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Abstract

This paper deals with the performance analysis of a sys-
tem modeled by a queue. If we are interested in occupation
problems and if we look at the transient phase, then it makes
sense to study the maximum backlog observed in the queue
over a finite period. This paper proposes an efficient algo-
rithmic scheme to evaluate the distribution of this maximum
backlog level, based on the uniformization technique. The
approach is illustrated using the classicalM/M/1 model,
but it can be extended to more complex ones.

1 Introduction

Consider some shared resource, for instance a server, or
consider a router in a packet-switching communication net-
work. The kind of problem we are interested in is the eval-
uation of how much storage must be allocated to (or will be
used by) some specific flow or aggregation of flows, at the
device and during some fixed and known period of time,
which will be denoted here by[0, T ]. If T is small, the
classical asymptotic results of queueing theory can be ir-
relevant, and a transient analysis can then be necessary to
perform such an evaluation. This paper proposes an effi-
cient computational scheme to compute the probability that
the backlog at the device does not exceed some given level
over a finite period. The idea is to use this distribution for
dimensionning purposes.

To be specific, let us consider the problem of deciding
how much roomH must be assigned to a system modeled as

a M/M/1/H queue, for instance in order to reduce (prob-
abilistically) the number of rejected units due to saturation
during a fixed and finite time period. The fact that we are
interested in the transient phase makes this task more diffi-
cult than the classical approach in applied queuing theory,
where stationarity is assumed and where we usually limit
ourselves to the computation of the loss probability. For in-
stance, in the stationaryM/M/1/H model, the so-called
PASTA property (Poisson Arrivals See Time Averages, see
for instance [1]), tells us that the loss probability is equal
to the probability that the system is full, that is, in stateH;
denoting it byπH , we have

πH =
(1 − %)%H

1 − %H+1
, (1)

where% = λ/µ 6= 1 is the load (λ is the arrival rate andµ
is the service rate), thus leading to

πH ≤ δ ⇐⇒ H ≥

⌈

ln

(

δ

δ% + 1 − %

)

/ln %

⌉

.

As usual,dxe denotes the smallest integer greater than or
equal tox. If λ = µ, thenπH = (H + 1)−1 andπH ≤ δ is
equivalent toH ≥

⌈

δ−1 − 1
⌉

.

When the system is to be analyzed over a fixed period
in time, the previous development can be irrelevant, or can
lead to very poor precision, and, to the best of our knowl-
edge, the only available approach is to analyze process(Nt)
whereNt is the number of units in the system at timet. For
instance, in [6] a technique is proposed which is able to
compute the distribution of the random variable “fraction of
the interval[0, T ] where the system is saturated”.

Here, we propose to work with the random variable

Mt = max{Ns, s ≤ t},

1



which allows a different and detailed analysis of the prob-
lem. For instance, givenδ � 1 andT > 0, one can com-
pute

L = min{K : Pr(MT > K) < δ}

with (Mt) defined on the open modelM/M/1, and then
make some choiceH satisfyingH ≥ L. Coming back to
the first example, observe that we may have, say,Pr(MT >
L) = 1 − 10−4 and L � E(N∞). Using L instead of
E(N∞), may lead to a more efficient way to allocate room
to the server.

The necessity of analyzing the transient dynamics of
ressource sharing systems in the communications world is,
of course, not new. For an interesting and recent develop-
ment of some non standard transient aspects related to these
communication systems see [2]. The random variableMt

is studied in [3] where analytical expressions are proposed.
Here, we deal with algorithms allowing to efficiently eval-
uate the distribution of this variable and which can be ex-
tended to other models. Next section establishes the pre-
liminary transformations to perform the analysis, which is
developped in section 3. Section 4 completes the analy-
sis leading to the computational scheme, and Section 5 il-
lustrates it with some numerical examples. Section 6 con-
cludes the paper.

2 Main Transformations

The solution process starts by performing two transfor-
mations. First, an auxiliary Markov process(Yt) is defined
and it is shown that solving a specific problem on(Yt) gives
the solution to the original one. Then, the uniformization
technique allows to transform the continuous time problem
on (Yt) into a discrete time problem on a third associated
process(Zk). The rest of the paper exploits the specific
structure of(Zk) to derive an efficient computation scheme,
using standard markovian analysis methods.

Denote here byNs the number of customers in theopen
M/M/1 model, assumed to be empty at time0 to simplify
the presentation. Define

Yt = (Nt,Mt).

It is clear that(Yt) is a continuous time homogeneous
Markov chain while(Mt) is not Markov. This last fact
can be easily formally proved after the transformations per-
formed in this section. The fact that(Yt) is Markov can be
formally proved by checking the Markov property directly
from the definition, or by using the classical construction
from Poisson processes (see, for instance, the compact pre-
sentation in [1, 10.1]). The space state of(Yt) is the set

{(n,m) ∈ IN2 : n ≤ m}. Denoting byQ(x, y) the transi-
tion rate from statex to statey, the non-null transition rates
are

Q((n,m), (n + 1,m)) = λ, n < m,

Q((n,m), (n − 1,m)) = µ, n > 0,

Q((m,m), (m + 1,m + 1)) = λ.

The idea is to use the uniformization technique to ana-
lyze the (Yt) process. It consists of the following pro-
cedure (see, for instance, [4]): callA the infinitesimal
generator of(Yt) (if x 6= y, A(x, y) = Q(x, y), and
A(x, x) = −

∑

y:y 6=x Q(x, y)), and choose any real num-
ber Λ ≥ −A(x, x) for all statex. This realΛ is called
uniformization rate. Then build matrixP by P = I−A/Λ.
Matrix P is stochastic (its rows are probability distribu-
tions) and we have

eAt = e−(I−P )Λt = e−ΛtePΛt

(sinceP andI commute). Let(Zk) denote a discrete time
homogeneous Markov chain on the same state space than
(Yt), with the same initial distribution, and having transition
probabilitiesP . By a Taylor expansion ofePΛt,

Pr(Yt = y) =
∞
∑

k=0

e−Λt (Λt)k

k!
Pr(Zk = y). (2)

What relation (2) says is that we can obtain the distribu-
tion of the continuous time process(Yt) basically by an ex-
ponential transform of the distribution of the discrete time
process(Zk).

Let us chooseΛ = λ + µ. The non-null elements ofP
are

P ((0,m), (0,m)) = q,

P ((n,m), (n + 1,m)) = p, n < m,

P ((n,m), (n − 1,m)) = q, n > 0,

P ((m,m), (m + 1,m + 1)) = p,

where

p =
λ

λ + µ
and q =

µ

λ + µ
.

Figure 1 illustrates the structure of chain(Zk).

The remaining (and main) task is the analysis of the dis-
crete time process(Zk). So, the price to pay to be able to
work with a discrete time Markov chain, that is, to deal with
recurrencesinstead of differential equations, is to work now
with a bi-dimensional random walk. Let us denote

pn,l(k) = Pr(Zk = (n, l)).
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Figure 1. The chain Z.

The second component of each state(n, l) will be called the
level, and we will denote

Nl = {(n, l) : 0 ≤ n ≤ l}.

The set of statesNl will be called level l. Remark that if
we denote by(Uk) the discrete time Markov chain obtained
from (Nt) by uniformization with respect toΛ, then

{Zk = (n, l)} ≡ {Uk = n, max{Uj , j ≤ k} = l}.

In other words, observe that if we denote byO() the opera-
tor transforming(Nt) into (Yt) (by defining the associated
process(Mt)), that is, (Yt) = O((Nt)), and if we write
(Zk) = Unif((Yt),Λ), then(Zk) = Unif(O((Nt)),Λ) =
O(Unif((Nt),Λ)), that is, theO operator and the uni-
formization one, with respect to some fixed uniformization
rate, commute.

We have

Pr(Yt = (n, l)) =

∞
∑

k=0

e−Λt (Λt)k

k!
pn,l(k).

Observing that ifk < l, Zk can not be in levell,

Pr(Yt = (n, l)) =

∞
∑

k=l

e−Λt (Λt)k

k!
pn,l(k). (3)

Define

ql(k) = Pr(Zk ∈ Nl) =

l
∑

n=0

pn,l(k).

See that

ql(k) = Pr(max{Uj , j ≤ k} = l).

From (3), we have

Pr(Mt = l) =

∞
∑

k=l

e−Λt (Λt)k

k!
ql(k). (4)

So, the problem reduces to obtain a computational scheme
for theql(k)’s.

Let us show how to exploit the previous development in
a numerical procedure. Choose someε > 0. Then compute
(as usual when we use uniformization)

K = min

{

J :

J
∑

k=0

e−Λt (Λt)k

k!
> 1 − ε

}

. (5)

Define

m(t, l, ε) =

K
∑

k=l

e−Λt (Λt)k

k!
ql(k). (6)

We have
m(t, l, ε) < Pr(Mt = l)

and
Pr(Mt = l) − m(t, l, ε) < ε.

Resuming, givenλ, µ, L, T andε, the following procedure
returns the probabilityPr(MT = L) with absolute error
less thanε:

• if L = 0, return e−λT as the (exact) probability
Pr(MT = 0);

• if L > 0, computeK using (5) (a function ofλ, µ, T
andε):

– if K < L, return 0 (since, in that case, rela-
tion (6) says us that we havePr(MT = L) < ε);

– in the remaining case0 < L ≤ K, return
m(T,L, ε) defined in (6).

The rest of the paper will focus on deriving recurrences al-
lowing to work efficiently with theql() functions.

3 Analysis of the (Uniformized) Bi-
Dimensional Random Walk

The main relation to derive an efficient computational
scheme is given in the following result, where it is shown
that the probability for process(Zk) to be at levell by time
k, can be given as a function of the probabilities of being in
the “border” states(j, j) only.
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Theorem 1 If we denoteyl(k) = Pr(Zk = (l, l)) =
pl,l(k), then, for allk > l > 0, we have

ql(k) = p[yl−1(k − 1) − yl(k − 1)] + ql(k − 1). (7)

Proof. If we range the states by levels, and inside levell,
from (0, l) to (l, l) (see Figure 1), then the transition proba-
bility matrix P has the block structure

P =











P0 Q0 0 0 · · ·
0 P1 Q1 0 · · ·
0 0 P2 Q2 · · ·

· · ·











,

where matrixPl hasl + 1 rows andl + 1 columns and is
tridiagonal, and matrixQl hasl+1 rows andl+2 columns.
Indexing rows and columns from 0, the former is given, for
l ≥ 1, by

(Pl)0,0 = q,

(Pl)n,n = 0, 1 ≤ n ≤ l,

(Pl)n,n−1 = q, 1 ≤ n ≤ l,

(Pl)n,n+1 = p, 0 ≤ n ≤ l − 1

Matrix P0 is reduced to the scalarq. Matrix Ql has all its
elements null except(Ql)l,l+1 = p. For instance,

P2 =





q p 0
q 0 p
0 q 0



 and Q2 =





0 0 0 0
0 0 0 0
0 0 0 p



 .

Let ~z(k) be the distribution of the uniformized chainZk,
seen as a row vector, with the previously given order in the
state space. If we write

~z(l)(k) = ( p0,l(k) p1,l(k) · · · pn,l(k) · · · pl,l(k) ) ,

then

~z(k) = (~z(0)(k) ~z(1)(k) · · · ~z(l)(k) · · · ) .

From~z(k) = ~z(k − 1)P (the balance equations for(Zk)),
we have

~z(0)(k) = ~z(0)(k − 1)P0,

~z(1)(k) = ~z(0)(k − 1)Q0 + ~z(1)(k − 1)P1,

~z(2)(k) = ~z(1)(k − 1)Q1 + ~z(2)(k − 1)P2,

...

~z(l)(k) = ~z(l−1)(k − 1)Ql−1 + ~z(l)(k − 1)Pl.

Now, ql(k) = Pr(Zk ∈ Nl) = ~z(l)(k)1T, where 1 de-
notes here a row vector having all its components equal to

1, its dimension being defined by the context, and1T is its
transpose. We have

Ql1
T = p~eT

l , ~el = ( 0 0 · · · 0 1 )

andPl1
T =











1
1
· · ·
1

1 − p











= 1T − p~eT
l .

From the balance equations, we obtain

ql(k) = ~z(l−1)(k − 1)Ql−11
T + ~z(l)(k − 1)Pl1

T

= ~z(l−1)(k − 1)p~eT
l−1 + ~z(l)(k − 1)

(

1T − p~eT
l

)

= pz
(l−1)
l−1 (k − 1) + ql(k − 1) − pz

(l)
l (k − 1).

Recall that ifk < l, thenql(k) = 0. So, resuming,

• for k ≥ 0, q0(k) = qk,

• for all l, ql(l) = pl,

• and fork > l > 0,

ql(k) = p [yl−1(k − 1) − yl(k − 1)] + ql(k − 1),

which is the announced relation. •

Since(Mt) is the aggregation of(Yt) over the levels,
it is easy to verify that it is not Markov (for instance, by
checking that the sojourns in the levels are not exponential
–this can be done using Laplace transforms). See [5] for a
general work on this topic.

4 Computational Scheme

Let us define a new discrete time homogeneous Markov
chainW (l) = (W

(l)
k )k≥0, for anyl ≥ 0, having state space

{0, 1, · · · , l, l + 1}, transition probability matrix given in
block form by

(

Pl p~eT
l

0 1

)

and initial statel; statel+1 is then absorbing. Let us denote
the absorbing time ofW (l) by T (l) (that is,T (l) = min{k :

W
(l)
k = l +1}). The idea is of course that the space state of

W (l) is naturally associated with levell (subsetNl) of the
state space of(Zk), and that the evolution ofW (l) before
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absortion is stochastically equivalent to that of(Zk) in Nl.
In Figure 2 the graph associated with chainW (2) is given.

The distribution of the absorption time T (l)

Denotetl(k) = Pr(T (l) = k). For level 0 (a two-state
model), we have

t0(0) = 0, t0(k) = qk−1p ∀k ≥ 1.

For any levell ≥ 1 we trivially have by “direct inspection”
of chainW (l) that tl(1) = p andtl(2) = 0. We obviously
havetl(0) = 0, and it is not hard to obtain other values as
tl(3) = qp2. A general relation allowing us to compute the
distribution ofT (l) is given in the following result.

Relation 1 For anyl ≥ 1 andk ≥ 3, we have

tl(k) = q
k−1
∑

j=2

tl−1(j − 1)tl(k − j). (8)

Proof. To prove this relation, we first write

tl(k) = Pr(T (l) = k | W
(l)
1 = l − 1)Pr(W

(l)
1 = l − 1)

(recall thatW (l)
0 = l). Now, let us denote byR the time of

the first return ofW (l) to statel after time 1 (thus,R > 1).
We have

Pr(T (l) = k | W
(l)
1 = l − 1) =

k−1
∑

j=2

Pr(T (l) = k | R = j,W
(l)
1 = l − 1)Pr(R = j |

W
(l)
1 = l − 1).

From the strong Markov property,

Pr(T (l) = k | R = j,W
(l)
1 = l − 1) = Pr(T (l) = k − j)

and

Pr(R = j | W
(l)
1 = l − 1) = Pr(T (l−1) = j − 1).

Since we havePr(W
(l)
1 = l − 1) = q, the result follows.•

There is no room here to give more details on the prop-
erties of thetl() distribution. For instance, we can easily
check thattl(2h) = 0 if h = 0, 1, . . . , l. Also, tl(k) =
tl−1(k) for k = 0, 1, . . . , 2l − 1.

The probabilities Pr(W
(l)
k

= l)

The second useful tool in deriving the distribution we are
looking for is a relation to compute efficiently the numbers

ul(k) = Pr(W
(l)
k = l).

This is because the goal is to compute theyl() functions
which lead to theql() ones through Theorem 1, and be-
cause, as we will see, theyl() can be computed from the
tl() functions and theul() ones (see (12)).

Observe first that, for level 0,

u0(k) = qk k ≥ 0.

As for thetl() functions, we can prove the following re-
sult (which is done as for Relation 1):

Relation 2 For anyl ≥ 1 andk ≥ 2,

ul(k) = q
k−1
∑

j=1

tl−1(j)ul(k − 1 − j). (9)

But instead of using (9), see that

tl(k) = pul(k − 1), (10)

which follows simply by observing that to be absorbed at
time k, processW (l) must be back atl at timek − 1 and
that it must then go to the absorbing statel + 1.

Hitting time of (Zk) at level l

Let us now denote byFl the hitting time of chain(Zk)
at levell. Denote

fl(k) = Pr(Fl = k).

First,F0 = 0, so,f0(0) = 1 and for allk ≥ 1, f0(k) = 0.
For level 1,

f1(0) = 0, f1(k) = qk−1p ∀k ≥ 1.

For eachl ≥ 1, Fl ∈ {l, l + 1, · · ·}, so, if k < l then
fl(k) = 0.
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Relation 3 For l ≥ 2 andk ≥ l,

fl(k) =

k−1
∑

j=l−1

tl−1(k − j)fl−1(j) (11)

Proof. By conditioning and standard Markov techniques,

fl(k) =

k−1
∑

j=l−1

Pr(Fl = k | Fl−1 = j)fl−1(j)

=

k−1
∑

j=l−1

Pr(T (l−1) = k − j)fl−1(j)

=

k−1
∑

j=l−1

tl−1(k − j)fl−1(j).

•

An expression foryl(k)

Recall thatyl(k) = Pr(Zk = (l, l)). This means that
yl(k) = 0 if k < l. We also immediately haveyl(l) = pl.

For level 0,y0(k) = qk, k ≥ 0. The general relation
closing the analysis process is given in the following result.

Relation 4 For k ≥ l ≥ 1,

yl(k) =

k
∑

j=l

ul(k−j)fl(j) =
1

p

k
∑

j=l

tl(k−j+1)fl(j) (12)

Proof. We have, fork ≥ l,

yl(k) =
k

∑

j=l

Pr(Zk = (l, l) | Fl = j)fl(j)

=
k

∑

j=l

Pr(W
(l)
k−j = l | Fl = j)fl(j)

=

k
∑

j=l

ul(k − j)fl(j).

Using (10) to replaceul(k−j) by tl(k−j+1)/p concludes
the proof. •

Resuming, we must computem(t, L, ε) given by (6) (in
the case of0 < L ≤ K, whereK is defined in (5)). To

do this, we need numbersqL(L), · · · , qL(K), which in turn
need, to be computed, numbersyL(L), · · · , yL(K − 1) and
yL−1(L), · · · , yL−1(K−1). So, in fact, we only need these
last2(K −L) values, which are computed using (12). This
means that we must only run the recurrences given in Re-
lation 1 for thetl() functions and in Relation 3 for thefl()
ones, that is, we must only computetl(k) and fl(k), for
l = 0, 1, . . ., in order to reach levelsL − 1 andL, and ob-
tain the final valuestL−1(i) for i = 1, · · · ,K − L + 1 and
fL−1(j) for j = L − 1, · · · ,K − 1, and valuestL(i) for
i = 1, · · · ,K − L andfL(j) for j = L, · · · ,K − 1.

The cost of running (8) to obtain thosetl(k) values is
O(L(K − L)2/2) and the same for computing thefl(k)
ones using (11). So, the algorithm runs with computational
costO(L(K −L)2). WhenΛT � 1 (so thatK ≈ λT ), the
cost can be writtenO(L(ΛT − L)2).

It is particularly interesting to computePr(MT > L),
instead ofPr(MT = L). Slight modifications of the pre-
ceeding developments allow to do this directly. Define
Vk = max{Uj , j ≤ k} (recall that(Uj) is the occupation
process in the discrete time chain obtained by uniformiza-
tion of (Nt)). Writing then (4) as

Pr(Mt = l) =
∞
∑

k=l

e−Λt (Λt)k

k!
Pr(Vk = l),

we derive that

Pr(Mt > l) =

∞
∑

k=l

e−Λt (Λt)k

k!
Pr(Vk > l).

Now, Pr(Vk > l) = Pr(Fl+1 ≤ k) = fl+1(l + 1) + · · · +
fl+1(k). Thus, defining fork ≥ l,

gl(k) =
k

∑

j=l

fl(j),

we obtain the approximation

Pr(Mt > l) ≈
K

∑

k=l

e−Λt (Λt)k

k!
gl(k),

with K as before, thus with absolute error less thanε.

5 Some numerical examples

To illustrate the method, consider the case ofλ = 0.95
andµ = 1 (we scale, using as unit of time the mean ser-
vice time), leading to a load of0.95 and an average of 19
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Figure 3. For λ = 0.95 and µ = 1, this is the
plot of Pr(M5 = l), for level l from 0 to 20
(the curve appears as “continuous” just for a
better presentation.

customers in equilibrium. If the system is going to be con-
sidered for a very short period of time, for instance, for a
few units of time, the probability of reaching values close
to the mean backlog in equilibrium are, of course, very low.
For instance, Figure 3 plots the probability of reaching lev-
els 0 to 20 on the interval[0, 5].

In Figure 4 we plot the same quantities but on the period
[0, 15].

Following the ideas given in the Introduction, we plot
in Figure 5 the values ofPr(Mt > l) for a fixed value
of t (15 in the plot). We see that in a so short period of
time, the probability of observing a backlog greater than
l decreases very quickly withl. For instance, we have
Pr(M15 > 10) ≈ 0.00025. Recalling that the mean num-
ber of customers in equilibrium is 19 for this system, this
shows how to use the algorithmic tools given here for di-
mensionning purposes.

6 Conclusions

The derivation of an efficient computational scheme for
the distribution of the maximum level reached by a sim-
ple random walk in continuous time and over a finite pe-
riod [0, T ] could be done by elementary combinatorial tech-
niques mainly due to (i) the uniformization tool which al-
lows to work in discrete time, so, to work with recurrences,
and (ii) the particular structure of the model, allowing to

0
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0 5 10 15 20

Figure 4. For λ = 0.95 and µ = 1, this is the
plot of Pr(M15 = l), for level l from 0 to 20
(the curve appears as “continuous” just for a
better presentation).
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Figure 5. For λ = 0.95 and µ = 1, this is the
plot of Pr(M15 > l), for level l from 0 to 20
(the curve appears as “continuous” just for a
better presentation).
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define an iterative process.

This last point allows easily to deal with more complex
structures, for instance, to deal with random walks with
phase-type distributions. This topic, and the detailed im-
plementation of the resulting algorithms, are now under in-
vestigation. The corresponding recurrences are now matrix
ones but the general idea is the same.

References
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