Interval Availability Distribution Computation

Gerardo Rubino and Bruno Sericola
IRISA — INRIA
Campus de Beaulieu, F-35042 Rennes Cedex, FRANCE

Abstract the down (resp. up) states are callethilures (resp. re-
pairs). The interval availability ovef0, ¢) is the fraction

Interval availability is a dependability measure defined of the interval(0, t) during which the process is in thip

by the fraction of time during which a system is in opera- states. This random variable has been studied in previous
tion over a finite observation period. The computation of papers as for instance in [1], where its distribution is cal-
its distribution allows the user to ensure that the probabil- culated recursively by discretizing the observation period
ity that its system will achieve a given availability level is (0,¢) into intervals of lengthA¢ small enough so that the
high enough. probability of two or more events occuring duriny is
Asusual, the systemis assumed to be model ed by a finite negligible. However, no error bounds were found for this
Markov process. We propose in this paper two new algo- approximation method. In [2], a particular algorithm has
rithms to compute this measure and we compare themwith been developed in the case where the two sequences of so-
respect of the input parameters of the model, both through journ times in the subsets of operational and unoperational
the storage requirement and the execution time points of states are both independent and independent of each other.
view. We show that one of them is an improvement of a It is also shown that this property can be checked direct-
well known one. Both algorithms are based on the uni- ly on the transition rate matrix of the process. In [3] the
formization technique. evaluation of the distribution of the interval availability is

based on the uniformization technique. This approach is

Index terms - Repairable computer systems, depend- interesting because it has good numerical properties and,
ability, interval availability, Markov processes, uniformiza- moreover, it allows the user to perform the computation
tion. with an error as small as desired.

In this paper we develop two new methods to compute

the interval availability distribution. They are based on the

1 Introduction uniformization technique and the starting point is the work
performed in [3].

In the dependability analysis of repairable computing The rer_namder_of the paper is orgamzed as follows. In
systems, there is an increasing interest in evaluating cumu-the following section, we recall the main relation and the
lative measures, in particular the availability over a given Corréspondingalgorithmof[3]. In Section 3, we give afirst
period. In highly available systems, steady state measures®907thm which is an improvement of the previous one. It
can be very poor, even if the mission time is not small. The "€eds the same memory space but it is faster. In Section 4,
use of expectations also suffers from similar drawbacks. W& Propose a second method. Its main characteristics are
Considering, for instance, critical applications, it is crucial "t it needs less memory space than the previous methods
for the user to ensure that the probability that its system 2nd thatits space requirements are known at the beginning

of the execution. In Section 5 we compare the complexity

will achieve a given availability level is high enough. This) . .
paper deals with the computation of the distribution of the of these algorithms and we illustrate the results with some
numerical values.

interval availability which is defined by the fraction of time
during which a system is in operation over a finite obser-
vation period.

Formally, if the system is modeled by a Markov process, 2 Interval Availability Distribution
its state space is divided into two disjoint sets representing
theup states in which the system delivers the specified ser- Consider a continuous-time homogeneous Markov pro-
vice and thedown states in which there is no more service cessX = {X;,t > 0}, over a finite state space denoted
delivered. Transitions from thep (resp. down) states to by S. The states of are divided into two disjoint subsets:

48

U, the set of the operational states (or the up states]and

Finally, unconditioning on the number of transitions in

the set of the unoperational states (or the down states). We(0, ¢),

assume that the system, modeled by such a process, is con-

sidered during a finite interval of time denoted {y ¢).
Of interest is the cumulative amount of operational time
(up time) during(0, t), defined by

/Ot I(s)ds

wherel(s) denotes the indicator random variable

O(t)

(1 X, e,
I(s) = { 0 otherwise.

From this, the interval availability ovef, ¢), that is, the
fraction of time the system is in operation duriftg¢), is
defined by

IAV (t) = oft)
The process is, as usual, given by its infinitesimal gener-
ator, denoted by, in which theith diagonal entry4 (i,)
verifies A(i,i) = — 3_,; A(i, j) and by its initial proba-
bility distribution c.

Let us denote by, the uniformized Markov chain with
respect to the uniformization rate and by P its transi-
tion probability matrix [4]. The uniformization rate ver-
ifies A > max(—A(i,4),i € E) andP is related to4 by
P = I+ A/ X, wherel denotes the identity matrix. We de-
composeP and the initial probability vectas with respect
to the partitior{U, D} of S as follows:

-

Let us now briefly recall how the distribution 6(t) is de-
rived in [3]. Using results on order statistics of identically
and uniformly distributed random variables (i, ¢), it is
shown that fop < 1 (and thus fok < n),

Py
Ppy

Pyp

PD) , = (aUaaD)'

P (IAV(t) <p

n transitions in(0, t),
k states olU visited

S cipta-p".
i=k

Let Q(n, k), 0 < k < n + 1, be the probability that the
uniformized Markov chairnZ visits k states ofU during
its n first transitions. Unconditioning with respect to the
number of visited states @f, we have

IP(IAV (t) < p | n transitions in(0,t)) =

n n

Y Qn,k) Y Cipt(1—p)" .

k=0 1=k

49

P(IAV (t) < p)

+o0 Y (}\t)n n n o .
e 0m k) Y O (1 -p)" ()
n=0 " k=0 i=k

Lete(V) be the error obtained when the previous series is
truncated at stefy/. We write

P(IAV (t) < p) = e(N)+

DM k)Y Cp' (L-p)" T ()
n=0 k=0 i=k

It is immediately checked that V') can be bounded in the
following manner:

e(N)

+o0

S MBS o0 Cip (-5 @)

n!

al A"
Sl_ze)\t(n!) (4)
n=0
and saV can be evaluated beforehand for a given specified
error tolerance.

In order to evaluate the values Qfn, k), let Q s(n, k)
(resp.Qu(n, k), Qp(n, k)) be the row vector so that iith
entry,i € S (resp.i € U,i € D), is the probability that the
Markov chainZ visits k states of subsdf during the first
n transitions and thath transition leads to state Thus,

Q(n, k) = Qs(n, k)17

wherel = (11 ... 1) and()” denotes the transpose oper-
ator. Using the backward renewal equations on the Markov
chainZ, we have

QU(n,k) = QU(n—].,k—].)PU
+ Qp(n—1,k—-1)Ppy (5)
QD(H, k) = QU(n — 1, k)PUD
+ Qp(n—1,k)Pp (6)
with initial conditions,
QU(0,0) = 0, QD(0,0) = Qap,
QU(O, 1) = ay, QD(O, 1) =0.

Finally, changing the summation order on relation (2) and
performing a second truncation,

IP(IAV (t) <p) =e(N) +€'(N,C)+

¢ N n
Z Z e_M@Q(n,n—k-i—l) X
k=1n=k-1 e
> apa-p"t @
i=n—k+1

wheree’(N, C) verifies

¢'(N,C)<1=Y Q(N,N —k+1).
k=0

C

8
This bound is obtained from the following relation which
is proved in the Appendix of [3]: for every integetsn, m
suchthatt < C <m < mn,

C C

Y Qnn—k+1) <Y Qm,m-k+1). (9)

k=0 k=0

The following figure shows how the computation of
Q(n, k) is done in a column by column manner.

k0o 1 c N-1INN+1

n
0

0,1]0,0

1 (1,2f1,1)1,0

2,312,2]2,1)]2,0

3,43, 3)3,2]3,1)3,0

———————————————

Figure 1. The contents of celln, k) is
the vectofds(n,n — k + 1).

Cell(n, k) isfilled from cells(n—1, k) and(n—1, k—1)
using the recurrences (5) and (6). This means that it is
necessary to store a whole column to compute the next one.
The algorithm proceeds in the following manner. Given a
tolerance erroe specified by the user, the first truncation
step isN, computed from (3) and (4) as

_ ~ (A
N:mm{nelN e M(j!) } (10)
50

N ™

=0

Then, the table of Figure 1 is computed column by colum-
n. The algorithm stops after colun@ where, using the
bound of (8),

c

C:min{cSN

QNN —k+1)>1—2 4.
k=0 2
(11)
To do this, the sum of the scalaisy y—x+1 IS computed
from the elements of the last line of the table that have been
already computed.

3 Algorithm |

In this section, we improve the previous algorithm from
the computational point of view. We start from relation (1)
which can be rewritten, fgr < 1, as

P(IAV (t) < p)

-~ —At (At)n < k. k n—~k
> e i > Cipt(1—p)" " W(n,k) (12)
n=0 " k=0

whereW (n, k) is defined, fo < k <n + 1, by

k

W(n.k) = Y Q(n,i),

i=0

(13)

that is, W (n, k) is the probability thatZ visits at most
k states ofU during the firstn transitions. To evaluate
the values ofi¥(n, k), we use the forward renewal equa-
tions (instead of the backward ones). L&t (n, k) (resp.
Wu(n, k), Wp(n, k)) be the column vector so that it
entry,i € S (resp.i € U, i € D), is the probability that
Z visits at most: states o/ during the first: transitions,
given that the initial state i5 We have

W(n, k) = aWs(n, k).

Using the forward renewal equations on the Markov chain
Z,we get

WU(n,k:) = PUWU(n—l,k}—l)

+ PUDWD(n—l,k—l) (14)
WD(nak) = PDUWU(n_]-ak)

+ PDWD(n— l,k)

with initial conditionsiWy7(n,0) = 0 andWp(0,0) = 17
Note also that¥s(n,n + 1) = 1. These equations are
more interesting than the backward ones since, in practice,
the initial probability is almost always concentrated in only
one statd, and solW (n, k) is equal to thdth component

of the vectomV g (n, k).

Let us rewrite relation (12), by making the variable
changet — n — k in the second sum:

P(IAV () < p)

+ oo

Z ef)\t(Anﬁ 2”: Cﬁpnfk (1
" k=0

n=0

As in the previous section, the series is truncated atStep
and we write

—p)Wn,n—k).

P(IAV (t) < p) = e(N)+

n

> Ckprt(1—p) W(n,n—k) (15)

k=0

SO
>

n=0
This relation can be written as

P(IAV (f) < p) = e(N)+

Sy e

k=0 n=k
and then as

O e (1= p) W (n,n — F)

IP(IAV () < p) = e(N) + er(N,C1)+

ZZ e c’» R —p)*W(n,n—k) (16)
k=0 n=k
where
€1 (N,Cl):
Z Z —xe ck k(1 —p)*W(n,n—k).

k=C1+1 n=k

The terme; (N, C1) is bounded in the following way:

el(N,Cl) S

N N

_x (A" ne
Y WN,N-k)> e M%Cﬁp F1—p)k.
k=C1+1 n=k ’
This comes from the inequality’ (n, k) < W(n + 1,k +
1), which is an equivalent form of (9). The following sec-
ond relation:

W(n, k) < Win,k +1),

a trivial consequence of the definition Bf (n, k), allows
us to obtain
er(N,Cp) <

Sy el

k=C1+1 n=k

W(N,N —C}) Ckpr=t (1 -p)k.

51

Finally,
el(N,Cl) < W(N N—C’l)x
N N k
Z Z oM AP)T 7 /\tp “at(1—p) (At = p))
_ !
k=C1+1 n=k n k'
= W(N,N — Cl) X
N N—k
Z o M(1-p) (/\t(l_p))k Z —tp (/\tp)
k! nl
k=C1+1 n=0

IA

W(N,N—Cl) X

(1 -3 et (1~ p>>k> |

o a7
k=0
From the algorithmic point of view, we follow the same
computational scheme as in the previous algorithm, illus-
trated by Figure 1, and we have the same memory require-
ments. Here, cel{n, k) contains the valu&V (n,n — k)
andC is replaced by”; defined as
3
<-1.(18
<)o

Remark that, since for evelysuch thatt < < N,

Ci =min{c <N |W(N,N —c¢)x
(1 Ly enaon ML= p)"

k!
k=0

N+1
> QNN -k +1),
k=141

W(N,N —1) =

we haveC; < C, which proves that this algorithm run-
s faster than the algorithm in [3]; moreover, the difference
becomes important wheris near froml sinceC'; decreas-
es wherp increases, whil€' does not depend gn

4 Algorithm Il

As we have seen, the two previous algorithms need a
large amount of memory to run. On¢é is known, the
workspace is composed basically Byvectors having the
size of the whole state space. In this section, a different
approach is followed to derive a new method with a better
space complexity. Let us come back to relation (12), that
we write as

P(IAV (t) > p)

+ oo

Z —)\t chk n k

n=0

Y(n, k) (19)

where

Y(n,k)=1—-W(n,k).

The usual first truncation leads to

P(IAV (t) > p) = e(N)+

N L e
>

n=0

)"E Y (n, k).

ancﬁp’“ (1-p

k=0

(20)

As previously, we change the order of the sums to obtain

P(IAV (t) > p) = e(N)+

3 e O et (1 E v

and then, we perform a second truncation:

P(IAV (t) > p) = e(N) + ea(N, Ca)+

N—-Cs Ca+k
e (At n
> Y oty v
k=0 n=k
N N
ORD S eI RN
k=N —Cs+1 n=k
(21)
wheree (N, Cy) verifies
ea(N,Cs) =
N— 02 1
e (AD)™ e
Sy O Gt (1) ¥ ()
k=0 n=Cotk+1 :
N— Cz 1 n
Z Z ef)\t(/\t') Crli k(l_p)n—k
k=0 n=Cy+k+1 s
N—-Cs—1 N n—
_ Z —)\tp(Atp) Z —xt(1—p) At(1 = p))
k! n—k)!
k=0 n=Ca+k+1
N—Cop—1 . N—k n
-y ef)\tp()‘tp)k S) (At(1 —p))
! n!
k=0 n=Cs+1
N—Cop—1 N n
—\t (Atp) —\t(1— (At(1 —p))
I
k=0 n=Cs+1
N n
< Z e M(1 p)(/\t(l p))
n=Cs+1 n
S (A1~ p)
—At(1—p) -
<1 Z p —~
n=0

52

Let N be computed as in the previous algorithms éhd
as

Cy = min {c <N |
_ (At(1))”
At(1— p)
Ze ®

Then, the total error introduced when the double truncation
is performed is less than As for Cy, the truncation step
Cs decreases whenincreases.

The recurrences to compute th&n, k)’'s can be de-
rived from (14) or directly by writing the corresponding
forward equations. They are

g
<) (@)

YU(H, k) = PUYU(n — 1, k— 1)

+ PUDYD(n —]., k—].) (23)
Yp(n,k) = PypYu(n—1,k)

+ PDYD(n — 1,k)

with initial conditionsYys (n, 0) = 17 andY»(0,0) = 0.

To evaluate the two first terms in (21), as we know the
value of C,, we need to store onlg', vectors having the
size of the whole state space, in contrast with Aeec-
tors needed by the previous algorithms. The key feature of
this technique is then the fact that we are able to compute
the indexC5 beforehand. In the previous algorithms, the
second truncation stefs and C'; are known only at the
end of the execution.

A further improvement can be made in the following
way. Consider the greatest inted@ey such that

Cs n
Z e~ Mt(1-p) (At(1—p)) < €

— n! 3

Such a value of’s exists ife"(1=P) < £/3. Assume that
this is the case. Relation (21) can be written as

IP(TAV (t) > p) = e(N) + e2(N, Cs) + e3(N, C2,C3)

N—-Co Co+k

DI e ck P —p) " Y (n, k) (24)
k=0 n=k
N—-C3—1

+ > Z e ck P 1=p)" FY(n, k).

k=N—-C2+1 n=k

Note that ifC3 = Cs — 1 then the second term in the
previous relation is equal t0. The errores(N, Cs, Cs)

verifies

e3(N,Cs,C3) =

N
> em c’“ PP -p)" "V (n,k)
Cg n==~k

ps

k=

< EN: i _xe (AD) Chpk (1= p)*
< e —Chp p
k=N—C3 n—k
N N n—k
B PRV RIS E)
k! n—k)!
k=N—-C3 n=~k
N . N—k n
— Z ef)\tp ()‘tp)k Z At(1—p) (At(l - p))
k! n!
k=N_—Cj n=0
N Cs n
_atp (Atp) “at(1—p) (AL = p))
< D e e M
k=N—Cs n=0
<t enn (=)
Bl n! -3

The first two truncations stepgs andC's are computed as
before from (10) and (22), by changiag2 by /3. Ob-
serve that the following inequalities hold:

C; <Cy <N.

The general computational scheme is shown in Figure 2,
where we indicate the cells that are effectively filled. When
C3 does not exist, we can defifgs = —1 and still use
relation (24).

0 1
0,0

N-C3 N-1N
n

0

1 (1,01,1

2,012, 1)]2,2

3,013, 1)3,2]3,3

——————————

———————————————————

Figure 2. The contents of celln, k) is
the vectorYs(n, k).

53

5 Complexity analysisand numerical exam-
ples

In this section, we compare the different techniques
from the complexity point of view and we give some nu-
merical results. The number of states of the system is de-
noted byM.

5.1 Storage complexity

The method proposed in [3] and Algorithm | basically
need the storage df vectors of dimensiof/, that is, of
N M real numbers. Algorithm Il necessites the storage of
C5 vectors of dimensiod/, that isC'y M real numbers.

5.2 Time complexity

In the three considered algorithms, the complexity of
the computation of each cell is the same: it requires a
matrix-vector product of dimension/. Observe that a
compact representation of the involved matrices must be
used since, in general, they are sparse. The number of cells
constructed in the algorithm proposed in [3] is

pomian(ve1-9),

in Algorithm I it is equal to

Ci

b= (xe1- %)

and in Algorithm Il its value is

O
)
whereN' is the truncation step computed from Relation 10
by changing:/2 by /3. We haveN’ = N if C3 = —1
and N’ > N otherwise. It is clear tha#t; < #;, since
C, < C, as we pointed out before. Concerning Algorith-
m Il, the number of cells can be anywhere, from values
greater thar#, to values less thag,. In practice, it is

in general neag# |, leading to better computational times
than those of the algorithm in [3]. In the next subsection,
we give some execution times to illustrate the behaviour of
the different algorithms.

(Cs +1)(Cs +2)
2

#2 = (Cy+1) (N’+1—

5.3 Numerical examples

Let us consider a hardware system which consists of
identical components. As for most hardware devices, fail-
ure is a reflection of component failure. Let us assume
that our system operates on & 6ut of n” basis, that is,

the system is up when at ledstomponents are up. Fur-
thermore, it is assumed that the failure of any component
would occur independently of the operation of the others.
Repair times are stochastically independent of component
lives and maintainance policy is unrestricted (i.e., the num-
ber of repairmen available is equal to the number of system
components). These assumptions lead to a Markov model
in which the number of system states results tdbe- 2.

The failure and the repair rate of each component are tak-
en to be0.01 and1 respectively. For numerical results, we
will consider the case of respectively equal ta, n — 1
andn — 2, which leads to a number of operational states
respectively equal td, 1 + n, 1 + n + n(n — 1)/2.

We compute the probability of achieving an availability
of at leasip, that isIP(IAV (t) > p), for different values of
the parameterg andt¢: p = 0.95, 0.97, 0.99, 0.995; t =
100, 1000. The global erroe chosen for each algorithm is
equal to0.00001.

The following tables show the computation time (in sec-
onds) of the two algorithms proposed in this paper as a
function of the input parameters. The programs were run
on a Sun 4/50. The number of components are successive
ly n = 5 andn = 6, and the values of arek = n and
k = n — 1. The computational time of the algorithm de-
scribed in [3] being independent of it is given in each
table header between parentheses.

| n=>5k=5 |
| | t=100(44) || ¢ = 1000 (1563) |
| I | I
p=0950 | 16| 18 [950| 1024
p=0970 [12| 13 [631] 677
p=0990] 6 7 260 | 297
p=099] 4 5 154 192
| n=>5k=4 |
| | t =100(33) | += 1000 (889) |
| I | I
p=0950 15| 18 [785] 1019
p=0970][11| 13 [576| 675
p=0990] 6 7 263| 304
p=099% [4 5 154 192
| n=6/k==6 |
| [t =100 (146) || t = 1000 (5537) |
| I | I
p=0950 [[49] 51 2995 | 3067
p=0970[35| 36 1950 | 2002
p=0990 [18] 19 792 | 862
p=0995 [12] 13 467 | 513

54

n=6k=5 |
| || t =100 (115) || t = 1000 (3565) |

I I I I
p =0.950 || 46 51 2741 | 3062
p=0.970 || 33 37 1893 | 1997
p=0.990 || 18 19 789 860
p=0.995 || 12 13 477 516

We see in these examples the better performance of Al-
gorithm | with respect to the algorithm of [3]. Observe that
in the case ofi = 5, k = 4, ¢t = 1000 andp = 0.95, Algo-
rithm 1l is the worst one in computing time. Observe also
the monotonicity of the execution times of Algorithms |
and Il whenp increases.

We can remark that for a given modelfixed), if t and
p do not change, the execution time of Algorithm Il does
not depend otk, as expected.

In the following last table, we consider a model with
higher size ¢ = 7, that is, 128 states), we fix = 0.95,
and we set the parameteisuccessively to 7, 6 and 5. We
give the respective computation times for 100 andt =

1000.

n="7p=0.95 |
| I t =100 | t = 1000 |
B[1 [[3] | I
k=7 464 | 146 | 153 || 20347 | 9747 | 9343
k=6 || 380 | 141 [153 || 14179 | 9275 | 9428
k=5]308] 134] 153 || 9217 | 8110 | 9443

Concerning the storage complexity, let us give some ex-
amples. Ifn = 6, k£ = 6 andt = 1000, we haveN = 6357
and the valug = 0.995 givesC; = 59. The number of
states being equal ®1 in this case, Algorithm | needs to
store6357 x 64 = 406848 real numbers and Algorithm Il
needs to store only9 x 64 = 3776 real numbers.

Forn = 7, k = 5 andt = 1000, we obtainN = 7385
and the valug = 0.950 givesCy = 440. The number of
states being equal 28 in this case, Algorithm | needs to
store7385 x 128 = 945280 real numbers and Algorithm
Il needs to store only40 x 128 = 56320 real numbers.

References

[1] A. Goyal and A. N. Tantawi. A measure of guaranteed
availability and its numerical evaluatiohEEE Trans-
actions on Computers, C-37(1):25-32, January 1988.

[2] G. Rubino and B. Sericola. Interval availability analy-
sis using operational period2erformance Evaluation,
14:257-272, February 1992.

[3] E. de Souza e Silva and H. R. Gail. Calculating cu-
mulative operational time distributions of repairable
computer systemdEEE Transactions on Computers,
C.35:322-332, April 1986.

[4] S. M. Ross. Sochastic Processes. John Wiley and
Sons, 1983.

55

