
Interval Availability Distribution Computation

Gerardo Rubino and Bruno Sericola
IRISA – INRIA

Campus de Beaulieu, F-35042 Rennes Cedex, FRANCE

Abstract

Interval availability is a dependability measure defined
by the fraction of time during which a system is in opera-
tion over a finite observation period. The computation of
its distribution allows the user to ensure that the probabil-
ity that its system will achieve a given availability level is
high enough.

As usual, the system is assumed to be modeled by a finite
Markov process. We propose in this paper two new algo-
rithms to compute this measure and we compare them with
respect of the input parameters of the model, both through
the storage requirement and the execution time points of
view. We show that one of them is an improvement of a
well known one. Both algorithms are based on the uni-
formization technique.

Index terms - Repairable computer systems, depend-
ability, interval availability, Markov processes, uniformiza-
tion.

1 Introduction

In the dependability analysis of repairable computing
systems, there is an increasing interest in evaluating cumu-
lative measures, in particular the availability over a given
period. In highly available systems, steady state measures
can be very poor, even if the mission time is not small. The
use of expectations also suffers from similar drawbacks.
Considering, for instance, critical applications, it is crucial
for the user to ensure that the probability that its system
will achieve a given availability level is high enough. This
paper deals with the computation of the distribution of the
interval availability which is defined by the fraction of time
during which a system is in operation over a finite obser-
vation period.

Formally, if the system is modeled by a Markov process,
its state space is divided into two disjoint sets representing
theup states in which the system delivers the specified ser-
vice and thedown states in which there is no more service
delivered. Transitions from theup (resp. down) states to

the down (resp. up) states are calledfailures (resp. re-
pairs). The interval availability over��� t� is the fraction
of the interval��� t� during which the process is in theup
states. This random variable has been studied in previous
papers as for instance in [1], where its distribution is cal-
culated recursively by discretizing the observation period
��� t� into intervals of length�t small enough so that the
probability of two or more events occuring during�t is
negligible. However, no error bounds were found for this
approximation method. In [2], a particular algorithm has
been developed in the case where the two sequences of so-
journ times in the subsets of operational and unoperational
states are both independent and independent of each other.
It is also shown that this property can be checked direct-
ly on the transition rate matrix of the process. In [3] the
evaluation of the distribution of the interval availability is
based on the uniformization technique. This approach is
interesting because it has good numerical properties and,
moreover, it allows the user to perform the computation
with an error as small as desired.

In this paper we develop two new methods to compute
the interval availability distribution. They are based on the
uniformization technique and the starting point is the work
performed in [3].

The remainder of the paper is organized as follows. In
the following section, we recall the main relation and the
corresponding algorithm of [3]. In Section 3, we give a first
algorithm which is an improvement of the previous one. It
needs the same memory space but it is faster. In Section 4,
we propose a second method. Its main characteristics are
that it needs less memory space than the previous methods
and that its space requirements are known at the beginning
of the execution. In Section 5 we compare the complexity
of these algorithms and we illustrate the results with some
numerical values.

2 Interval Availability Distribution

Consider a continuous-time homogeneous Markov pro-
cessX � fXt� t � �g, over a finite state space denoted
byS. The states ofS are divided into two disjoint subsets:

48



U , the set of the operational states (or the up states) andD,
the set of the unoperational states (or the down states). We
assume that the system, modeled by such a process, is con-
sidered during a finite interval of time denoted by��� t�.
Of interest is the cumulative amount of operational time
(up time) during��� t�, defined by

O�t� �

Z t

�

I�s�ds

whereI�s� denotes the indicator random variable

I�s� �

�
� if Xs � U�
� otherwise.

From this, the interval availability over��� t�, that is, the
fraction of time the system is in operation during��� t�, is
defined by

IAV �t� �
O�t�

t
�

The processX is, as usual, given by its infinitesimal gener-
ator, denoted byA, in which theith diagonal entryA�i� i�
verifiesA�i� i� � �

P
j ��i A�i� j� and by its initial proba-

bility distribution�.
Let us denote byZ the uniformized Markov chain with

respect to the uniformization rate� and byP its transi-
tion probability matrix [4]. The uniformization rate� ver-
ifies � � max��A�i� i�� i � E� andP is related toA by
P � I�A��, whereI denotes the identity matrix. We de-
composeP and the initial probability vector� with respect
to the partitionfU�Dg of S as follows:

P �

�
PU PUD
PDU PD

�
� � � ��U � �D��

Let us now briefly recall how the distribution ofO�t� is de-
rived in [3]. Using results on order statistics of identically
and uniformly distributed random variables in��� t�, it is
shown that forp � � (and thus fork � n�,

IP

�
IAV �t� � p

���� n transitions in��� t��
k states ofU visited

�
�

nX
i�k

Ci
np

i ��� p�
n�i

�

Let ��n� k�, � � k � n � �, be the probability that the
uniformized Markov chainZ visits k states ofU during
its n first transitions. Unconditioning with respect to the
number of visited states ofU , we have

IP�IAV �t� � p j n transitions in��� t�� �

nX
k��

��n� k�

nX
i�k

Ci
np

i ��� p�
n�i

�

Finally, unconditioning on the number of transitions in
��� t�,

IP�IAV �t� � p� �

��X
n��

e��t
��t�n

n�

nX
k��

��n� k�
nX
i�k

Ci
np

i ��� p�n�i � (1)

Let e�N� be the error obtained when the previous series is
truncated at stepN . We write

IP�IAV �t� � p� � e�N��

NX
n��

e��t
��t�n

n�

nX
k��

��n� k�

nX
i�k

Ci
np

i ��� p�
n�i

� (2)

It is immediately checked thate�N� can be bounded in the
following manner:

e�N� �

��X
n�N��

e��t
��t�n

n�

nX
k��

��n� k�

nX
i�k

Ci
np

i ��� p�
n�i (3)

� ��

NX
n��

e��t
��t�n

n�
(4)

and soN can be evaluated beforehand for a given specified
error tolerance.

In order to evaluate the values of��n� k�, let�S�n� k�
(resp.�U �n� k�,�D�n� k�) be the row vector so that itsith
entry,i � S (resp.i � U , i � D), is the probability that the
Markov chainZ visitsk states of subsetU during the first
n transitions and thenth transition leads to statei. Thus,

��n� k� � �S�n� k��
T

where� � �� � � � � �� and��T denotes the transpose oper-
ator. Using the backward renewal equations on the Markov
chainZ, we have

�U �n� k� � �U �n� �� k � ��PU

� �D�n� �� k � ��PDU (5)

�D�n� k� � �U �n� �� k�PUD

� �D�n� �� k�PD (6)

with initial conditions,

�U ��� �� � �� �D��� �� � �D �

�U ��� �� � �U � �D��� �� � ��

Finally, changing the summation order on relation (2) and
performing a second truncation,

IP�IAV �t� � p� � e�N� � e��N�C��

49



CX
k��

NX
n�k��

e��t
��t�n

n �
��n� n� k � ���

nX
i�n�k��

Ci
np

i ��� p�n�i (7)

wheree��N�C� verifies

e��N�C� � ��

CX
k��

��N�N � k � ��� (8)

This bound is obtained from the following relation which
is proved in the Appendix of [3]: for every integersC� n�m
such that� � C � m � n,

CX
k��

��n� n� k � �� �

CX
k��

��m�m� k � ��� (9)

The following figure shows how the computation of
��n� k� is done in a column by column manner.

n
k

N

�

N � �

� C

�

N � �

�

N N � �

��� ����� ��

��� 	���� ����� ��

�	� 
��	� 	��	� ���	� ��

�
� ���
� 
��
� 	��
� ���
� ��

Figure 1. The contents of cell�n� k� is
the vector�S�n� n� k � ��.

Cell �n� k� is filled from cells�n��� k� and�n��� k���
using the recurrences (5) and (6). This means that it is
necessary to store a whole column to compute the next one.
The algorithm proceeds in the following manner. Given a
tolerance error� specified by the user, the first truncation
step isN , computed from (3) and (4) as

N � min

��
�n � IN

������
nX

j��

e��t
��t�j

j�
� ��

�

	

��
	 � (10)

Then, the table of Figure 1 is computed column by colum-
n. The algorithm stops after columnC where, using the
bound of (8),

C � min



c � N

�����
cX

k��

��N�N � k � �� � ��
�

	

�
�

(11)
To do this, the sum of the scalars�N�N�k�� is computed
from the elements of the last line of the table that have been
already computed.

3 Algorithm I

In this section, we improve the previous algorithm from
the computational point of view. We start from relation (1)
which can be rewritten, forp � �, as

IP�IAV �t� � p� �

��X
n��

e��t
��t�n

n�

nX
k��

Ck
np

k ��� p�
n�k

W �n� k� (12)

whereW �n� k� is defined, for� � k � n� �, by

W �n� k� �

kX
i��

��n� i�� (13)

that is,W �n� k� is the probability thatZ visits at most
k states ofU during the firstn transitions. To evaluate
the values ofW �n� k�, we use the forward renewal equa-
tions (instead of the backward ones). LetWS�n� k� (resp.
WU �n� k�, WD�n� k�) be the column vector so that itsith
entry,i � S (resp. i � U , i � D), is the probability that
Z visits at mostk states ofU during the firstn transitions,
given that the initial state isi. We have

W �n� k� � �WS�n� k��

Using the forward renewal equations on the Markov chain
Z, we get

WU �n� k� � PUWU �n� �� k � ��
� PUDWD�n� �� k � ��

WD�n� k� � PDUWU �n� �� k�
� PDWD�n� �� k�

(14)

with initial conditionsWU �n� �� � � andWD��� �� � �T .
Note also thatWS�n� n � �� � �T . These equations are
more interesting than the backward ones since, in practice,
the initial probability is almost always concentrated in only
one statel, and soW �n� k� is equal to thelth component
of the vectorWS�n� k�.

50



Let us rewrite relation (12), by making the variable
changek �� n� k in the second sum:

IP�IAV �t� � p� �

��X
n��

e��t
��t�n

n�

nX
k��

Ck
np

n�k ��� p�kW �n� n� k��

As in the previous section, the series is truncated at stepN
and we write

IP�IAV �t� � p� � e�N��

NX
n��

e��t
��t�n

n�

nX
k��

Ck
np

n�k ��� p�
k
W �n� n� k� (15)

This relation can be written as

IP�IAV �t� � p� � e�N��

NX
k��

NX
n�k

e��t
��t�n

n�
Ck
np

n�k ��� p�
k
W �n� n� k�

and then as

IP�IAV �t� � p� � e�N� � e��N�C���

C�X
k��

NX
n�k

e��t
��t�n

n�
Ck
np

n�k ��� p�
k
W �n� n� k� (16)

where
e��N�C�� �

NX
k�C���

NX
n�k

e��t
��t�n

n�
Ck
np

n�k ��� p�
k
W �n� n� k��

The terme��N�C�� is bounded in the following way:

e��N�C�� �

NX
k�C���

W �N�N � k�

NX
n�k

e��t
��t�n

n�
Ck
np

n�k ��� p�
k
�

This comes from the inequalityW �n� k� �W �n� �� k �
��, which is an equivalent form of (9). The following sec-
ond relation:

W �n� k� �W �n� k � ���

a trivial consequence of the definition ofW �n� k�, allows
us to obtain

e��N�C�� �

W �N�N �C��

NX
k�C���

NX
n�k

e��t
��t�n

n �
Ck
np

n�k ��� p�
k
�

Finally,

e��N�C�� �W �N�N � C���
NX

k�C���

NX
n�k

e��tp
��tp�n�k

�n� k��
e��t���p�

��t��� p��
k

k�

� W �N�N � C���
NX

k�C���

e��t���p�
��t��� p��k

k�

N�kX
n��

e��tp
��tp�n

n�

� W �N�N � C����
��

C�X
k��

e��t���p�
��t��� p��

k

k�


� (17)

From the algorithmic point of view, we follow the same
computational scheme as in the previous algorithm, illus-
trated by Figure 1, and we have the same memory require-
ments. Here, cell�n� k� contains the valueW �n� n � k�
andC is replaced byC� defined as

C� � min fc � N jW �N�N � c���
��

cX
k��

e��t���p�
��t��� p��

k

k�


�
�

	
g � (18)

Remark that, since for everyl such that� � l � N ,

W �N�N � l� �

N��X
k�l��

��N�N � k � ���

we haveC� � C, which proves that this algorithm run-
s faster than the algorithm in [3]; moreover, the difference
becomes important whenp is near from� sinceC� decreas-
es whenp increases, whileC does not depend onp.

4 Algorithm II

As we have seen, the two previous algorithms need a
large amount of memory to run. OnceN is known, the
workspace is composed basically byN vectors having the
size of the whole state space. In this section, a different
approach is followed to derive a new method with a better
space complexity. Let us come back to relation (12), that
we write as

IP�IAV �t� � p� �

��X
n��

e��t
��t�n

n�

nX
k��

Ck
np

k ��� p�
n�k

Y �n� k� (19)

where
Y �n� k� � ��W �n� k��

51



The usual first truncation leads to

IP�IAV �t� � p� � e�N��

NX
n��

e��t
��t�n

n�

nX
k��

Ck
np

k ��� p�n�k Y �n� k�� (20)

As previously, we change the order of the sums to obtain

IP�IAV �t� � p� � e�N��

NX
k��

NX
n�k

e��t
��t�n

n�
Ck
np

k ��� p�
n�k

Y �n� k�

and then, we perform a second truncation:

IP�IAV �t� � p� � e�N� � e��N�C���

N�C�X
k��

C��kX
n�k

e��t
��t�n

n�
Ck
np

k ��� p�n�k Y �n� k��

NX
k�N�C���

NX
n�k

e��t
��t�n

n�
Ck
np

k ��� p�n�k Y �n� k�

(21)
wheree��N�C�� verifies

e��N�C�� �

N�C���X
k��

NX
n�C��k��

e��t
��t�n

n�
Ck
np

k ��� p�
n�k

Y �n� k�

�

N�C���X
k��

NX
n�C��k��

e��t
��t�n

n�
Ck
np

k ��� p�n�k

�

N�C���X
k��

e��tp
��tp�k

k�

NX
n�C��k��

e��t���p�
��t��� p��

n�k

�n� k��

�

N�C���X
k��

e��tp
��tp�k

k�

N�kX
n�C���

e��t���p�
��t��� p��n

n�

�

N�C���X
k��

e��tp
��tp�k

k�

NX
n�C���

e��t���p�
��t��� p��

n

n�

�
NX

n�C���

e��t���p�
��t��� p��n

n�

� ��

C�X
n��

e��t���p�
��t��� p��

n

n�
�

Let N be computed as in the previous algorithms andC�

as

C� � min fc � N j

��

cX
k��

e��t���p�
��t��� p��

k

k�
�
�

	
g � (22)

Then, the total error introduced when the double truncation
is performed is less than�. As forC�, the truncation step
C� decreases whenp increases.

The recurrences to compute theY �n� k�’s can be de-
rived from (14) or directly by writing the corresponding
forward equations. They are

YU �n� k� � PUYU �n� �� k � ��
� PUDYD�n� �� k � ��

YD�n� k� � PUDYU �n� �� k�
� PDYD�n� �� k�

(23)

with initial conditionsYU �n� �� � �T andYD��� �� � �.
To evaluate the two first terms in (21), as we know the

value ofC�, we need to store onlyC� vectors having the
size of the whole state space, in contrast with theN vec-
tors needed by the previous algorithms. The key feature of
this technique is then the fact that we are able to compute
the indexC� beforehand. In the previous algorithms, the
second truncation stepsC andC� are known only at the
end of the execution.

A further improvement can be made in the following
way. Consider the greatest integerC� such that

C�X
n��

e��t���p�
��t��� p��n

n�
�
�



�

Such a value ofC� exists ife��t���p� � ��
. Assume that
this is the case. Relation (21) can be written as

IP�IAV �t� � p� � e�N� � e��N�C�� � e��N�C�� C��

�

N�C�X
k��

C��kX
n�k

e��t
��t�n

n�
Ck
np

k ��� p�n�k Y �n� k� (24)

�

N�C���X
k�N�C���

NX
n�k

e��t
��t�n

n�
Ck
np

k ��� p�
n�k

Y �n� k��

Note that ifC� � C� � � then the second term in the
previous relation is equal to�. The errore��N�C�� C��
verifies

e��N�C�� C�� �

NX
k�N�C�

NX
n�k

e��t
��t�n

n�
Ck
np

k ��� p�
n�k

Y �n� k�

52



�

NX
k�N�C�

NX
n�k

e��t
��t�n

n�
Ck
np

k ��� p�
n�k

�

NX
k�N�C�

e��tp
��tp�k

k�

NX
n�k

e��t���p�
��t��� p��

n�k

�n� k��

�

NX
k�N�C�

e��tp
��tp�k

k�

N�kX
n��

e��t���p�
��t��� p��

n

n�

�
NX

k�N�C�

e��tp
��tp�k

k�

C�X
n��

e��t���p�
��t��� p��

n

n�

�

C�X
n��

e��t���p�
��t��� p��n

n�
�
�



�

The first two truncations stepsN andC� are computed as
before from (10) and (22), by changing��	 by ��
. Ob-
serve that the following inequalities hold:

C� � C� � N�

The general computational scheme is shown in Figure 2,
where we indicate the cells that are effectively filled. When
C� does not exist, we can defineC� � �� and still use
relation (24).

C�

n
k

N

�

N � �

� N � C�

�

N � �

�

N

��� ��

��� ����� ��

�	� ���	� ���	� 	�

�
� ���
� ���
� 	��
� 
�

Figure 2. The contents of cell�n� k� is
the vectorYS�n� k�.

5 Complexity analysis and numerical exam-
ples

In this section, we compare the different techniques
from the complexity point of view and we give some nu-
merical results. The number of states of the system is de-
noted byM .

5.1 Storage complexity

The method proposed in [3] and Algorithm I basically
need the storage ofN vectors of dimensionM , that is, of
NM real numbers. Algorithm II necessites the storage of
C� vectors of dimensionM , that isC�M real numbers.

5.2 Time complexity

In the three considered algorithms, the complexity of
the computation of each cell is the same: it requires a
matrix-vector product of dimensionM . Observe that a
compact representation of the involved matrices must be
used since, in general, they are sparse. The number of cells
constructed in the algorithm proposed in [3] is

�� � �C � ��

�
N � ��

C

	

�


in Algorithm I it is equal to

�� � �C� � ��

�
N � ��

C�

	

�

and in Algorithm II its value is

�� � �C� � ��

�
N � � ��

C�

	

�
�

�C� � ���C� � 	�

	

whereN � is the truncation step computed from Relation 10
by changing��	 by ��
. We haveN � � N if C� � ��
andN � � N otherwise. It is clear that�� � �� since
C� � C, as we pointed out before. Concerning Algorith-
m II, the number of cells can be anywhere, from values
greater than�� to values less than��. In practice, it is
in general near��, leading to better computational times
than those of the algorithm in [3]. In the next subsection,
we give some execution times to illustrate the behaviour of
the different algorithms.

5.3 Numerical examples

Let us consider a hardware system which consists ofn
identical components. As for most hardware devices, fail-
ure is a reflection of component failure. Let us assume
that our system operates on a “k out of n” basis, that is,

53



the system is up when at leastk components are up. Fur-
thermore, it is assumed that the failure of any component
would occur independently of the operation of the others.
Repair times are stochastically independent of component
lives and maintainance policy is unrestricted (i.e., the num-
ber of repairmen available is equal to the number of system
components). These assumptions lead to a Markov model
in which the number of system states results to beM � 	n.
The failure and the repair rate of each component are tak-
en to be���� and� respectively. For numerical results, we
will consider the case ofk respectively equal ton, n � �
andn � 	, which leads to a number of operational states
respectively equal to�, � � n, � � n� n�n� ���	.

We compute the probability of achieving an availability
of at leastp, that isIP�IAV �t� � p�, for different values of
the parametersp andt: p � ����, ����, ����, �����; t �
���, ����. The global error� chosen for each algorithm is
equal to�������.

The following tables show the computation time (in sec-
onds) of the two algorithms proposed in this paper as a
function of the input parameters. The programs were run
on a Sun 4/50. The number of components are successive-
ly n � � andn � �, and the values ofk arek � n and
k � n � �. The computational time of the algorithm de-
scribed in [3] being independent ofp, it is given in each
table header between parentheses.

n � �, k � �

t � ��� (44) t � ���� (1563)

I II I II
p � ����� 16 18 950 1024
p � ����� 12 13 631 677
p � ����� 6 7 260 297
p � ����� 4 5 154 192

n � �, k � �

t � ��� (33) t � ���� (889)

I II I II
p � ����� 15 18 785 1019
p � ����� 11 13 576 675
p � ����� 6 7 263 304
p � ����� 4 5 154 192

n � �, k � �

t � ��� (146) t � ���� (5537)

I II I II
p � ����� 49 51 2995 3067
p � ����� 35 36 1950 2002
p � ����� 18 19 792 862
p � ����� 12 13 467 513

n � �, k � �

t � ��� (115) t � ���� (3565)

I II I II
p � ����� 46 51 2741 3062
p � ����� 33 37 1893 1997
p � ����� 18 19 789 860
p � ����� 12 13 477 516

We see in these examples the better performance of Al-
gorithm I with respect to the algorithm of [3]. Observe that
in the case ofn � �, k � �, t � ���� andp � ����, Algo-
rithm II is the worst one in computing time. Observe also
the monotonicity of the execution times of Algorithms I
and II whenp increases.

We can remark that for a given model (n fixed), if t and
p do not change, the execution time of Algorithm II does
not depend onk, as expected.

In the following last table, we consider a model with
higher size (n = 7, that is, 128 states), we fixp � ����,
and we set the parameterk successively to 7, 6 and 5. We
give the respective computation times fort � ��� andt �
����.

n � �, p � ����

t � ��� t � ����

[3] I II [3] I II
k � � 464 146 153 20347 9747 9343
k � � 380 141 153 14179 9275 9428
k � � 308 134 153 9217 8110 9443

Concerning the storage complexity, let us give some ex-
amples. Ifn � �, k � � andt � ����, we haveN � �
��
and the valuep � ����� givesC� � ��� The number of
states being equal to�� in this case, Algorithm I needs to
store�
��� �� � ������ real numbers and Algorithm II
needs to store only��� �� � 
��� real numbers.

Forn � �, k � � andt � ����, we obtainN � �
��
and the valuep � ����� givesC� � ���� The number of
states being equal to�	� in this case, Algorithm I needs to
store�
�� � �	� � ���	�� real numbers and Algorithm
II needs to store only���� �	� � ��
	� real numbers.

References

[1] A. Goyal and A. N. Tantawi. A measure of guaranteed
availability and its numerical evaluation.IEEE Trans-
actions on Computers, C-37(1):25–32, January 1988.

[2] G. Rubino and B. Sericola. Interval availability analy-
sis using operational periods.Performance Evaluation,
14:257–272, February 1992.

54



[3] E. de Souza e Silva and H. R. Gail. Calculating cu-
mulative operational time distributions of repairable
computer systems.IEEE Transactions on Computers,
C.35:322–332, April 1986.

[4] S. M. Ross. Stochastic Processes. John Wiley and
Sons, 1983.

55


