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1. Introduction

Financial time series present:
• Excess kurtosis
•Asymmetric effects of positive or negative shocks
•Small first-order autocorrelation of squared 
observations
•Slow decay towards zero of the autocorrelation 
coefficients of squared observations

Variance responds asymmetrically to past returns (Harvey 
and Shepard, 1996): variance tends to be higher under 
influence of bad news than under influence of good news

Volatility is an important characteristic of financial 
markets
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1. Introduction
Our approach in this work is :

• To estimate the Spanish IBEX volatility by means of a 
model to capture simultaneously the mean and variance 
asymmetries in time series

• Particle filter is adopted for parameter estimation 
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2. Models (i)
Stochastic Volatility model (Taylor 1982):

• flexible in capturing the excess kurtosis observed
• formulated with leverage effects, captures the 
asymmetric behaviour in stock returns

TAR: Threshold Autoregressive model (Tong, 1990):
• It is a piecewise AR model
• The switching mechanism is controlled by the delayed 
process variable (threshold variable)
• It captures the asymmetric patterns of volatility

GARCH model (Bollerslev 1986):
• It describes volatility clustering and excess kurtosis 
(although not entirely)
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2. Models (ii)
Previous models can be combined to produce “second-
generation” models:

• Threshold GARCH (TGARCH) (Rabemananjara and 
Zakoïan, 1993):

• Threshold non-linearity is incorporated into the GARCH 
variance specifications

• Threshold Stochastic Volatility Model (So, Li and 
Lam, 2002)

• Threshold non-linearity is incorporated into the 
Stochastic Volatility:

• in the mean
• in the variance

• And so on …  
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2.1 Basic Stochastic Volatility model (i)
The known model is:

yt = σt εt (1a)

• yt : the observed variable, in general the return on 
an asset

• σt : the unobserved volatility of yt

Volatility evolution supposed to be governed by:
log σt

2 = α + βlog σt-1
2 + σννt (1b)

• εt and  νt : Gaussian white sequences, independent, 
with mean 0 and variance 1 

• β: model persistence
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In state space representation:
• The observation equation

yt = exp(0.5xt)εt (2a)

• The system equation:
xt = α + βxt-1 + σννt (2b)

• xt = log σt
2 , a latent variable

• It describes a discrete time, non-linear and Gaussian
dynamic system

• The non-linearity appears only in the observation equation
• It evolves  as a first-order Markov process

2.1 Basic Stochastic Volatility model (ii)
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),,( νσβαθ =

• Main goal:  To estimate the system state :

• Implicitly: To estimate the unknown parameters

• Different estimation methods have been developed (Broto and 
Ruiz, 2002):
– Method of moments
– Quasi-maximum likelihood
– Bayesian methods 

2.1 Basic Stochastic Volatility model (iii)

xt = log σt
2 Volatility
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2.2 Threshold Stochastic Volatility model (i)
THSV model (So, Li and Lam, 2002):

• Define a set of Bernoulli random variables st by:
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εt and  νt : Stochastically independent

The unknown parameters ),,,,( 1 νσβαφφθ o=

switch between the two regimes corresponding to the 
rise and fall in the asset prices.

This model can also be formulated into state space form
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2.3 Bayesian State space approach (i)









θ

tx

• Bayesian approach: To include the parameters as part of 
the state vector

• From a bayesian point of view: To obtain the a posteriori
PDF

)|,( tt Dxp θ

Where Dt = {y1, …, yt} 
represents the available 
information until time t
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It is well known that using recursive formula based on Bayes’ rule is used  
Assuming that the a priori PDF at time t-1 is knowing

• State PDF prediction:
(3)

: State evolution density obtained from (2b) 

)|,( 11 −− tt Yxp θ

∫ −−−−− = 11111 )|,(),|()|,( ttttttt dxYxpxxpYxp θθθ

),|( 1 θ−tt xxp

• Filtering PDF
)|,(),|()|,( 1−∝ tttttt YxpxypYxp θθθ

),|( θtt xyp Likelihood obtained from (2a)

(4)

2.3 Bayesian State space approach (ii)
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2.4 Particle filtering
• Filtering PDF is approximated by an empirical distribution formed from 

particles (point masses) in two steps (Liu and West, 2001):

Prediction PDF approximation:

(5)

Filtering PDF approximation:

(6)

In this case:

(7) 
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These recursions can be implemented using Sampling Importance 
Resampling Algorithm (SIR) (Arulampalam et al., 2002)
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2.5 SIRJ Algorithm (i)
Using SIR, after few iterations, there is an impoverishment problem for the 

parameters.

• Our approach SIRJ: Modifies the Sampling Importance Resampling (SIR)  
procedure adding at the end of each iteration, the jitter proposed by Liu and 
West (2001). (Muñoz et al. 2004)

• We have compare SIRJ with the approach of Liu and West (2001). 
The SIRJ gives almost the same precision as de second one for the 
parameters estimation and it is computationally less expensive

• The algorithm is implemented using the R language for Statistical 
Computing (http://cran.r-project.org/)



8

Volatility estimation with 
particle filter

Particle and MC Methods 
Barcelona 2004

15

2.5 SIRJ Algorithm (ii)
Pseudo-code Sequential Importance Resampling with Jiiter (SIRJ) Algorithm 
{ }[ ] { }[ ]t
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1. Initialization, t=0 

o FOR j=1:M 
Sample )(~ 0

)(
0 xpx j  

Sample )(~ 0
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0 θθ pj  
o END FOR  

• FOR t=1:N 
2. Importance sampling 
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     Filtering: Assign to each particle ( )j
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- This means that )exp(,0|( )()( j

tt
j

t xyNw ∝  
o END FOR 
o FOR j=1:M 

Normalize the importance weights:  

∑
=

= M

i

i
t

j
tj

t

w

w
w

1

)(

)(
)(~  

o END FOR 
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2.5 SIRJ Algorithm (iii)
 

3. Resampling 

o Resampling with replacement the particles { }Mjx j
t

j
t ,,1,, )(

1
)( K=−θ   

with the importance weights { }(1) ( ), , M
t tw w% %K  

4. Jitter 

o For j=1:M 
Sample a new parameter vector 
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tt V,θ  mean and variance of the )|( tDp θ Monte Carlo approximation 
a around 0.95 – 0.995 
h2 = 1 – a2 

o END FOR 

END FOR 
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3. The IBEX 35 case (i)

IBEX 35 is the Spanish stock-exchange  index

The prices series is observed daily from 02/01/1990 to  
17/03/04 (3539 observations) (Fig. 1):
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Fig.1: IBEX 35 Stock Index prices observed daily (02/01/1990 to 17/03/2004
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3. The IBEX 35 case (ii)
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• Main features of returns series (i):

Fig.2: IBEX 35 Stock Index returns observed daily (02/01/1990 to 17/03/2004 and 
correlograma of squared returns

It exhibits 
volatility 
clusters

The squared 
observations 
are correlated

The prices (pt) are transformed to returns (rt) by )/·log(100 1−= ttt ppr
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3. The IBEX 35 case (iv)
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• Main features of returns series (ii):
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3. The IBEX 35 case (v)

yt = σt εt

α)  β̂  wσ)  
0.010 

(0.003) 
0.970 

(0.004) 
0.192 

(0.020) 

Models fitted:
3.1. Basic stochastic volatility (i)

Estimated parameters by means of the SIRJ procedure :

( ) St. dev

log σt
2 = α + βlog σt-1

2 + σννt
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3. The IBEX 35 case (vi)

tσ
)

3.1. Basic stochastic volatility (ii)
Model Checking

The model diagnostics were based on the standardized observations, 
defined as                   called  “residuals”

is the volatility estimated, obtained by substituting the estimated 
parameters in the model equation (1b)

ttt y σε )/ˆˆ =

353927.32255.870*2.852-0.1790.9760.028

nQ2(20)Q(20)KurtoSkew.S. Dev.Mean

ttt y σε )/ˆˆ =

Descriptive statistics of standardized observations:

Q(20) and Q2(20): Box-Ljung statistics for 
observations and squared observations

* Significant at the 95% level
Autocorrelation between 
the observations
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3. The IBEX 35 case (vii)
3.1. Basic stochastic volatility (iii)

Conclusion

Stochastic volatility model captures the Kurtosis of the IBEX returns but:

• Does not capture completely the Skewness

• There is autocorrelation between observations
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3. The IBEX 35 case (viii)
3.2. Threshold stochastic volatility model (i)

Our approach (i):
A) Identify and estimate a threshold model (SETAR) for the mean 

following the methodology proposed by  Tsay (1989 ) and use 
the algorithm designed  by Márquez (2002)

• The model obtained is the following:
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3. The IBEX 35 case (ix)

)1,0(~ Ny tttt εεσ=

)1,0(~loglog 2
1

2
11

Ntttsst
tt

ννσσβασ ν++= −
++

3.2. Threshold stochastic volatility model (ii)
Our approach (ii):

B) Fit to the residuals obtained from the SETAR model, a threshold
stochastic volatility model for the variance. The parameter 
estimation will be made by means the SIRJ procedure

Now, yt are the residuals from the 
SETAR model
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Estimated parameters 
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3. The IBEX 35 case (x)
3.2. Threshold stochastic volatility model (iii)

Model checking

The residual analysis for this model is satisfactory :

ttt y σε )/ˆˆ =

350925.45915.7052.634-0.112 0.9550.007

nQ2(20)Q(20)KurtosiSkew.S. Dev.Mean

• The model captures the asymmetric behaviour in the IBEX 
returns and the excess-kurtosis observed

• The residuals and the squared residuals are not autocorrelated

• The residuals follow a Gaussian distribution 
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3. The IBEX 35 case (xi)

3.3. Summary
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4. Conclusions
• SIRJ works well with both models and it is 

easy to implement.

• SETAR-THSV model:

o can be implemented using bayesian
methods and gives good results.

o captures the dynamic behaviour of the 
returns and volatility series.

o captures the asymmetries and reduces 
the excess of kurtosis in the volatility 
series
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