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1) Definition of the model

(i) The polymer
e {w; t > 0} d-dimensional Brownian motion
e Defined on (2, F, P)

e Probability, Expected values: PI, ET



(ii) The environment
e Gaussian landscape B on Ry x RY
e Rough fluctuations in time

e Homogeneous with respect to the space
coordinate

e Defined on (2, F,P)
e Centered Gaussian process

e Covariance:

E[B(t,z)B(s,y)] = (s A1) Q(z —y)

e () covariance function such that Q(0) < oo
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(iii) The polymer measure

e Hamiltonian at ¢t > O:

—Hi(w) = /OtB(ds,wS)
e For a fixed w, Hiy(w) ~ N(0,tQ(0)).

e Gibbs polymer measure: =z € R¢, 8> 0
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Gibbs averages
e t>0, n>1

e 7:(C([0,t];R¥))™” - R bounded

E; f(wl, Ce ,wn)e_ﬁ Doi<n Hy(wh)

([)e = Zr

e w1 <l < n, independent Brownian con-
figurations

e (f)¢ is still a random variable in (2, F,P)



2) Questions

e Influence of the media B on the asymptotic
behavior of w

e EXistence of a phase transition
e Limit theorems for Z;
e Competent normalization for (w¢)+

e Diffusive or superdiffusive behavior of w un-
der Gy



3) Related models

1. Random walk in a discrete iid potential

e Imbrie-Spencer, Bolthausen,
Carmona-Hu

2. Brownian motion in a discretized potential

e Conlon-Olsen, Coyle

3. Brownian motion in a Poisson potential

e Comets-Yoshida

4. Lyapounov exponent for SPDEs

e Carmona-Molchanov-Viens,
Cranston-Mountford-Shiga,
Tindel-Viens



4) EXxisting results

e Definition of a weak and strong disorder
regime in terms of lim  log(Z})

e Transition from weak to strong disorder as
B varies

e Diffusive behavior of w in the weak disorder
regime
e In the strong disorder regime

1. Case of a Gaussian random walk in a
discrete potential

2. supg<y |ws| ~ t4(4) (rough definition)

3. &(d) < 2, &(1) > 2



5) The free energy
e Define the free energy of the system:

pi(8) = Ellog (7)),

Proposition 1 For all 3 > 0 there exists a con-
stant p(B8) > 0 such that

p(B) = lim pi(6) = sup pi(5)-
—00 t>0
Sketch of the proof: Use
e Markov property of w
e Independence of the increments of B

e Subadditivity argument



Proposition 2 The function p satisfies:

1. The following upper bound holds true:

52

p(8) <-Q0). (1)

2. P-almost surely, we have

_ 1
lim —log Z; = p(B). (2)
t—oo t
Sketch of the proof:
e For (1), Jensen’s inequality

e For (2), concentration inequalities using
Malliavin calculus
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6) Weak and strong disorder

First natural definition of weak disorder:

2
p(8) = %(O)

i.e. tirQO%E [log(Zy)] = tlﬂgoélog (E [Z¢])

Another definition:
e Set W, = 7 exp(—m)
e W positive Fi-martingale
o Set Woo = limy_o Wy

o P(W =0)€{0,1}

e Woo > 0 implies p(3) = 29
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Definition 3 We will say that the polymer is
in a strong disorder regime if Woo = 0 almost
surely, while the weak disorder phase will be
defined by W~ > 0 almost surely.
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7) Example of weak disorder

Assumption

(H) Q is a symmetric function from R? to R
and @ a positive constant satisfying

2
Eu [exp (%M(Q))] < oo,

where I (Q) = /OOO Q(ws)ds

Proposition 4 Under hypothesis (H), we have

52Q(0)
>

PWe>0)=1 and p(B) =

Sketch of the proof:

e L2 computations for martingales
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Proposition 5 Assume

o d>3

), Q is a positive function from

o Q(z) = Q(|z
R to R

e (3 is small enough
o [PxQ(z)dxr < oo

Then hypothesis (H) is satisfied.

Sketch of the proof:
e Identities in law for Bessel(d)

e Fernique’s lemma
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8) Example of strong disorder
Example 6 Assume

o d>1

e ci(IA[z|77) < Q(x) < co(1V |z[7F)

e p<1

Then the polymer will be in the strong disorder
regime for any value of g > 0.

Sketch of the proof:
e e (0,1)
e Prove that lim;_g E[W/] =0

e ItO’'s formula
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9) Particle systems

e ODbvious relation between G; and Feynman-
Kac models

e [ he approximation of Gy by a particle sys-
tem seems easy in the discrete case

e [he method designed by Del Moral and
Miclo for the computation of Lyapounov
exponents seems harder to adapt to the
random continuous case

e Can we shed a light on these polymer mea-
sures using simulations?
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