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1) Definition of the model

(i) The polymer

• {ωt; t ≥ 0} d-dimensional Brownian motion

• Defined on (Ω̂, F̂ , P̂ )

• Probability, Expected values: Px
ω , Ex

ω
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(ii) The environment

• Gaussian landscape B on R+ × Rd

• Rough fluctuations in time

• Homogeneous with respect to the space
coordinate

• Defined on (Ω,F ,P)

• Centered Gaussian process

• Covariance:

E [B(t, x)B(s, y)] = (s ∧ t)Q(x− y)

• Q covariance function such that Q(0) < ∞
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(iii) The polymer measure

• Hamiltonian at t > 0:

−Ht(ω) =
∫ t

0
B(ds, ωs)

• For a fixed ω, Ht(ω) ∼ N (0, tQ(0)).

• Gibbs polymer measure: x ∈ Rd, β > 0

dGx
t (ω) =

e−βHt(ω)

Zx
t

dP̂x(ω)

Zx
t = Ex

ω
[

e−βHt(ω)
]
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Gibbs averages

• t ≥ 0, n ≥ 1

• f : (C([0, t];Rd))n → R bounded

〈f〉t =
Ex

ω

[

f(ω1, . . . , ωn)e−β
∑

l≤n Ht(ωl)
]

Zn
t

• ωl,1 ≤ l ≤ n, independent Brownian con-
figurations

• 〈f〉t is still a random variable in (Ω,F ,P)

5



2) Questions

• Influence of the media B on the asymptotic
behavior of ω

• Existence of a phase transition

• Limit theorems for Zt

• Competent normalization for 〈ωt〉t

• Diffusive or superdiffusive behavior of ω un-
der Gt
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3) Related models

1. Random walk in a discrete iid potential

• Imbrie-Spencer, Bolthausen,
Carmona-Hu

2. Brownian motion in a discretized potential

• Conlon-Olsen, Coyle

3. Brownian motion in a Poisson potential

• Comets-Yoshida

4. Lyapounov exponent for SPDEs

• Carmona-Molchanov-Viens,
Cranston-Mountford-Shiga,
Tindel-Viens
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4) Existing results

• Definition of a weak and strong disorder
regime in terms of lim 1

t log(Zx
t )

• Transition from weak to strong disorder as
β varies

• Diffusive behavior of ω in the weak disorder
regime

• In the strong disorder regime

1. Case of a Gaussian random walk in a
discrete potential

2. sups≤t |ωs| ∼ tξ(d) (rough definition)

3. ξ(d) ≤ 3
4, ξ(1) ≥ 3

5
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5) The free energy

• Define the free energy of the system:

pt(β) =
1
t
E [log (Zx

t )] ,

Proposition 1 For all β > 0 there exists a con-
stant p(β) > 0 such that

p(β) ≡ lim
t→∞

pt(β) = sup
t≥0

pt(β).

Sketch of the proof: Use

• Markov property of ω

• Independence of the increments of B

• Subadditivity argument
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Proposition 2 The function p satisfies:

1. The following upper bound holds true:

p(β) ≤
β2

2
Q(0). (1)

2. P-almost surely, we have

lim
t→∞

1
t
logZt = p(β). (2)

Sketch of the proof:

• For (1), Jensen’s inequality

• For (2), concentration inequalities using
Malliavin calculus
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6) Weak and strong disorder

First natural definition of weak disorder:

p(β) =
β2Q(0)

2

i.e. lim
t→∞

1
t
E [log(Zt)] = lim

t→∞
1
t
log (E [Zt])

Another definition:

• Set Wt = Zt exp(−β2Q(0)t
2 )

• W positive Ft-martingale

• Set W∞ = limt→∞Wt

• P (W∞ = 0) ∈ {0,1}

• W∞ > 0 implies p(β) = β2Q(0)
2
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Definition 3 We will say that the polymer is
in a strong disorder regime if W∞ = 0 almost
surely, while the weak disorder phase will be
defined by W∞ > 0 almost surely.

12



7) Example of weak disorder

Assumption

(H) Q is a symmetric function from Rd to R
and β a positive constant satisfying

Eω

[

exp

(

β2

2
I∞(Q)

)]

< ∞,

where I∞(Q) =
∫ ∞

0
Q(ωs)ds

Proposition 4 Under hypothesis (H), we have

P(W∞ > 0) = 1 and p(β) =
β2Q(0)

2
.

Sketch of the proof:

• L2 computations for martingales

13



Proposition 5 Assume

• d ≥ 3

• Q(x) = Q̃(|x|), Q̃ is a positive function from
R to R

• β is small enough

•
∫∞
0 xQ̃(x)dx < ∞

Then hypothesis (H) is satisfied.

Sketch of the proof:

• Identities in law for Bessel(d)

• Fernique’s lemma
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8) Example of strong disorder

Example 6 Assume

• d ≥ 1

• c1(1 ∧ |x|−ρ) ≤ Q(x) ≤ c2(1 ∨ |x|−ρ)

• ρ < 1

Then the polymer will be in the strong disorder
regime for any value of β > 0.

Sketch of the proof:

• θ ∈ (0,1)

• Prove that limt→0 E[W θ
t ] = 0

• Itô’s formula
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9) Particle systems

• Obvious relation between Gt and Feynman-
Kac models

• The approximation of Gt by a particle sys-
tem seems easy in the discrete case

• The method designed by Del Moral and
Miclo for the computation of Lyapounov
exponents seems harder to adapt to the
random continuous case

• Can we shed a light on these polymer mea-
sures using simulations?
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