
Designing low-cost access network topologies

Héctor Cancela 1

cancela@fing.edu.uy

Franco Robledo 1,2

frobledo@fing.edu.uy

Gerardo Rubino2

Gerardo.Rubino@irisa.fr

1 Universidad de la República, J. Herrera y Reissig 565, Montevideo, Uruguay

2 IRISA/INRIA, Campus de Beaulieu, Rennes 35042 CEDEX, France

Abstract

One of the problems in the design of a Wide Area Network consists in laying out the access network,
that is, choosing the concentrator sites and the communication lines which will connect the terminal sites
to the switches in the backbone network.

We model the problem of finding a minimum cost access network as a variant of the Steiner Problem
in Graphs, which can be approximately solved by heuristics such as the Greedy Randomized Adaptive
Search Procedure (GRASP), which comprises a construction phase and a local search phase. We consider
two different alternatives for the construction phase. One method works iteratively selecting from a
candidate list of the terminal nodes nearest to the current partial solution; the other chooses from among
a list of k shortest paths from a single terminal node. Both methods are experimentally compared over
206 problem instances of different topological characteristics, generated using the problem classes in the
SteinLib repository, and with known lower bounds for their optimal values.

Although both methods obtained good results, the method based on finding nearest nodes is less
computationally expensive and gives lower cost (average 2% better) solutions over all problem classes; a
significative amount in network design problems.

Keywords: metaheuristic, topological design, GRASP, RNN.

1 Introduction

A wide area network (WAN) can be seen as a set of sites and a set of communication lines that interconnect
the sites. A typical WAN is organized as a hierarchical structure integrating two levels: the backbone
network and the access network composed of a certain number of local access subnetworks [7]. Nodes in
the local access subnetworks are either terminals or concentrators; nodes in the backbone are switches.
Each local access subnetwork usually has a tree-like structure, rooted at a single site switch of the backbone
network, and connects users (terminal sites) either directly to this switch or to a hierarchy of intermediate
concentrator sites which are connected to the switch. The backbone network has usually a meshed
topology, and its purpose is to allow efficient and reliable communication between its sites acting as
connection points for the local access subnetworks.

Assume the backbone network fixed. Let SC be the set of sites where concentrator equipment can
be installed in order to diminish the cost of the access network and ST the set of terminal sites (the



clients). Considering the network of feasible connections on the WAN as a cost-weighted, undirected
graph, the Access Network Design Problem (ANDP) consists of finding a subgraph of minimum cost
(costs are positive real numbers) such that ∀st ∈ ST there exists a path from st to the backbone network.
To simplify the presentation and the algorithms, we collapse the backbone into a single fixed node z. We
introduce the notation used to formalize the problem:

• S = ST ∪ SC ∪ {z} is the set of all nodes,

• C = {cij}i,j∈S is the matrix which gives for any pair of sites of S, the cost of laying a line between
them. When the direct connection between i and j is not possible, we take cij = ∞.

• E = {(i, j);∀i, j ∈ S such that cij < ∞} is the set of feasible connections between sites of S.

• G = (S, E) is the graph of feasible connections on the Access Network.

We define the Access Network Design Problem ANDP(G(S, E), C) as the problem of finding a subgraph
T ⊂ G of minimum cost such that ∀st ∈ ST there exists a unique path from st to node z and such that
terminal sites can not be used as intermediate nodes (they must have degree 1 in the solution). This
problem belongs to the NP-Hard class. Some references in this area and related problems are [7, 8].

In a previous paper [1], we have introduced a polynomial time heuristic based on the GRASP method-
ology and using a random neural network model in the GRASP local search phase for approximately
solving the ANDP; this method is briefly presented in Section 2. As the performance of this method de-
pends critically on the construction phase of the GRASP method, we present in Section 3 an alternative
algorithm for this phase. In Section 4, the new algorithm is experimentally compared with the previous
one, showing computational results obtained on a set of 206 problem instances, including topologies with
hundreds of nodes. This section also discusses conclusions and future work.

2 GRASP description

GRASP is a well known metaheuristic, which has been applied for solving many hard combinatorial
optimization problems with very good results [5, 6]. A GRASP is an iterative process, where each GRASP
iteration consists of two phases: construction and local search. The construction phase builds a feasible
solution, whose neighborhood is explored by local search. The best solution over all GRASP iterations is
returned as the result. Figure 1 illustrates a generic GRASP implementation pseudo-code. The GRASP
takes as input parameters the candidate list size, the maximum number of GRASP iterations and the
seed for the random number generator. After reading the instance data (line 1), the GRASP iterations
are carried out in lines 2-6. Each GRASP iteration consists of the construction phase (line 3), the local
search phase (line 4) and, if necessary, the incumbent solution update (lines 5 and 6).

Procedure GRASP(ListSize,MaxIter,RandomSeed);

1 InputInstance();
2 for k = 1 to MaxIter do
3 InitialSolution = ConstructGreedyRandomizedSolution(ListSize, RandomSize);
4 LocalSearchSolution = LocalSearch(InitialSolution);
5 if cost(LocalSearchSolution) < cost(BestSolutionFound) then
6 UpdateSolution(BestSolutionFound, LocalSearchSolution);
7 end for;
8 return BestSolutionFound;

Figure 1: GRASP pseudo-code.

In the construction phase, a feasible solution is built, one element at a time (the definition of what
is an element is problem dependent; for example, in the ANDP, it could be a node, a link, or even a
whole path in the network). At each step of the construction phase, a candidate list is determined by
ordering all non already selected elements with respect to a greedy function that measures the (myopic)



benefit of including them in the solution. The heuristic is adaptive because the benefits associated with
every element are updated at each step to reflect the changes brought on by the selection of the previous
elements. Then one element is randomly chosen from the best candidates list and added into the solution.
This is the probabilistic component of GRASP, which allows for different solutions to be obtained at each
GRASP iteration, but does not necessarily jeopardize the power of the adaptive greedy component.

The solutions generated by the construction phase are not guaranteed to be locally optimal with respect
to simple neighborhood definitions. Hence, it is beneficial to apply a local search to attempt to improve
each constructed solution. A local search algorithm works in an iterative fashion by successively replacing
the current solution by a better solution from its neighborhood. The local search algorithm depends on
the suitable choice of a neighborhood structure, on the availability of an efficient neighborhood search
techniques, and the starting solution. Through the use of customized data structures and a careful
implementation, an efficient construction phase that produces good initial solutions for the local search
can be created. For further detail of this metaheuristic the reader may consult the references [5, 6].

In a previous work [1] we have presented a customization of the GRASP procedure for solving the
ANDP. The construction phase was based on a customized and randomized version of the Takahashi-
Matsuyama algorithm [10]; the elements which are added at each step of this method are the k shortest
paths connecting one terminal node to the existing partial solution. The local search phase used a random
neural network model (RNN, introduced by Gelenbe [2, 3, 4]) which helps to determine in which order
to consider additional concentrator sites; this method helps to explore a reduced neighborhood of most
promising solutions, improving the computing times of the method. The combined results of the two
phases were very good. Nevertheless, an improvement in the construction phase could lead to still better
results.

In the next section, we present an alternative construction method, which is compared experimentally
with the previously presented one.

3 Construction phase based on nearest nodes

The new construction phase is based on the idea of finding the nearest nodes to the current partial solution
and randomly selecting one of them. This node is connected by means of a shortest path to the solution,
and the process is iterated, until all terminal nodes are included.

The algorithm (called ANDP Construction Phase NearestNodes, and shown in Figure 2), uses an
auxiliary structure P in which are stored the shortest paths from nodes of ST ∪{z} to nodes in S without
using terminal nodes as intermediate nodes; this matrix is preprocessed before running the GRASP
algorithm, by applying suitably the Dijkstra algorithm on the induced subgraph G({i, j} ∪ SC ∪ {z}),
∀i, j ∈ ST ∪ {z}.

Procedure ANDP Construction Phase NearestNodes;
Input: G = (S, E), C, k, P;

1 v ← Select Random(ST ∪ {z});
2 Tsol ← {v}; Y ← {v};
3 while Y \ (ST ∪ {z}) 6= ∅ do
4 Lp ← the shortest paths from the k nearest sites of (ST ∪ {z}) \ Y to Tsol using P;
5 p ← Select Random(Lp);
6 u ← the endpoint of p non-belonging to Tsol;
7 Tsol ← Tsol ∪ {p}; Y ← Y ∪ {u};
8 end while;
9 return Tsol;
end ANDP Construction Phase NearestNodes;

Figure 2: Pseudocode for construction phase based on k nearest nodes.

The algorithm has the following inputs: G, the network of feasible connections; C, the link connection



costs; k, the candidate list size for the GRASP method; and P, containing the shortest paths without
terminals as intermediate nodes. In the pseudocode shown in Figure 2, lines 1-2 select randomly and
uniformly a node from ST ∪ {z} to initialize the constructed solution. The solution in construction is
denoted by Tsol and the auxiliary set Y ⊆ (ST ∪ {z}) denotes the nodes already included in Tsol. Let
us notice that all the nodes of ST ∪ {z} necessarily must be in the solution. Iteratively the construction
phase adds new nodes of ST ∪ {z} to the current solution Tsol. Each iteration works in the following way.
In line 4 the algorithm searchs for the k nodes of (ST ∪{z}) \ Y which are nearest to the current solution
Tsol; the corresponding shortest paths are extracted from P and stored in a restricted candidate list Lp.
A path p is randomly and uniformly selected from Lp in line 6. Let u be the endpoint of p such that
u 6∈ Tsol. In line 7, we add p to the current solution Tsol and the set Y is updated by adding u to it. This
process is repeated until all the nodes of ST ∪ {z} have been added to Tsol. The built feasible solution
Tsol is returned in line 9. Note that z has the same “role” that a terminal node until it is added to Tsol.

In Figure 3 we can see the previous construction phase (which was introduced in [1]). That method
basically builds a feasible solution based on choosing randomly a single not yet considered terminal node,
computing the k shortest paths from this node to the current solution (using any standard k shortest path
algorithm), and selecting randomly one of them to be added to the solution in construction, finalizing
this process once all the terminal nodes have been added.

Procedure ANDP Construction Phase ShortestPaths;
Input: G = (S, E), C, k;

1 ∀st ∈ ST a unique identifier nt is assigned;
2 Tsol ← {z}; Y ← ∅;
3 while (Y \ ST ) 6= ∅ do
4 s̄t ← ArgMax{nt|st ∈ (ST \Y)};
5 Lp ← the k shortest valid paths from s̄t to Tsol;
6 p ← Select Random(Lp);
7 Tsol ← Tsol ∪ {p}; Y ← Y ∪ {s̄t};
8 end while;
9 return Tsol;
end ANDP Construction Phase ShortestPaths;

Figure 3: Pseudocode for construction method based on k shortest paths.

4 Performance Tests and Discussion

We present here some experimental results obtained with the GRASP-RNN algorithm. The algorithm
was implemented in ANSI C. The experiments were done on a Pentium IV computer with 1.7 GHz,
and 1 Gbytes of RAM, running under Windows XP. All instances were solved with identical GRASP
parameter settings. The candidate list size was ListSize = 10, and the maximum number of iterations
MaxIter = 100. These values were chosen from the GRASP reference literature.

We used a large test set, by modifying the Steiner Problem instances from the classes C, MC, X, PUC,
I080, I160, I320, I640, P6E, P6Z, WRP3, and WRP4 in the SteinLib library [9]. This library contains
many problem classes of widely different graph topologies. For each problem, we selected the terminal
node of the original problem with greatest degree as the z node; the Steiner nodes as concentrator sites,
and the terminal nodes as terminal sites. Also, all the edges between terminal sites were deleted (as they
are not allowed in feasible ANDP solutions). If the resulting topology was unconnected, the problem
instance was discarded. By this process, we generated 206 ANDP instances. Notice that, since in the
ANDP the terminals cannot be used as intermediate nodes the cost of an SPG optimum is a lower bound
for the optimal value of the corresponding ANDP.

Table 1 shows a summary of computational results. The first column contains the names of the original
SteinLib classes and the entries from left to right are: the number of customized instances (NI), the size of



the selected instances in terms of number of nodes and edges respectively, the number of instances where
the lower bound was obtained reaching therefore the optimum (NOPT), the average of the improvement
of the results of the local search phase over the construction phase (Avg. LSI), the average running time
per iteration (to which we added the preprocessing time of the matrix P), and the average of the gap of
the GRASP solution respect to the lower bound (Avg. LB GAP).

The average improvement is computed as Avg. LSI=
∑

p∈Set LSI(p)/NI, where for problem p,
LSI(p) = 100 × [(

∑MaxIter
i=1 (CCi − LCi)/CCi)]/MaxIter, CCi and LCi being the costs of the so-

lutions delivered in iteration i by the Construction Phase and the Local Search Phase respectively.
The average gap is Avg. LB GAP=

∑
p∈Set LB GAP(p)/NI (where for problem p, LB GAP(p) =

100× (Best Cost Found− Lower Bound)/Lower Bound).
We also include a last line with the summary results corresponding to the whole test set (the average

values follow the same formulae as before, but now computed over the 206 instances).

Testset NI Nodes Edges NOPT Avg. LSI Avg. secs/itr Avg. LB GAP

C 6 500 625-2500 - 15.17% 10.12 0.27%
MC 3 97-150 4656-11175 1 19.33% 4.43 3.69%
X 2 52-58 1326-1653 - 8.12% 0.52 32.27%
PUC 4 64-128 192-750 2 17.32% 1.02 0.11%
I080 70 80 120-3160 17 13.21% 0.57 6.73%
I160 22 160 240-2544 7 17.14% 3.09 3.08%
I320 15 320 480-10208 3 16.12% 9.03 2.12%
I640 15 640 960-4135 2 17.69% 26.96 2.56%
P6E 10 100-200 180-370 2 16.11% 1.54 14.02%
P6Z 5 100-200 180-370 1 16.42% 1.03 19.12%
WRP3 25 84-886 149-1800 8 15.41% 15.07 0.00019%
WRP4 29 110-844 188-1691 5 17.75% 19.17 0.00101%
Total 206 - - 48 15.46% 8.15 4.47%

Table 1: Computational results using ANDP Construction Phase NearestNodes.

The results show that the algorithm finds in most cases good quality solutions. In 48 instances (out
of 206) we reached the lower bound and therefore optimality. As in general only lower bounds and not
true optima are known, it is natural that a gap persists in many cases; as shown in the table, with wide
variations depending on the problem class. Even then, in most cases this gap is quite small (less than 5%
gap average in 8 over 12 problem classes).

Another point of interest is that the RNN model in the local search phase was used with the aim
of capturing global connectivity information about the graph and to determine the order in which the
concentrator nodes non-present in the solution delivered by the construction phase are chosen to improve
the solution delivered by the greedy construction phase. We observe that for all problem classed, the
local search phase improved significantly the solutions built by the construction phase; over 15% average
improvement for most problem classes (and always over 8% average improvement).

Testset NOPT 1 Avg 1. LSI Avg 1. secs/itr Avg 1. LB GAP DOPT NB Avg. DCOST

C - 19.95% 12.13 0.41% - 2 0.09%
MC 1 23.34% 3.12 6.64% 0 1 2.03%
X - 11.00% 0.73 39.56% - 1 5.23%
PUC 2 21.04% 1.27 0.14% 0 1 0.02%
I080 13 18.22% 1.49 10.71% 4 8 2.97%
I160 7 23.82% 4.03 3.86% 0 2 0.57%
I320 2 21.12% 10.14 2.89% 1 3 0.61%
I640 2 20.59% 29.63 4.67% 0 2 1.93%
P6E 2 23.75% 1.83 16.49% 0 2 2.11%
P6Z 1 22.01% 1.10 23.22% 0 1 3.07%
WRP3 7 22.14% 19.54 0.00253% 1 4 0.00113%
WRP4 3 27.94% 26.45 0.00405% 2 5 0.00234%
Total 40 21.51% 10.47 6.53% 8 32 1.51%

Table 2: Comparison between both heuristics.



On the other hand, in Table 2 we show a comparison of these results with the ones obtained when
applying the heuristic introduced in [1] over the same test-set. Let us denote by H1 and H the GRASP
heuristics introduced in [1] and in this paper respectively. We note that for all the problem classes
the average values obtained by H were better than those obtained by H1. In Table 2 the first column
contains the names of the original SteinLib classes; the other entries, from left to right, are: the same
measures defined above and shown in Table 1 but for the heuristic H1 (they are differentiated by the
index 1); the number of instances where the lower bound was attained by H but not by H1 (DOPT); the
number of instances where H was better than H1 (NB); and the average of the difference between the
solution cost obtained by H respect to the one obtained by H1 (Avg. DCOST=100× [

∑
p∈Set(CH1(p)−

CH(p))/CH1(p)]/NI, where for problem p, CH1(p) and CH(p) are the costs of the best solutions obtained
by H1 and H respectively).

The comparison shows that the heuristic H improved the solution built by H1 in 32 ANDP instances,
achieving in addition the lower bound (i.e. the optimum) in 8 of these. In average,H improves over 1.5%
over H1; and in 5 over 12 problem classes, the average improvement of H respect to H1 is greater than
2%. These are good results considering that when designing a WAN access network, a cost decrease of
few percentage points results in high economic interest due to the investment levels associated.

An additional point of interest is to observe the average improvement of the local search phase over
the results of the construction phase (the columns marked “Avg. LSI”). Here we observe that the local
search phase improves in average 21% over the results of the construction phase in method H1, and in
average 15% in H; however, the average gap respect to the lower bound is smaller in H than in H1.
The reason of this is that in general the solution built by ANDP Construction Phase NearestNodes has
a better quality (i.e. with smaller cost) than the one built by ANDP Construction Phase ShortestPaths
providing thus a better starting solution for the local search phase.

We also observe that the weighted average running time per iteration is smaller in H than in H1; this
is an additional criterion for selecting the new method as a component of the GRASP procedure.

References

[1] H. Cancela, F. Robledo, and G. Rubino, “A GRASP algorithm witn RNN based local search
for designing a WAN access network”, Proceeding of the Latin American Conference on Combi-
natorics, Graphs and Applications (LACGA), Santiago, Chile, August 16-20, 2004. To appear
in Electronic Notes on Discrete Mathematics.

[2] E. Gelenbe, “Stability of the random neural network model”, Neural Computation, vol. 5, no.
2, pp. 239-247 (1990).

[3] E. Gelenbe and F. Batty, “Minimum cost graph covering with the random neural network”, in
Computer Science and Operations Research. New York: Pergamon, pp. 139-147 (1992).

[4] E. Gelenbe, V. Koubi, and F. Pekergin, “Dynamical random neural network approach to the
traveling salesman problem”, in Proc. Symp. Syst., Man., Cybern., pp. 630-635 (1993).

[5] T.A. Feo and M.G.C. Resende, “Greedy randomized adaptive search procedures”, Journal of
Global Optimization, 6:109-133 (1995).

[6] S.L. Martins, M.G.C. Resende, C.C. Ribeiro and P.M. Pardalos, “A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy”, Journal of Global Opti-
mization, vol. 17, pp. 267-283 (2000).

[7] M. Priem and F. Priem, “Ingénierie des WAN”, ISBN 2-10-004510-5, Dunod InterEditions
(1999).

[8] C. D. Randazzo, H. P. L. Luna and P. Mahey, “Benders decomposition for local access network
design with two technologies”, Discrete Math.& Theoretical Comp. Science, vol. 4 no. 2, pp.
235-246 (2001).

[9] http://elib.zib.de/steinlib/testset.php (last access: April 28, 2004).
[10] H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs”,

Math. Jpn., 24:537-577 (1980).


