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sailles, where she holds an associate

professorship, at INRIA and INRETS, in

Paris. Her Bachelors, Masters and PhD

degrees are from MIT and Ecole Nationale

des Ponts et Chaussees, Paris. She has

numerous publications in journals and

conference proceedings, and is an Associ-

ate Editor of Networks and Spatial Eco-

nomics.

Parijat Dube received his MS in Electrical

Communication Engg. from the Indian

Institute of Science, Bangalore, in 2001

and his PhD in Computer Science from the

University of Nice-Sophia Antipolis in 2002,

where he was affiliated to INRIA, Sophia

Antipolis, France. He joined IBM T. J.

Watson Research Center, Hawthorne, NY,

in 2002. His research interests include

queuing theory, performance evaluation

and control of communications networks,

sensor networks, revenue management

and pricing.

Yezekael Hayel received a MS in Statistics

and Stochastic Modelling and a MS in

Computer Science, both from University of

Rennes I, France, in 2001 and 2002. He is

currently in the third year of his PhD. His

research interests include network model-

ling, performance evaluation, queuing net-

work, pricing for communication networks

and QoS.

ABSTRACT
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The field of information technology (IT) ser-
vices, and, in particular, on-demand IT utilities
is an emerging field of application for yield
management. A detailed analysis of one instance
of that model is provided, both in simplified
cases where an analytical analysis is possible,
and numerically on larger problem instances,
and the significant increase in revenue that can
accrue through use of yield management in an
IT on-demand operating environment is stu-
died.
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INTRODUCTION

Business environments today, in the infor-
mation technology (IT) era, are both dynamic
and unpredictable. To compete, firms must
react quickly, in terms of both their pricing
and the services or goods that they offer.
Just-in-time paradigm and supply chain
optimisation have been a part of this ten-
dency, but e-commerce has made it more
acute. Thus, there is a need for more effi-
cient business models that can pave the
way for transforming the way firms con-
duct business.

‘IT on demand’ is a business paradigm
touted by the major players in the IT
sector. In short, an on-demand business is
one whose business processes are integrated
end-to-end and who can respond quickly
to changes in customer demand or market
characteristics. IT on demand, in particular,
concerns the ability of a business to access
information technology — software,
online services, computational or memory
capacity — when it is needed, without any
visible impact to the business or its clients.

IT on demand takes advantage of high
network speeds and sophisticated middle-
ware which allow seamless operation of IT
resources, remotely. IT on demand is
clearly a win–win proposition: it opens
new markets for the IT provider as well as
new capabilities for the customer. The on-
demand IT provider experiences consider-
able scale economies through resource shar-
ing; the customer saves on outlay expenses,
converts purchases to operating costs, and
reaps the savings of the scale economies
passed on by the provider.

One example of an on-demand IT ser-
vice that exists today is the case of dynamic
off-loading of Web content. When a custo-
mer, such as an online retailer, experiences
very heavy website traffic, that retailer may
have its excess traffic automatically redir-
ected to an off-loading service. The process
is invisible to end-users of the retailer.
Many other potential applications of on-

demand IT are on the horizon: application
service providers running software applica-
tions on their own cluster of servers and
allowing customers, for a fee, to use those
applications remotely is one such example.

Yield management is a potentially valu-
able paradigm for achieving profitable
resource allocation in an on-demand IT
centre. For example, yield management
could be used by the Web content off-
loading service provider to allocate its own
capacity optimally and profitably; in this
case, the provider would set capacity allo-
cations (server use, storage and bandwidth)
and multiple price points to offer to custo-
mers, depending on the available resource
level of the service provider, as well as the
market demand. Similarly, computing cen-
tres that rent processing capacity to custo-
mers can operate more profitably and
more efficiently by incorporating yield
management.

Yield management is the technique used
by the airline reservation systems to set
booking limits on seats at each price class.
Similar to the airline setting, in an on-
demand operating environment, customers
and jobs or service requests arrive at
random. Whereas some of the IT system
resources are pre-reserved, the real-time
arrival of new customers introduces the
means to accomplish any number of
desired service objectives by setting prices
judiciously.

For example, when spare capacity exists,
introducing dramatically low prices serves
to induce new demand into the system.
Yield management allows the provider to
set dramatically low prices without sacrifi-
cing profits. On the contrary, it was
proved by Wynter et al. (2004) that, under
certain conditions, as the number of price
points increases, the revenue increases.
When usage costs are increasing linearly or
sub-linearly in the number of users, as is
generally the case, profits can be shown to
increase monotonically as the number of
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price points increases as well, in spite of the
fact that some price points can be set
below cost. The key to the remarkable
increase in revenue and profits is that the
number of slots available at each price
point is limited and set optimally so as to
maximise revenue, given the demand
model and available resource level.
This paper analyses the model intro-

duced by Wynter et al. (2004), both analy-
tically and numerically. The analytical
study is carried out on a simplified version
of the model with only price points and
fixed job sojourn times; as such, it provides
a bound on what can be said about the
full-scale model. The numerical study then
illustrates the benefits that accrue and the
present model can provide and confirm the
tractability of the yield management para-
digm to the IT on-demand context.
The setting of this work is the adapta-

tion of yield management techniques to the
management of an on-demand computing
centre. A ‘computing centre’ can be
defined as a group of computing resources
that perform one or more related func-
tions. Typically, a computing centre may
be composed of a number of processor
resources (eg servers), disk storage, applica-
tion, software tools etc. A computing
centre in an on-demand scenario needs to
support customers with varying job sizes
and varying computing resource require-
ments in a ‘profitable’ manner. Though
existing resource management techniques
used in computing centres aim to satisfy
constraints associated with the computing
needs of the customers, the pricing of ser-
vice offerings is typically handled sepa-
rately from and independent of the
resource management system.
While airline yield management models

are clearly of great relevance to the pro-
blem of yield management in on-demand
IT services, there are notable differences
which lead to significantly higher com-
plexity in the present setting. First and

foremost, the service under consideration
in IT on demand does not have a fixed
duration nor does it occupy a predeter-
mined percentage of the resource capacity.
That is, an airline seat is occupied precisely
for the duration of the flight, and the
number of seats to sell on any flight is
known in advance. For example, such
work as is found in Kleywegt (2001), Lit-
tlewood (1972), van Ryzin and Vulcano
(2003) and Talluri and van Ryzin (2001)
does not have these features.
Conversely, in on-demand IT utilities,

the duration of a job depends on the type
of server upon which it runs, and the
number of servers, if it is parallelisable;
further, the number of servers it requires
depends on the type of servers that are
used. In other words, both the capacity
needed and the time taken by a job are not
simple, exogenous parameters in the com-
pute on-demand yield management pro-
blem.
Some features of this time variability can

be observed in other sectors, such as hotell-
erie, in which hotel stays span varying
numbers of nights, restaurant yield man-
agement, in which visits span varying
numbers of hours, and even golf course
yield management (see, for example,
Kimes et al., 1999; Kimes, 2001). Nonethe-
less, the capacity and percentage of capacity
occupied in these latter examples are still
fixed and exogenous, as opposed to the set-
ting with which the present study is faced.
However, like the airlines, there may be
the possibility to have ‘fences’ (eg Saturday
night stay requirements) in the yield man-
agement of computing resources to prevent
significant revenue dilution. This can be
implemented by selling memory or CPU
in chunks of predefined units, so that a job
which requires a fractional unit of
memory/CPU has to buy the full unit.
Work on the pricing of information ser-

vices, such as the pricing strategies of Inter-
net service providers (ISPs) has
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traditionally considered some of these issues
of job duration and capacity occupation
through queuing formulae. The literature
on that and related areas is quite vast, and a
thorough survey of it is not the focus of
this work, but a few relevant references are
Elazouzi et al. (2003), Liu et al. (2003) and
Mason et al. (1995). The difference between
the decisions optimised in those and related
work is the degree of segmentation of the
demand and choice functions. In the Inter-
net pricing world, a single price per type
of service is proposed. It is sometimes the
case that multiple qualities of service are
discussed but, in that case, each quality of
service (QoS) level has a single fixed price
associated with it. The number of such
price levels is generally limited to three, for
example, gold-, silver- and bronze-level
service. The yield management strategy
takes customer segmentation to a much
finer level and does so through the incor-
poration of demand models.

Some work in computing resource allo-
cation is relevant to this work as well. In
particular, Liu et al. (2001) make use of ser-
vice-oriented characteristics and perform
the resource allocation by maximising rev-
enue less a unit cost (penalty) for non-satis-
faction of the service level agreements
offered to that service class. However, this
approach takes as given, some fixed revenue
or cost that accrues to the system if the
request is satisfied or not.

The structure of the paper is as follows.
The next section presents a simplified ver-
sion of the model proposed in Wynter et
al. (2004) and studies it analytically. The
third section contains a numerical study of
the model, and the final section concludes.

MODEL AND ANALYSIS

It is assumed that the on-demand service
infrastructure is composed of a pool of
homogeneous nodes (processing units) to
allocate to different fee classes. The optimi-
sation problem that needs to be solved is

then the following: in a particular time
epoch (this paper considers only one), one
would like to reserve the available resource
for the different fee classes. The resource
should be allocated so as to maximise
expected provider revenue, which is related
to the distributions of different customer
arrival types, their preferences (in terms of
service/price trade-offs) as well as their ser-
vice requirements, and to the number of
nodes assigned to each fee class, on each
server type.

Fee classes are defined as follows: for an
identical resource, several different prices
may coexist; each fee class then has a maxi-
mal number of users, and once that
number is reached within the time period
for that fee class, new requests are offered
only at the next higher level fee for that
resource.

Resources are also defined in a broad
way. While a server and storage are clearly
aspects of the resource, so are the Service
Level Agreement (SLA) parameters, such
as availability, advance notice, penalties in
the case of non-satisfaction of SLAs by the
provider, etc. The broad scope of the
resource in this manner allows the price
differentiation to become still finer grained;
that is, for an identical server/storage com-
bination, different SLA offerings create
new sets of fee classes.

With respect to notation, Tc is the (here,
deterministic) sojourn time of a job of class
c in the system. While job sojourn time
generally depends upon the workload or
size of the job W, and, especially, the
number of slots allocated to that job, that
dependence leads to non-convexities;
indeed the number of slots nk to allocate to
each price class k is the decision variable.
Therefore, this paper assumes the job
sojourn time to be externally provided.

The choice probability of a user accept-
ing a slot of segment-type k can be
expressed in general as a function of W
and n, where n is the vector of nks. Again
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for analytical simplicity, the dependence on
the particular workload has been sup-
pressed, and the use of a choice probability
of the form Pk(n) has been used. The deci-
sion variables are denoted by nk, represent-
ing the number of resource slots to reserve
for price segment k. Recall that only one
time epoch is being considered here. The
parameters rk are the price points of the
resource. By enumerating a wide range of
such prices, the optimisation model works
by identifying those price segments which
are most profitable to offer, given the char-
acteristics of the available demand and
resource levels.

Simplified two-variable model

As stated earlier, a simplified model with
single customer class and two different
prices per node is considered, ie r1=r2;
further, let Tc=T. Under these simplifica-
tions, the model can be analysed and
bounds obtained on parameters for the
existence of an explicit closed form solu-
tion. The simplified yield management for
IT resource model can be expressed as

max
n1;n2�0

Fðn1; n2Þ ¼
X2
k¼1

TrknkPkðnÞ

n1 þ n2 � N

ð1Þ

Recall that the decision variable is n={nk},
the number of slots to allocate to each
price class k. Alternatively, one can assume
the resource limits as soft constraints and
include the possibility to surpass those
limits at a cost associated with having to
make use of remote resources or to pay a
penalty to the customers. While the results
in this paper cannot be extended in general
for any number of parameters, they, along
with the larger-scale numerical results, pro-
vide a valuable insight into the nature of
the problem under study.
To model the behaviour of customers or

job requests, a stochastic discrete choice
function is introduced. That is, the logit

model is used, which randomises the utility
of choice i by a Weibull random variable
and normalises that quantity by the sum of
all randomised choice utilities. For more
details on the logit discrete choice function,
Ben-Akiva and Lerman (1985) remains a
good introductory source.
That is, for all k

PkðnÞ ¼
e��UkðnÞPk
j¼1 e

��UjðnÞ

where y is the control parameter that
determines the degree of randomness of the
user choice model. Thus, y=0 means that
the choice is purely random and does not
depend upon the utilities (but rather is con-
stant at 1/K), and y= ¥ means that the
choice is purely deterministic in that, when
k is the minimum disutility choice, the
probability of choosing it is equal to 1, and
the probability of choosing any other
option k=j is 0. Here, as the number of
price segments is set to K=2, the pair of
logit preference functions is obtained

P1ðnÞ ¼
1

1þ e�ðU1�U2Þ

and

P2ðnÞ ¼
1

1þ e�ðU2�U1Þ

where the (dis)utility function for k=1,2 is

UkðnkÞ ¼ �1Trknk þ �2T

The parameters �1 and �2 are constants that
define the price–time trade-offs and render
the utility Uk unitless. There are different
ways to define these parameters, but a
single, deterministic, parameter vector was
chosen for all customers. The utility func-
tion is thus linear in the decision variable
nk.
Explicitly including the logit discrete

choice model into the objective function
for this two-price-segment model gives
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max
n1;n2�0

T

r1n1
1þ e��1Tðr1n1�r2n2Þ

þ r2n2
1þ e��1Tðr2n2�r1n1Þ

� �
n1 þ n2 � N

ð2Þ

As the revenue is maximum when all
resources are occupied, this implies that the
inequality constraint will be active at the
solution. In this case, to simplify the added
complexity posed by the logit model, the
equality constraint will be used in eliminat-
ing one of the two decision variables from
the formulae, since they sum to a constant.
That is, the expressions are rewritten in
terms only of n1 as n2=N–n1. The follow-
ing objective function is thus obtained,
where the first and second terms of (2) are
labelled f(n1) and g(n1), respectively

Fðn1Þ ¼ T½ f ðn1Þ þ gðn1Þ�

Analytical solution of the model

The advantage of expressing the yield
management model for a single time
period and with only two possible price
segments is that it can be solved analyti-
cally and the form of the objective func-
tion can be examined. Setting

yðn1Þ :¼ e��1Tn1ðr1þr2Þ���1Tr2N ð3Þ

after some manipulation, the derivative of
the objective function with respect to the
single variable n1 is (denote the derivative
of any function by putting a dot over the
function)

_FFðn1Þ ¼T

�
r1

ð1þ yÞ2
ð1þ y� n1 _yyÞ

� y2
r2

ð1þ _yyÞ2

ð1 ¼ y�1 � ðN � n1Þ _yy=y2Þ
�

By setting =0, to obtain optimal n1, one

needs to solve the following equation

y2r2 þ yðr2 � r1Þ þ _yy½r1n1 � r2ðN � n1Þ� ¼ r1
ð4Þ

In addition, one has that

_yyðn1Þ ¼ ��1Tðr1 þ r2Þyðn1Þ

and thus (4) becomes

y2r2 þ yHðn1Þ ¼ r1 ð5Þ

with

Hðn1Þ :¼r2 � r1 þ ��1Tðr1 þ r2Þ
½r1n1 � r2ðN � n1Þ�

ð6Þ

Solving (5), one obtains

y
ffiffiffiffi
r2

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ðn1Þ
4r2

þ r1

s
�Hðn1Þ

2
ffiffiffiffi
r2

p

Define

Mðn1Þ :¼
1ffiffiffiffi
r2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ðn1Þ
4r2

þ r1

s
�Hðn1Þ

2r2
ð7Þ

Thus, the optimal is characterised as a solu-
tion to the following fixed point equation

yðn1Þ ¼ Mðn1Þ ð8Þ

Lemma 1
Let

r1 � e���1Tr2N ½r2 � r1 � ��1Tðr1 þ r2Þ
Nr2 þ r2e���1Tr2N �

and

r1 � e��1Tr2N ½r2 � r1 þ ��1Tðr1 þ r2Þ
Nr1 þ r2e��1Tr2N �

Then, M(0)=y(0) and M(N)=y(N).

Proof
Using (3), (6) and (7), the result follows
using straightforward algebra. &
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Proposition 1
Let the number of slots for each price class
be defined over a closed, bounded subset of
<þ; that is, n1ni 2 ½0;N�, for each i=1,2.
Then, one has a necessary and sufficient
condition to the existence of a valid solu-
tion of the fixed point equation (8).

Proof
The left-hand side of (8) is strictly increas-
ing as its derivative is

_yyðn1Þ ¼ ��1Tðr1 þ r2Þe��1Tn1ðr1þr2Þ���1Tr1 > 0

and the right-hand side, , is strictly decreas-
ing as its derivative is

_MMðn1Þ ¼
��1Tðr1 þ r2Þ2

2r2�
Hðn1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2ðn1Þ þ 4r1r2
p � 1

�
< 0

The continuity of the functions y and M
and the result of Lemma 1 give the desired
result. &
Figure 1 presents an example of this

fixed point problem with constant job
times T=2, logit scaling parameter
y=0.05, value of time constant �1=1,
prices at the two price levels r1=3, r2=6,
and total available capacity N=10. In this
particular case, the optimal solution is and
slots at each of the two price levels.

Analytical solutions in two variables

It is possible to express the optimal solution
analytically as a function of the problem
parameters, T, y, �1, r1, r2 and N. To do
so, however, one makes use of a Taylor
expansion. One first makes the following
assumption.

Proposition 2
Let the logit scaling parameter y satisfy

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

n1

Figure 1: Fixed point solution of (8) with two classes and logit discrete choice model and the

corresponding revenue
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� � "

�1TNmaxðr1r2Þ

Then, the Taylor expansion is valid with a
given precision e.
Proof
Refer to Appendix. &

The Taylor expansion of the exponential
term in the logit function gives

e��1Tn1ðr1þr2Þ���1Tr2N ¼ 1

þ ��1Tn1ðr1 þ r2Þ
� ��1Tr2N þ oðn21Þ

ð9Þ

Lemma 2
Making use of Proposition 2 and Lemma 1,
one has the following condition on the
price points r1 and r2

e"ðr2 � r1 � "ðr1 þ r2Þ þ r2e�"Þ
� r1 � e"ðr2 � r1 þ "ðr1 þ r2Þ þ r2e"Þ

Remark
From Lemma 2, observe that, as e tends
towards 0, the two price levels must con-
verge to a single price, ie jr1 � r2j � Dð"Þ,
with lim"!0Dð"Þ ¼ 0 and _DDð"Þ < 0. It is
not necessary, however, for "!0, as it is
sufficient that " be small for the expansion
to be valid.

Now, using the Taylor approximation
from (9) in (8), one has (with oðn21Þ � 0)

1þ ��1Tn1ðr1 þ r2Þ � ��1Tr2N

1ffiffiffiffi
r2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ðn1Þ
4r2

þ r1

s
�Hðn1Þ

2r2

ð10Þ

Solving (10) (refer to Appendix) and after
some manipulation, one obtains an explicit
expression for n�1 (See equation below).

One may now compare this analytic
solution found using the Taylor approxi-
mation with the solution obtained numeri-
cally from the optimisation code. Consider
an example with y=0.05, �1=1, �2=2,
r1=2, r2=3, N=1 and T=2. By running
the optimisation code, one obtains the solu-
tion n�1=0.1973, with a corresponding
optimal revenue of 2.6007, and using the
Taylor approximation, one obtains
n�1=0.2131, with a maximum revenue of
2.6004. Thus, the optimal number of slots
for class 1 obtained through the approxi-
mation has an error of �n�1=8 per cent,
and the revenue difference, taking into
account class 2 as well, is essentially zero.

Figures 2 and 3 show a different example
with three price levels, ie K=3, and a het-
erogeneous sojourn time in that each job
class c offers a different sojourn time, Tc.
The parameters for this numerical example
are y=0.05, �1=1, �2=2, r1=2, r2=4,
N=10. The solution is n�1=5.2281,
n�2=2.9909 and n�3=1.8110.

While it is observed from Figures 2 and 3
that the solution map is neither concave nor
quasi-concave (ie its level sets are not
convex), it is a ‘nice’ non-convex function in
that a standard gradient ascent algorithm
will generally converge to the global maxi-
mum, as can be observed well from the two
figures and from the numerical experiments.

Induced demand curve

In Wynter et al. (2004), the IT yield man-
agement model was described in terms of

n�1 ¼
ð2��1Tr2N þ ��1Tr1N � 2Þ
��1Tðr1 þ r2Þð2r2 þ r � r1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ð2� 2��1Tr2N � ��1TrNÞ2 � ð2r2 þ r1Þ

�
2� 2 r1

r2
þ ��1Tr2Nð�4þ ��1Tr2NÞ

��
��1Tðr1 þ r2Þð2r2 þ r1Þ

vuuut
ð11Þ
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Figure 2: Solution with three classes and logit discrete choice model
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Figure 3: Level sets of the solution with three classes and the logit discrete choice model
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price–demand curves. While it is straight-
forward to use demand curves in comput-
ing optimal yield management prices and
quantities, it is difficult to calibrate such
curves for multiple parameters such as
price, delay, reliability, etc. For the sake of
understanding the logit-based, multi-para-
meter model, and comparing it to the
understanding of the optimal yield man-
agement prices and quantities with a
demand curve, an induced demand function
from the logit model within the optimisa-
tion code with K classes is computed here.
For example, if K=2, the equations used
in the optimisation code are given by (1).

The induced demand function is gener-
ated by determining the expected quantity
that subscribes to the IT service based on
the multivariate logit model at a given
price, all other data being fixed. Then, this

is repeated at a number of different prices
to permit tracing the curve. One expects at
the very least that the induced demand
function is a decreasing function of price.
The induced price–demand function is illu-
strated first in two dimensions. In Figure 4,
one such demand curve (solid line) is gen-
erated in this manner. The dotted line
above illustrates the revenue curve with
price, that is R(p)=pd(p), where d(p) is the
induced demand curve shown below it.

Analytical solution using the induced

demand curve

Figure 5 plots the optimal yield manage-
ment solution, as obtained analytically
from the induced demand function (see
Wynter et al. (2004) for more details on
solving analytically for the yield manage-
ment results using demand curves). The
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Figure 4: Demand function for the kth class with the logit discrete choice model and y=0.5
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‘analytic’ optimal solution illustrates the
increase in revenue as the number of price
segments increases, using the induced
demand curve directly. That is, each point
on the optimal revenue curve is obtained
by plotting the expected revenue when the
value (in terms of the actual prices to offer
and quantities to offer at each price) of
each segment is determined optimally.
The optimal revenue curve, obtained

through the use of the induced demand
curve, is useful in pointing out where the
trade-off in increasing complexity due to a
high number of price segments is balanced
by a revenue that increases very little. For
example, Figure 5 shows that the revenue
is close to its asymptotic value at around 70
price segments, and within 10 per cent of
that value at around 30 segments.
It is possible to induce such a demand

curve in three dimensions as well, by
taking into account both price and service
quality on separate axes.
Figure 6 illustrates such a three-dimen-

sional demand curve which depends on the
unit price and on the sojourn time sepa-
rately. Note that the form of the induced
demand curve in three dimensions is the nat-
ural extension of what is seen in two dimen-
sions, in that the behaviour of each of the
parameters on the demand is similar.
Making use of such curves in a higher
dimension would be difficult in practice,
however, owing to the large amount of data
that would be necessary for their calibration.

YIELD MANAGEMENT FOR WEB

TRANSACTION DATA

The optimisation model is applied to Web
transaction data over an eight-day horizon.
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Figure 5: Total revenue as a function of the number of price segments used, where the location and

quantities offered at each price segment are optimised
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The data do not include job durations;
therefore all jobs are considered to have
unit duration (here, the time unit is one
hour).

The subscription works as follows: some
users, not willing to pay high prices for
service, subscribe only if they can obtain
the service at an acceptable price level to
them. If no such acceptable price is avail-
able (not offered, or the maximal quantity
is attained) those customers ‘go elsewhere’.
Other users with higher willingness-to-pay
can still subscribe, until their threshold is
reached, and so on. Therefore, depending
upon the prices offered and the available
quantities of each, a different share of the
market can be captured, and revenue will
thus vary as well.

The objective of the yield management
system is to determine which offerings to

propose to customers, and the optimal
quantity of each offering to propose, so as
to maximise the potential revenue. Here,
the output of such a system is illustrated in
terms of the optimal number of slots to
propose at each of the price levels, and
then the resulting revenue stream is com-
pared with the base case, in which a single
price per QoS is charged.

The transaction data represent the
demand at each point of time. The yield
management system model allows for the
possibility that a user does not accept any
of the offerings proposed. This series of
examples considers a single QoS level and
multiple prices for that QoS, with the
quantities of slots available at each price
limited by a number to be determined by
the yield management system. Possible
price levels are determined in advance,
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Figure 6: Three-dimensional demand function, in price and sojourn time, for some class k using the

logit discrete choice model with y =0.5
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with not necessarily all price levels open in
the optimal solution; the possible set of
price points is given to the right in Table
1. In the left-hand column of the table, a
variable number of price segments in each
optimisation run is considered, from one
single price (be it high, medium or low) to
six price points.
Figure 7 illustrates the optimal revenue

over time when two to six price segments
are made available to customers, in limited
quantities. Note that the topmost (dashed)
curve is the total demand, not the revenue,

and illustrates the peaks and valleys in the
demand pattern. The revenue accrued
under each simulation (two to six price
segments on offer) is indicated in the lower
series of curves. The larger numbers of
price segments (five to six) clearly gives
higher revenue during peak periods,
whereas during periods of lower demand,
two to three price segments on offer is
optimal. A higher number of segments on offer
maximises revenue when demand is high; for
low demand (valleys), a more modest number of
price segments is optimal.

Table 1: Input data on possible prices for each simulation, in which one to six price
segments are offered to customers in limited quantities

K, max. number of price points Actual price points, normalised to p [ [0,1]

1, single low price 0.2
1, single medium price 0.6
1, single high price 1
2 0.4 0.8
3 0.3 0.6 0.9
4 0.2 0.4 0.6 0.8
5 0.2 0.4 0.6 0.8 1
6 0.2 0.35 0.5 0.65 0.8 0.95
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Figure 7: Revenue stream for different numbers of price segments on offer. Time periods on the x-

axis are evenly spaced (in units of hours) over an eight-day planning horizon. Note that the units of

demand (transactions) are different than that of revenue (dollars)
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Figure 8: Optimal revenue for five different time periods (periods off-peak 40, medium 80, medium

120, peak 160 and off-peak 200) over the five different yield management strategies (offering two to

six price segments)
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Figure 8 summarises the data in Figure 7
for certain time periods, for increased
clarity. In particular, five time periods
were chosen, with alternating peak flows
and off-peak flows, to illustrate how the
optimal number of price segments to offer
varies.
Figure 9 compares the revenue when

only one price segment is offered (for three
cases: a low, medium or high price). Figure
9 shows the optimal revenue with a strat-
egy of offering five price points (irrespec-
tive of the demand level). Observe that the
five-price-segment offering is always super-
ior to offering a single price, irrespective of
whether a low, medium or high single
price is offered. Furthermore, from the
above figures, it is known that the yield
management system would not suggest
always proposing five price segments irre-
spective of the load level, but would allow
further revenue increase by modulating the
number of segments to offer with the
demand level (fewer segments when
demand is low, more when it is high).

CONCLUSION

This paper has analysed a yield manage-
ment model for on-demand IT services
such as e-commerce services or data proces-
sing centres. It has provided a means of
determining an optimal reservation of
resources in order to maximise expected
revenue, as well as a detailed analysis of the
resulting optimisation problem when the
number of class of prices is small. Finally,
it provides numerical results on time series
data of Web transactions that illustrate the
substantial impact of the approach on ser-
vice-provider revenue.
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APPENDIX

Proof of Proposition 2

Given that 04n14N, the Taylor expan-
sion holds with precision e>0 if

�" � ��1Tn1ðr1 þ r2Þ � ��1Tr2N � "

Considering that 04n14N, one has

��1Tn1ðr1 þ r2Þ � ��1Tr2N

� ��1Tr1N � ��1TNmaxðr1; r2Þ

which should be less than e by assumption.
Secondly, one has

��1Tn1ðr1 þ r2Þ � ��1Tr2N � ���1Tr2N

� ���1TNmaxðr1; r2Þ

which should be greater than –e by
assumption. One obtains

" � ��1Tn1ðr1 þ r2Þ � ��1Tr2N � "

the desired result, when

� � "

�1TNmaxðr1; r2Þ

Closed form solution for

From (10), one obtains

1 ¼ ��1Tn1ðr1 þ r2Þ � ��1Tr2N þHðn1Þ
2r2

¼ 1ffiffiffiffi
r2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ðn1Þ
4r2

þ r1

s

)
�
1þ ��1Tn1ðr1 þ r2Þ

� ��1Tr2N þHðn1Þ
2r2

�2

¼ H2ðn1Þ
4r22

þ r12

Hence, with A ¼ ��1Tðr1þ r2Þ and

B ¼ 1� ��1Tr2N, one has

ðAn1 þ BÞ2 þ ðAn1 þ BÞHðn1Þ
r2

¼ r1
r2

One thus obtains the following quadratic
equation

n21

�
A2 þ A��1Tðr1 þ r2Þ2

r2

�

þ n1

�
2ABþ A

r2
½r � 2� r1 � ��1Tr2Nðr1 þ r2Þ�

þ B
r2
��1Tðr1 þ r � 2Þ2

�
ð12Þ

The first term on the LHS is equal to

�2�21T
2ðr1 þ r2Þ2ð2r2 þ r1Þ

the second term is

2��1Tðr1 þ r2Þð2� 2��1Tr2N � ��1Tr1NÞ

and the third, constant term is

2� 2
r1
r2
þ ��1Tr2Nð�4þ ��1Tr2NÞ

Solving (12), one obtains (11).
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