \sim n^{2 / 5}$ leads to


## Example 2

- We obtain

$$
\mathbb{E}\left[\prod_{i \in \mathcal{R}_{n}} \alpha_{n i}\right] \leq \frac{C}{n}
$$

- Also,

$$
\mathbb{E}\left[\left(\frac{k_{n}}{\left|\mathcal{R}_{n}\right|}\right)^{P_{n}}\right] \leq C\left(\frac{k_{n}}{n}\right)^{1 / 3}
$$

- Putting all pieces together,

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathrm{O}\left(\left(\frac{k_{n}}{n}\right)^{1 / 3}+\frac{1}{\sqrt{k_{n}}}\right)
$$

- In particular, the choice $k_{n} \sim n^{2 / 5}$ leads to

$$
\mathbb{E}\left|\eta_{n}\left(\mathbf{X}^{\star}\right)-\eta\left(\mathbf{X}^{\star}\right)\right|=\mathrm{O}\left(n^{-1 / 5}\right)
$$

