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1 (examples of rare events : 1)

example in air–traffic management (ATM)

studied in the HYBRIDGE european project (IST programme)

partners : NLR, CENA, etc.

- two aircrafts flying over the same area, at the same flight level

- flight plan allows sufficient separation distance between aircrafts

- random perturbations, mainly due to wind, makes actual separation distance

smaller than planned separation distance

- risk becomes nonzero, but remains very small

- objective is to evaluate whether flight plan design can be relaxed, so as to

increase traffic capacity, without compromising safety

two possible measures of risk

• conflict risk : probability that separation distance gets smaller than 5 nautical

miles, roughly 9260 meters

• collision risk : probability that separation distance gets smaller than physical

size of aircraft, roughly 100 meters



2 (examples of rare events : 2)

example in telecommunication networks

- buffer at a station, with service rate much larger than customer arrival rate

- empty buffer is a recurrent event

- large enough buffer size so that overflow, resulting in packet loss, is a rare

event

- objective is to evaluate the probability that a buffer overflow occurs,

before the buffer empties again
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3 (multilevel Feynman–Kac distributions : 1)

continuous–time strong Markov process {Xt , t ≥ 0},
with values in metric state space S, and càdlàg trajectories

for some closed critical region B ⊂ S, let

TB = inf{t ≥ 0 : Xt ∈ B}

with T a finite deterministic time, or an a.s.–finite stopping time

objective is to compute probabilities related with rare (but critical) event

P[TB ≤ T ] and E[f(Xt , 0 ≤ t ≤ TB) | TB ≤ T ]

i.e.

• probability of the rare event (TB ≤ T )

• and probability distribution of the rare trajectories



4 (multilevel Feynman–Kac distributions : 2)

critical region B

in practice, none of the simulated trajectories will ever hit the critical region,

hence naive Monte Carlo method fails



5 (multilevel Feynman–Kac distributions : 3)

critical region B = B_4

B_0

B_1

B_2

B_3

importance splitting idea is to select trajectories that approach the critical region



6 (multilevel Feynman–Kac distributions : 4)

introducing an embedded sequence of closed regions

B = Bn ⊂ · · · ⊂ B1 ⊂ B0 = S

with corresponding hitting times

Tk = inf{t ≥ 0 : Xt ∈ Bk}

it holds

0 = T0 ≤ T1 ≤ · · · ≤ Tn = TB

clearly

P[TB ≤ T ] = P[Tn ≤ T ] =

n∏

k=0

P[Tk ≤ T | Tk−1 ≤ T ]

but these transition probabilities, from one level to the next, are usually unknown



7 (multilevel Feynman–Kac distributions : 5)

modelling : discrete–time Markov chain {Xk , k = 1 · · ·n} induced by

discrete–time events from continuous–time Markov process {Xt , t ≥ 0}

Xk = (Xt , Tk−1 ∧ T ≤ t ≤ Tk ∧ T )

with values in

E =
⋃

t′≤t′′

D([t′, t′′], S)

for any e = (xt , t′ ≤ t ≤ t′′) ∈ E, let

gk(e) = 1(π(e) ∈ Bk) where π(e) = xt′′

clearly

(Tk ≤ T ) iff (XTk∧T ∈ Bk) iff (gk(Xk) = 1)

hence

1(Tk ≤ T ) = gk(Xk) =

k∏

p=1

gp(Xp)



8 (multilevel Feynman–Kac distributions : 6)

interpretation of rare event probabilities in terms of Feynman–Kac distributions

γk(f) = E[f(Xk)

k∏

p=1

gp(Xp)] = E[f(Xt , Tk−1 ≤ t ≤ Tk) 1(Tk ≤ T )]

in particular for f ≡ 1

γk(1) = E[
k∏

p=1

gp(Xp)] = P[Tk ≤ T ]

hence

ηk(f) =
γk(f)

γk(1)
= E[f(Xt , Tk−1 ≤ t ≤ Tk) | Tk ≤ T ]

and in particular

ηk ◦ π−1(φ) = ηk(φ ◦ π) = E[φ(XTk
) | Tk ≤ T ]



9 (multilevel Feynman–Kac distributions : 7)

similarly, introducing

γk|k−1(f) = E[f(Xk)

k−1∏

p=1

gp(Xp)] = E[f(Xt , Tk−1 ≤ t ≤ Tk ∧ T ) 1(Tk−1 ≤ T )]

it holds

ηk|k−1(f) =
γk|k−1(f)

γk|k−1(1)
= E[f(Xt , Tk−1 ≤ t ≤ Tk ∧ T ) | Tk−1 ≤ T ]

in particular for f ≡ gk

ηk|k−1(gk) =
γk(1)

γk−1(1)
= P[Tk ≤ T | Tk−1 ≤ T ]

hence

P[Tk ≤ T ] = γk(1) =

k∏

p=1

ηp|p−1(gp) =

k∏

p=1

P[Tp ≤ T | Tp−1 ≤ T ]



10 (multilevel Feynman–Kac distributions : 8)

more generally, introducing path–space Markov chain {X1:k , k = 1 · · ·n} with

X1:k = (X1, · · · , Xk), and selection function

hp(e1, · · · , ep) = gp(ep) for any (e1, · · · , ep) ∈ Ep

yields

γ1:k(f) = E[f(X1:k)
k∏

p=1

hp(X1:p)] = E[f(X1, · · · , Xk)
k∏

p=1

gp(Xp)]

= E[f(Xt , 0 ≤ t ≤ Tk) 1(Tk ≤ T )]

and

η1:k(f) =
γ1:k(f)

γ1:k(1)
= E[f(Xt , 0 ≤ t ≤ Tk) | Tk ≤ T ]



11 (multilevel Feynman–Kac distributions : 9)

interacting particle methods will provide numerical approximation

for rare event probabilities

γn(1) = P[TB ≤ T ] and η1:n(f) = E[f(Xt , 0 ≤ t ≤ TB) | TB ≤ T ]

and for transition probabilities, from one level to the next

ηk|k−1(gk) = P[Tk ≤ T | Tk−1 ≤ T ]

with many estimates and asymptotic results as the number of particles goes to

infinity, see Section 12.2 in Del Moral, Feynman–Kac Formulae (2004)

notice that the selection functions can take the zero value
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12 (interacting particle system approximations : 1)

Feynman–Kac flow

ηk−1

prediction

−−−−−−−−→ ηk|k−1 = ηk−1 Qk

update

−−−−−−→ ηk = gk · ηk|k−1

where · denotes projective product, i.e.

ηk = gk · ηk|k−1 =
gk ηk|k−1

ηk|k−1(gk)

particle approximation of the form

ηk ≈ ηN
k =

N∑

i=1

wi
k δ

ξi
k

where ξi
k = (Xi

t , T i
k−1

∧ T i ≤ t ≤ T i
k ∧ T i)

such that

ηN
k−1

−−−−−−−−→ ηN
k|k−1

= SN (ηN
k−1

Qk) −−−−−−→ ηN
k = gk · ηN

k|k−1



13 (interacting particle system approximations : 2)

basic (bootstrap) algorithm

• selection of particles with nonzero weight : independently for i = 1 · · ·N

τ i
k−1

∼ (w1

k−1
, · · · , wN

k−1
) with values in index set {1, · · · , N}

and

ξ̂i
k−1

= ξ
τ i
k−1

k−1
and T̂ i

k−1
= T

τ i
k−1

k−1

• mutation : independently for i = 1 · · ·N

ξi
k = (Xi

t , T̂ i
k−1

≤ t ≤ T i
k ∧ T i)

follows the continuous–time Markov model, starting from π(ξ̂i
k−1

)

T i
k = inf{t ≥ T̂ i

k−1
: Xi

t ∈ Bk}

• weighting according to success to reach next level : for i = 1 · · ·N

wi
k ∝ gk(ξi

k) = 1(Xi
T i

k
∧T i ∈ Bk)



14 (interacting particle system approximations : 3)

critical region B = B_4

B_0

B_1

B_2

B_3

between two levels, particles explore the state space

by mimicking the evolution of the continuous–time Markov process {Xt , t ≥ 0}



15 (interacting particle system approximations : 4)

critical region B = B_4

B_0

B_1

B_2

B_3

between two levels, particles explore the state space

by mimicking the evolution of the continuous–time Markov process {Xt , t ≥ 0}
trajectories that succeed to reach the next level before time T are selected,

other trajectoires are terminated



16 (interacting particle system approximations : 5)

critical region B = B_4

B_0

B_1

B_2

B_3

between two levels, particles explore the state space

by mimicking the evolution of the continuous–time Markov process {Xt , t ≥ 0}
trajectories that succeed to reach the next level before time T are selected,

other trajectoires are terminated



17 (interacting particle system approximations : 6)

critical region B = B_4

B_0

B_1

B_2

B_3

between two levels, particles explore the state space

by mimicking the evolution of the continuous–time Markov process {Xt , t ≥ 0}
trajectories that succeed to reach the next level before time T are selected,

other trajectoires are terminated

it could happen that all trajectories fail to reach the next level before time T !



18 (interacting particle system approximations : 7)

particle approximation of transition probabilities

ηk|k−1 ≈ ηN
k|k−1

=
1

N

N∑

i=1

δ
ξi
k

and in particular for the test–function gk

P[Tk ≤ T | Tk−1 ≤ T ] = ηk|k−1(gk) ≈ ηN
k|k−1

(gk) =
1

N

N∑

i=1

gk(ξi
k) =

|IN
k |
N

where

IN
k = {i = 1 · · ·N : gk(ξi

k) = 1} = {i = 1 · · ·N : T i
k ≤ T i}

approximation interpreted as the fraction of trajectories that succeed

to reach the next level before time T



19 (interacting particle system approximations : 8)

particle approximation of rare event probability

γn = ηn

n∏

k=1

ηk|k−1(gk) ≈ γN
n = ηN

n

n∏

k=1

ηN
k|k−1

(gk)

and in particular

P[TB ≤ T ] = γn(1) ≈ γN
n (1) =

n∏

k=1

ηN
k|k−1

(gk) =

n∏

k=1

|IN
k |
N

central limit theorem : as N ↑ ∞
√

N (

n∏

k=1

|IN
k |
N

− P[TB ≤ T ]) =⇒ N(0, σ2

n)

provided the particle system does not die !
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20 (combining importance splitting and importance sampling : 1)

change of probability measure (e.g. using the Girsanov theorem)

dP
′

dP

∣∣∣∣
FTk∧T

=

k∏

p=1

rp(Xp)

where

Ft = σ(Xs , 0 ≤ s ≤ t)

such that, under new probability measure P
′, the event (TB ≤ T ) is much less rare

γk(f) = E[f(Xk)

k∏

p=1

gp(Xp)] = E
′[f(Xk)

k∏

p=1

gp(Xp)

rp(Xp)
]

another Feynman–Kac formula, with

• another continuous–time Markov process, which hits the critical region B

with higher probability

• modified selection functions
gp

rp

, which penalizes trajectories of the new

continuous–time Markov process that do not look like typical trajectories of

the original continuous–time Markov process



21 (combining importance splitting and importance sampling : 2)

combined importance splitting / importance sampling algorithm

• selection of particles with higher weights : independently for i = 1 · · ·N

τ i
k−1

∼ (w1

k−1
· · ·wN

k−1
) with values in index set {1, · · · , N}

and

ξ̂i
k−1

= ξ
τ i
k−1

k−1
and T̂ i

k−1
= T

τ i
k−1

k−1

• mutation : independently for i = 1 · · ·N

ξi
k = (Xi

t , T̂ i
k−1

≤ t ≤ T i
k ∧ T i)

follows new continuous–time Markov model, starting from π(ξ̂i
k−1

)

T i
k = inf{t ≥ T̂ i

k−1
: Xi

t ∈ Bk}

• weighting according to success to reach next level and to similarity with a

typical trajectory of original continuous–time Markov model : for i = 1 · · ·N

wi
k ∝ gk(ξi

k)

rk(ξi
k)

=

1(Xi
T i

k
∧T i ∈ Bk)

rk(ξi
k)



22 (combining importance splitting and importance sampling : 3)

particle approximation of transition probabilities

P[Tk ≤ T | Tk−1 ≤ T ] ≈ 1

N

N∑

i=1

gk(ξi
k)

rk(ξi
k)

=
|IN

k |
N

[
1

|IN
k |

∑

i∈IN

k

1

rk(ξi
k)

]

particle approximation of rare event probability

P[TB ≤ T ] ≈
n∏

k=1

|IN
k |
N

[
1

|IN
k |

∑

i∈IN

k

1

rk(ξi
k)

]



Plan

• examples of rare events

• multilevel Feynman–Kac distributions

• interacting particle system approximations

• combining importance splitting and importance sampling

• extinction of particle system



23 (extinction of particle system : 1)

lifetime of particle system

τN = inf{k ≥ 0 : |IN
k | = 0} = inf{k ≥ 0 : IN

k = ∅}

if P[TB ≤ T ] > 0, then

P[τN ≤ n] ≤ cn exp{−an N}

for some positive constants cn > 0 and an > 0

central limit theorem : as N ↑ ∞
√

N (1(τN > n)

n∏

k=1

|IN
k |
N

− P[TB ≤ T ]) =⇒ N(0, σ2

n)



24 (extinction of particle system : 2)

how to make sure that the particle system never dies ?

if it ever dies, reinitialize it as an N–sample from an arbitrary probability

distribution ν on E

particle approximation of the form

ηk ≈ ηN
k =

N∑

i=1

wi
k δ

ξi
k

where ξi
k = (Xi

t , T i
k−1

∧ T i ≤ t ≤ T i
k ∧ T i)

such that

ηN
k−1

−−−−−−−−→ ηN
k|k−1

= SN (ηN
k−1

Qk) −−−−−−→ ηN
k = gk ¯ ηN

k|k−1

where

gk ¯ ηN
k|k−1

=





gk ηN
k|k−1

ηN
k|k−1

(gk)
, if ηN

k|k−1
(gk) > 0

ν , otherwise



25 (extinction of particle system : 3)

algorithm with reinitialization, Del Moral, Jacod and Protter (PTRF, 2001)

• selection of particles with nonzero weight : independently for i = 1 · · ·N

τ i
k−1

∼ (w1

k−1
, · · · , wN

k−1
) with values in index set {1, · · · , N}

and

ξ̂i
k−1

= ξ
τ i
k−1

k−1
and T̂ i

k−1
= T

τ i
k−1

k−1

• mutation : independently for i = 1 · · ·N

ξi
k = (Xi

t , T̂ i
k−1

≤ t ≤ T i
k ∧ T i)

follows the continuous–time Markov model, starting from π(ξ̂i
k−1

)

T i
k = inf{t ≥ T̂ i

k−1
: Xi

t ∈ Bk}



26 (extinction of particle system : 4)

• if |IN
k | 6= 0, then weighting according to success to reach next level : for

i = 1 · · ·N
wi

k ∝ gk(ξi
k) = 1(Xi

T i

k
∧T i ∈ Bk)

otherwise, if |IN
k | = 0, the whole particle system {ξi

k , i = 1 · · ·N} is

discarded, and reinitialized as an N–sample from an arbitrary probability

distribution ν on E



27 (extinction of particle system : 5)

another way to make sure that the particle systems never dies

generate a random number NH
k of particles (a stopping time) such that

exactly H trajectories succeed to reach the next level

particle approximation of the form

ηk ≈ ηH
k =

NH

k∑

i=1

wi
k δ

ξi
k

where ξi
k = (Xi

t , T i
k−1

∧ T i ≤ t ≤ T i
k ∧ T i)

such that

ηH
k−1

−−−−−−−−→ ηH
k|k−1

= SNH

k (ηH
k−1

Qk) −−−−−−→ ηH
k = gk · ηH

k|k−1

where

NH
k = inf{N ≥ 0 : |IN

k | = H} = inf{N ≥ 0 :

N∑

i=1

gk(ξi
k) = H}



28 (extinction of particle system : 6)

sequential algorithm, Oudjane (PhD, 2000), FG and Oudjane (AAP, 2004)

• selection of particles with nonzero weight : independently for i = 1 · · ·NH
k

τ i
k−1

∼ (w1

k−1
, · · · , w

NH

k−1

k−1
) with values in index set {1, · · · , NH

k−1
}

and

ξ̂i
k−1

= ξ
τ i
k−1

k−1
and T̂ i

k−1
= T

τ i
k−1

k−1

• mutation : independently for i = 1 · · ·NH
k

ξi
k = (Xi

t , T̂ i
k−1

≤ t ≤ T i
k ∧ T i)

follows the continuous–time Markov model, starting from π(ξ̂i
k−1

)

T i
k = inf{t ≥ T̂ i

k−1
: Xi

t ∈ Bk}



29 (extinction of particle system : 7)

• population size NH
k is chosen such that H trajectories exactly succeed to

reach the next level, i.e.

NH
k = inf{N ≥ 0 : |IN

k | = H} = inf{N ≥ 0 :

N∑

i=1

gk(ξi
k) = H}

• weighting according to success to reach next level : for i = 1 · · ·NH
k

wi
k ∝ gk(ξi

k) = 1(Xi
T i

k
∧T i ∈ Bk)



30 (extinction of particle system : 8)

given past history of the particle system, the r.v.’s ξi
k are i.i.d. : as N ↑ ∞

1

N

N∑

i=1

gk(ξi
k) −→ η

NH

k−1

k−1
Qk(gk) = η

NH

k−1

k−1
(Qk gk)

notice that

supp η
NH

k−1

k−1
⊂ {e ∈ E : π(e) ∈ Bk−1}

and the strong Markov property yields

Qk gk(e) = E[gk(Xk) | Xk−1 = e] = P[Tk ≤ T | XTk−1∧T = π(e)]

hence, if

P[Tk ≤ T | XTk−1∧T = x] > 0 for any x ∈ Bk−1

then η
NH

k−1

k−1
(Qk gk) > 0, and

NH
k = inf{N ≥ 0 :

N∑

i=1

gk(ξi
k) = H}

is an a.s. finite and integrable stopping time



31 (extinction of particle system : 9)

particle approximation of transition probabilities

P[Tk ≤ T | Tk−1 ≤ T ] = ηk|k−1(gk) ≈ ηH
k|k−1

(gk) =
|INH

k

k |
NH

k

=
H

NH
k

approximation interpreted as the fraction of trajectories that succeed

to reach the next level before time T

particle approximation of rare event probability

P[TB ≤ T ] = γn(1) ≈ γH
n (1) =

n∏

k=1

ηH
k|k−1

(gk) =

n∏

k=1

H

NH
k

central limit theorem : as H ↑ ∞
√

H (

n∏

k=1

H

NH
k

− P[TB ≤ T ]) =⇒ N(0, s2

n)



32 (extinction of particle system : 10)

alternate normalization : average size of particle systems (computing ressources)

NH
1:n =

1

n

n∑

k=1

NH
k

central limit theorem : as H ↑ ∞

NH
1:n

H
−→ cn =

1

n

n∑

k=1

1

ηk|k−1(gk)

in probability, hence

√
NH

1:n (

n∏

k=1

H

NH
k

− P[TB ≤ T ]) =⇒ N(0, cn s2

n)

next steps (future work)

• compare σ2

n vs. cn s2

n

• design intermediate levels so as to minimize asymptotic variance


