Remote sensing of ocean color

Bruno Pelletier and Robert Frouin

Department of Mathematics, University Rennes II, France
Scripps Institution of Oceanography, University of California at San Diego

Outline

1. Introduction
2. Basics of radiative transfer
3. Remote sensing of ocean color with function fields
4. Estimation of the aerosol vertical distribution with maximum entropy regularization
1. Introduction

2. Basics of radiative transfer

3. Remote sensing of ocean color with function fields

4. Estimation of the aerosol vertical distribution with maximum entropy regularization
Why ocean color?

Sunlight

- The spectral characteristics of the sunlight are altered by the medium it propagates through.
- Optical measurements in selected spectral bands (in the visible and near infra-red) give access to optically active parameters, either oceanic or atmospheric.
Total radiance over California, 1 orbit, Polder

Red: 865 nm ; Green : 670 nm ; Blue 443 nm.
Phytoplankton bloom in the Bering Sea
Phytoplankton bloom in the Bering Sea

Bruno Pelletier (University Rennes II)
Past, present, and future missions

The beginning
- Began in 1978 with the **Coastal Zone Color Scanner (CZCS, NASA)**: 6 bands, 825 m resolution.
- CZCS: initially an experimental mission... continued up to 1986.

Past and actual missions
- **POLDER-2 (2003, CNES)**: 9 bands, resolution 6,000 m
- **SeaWiFS (1997, NASA)**: 8 bands, resolution 1,100 m
- **MERIS (2002, ESA)**: 15 bands, resolution 300/1,200 m
- **MODIS-Aqua (1999, NASA)**: 36 bands, resolution 1,000 m

Scheduled sensors
- **OLCI (2012, ESA)**: 15 bands, resolution 300/1,200 m
- **VIIRS (2010, NOAA)**: 22 bands, resolution 370/740 m.
Motivations for ocean color data

Ocean carbon cycle

- Produce fields of chlorophyll pigments, an index of phytoplankton biomass.
- Quantify the carbon flux for climate research and at a global scale.

Oceanic mixed layer

- The mixed layer (from surface to $25 \sim 200$ m depth) is the link between the atmosphere and the deep ocean.
- A key component in climate studies, biological productivity, and marine pollution.

Coastal zone management

- Monitoring harmful algal blooms.
- Monitoring coastal pollution.
- Fisheries management.
1 Introduction

2 Basics of radiative transfer

3 Remote sensing of ocean color with function fields

4 Estimation of the aerosol vertical distribution with maximum entropy regularization
Pathways of light: Atmosphere
Major processes in the atmosphere

In the atmosphere, the solar radiation is subject to absorption and scattering by:

- Air molecules, e.g., oxygen, water, ozone.
- Aerosols, i.e. suspended liquid and particulate matter including smokes, water and hydrogen sulfate droplets, dust, ashes, pollen, spores,...

Main forms of scattering

- Particules with diameter $\ll \lambda$: Rayleigh scattering.
- Particules with diameter $\sim \lambda$: scattering varies in a complex fashion. For spherical particules, scattering may be described by Mie theory.
Rayleigh scattering

- Wavelength dependence
 \[\sim \lambda^{-4} \]
- More scattering in the blue than in the red
- The eye is more sensitive to the blue than to the violet.
Pathways of light: Ocean

- Remote sensor
- Sun
- Inorganic suspended material
- Dissolved organic matter
- Phytoplankton

(a) Direct path from sun to sensor
(b) Path through inorganic material
(c) Path through dissolved organic matter
(d) Path through phytoplankton
(e) Scattered light from phytoplankton
Optical properties of oceans

Three main components, in addition to pure water
- Phytoplankton: microscopic algae with chlorophyll pigments.
- Suspended inorganic materials, sediments.
- Yellow substances: coloured, dissolved, organic substances.

Types of waters
- **Case I waters**: optically dominated by the phytoplankton. Typical of open oceans (away from coasts).
- **Case II waters**: optically complex waters, with several optically active components (phytoplankton, sediments, yellow substances). Typical of estuaries and shorelines.
Case I and Case II waters
Decomposition of the satellite signal

A simplified model (neglecting absorption phenomena) of the top-of-atmosphere radiance is:

\[L_{\text{toa}} = L_{\text{atm}} + \left[L_G + L_F + L_w \right] \]

- \(L_{\text{toa}} \): measured signal;
- \(L_{\text{atm}} \): atmospheric contribution;
- \(L_G \): glitter contribution, i.e., specular reflection by the surface;
- \(L_F \): foam contribution, i.e., diffuse reflection by the surface;
- \(L_w \): water contribution, i.e., photons which have penetrated the water body.

Remark: generally expressed in terms of reflectance \(R(\lambda) = \frac{L_u(\lambda)}{L_d(\lambda)} \).
Reference inversion algorithms: principles

Main steps:
- Atmospheric correction: yields L_w;
- Inversion of L_w towards oceanic parameters.

Atmospheric correction
- Central assumption: black ocean in the near infra-red.
- Extrapolation of L_{atm} to the lower part of the spectrum.

Inversion of L_w
- Via bio-optical models;
 - Case I: total chlorophyll pigments content;
 - Case II: subject to intensive research.
Example: black ocean assumption

- **412 nm**
 - Scale: 0.080 – 0.132

- **865 nm**
 - Scale: 0.005 – 0.011
Example: Southern California, R_{toa} (1/3)
Example: Southern California, R_W (2/3)
Example: Southern California, [Chl-a] (3/3)
The contribution of the ocean represents less than 10% of the measured signal.

- Calibration of sensors
- Measurement noise.

Uncertainties in radiation transfer modeling:
 - aerosol properties (e.g., type, vertical distribution);
 - Case II waters modeling.

Actual errors on chlorophyll-a concentration are often above the 35% requirement for biological applications.

- Computer time.
1. Introduction

2. Basics of radiative transfer

3. Remote sensing of ocean color with function fields

4. Estimation of the aerosol vertical distribution with maximum entropy regularization
We observe

\[y = \Phi_t(x_w, x_a) + \varepsilon, \]

where

- \(y \): top-of-atmosphere reflectance;
- \(x_w \): oceanic parameters, e.g., [Chl-a], to be recovered;
- \(x_a \): atmospheric parameters, unknown;
- \(t \): vector of 3 angular parameters, observed;
- \(\varepsilon \): noise term.

Approaches to **nonlinear inverse problems**:

- Tikhonov regularization;
- Bayesian framework.
Inverse problems

\[y^{obs} = Kx + \varepsilon. \]

Regularization

- Minimize \[\|y^{obs} - Kx\|^2 + \alpha R(x). \]
- \(\alpha \): regularization parameter; \(R(x) \): regularization functional.
- Possible preliminary step: nonparametric reconstruction of \(y \) from \(y^{obs} \) [Bissantz et al., 2005].

Bayesian framework

- Find the distribution of \(X|Y \) given the prior \(P_X \) and noise distribution \(P_\varepsilon \).
- Possible solution: \(E [X|Y = y^{obs}] \) with quadratic loss.
In ocean color remote sensing, we have

$$Y = \Phi_t(X) + \varepsilon,$$

with $t \in T$: vector of three angular variables, observed and deterministic.

Idea: “attach” a regression model at each $t \in T$, and demand that the attachment is continuous:

$$\zeta : T \rightarrow \mathcal{M} \subset \mathbb{R}^X ; \quad (\mathbb{R}^X)^T \cong \mathbb{R}^{T \times X}.$$

Varying coefficients models [Hastie and Tibshirani, 1993]:

$$Y = \alpha_1(t)X_1 + \cdots + \alpha_p(t)X_p + \varepsilon.$$
Density results

Theorem

Let X locally compact Hausdorff, T compact, metric Hausdorff Ly.
Let M dense subset of \mathbb{R}^X. Then M^T is dense in $(\mathbb{R}^X)^T$.

In particular, if G is fundamental in \mathbb{R}^X, then $(\text{span } G)^T$ is dense in $(\mathbb{R}^X)^T$.

If $M := \text{span } G$ is a linear space: M^T identified with $C(T) \otimes G$, e.g., polynomials.
Approximation by ridge functions

A ridge function on \mathbb{R}^d is a function of the type $h(\langle a, x \rangle)$, where $h : \mathbb{R} \to \mathbb{R}$, and where $a \in \mathbb{R}^d$.

Approximation by ridge functions:

$$
\mathcal{R}_k(A) = \left\{ \sum_{i=1}^{k} c_i h_i(\langle a_i, x \rangle) , \quad c_i \in \mathbb{R}, \quad a_i \in A \subset \mathbb{R}^d, \quad h_i \in \mathcal{C}(\mathbb{R}) \right\}
$$

$$
\mathcal{R}(A) = \bigcup_k \mathcal{R}_k(A).
$$

Special case, for fixed $h : \mathbb{R} \to \mathbb{R}$:

$$
\mathcal{M}_k(A) = \left\{ \sum_{i=1}^{k} c_i h(\langle a_i, x \rangle) , \quad c_i \in \mathbb{R}, \quad a_i \in A \subset \mathbb{R}^d \right\}
$$

$$
\mathcal{M}(A) = \bigcup_n \mathcal{M}_k(A).
$$

Remark: \mathcal{R} and \mathcal{M} are not linear spaces, and are dense in $\mathcal{C}(\mathbb{R}^d)$ (Lin and Pinkus, 1993; Barron, 1993).
Parametrization of continuous ridge function fields

\[\mathcal{M}_k = \left\{ \sum_{i=1}^{k} c_i h(\langle a_i, x + b_i \rangle), \quad b_i \in \mathbb{R}, \quad c_i \in \mathbb{R}, \quad a_i \in \mathbb{R}^d \right\} \]

\[\Theta_k = \left\{ (c_i, a_i, b_i) \right\} := \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \]

\[j_k : \Theta_k \to \mathcal{M}_k: \text{continuous surjection.} \]

Theorem

Let \(T_a \subset C(T, \mathbb{R}^d) \), and let \(T_b \) and \(T_c \) be subsets of \(C(T) \). Let \(\mathcal{R}(T_a, T_b, T_c) \) be the set of ridge function fields \(\zeta : T \to \mathcal{M} \) such that

\[\zeta_*(x, t) = \sum_{i=1}^{k} c_i(t) h(\langle a_i(t), x \rangle + b_i(t)), \]

for some \(k, c_i \in T_c, a_i \in T_a, \) and \(b_i \in T_b \). For \(\mathcal{R}(T_a, T_b, T_c) \) to be dense in \((C(T))^T \), it is sufficient that

i) \(T_a \) and \(T_c \) contain the constant functions;

ii) \(T_b \) contain the affine functions.
Nonparametric regression

- \((X_1, T_1, Y_1), \ldots, (X_n, T_n, Y_n)\) and i.i.d. random sample \(\sim \mu\) on \(\mathbb{R}^d \times \mathbb{R}^p \times \mathbb{R}\).

- Basis expansions (e.g., splines):

 \[T(L) = \left\{ t \mapsto \sum_{j=1}^{L} a_j \Psi_j(t) : a_1, \ldots, a_k \in \mathbb{R} \right\}, \]

 \[T_\rho(L) = \left\{ t \mapsto \sum_{j=1}^{L} a_j \Psi_j(t) : a_1, \ldots, a_k \in \mathbb{R}, \sum_{j=1}^{L} |a_j| \leq \rho \right\}. \]

- Least-squares estimate \(m_n^\dagger\) and \(m_n\):

 \[\frac{1}{n} \sum_{i=1}^{n} \left(m_n^\dagger(X_i, T_i) - Y_i \right)^2 = \inf_{f \in \mathcal{F}_n} \frac{1}{n} \sum_{i=1}^{n} \left(f(X_i, T_i) - Y_i \right)^2 \]

 \[m_n = T_{\beta_n} m_n^\dagger. \]
Theorem

If

\[K_n \to \infty, \quad L^a_n \to \infty, \quad L^b_n \to \infty, \quad L^c_n \to \infty, \quad \beta_n \to \infty, \quad \rho_n \to \infty, \]

as \(n \to \infty \) in such a way that

\[\frac{K_n \beta^4_n (L^a_n + L^b_n + L^c_n) \log(\beta_n \rho_n K_n)}{n} \to 0 \quad \text{and} \quad \frac{\beta^4_n}{n^{1-\delta}} \to 0, \]

for some \(\delta > 0 \) as \(n \to \infty \), then

\[\lim_{n \to \infty} \int \left(m_n(x, t) - m(x, t) \right)^2 \mu(dx, dt) = 0 \quad \text{with probability 1}, \]

for every distribution of \((X, T, Y)\).
Algorithm

1. Simulate a data set \((x_1, y_1; t_1), \ldots, (y_n, x_n; t_n)\) using a RT model.
2. Select a noise model, i.e., a distribution for \(\varepsilon\).
3. Consider a model of order \(K\), parametric classes \(\mathcal{T}_a, \mathcal{T}_b,\) and \(\mathcal{T}_c\):
 global parameter \(\theta_K \in \Theta_K\):

 \[
 \zeta_\star(x, t) = \sum_{i=1}^{K} c_i(t) h\left(\langle a_i(t), x \rangle + b_i(t)\right)
 \]

4. Fit the model by a stochastic gradient descent algorithm:
 - Initial value \(\theta_K^{(0)}\);
 - Pick a data \((x_i, y_i; t_i)\);
 - Simulate \(\varepsilon_i\) and set \(\tilde{y}_i = y_i + \varepsilon_i\).
 - At step \(j\), update \(\theta_K^{(j)}\) according to:

 \[
 \theta_K^{(j+1)} = \theta_K^{(j)} + \alpha (\tilde{y}_i - \zeta_\star(x_i, t_i))
 \]
Application to SoCal SeaWiFS Imagery

SeaDAS ρ_w, 412 nm

SeaDAS ρ_w, 443 nm

SeaDAS ρ_w, 490 nm

SeaDAS ρ_w, 510 nm

SeaDAS ρ_w, 555 nm

SeaDAS ρ_w, 570 nm

ζ^* ρ_w, 412 nm

ζ^* ρ_w, 443 nm

ζ^* ρ_w, 490 nm

ζ^* ρ_w, 510 nm

ζ^* ρ_w, 555 nm

ζ^* ρ_w, 570 nm
Application to SoCal SeaWiFS Imagery

SeaDAS, Chl–a, mgm$^{-3}$

$\xi^*,$ Chl–a, mgm$^{-3}$
Introduction

Basics of radiative transfer

Remote sensing of ocean color with function fields

Estimation of the aerosol vertical distribution with maximum entropy regularization
Motivations

Aerosols force climate by:
- scattering/absorbing solar radiation;
- absorbing/emitting terrestrial radiation;
- affecting cloud properties;
- reacting with greenhouse gases.

Aerosols impact:
- air quality;
- visibility.

Informations on aerosols are necessary for
- air quality forecasts;
- satellite imagery of ocean colour.

A key piece of information is the aerosol vertical profile.
Radiance measurements in two spectral bands:

- a spectral band in the oxygen absorption A-band (e.g., 761-765 nm);
- a close spectral band outside the oxygen A-band (eg., 745-755 nm).

Assumptions:

- the atmosphere is homogeneous horizontally;
- scattering is only due to aerosols;
- the aerosol type does not vary with altitude;
- the surface is not reflecting.
Downward radiances in the single scattering approximation

\[L_1(\theta_0, \theta; p_s) = C_1 \int_0^{p_s} n_a(p) T(\theta_0, \theta; p, p_s) \, dp \quad \text{in A-band} \]

\[L_2(\theta_0, \theta; p_s) = C_2 \int_0^{p_s} n_a(p) \, dp := C_2 N_a \quad \text{outside A-band}. \]

Close spectral bands: \(C_1 \simeq C_2 \), yielding the radiance ratio

\[R(\theta_0, \theta; p_s) = \int_0^{p_s} T(\theta_0, \theta; p, p_s) \langle n_a(p) \rangle \, dp \quad \text{where} \quad \langle n_a(p) \rangle = n_a(p)/N_a. \]

- \(n_a(p) \): number of particule per \(m^2 \) per \(mb \).
- Fredholm integral equation of the first kind \(\sim \) Moment problem.
Kernel functions $k(., \theta)$

$$y(\theta) = (\mathcal{K}x)(\theta) = \int k(u, \theta)x(u)du.$$
Maximum entropy regularization

Context:
- μ_0: a reference measure;
- Set $\mu(du) = x(u)\mu_0(du)$.
- Set $\Phi: \mathbb{R} \to \mathbb{R}^n$ with $\Phi^i(u) = k(u, \theta_i)$, $i = 1, \ldots, n$.

We observe

$$y^{obs} = \int \Phi(u)\mu(du) + \varepsilon.$$

and the problem is to recover μ.

Regularization: Minimize $\mathcal{R}(\mu)$ w.r.t. μ subject to:

$$\int \Phi(u)\mu(du) = y^{obs},$$

or in a convex $K \ni y^{obs}$.
Maximum entropy regularization

Convex regularization functional:

- \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) strictly convex, + additional assumptions
 - e.g., \(\varphi(x) = x \log(x) \);
- Define
 \[
 I_\varphi(\mu) = \int \varphi\left(\frac{d\mu}{d\mu_0}(u)\right) \mu_0(du) \quad \text{if } \mu \ll \mu_0 \quad ; \quad +\infty \quad \text{otherwise.}
 \]

Then (Borwein and Lewis, 1993a, 1993b):

\[
\hat{\mu} = \varphi^* \left(\langle v^*, \Phi(u) \rangle \right) \mu_0.
\]

where \(v^* \) is any solution to

\[
\max_{v \in \mathbb{R}^n} \langle y^{obs}, v \rangle - \int \varphi^* \left(\langle v, \Phi(u) \rangle \right) \mu_0(du).
\]
Exponential and Gaussian profiles

Exponential

\[x(z) = \frac{1}{H_a} \exp \left(- \frac{z}{H_a} \right) \]

\[H_a = 2 \text{ km} \]

Gaussian

\[x(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(- \frac{(z-\mu)^2}{2\sigma^2} \right) \]

\[\mu = 3 \text{ km} \]

\[\sigma = \frac{1}{2\sqrt{2}} \]
Radiance ratios

Biomass-burning Aerosols, $\tau_a = 0.2$

$n_a(z) = N_a / H_a \exp(-z/H_a)$, $H_a = 2 \text{ km}$

$n_a(z) = 2N_a / \pi \sigma_a^{0.5} \exp(- (z - z_a)^2 / \zeta_a^2)$
$z_a = 3 \text{ km, } \zeta_a = 0.5 \text{ km}$

Solid: Single Scattering

Dashed: Multiple Scattering
Radiance ratios: weakly dependent on aerosol type

\[n_a(z) = \frac{N_a}{H_a} \exp\left(-\frac{z}{H_a}\right), \quad H_a = 2 \text{ km} \]

\[n_a(z) = 2N_a/\sigma \tau_a^{0.5} \exp\left(-\frac{(z - z_a)^2}{\zeta_a^2}\right) \]

\[\tau_a = 0.2 \]

\[\Delta \Phi = 90^\circ \]

Solid: Biomass-burning Aerosols

Dashed: Dust-like Aerosols

Bruno Pelletier (University Rennes II)
Radiance ratios: corrected for multiple-scattering

$n_a(z) = N_a / H_a \exp(-z/H_a)$, $H_a = 2$ km

Solid: Single Scattering (theoretical)
Dashed: Single Scattering (corrected), Dust-like Aerosols
Dotted: Single Scattering (corrected), Biomass-burning Aerosols

$\tau_a = 0.2$
$\Delta \phi = 90^\circ$

$n_a(z) = 2N_a / \sigma_a \pi^{0.5} \exp(-z - z_a)^2/c_{z_a}^2$

$z_a = 3$ km, $c_{z_a} = 0.5$ km

Solid: Single Scattering (theoretical)
Dashed: Single Scattering (corrected), Dust-like Aerosols
Dotted: Single Scattering (corrected), Biomass-burning Aerosols

$\tau_a = 0.2$
$\Delta \phi = 90^\circ$
Exponential profile – Noise level 0.5%

\[\| \hat{x}_1 - x_1 \|_2 \text{ stat.} \]

- Min: 0.0104
- Mean: 0.0618
- Max: 0.1478
- Std Dev: 0.0308
Gaussian profile – Noise level 0.5%
Conclusion

\[\sigma_n \sim e^{-n} \]

- Exponential decay
- Severely ill-posed problem