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Abstract. Pricing has become mandatory to overcome congestion and
to offer service differentiation in communication networks. Whereas many
pricing schemes have been designed in the literature, we focus here on
the so-called Progressive Second Price Auction that allocates bandwidth
on an auction-basis: users sequentially declare the amount of bandwidth
they expect and how much they value it. At each time, the network allo-
cates bandwidth to users with the highest willingness-to-pay and charge
them with the bid of those excluded from the game by their presence.
Convergence, efficiency and incentive compatibility have been verified in
the literature for this scheme. Nevertheless one degree of freedom still
remains in the model, namely the reserve price that is the minimal unit
price at which the network accepts to sell the bandwidth. We propose
here to determine the reserve price maximizing the network revenue.
This analysis is based on the assumption that the demand functions and
distribution of the (a priori random) number of users in the network are
known.

1 Introduction

Pricing for bandwidth has become an important topic in telecom-
munication networks, mainly for two reasons. First, demand for
bandwidth keeps increasing, creating congestion that degrades the
quality of service [3]. Second, telecommunication networks have to
supply different kinds of services, with different quality of service
(QoS) requirements. Pricing would permit to limit the congestion
problem and to provide incentives so that all users will not choose
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the best QoS. For surveys on pricing schemes in telecommunication
networks, the reader can see for instance [1, 4, 17] and the references
therein.
One of the main streams of pricing schemes is auctioning. In [11],
McKie-Mason and Varian suggest the use of a smart market where
a bid is associated to each packet and those with the highest bid
are given the highest priority. The price is computed based on the
Vickrey-auction principle, as the bid of the lowest priority packet
admitted. In [6, 14], the costly per packet auctions are replaced by
auctions for bandwidth during intervals of time, called Progressive
Second Price Auctions (PSP). Elastic users sequentially submit bids
composed of the amount of bandwidth they require and the unit
price they propose. Their bid depends on the bids already in com-
petition for the resource. The bids with the highest unit price are
allocated the bandwidth they ask and the total charge imposed to
a user is computed as the accumulated bid prices of those excluded
by his presence. To make sure that the resource is not sold at a
too low level, a reserve price has been introduced, corresponding
to a minimum unit price. It is then shown that, under some as-
sumptions, the game converges to an equilibrium that is efficient
in terms of social welfare. This work has been extended in [15] to
the analysis of a whole network, and similar convergence and op-
timality properties have been shown. Other extensions and further
analysis of the PSP can be found in [2, 5, 8–10, 16].
Whereas PSP analysis has been extensive, there remains the ques-
tion about how to fix the reserve price, the last degree of freedom
of the model. We investigate this issue in this paper, in order to
maximize the expected network revenue. Based on the result of [7]
that shows that, in steady-state and if demand exceeds capacity,
the network revenue is close to the unit price multiplied by the to-
tal capacity of the resource, we propose to determine the optimal
reserve price when the number of players is a priori unknown, but
its distribution is known.
The layout of the paper is as follows. Section 2 recalls the basic
results on the PSP. Section 3 looks at the reserve price in terms of
the market clearing price and presents how it can be chosen so that
the revenue is maximized. Section 4 illustrates the results that can
be obtained and conclusions are presented Section 5.

2 Progressive Second Price Mechanism

We summarize here the main results of [6].
Consider a single resource, with capacity Q. Assume that I players
compete for it in an auction process, where the players bid sequen-
tially. Player i’s bid is si = (qi, pi) where qi is the capacity player i is



asking and pi is the unit price he is proposing. Let s = (s1, · · · , sI)
be the bid profile and s−i = (s1, · · · , si−1, si+1, · · · , sI) be the
profile where player i’s bid is excluded. We will sometimes write
s = (si; s−i) in order to emphasize player i’s bid. For y ≥ 0 define

Q
i
(y; s−i) =



Q −
∑

k 6=i :pk≥y

qk





+

.

The progressive second price allocation rule [6, 14] gives to player i
a bandwidth

ai(s) = min(qi, Qi
(pi; s−i)), (1)

so that the highest bids are allocated the desired quantity, and the
total cost is given by the declared willingness to pay (bids) of the
users who are excluded by i’s presence, i.e.,

ci(s) =
∑

j 6=i

pj [aj(0; s−i) − aj(si; s−i)]. (2)

It is assumed that a fee ε is charged each time a player submits
a bid and that player i has a budget constraint bi which imposes
her that ci(si, s−i) ≤ bi. Let Si(s−i) be the set of player i’s bids
verifying this constraint.
Assume that player i attempts to maximize a quasi-linear utility
function ui(s) = θi(ai(s)) − ci(s), where θi is player i’s valuation
function, i.e. θi(ai(s)) is the price that player i is willing to pay to
obtain the allocation ai(s).
Also, a bid s0 = (Q, p0) is introduced, meaning that the seller will
allocate bandwidth at a minimum unit price p0, which is called the
reserve price. The seller can thus be seen as a player (not in I) with
a valuation function θi(q) = p0q.
Under some smoothness assumptions over functions θi, the follow-
ing properties are shown:
– Incentive Compatibility. We say that a bid si = (qi, pi) is

truthful if it verifies pi = θ′i(qi).
Let

Qi(y; s−i) =



Q −
∑

k 6=i :pk>y

qk





+

and

Gi(s−i) = sup {z : z ≤ Qi(θ
′
i(z), s−i) and ci(z) ≤ bi} .

∀1 ≤ i ≤ I,∀s−i such that Qi(0, s−i) = 0, ∀ε > 0, there exists
a truthful ε-best reply, that is a truthful bid ti = (vi, wi) that
ensures i to get within ε of the best possible utility:

ti(s−i) = (vi = [Gi(s−i) − ε/θ′i(0)]
+

, ωi = θ′i(vi))



– Convergence. If all the players bid like described above, the
game converges to a 2ε-Nash equilibrium, where an ε-Nash equi-
librium is a bid profile s such that ∀i ∈ I,

{

si ∈ Si(s−i)
ui(si ; s−i) ≥ ui(s

′
i ; s−i) − ε,∀s′i ∈ Si(s−i)

– Optimality. For the previous 2ε-Nash equilibrium, the result-
ing overall utility

∑

i∈I∪{0} θi(ai) is maximized.

3 Reserve price and optimization problem

3.1 Reserve price and market clearing price

In [7], we studied the equilibria that can be reached by the PSP
mechanism when demand exceeds supply, that is when

∑

i∈I

di(p0) > Q, (3)

where p0 is the reserve price fixed by the resource seller, and di is
player i’s demand function, i.e.

di(p) = arg max
q

{θi(q) − pq}.

We proved in [7] that under condition (3), the seller can ensure a
revenue close to p0Q as the bid fee ε tends to 04.
If (3) is not verified, then all users i ∈ I will ask for the quantity
di(p0) of resource they wish to get when the unit selling price is
p0. As a result, the total quantity of resource that will be sold is
d(p0) =

∑

i∈I di(p0), bringing the seller the revenue p0d(p0).

3.2 Reserve price and revenue

In consequence, the Progressive Second Price mechanism applied
with a small bid fee ε ensures the seller to receive a revenue close
to

R(p0, I) = p0 × min (Q, d(p0)) (4)

Remark 1. We are faced here with the same trade-off as for a single-
item auction (see [12]) : increasing the reserve price may increase
the selling price, but may also reduce the probability that all the
resource be sold.

4 We proved in [7] that this value is the minimum revenue that the network can
expect. However, depending on the valuation functions of users and on the order of
bids among them, the revenue may be higher (see [9]). Since the network cannot
control these parameters, we assume that she will try to maximize this minimum
value



Remark 2. If the seller chooses to sell the resource at a fixed unit
price p0 without using the PSP mechanism, then his revenue will
also be p0×min (Q, d(p0)). However, when demand exceeds supply,
each user will want to buy a quantity di(p0) of resource until all
the capacity is allocated, and therefore the allocation will not be
efficient in the sense of social welfare.

The value R(p0, I) depends on the set of players I through the
relation d(p0) =

∑

i∈I di(p0). But this set is a priori unknown.
Assume that there are T different types of users (which might cor-
respond to T different types of applications). Assume that we know
from observations the joint distribution Pn of the number of players
competing for bandwidth, with Pn((n1, ..., nT )) being the probabil-
ity that there are nt players of type t (1 ≤ t ≤ T ). Let d(t)(p)
correspond to the demand function of a type-t user and θ(t) be
her valuation function. The expected network revenue can then be
expressed using the joint law Pn by

ER(p0) = p0×
∑

(n1,...,nT )∈NT

Pn((n1, ..., nT ))min

(

Q,
T
∑

t=1

ntd(t)(p0)

)

.

(5)
We now assume that the seller will fix her reserve price p0 so as to
maximize this expected revenue.

3.3 Optimization of the expected revenue

In this section, we study the concavity properties of the expected
revenue ER(.) under a concavity assumption on the demand func-
tions d(t), 1 ≤ t ≤ T . These properties imply that the determination
of the reserve price that maximizes the expected revenue can easily
be obtained.

Assumption A For all t, 1 ≤ t ≤ T , the demand function d(t) is
such that p → pd(t)(p) is concave on [0, θ′(t)(0)].

For example, quadratic valuation functions of the form

θ(t)(z) = −κt(min(z, q̄t))
2/2 + κtq̄t min(z, q̄t),

where q̄t is the line rate, lead to demand functions d(t)(p) = [θ′(t)(0)−

p]+/at (with θ′(t)(0) = κtq̄t) verifying Assumption A.

Proposition 1. We assume without loss of generality that θ′(1)(0) ≥

θ′(2)(0) ≥ ... ≥ θ′(T )(0). Under assumption A, the expected revenue

ER(p0) is a concave function of the reserve price p0 on every seg-
ment of the form [θ′(t+1)(0), θ′(t)(0)], 1 ≤ t ≤ T (where θ′(T+1)(0) =

0).



Proof. Consider a fixed t. On interval [θ′(t+1)(0), θ′(t)(0)], 1 ≤ t ≤ T ,

all demand functions d(r) are such that function p → pd(r)(p) is
concave. Indeed, if r > t then d(r) = 0 if p0 ∈ [θ′(t+1)(0), θ′(t)(0)],
whereas if r ≤ t then the concavity comes from Assumption A.
As a result, ∀n = (n1, ..., nT ) ∈ N

T , the function p → p
∑T

r=1 nrd(r)(p)
is concave on [θ′(t+1)(0), θ′(t)(0)], as a finite sum of concave functions.
We now establish the concavity of the expected revenue on interval
[θ′(t+1)(0), θ′(t)(0)]: let (p1, p2) ∈ [θ′(t+1)(0), θ′(t)(0)]2, and λ ∈ [0, 1].

We have

ER(λp1 + (1 − λ)p2) = E min Q[λp1 + (1 − λ)p2],

[λp1 + (1 − λ)p2]
T

r=1

nrd(r)(λp1 + (1 − λ)p2)

≥ E min Qλp1 + Q(1 − λ)p2,

λp1

T

r=1

nrd(r)(p1) + (1 − λ)p2

T

r=1

nrd(r)(p2)

≥ E min Qλp1, λp1

T

r=1

nrd(r)(p1)

+ min Q(1 − λ)p2, (1 − λ)p2

T

r=1

nrd(r)(p2)

≥ λER(p1) + (1 − λ)ER(p2)

where the second line comes from the concavity of the function
p → p

∑T

r=1 nrd(r)(p) and the non-decreasingness of x → min(K,x)
for all fixed K, and the third line is a consequence of the inequality
min(a + b, c + d) ≥ min(a, c) + min(b, d) for all (a, b, c, d) ∈ R

4.

The following corollary is then straightforward, recalling that the
revenue is necessarily null on [θ′(1)(0),+∞] for all demand functions
are null:

Corollary 1. The reserve price p0 maximizing the expected rev-
enue can be determined by finding out the (unique) optimal value
on each of the (finite number of) intervals [θ′(t+1)(0), θ′(t)(0)] and by
comparing them.

4 Numerical illustration

As an illustration of Proposition 1 and Corollary 1, consider the
case where T = 3, and where the random variables representing
the number of players n1, n2, n3 of each type follow independent
Poisson distributions, each with mean 4. The demand functions
(and the corresponding marginal valuation functions) are supposed
to be

d(1)(p) = [5 − p/2]+ ⇔ θ′(1)(q) = [10 − 2q]+

d(2)(p) = [7 − p]+ ⇔ θ′(2)(q) = [7 − q]+

d(3)(p) = [10 − 2p]+ ⇔ θ′(3)(q) = [5 − q/2]+.



Figure 1 displays the demand functions, expected demands (in-
dependently of Q), expected min(Q, d) and expected revenue in
terms of the reserve price. The different intervals [θ′(t+1)(0), θ′(t)(0)]
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Fig. 1. Expected revenue as a function of the reserve price, for T = 3 and quadratic
valuation functions

are [0, 5], [5, 7] and [7, 10]. ¿From Proposition 1, p → ER(p) is con-
cave on each [θ′(t+1)(0), θ′(t)(0)], so that there is a unique maximum,
which can easily be determined by standard numerical optimiza-
tion tools [13]. Using Corollary 1, by comparing the value over each
interval, the global optimum can be obtained. On our example,
the reserve price providing the best revenue is obtained on [5, 7] at
p0 = 5.5, giving an average revenue of 67.9.

5 Conclusions

Progressive Second Price Auctions are an efficient way to allocate
bandwidth among users. In this auction model, there remained a
last degree of freedom, the reserve price that is the smallest unit
price at which the seller accepts to allocate bandwidth. Based on a
model where the actual number of users is unknown (but its distri-



bution is known), we have provided a method so that the reserve
price maximizing the average seller’s revenue is easily obtained.
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merce électronique de la bande passante: règles économiques ou pro-
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