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Abstract

One important task in current and future communication networks is to define a suitable pricing scheme. It is then

preferable to formulate a mathematical model, so that parameters will be optimized and important properties such as

fairness or truthful anticipated load revelation (or incentive compatibility) will be verified. In this paper we study a sim-

ple and promising scheme called the cumulus pricing scheme, which can address service differentiation and scalability

among other issues. Based on a mathematical model, we determine values for optimizing the provider�s revenue, which
happens under the constraint that each user has an incentive to reveal its anticipated load. This has led to a small var-

iation of the initial model from the literature as in the modelling, cumulus points are translated into financial terms, and

measurements induce a cost as well.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Internet is experiencing a tremendous

growth of its traffic and a transformation of its

architecture. The current flat-rate pricing scheme,
adopted by most Internet Service Providers (ISPs),

is an incentive to over-use the network which, in
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conjunction with the increasing number of sub-

scribers, drives to congestion, which in turn reduces

the quality of service (QoS). A usage-based pricing

scheme would overcome this drawback. Similarly,

the future network architecture will have to re-
spond to different QoS requirements of different

types of applications. Architectures such as Diff-

Serv [5] deal with this problem, but an adapted

pricing scheme has to be associated with it, lest a

user always chooses the service class providing

the best QoS. Devising a new pricing scheme is

the subject of extensive research; the reader is
ed.
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invited to see [2–4,6,11,18,19] for introductory or

overview papers listing the existing schemes.

We deal in this paper with the so-called cumulus

pricing scheme (CPS) [10,12,16,17]. In this scheme,

a contract is negotiated between the ISP and the
users. Then, during periods of time, the utilization

is measured and (positive or negative) cumulus

points are awarded, depending on how far the user

seems to be from the contract specifications.

Threshold values of consumption fluctuations are

used in order to award the cumulus points. After

a while, the contract is renegotiated if the total num-

ber of cumulus points exceeds a given value. In
addition, at a given time, extra-fees can be charged.

The CPS is promising due to its simplicity and

adaptability (to DiffServ architecture for instance),

in part because it is applied at the edge of the net-

work and because it is close to flat-rate pricing. In

this paper, we study the CPS from a mathematical

point of view. Our contributions are the following:

• We take a deeper look at the economic model by

studying, from the user and the network points

of view, the benefits in terms of the threshold

values. In our model, each cumulus point is

translated into financial terms, as well as is the

measurement procedure for the network.

• We then show, by mathematical analysis, that

the initial CPS creates an incentive to ‘‘cheat’’,
by not revealing the anticipated resource

consumption.

• By a slight modification of the model, we give a

sufficient condition on threshold values under

which truthful revelation is the most profitable

strategy for the users. Remarkably, our suffi-

cient condition is independent of the user�s util-
ity function, which represents his valuation of
the required service, and is hardly known in

practice.

• Then, under this constraint, we present some

elements helping the provider with the choice

of the threshold values in order to maximize

its revenue. In a general setting, we claim that

analytical results are intractable to obtain; we

then use a simulated annealing algorithm. Nev-
ertheless, in some particular cases, like with

symmetric or linear thresholds, we have been

able to obtain explicit results.
The paper is organized as follows. In Section 2

we describe and analyze the CPS: Section 2.1 pre-

sents the model given in the literature; Section 2.2
gives some additional definitions of provider�s rev-
enue and user�s overall level of satisfaction that
will be helpful in our analysis; Section 2.3 shows

that the CPS does not provide an incentive to re-

veal the real anticipated network consumption.

Based on this result, we slightly modify the origi-

nal CPS model in Section 3 by penalizing every

over-use of the network. We then give some condi-
tions over threshold values under which each user

has no incentive to cheat. Under this condition,

Section 4 works on setting threshold values maxi-

mizing the provider�s revenue. Some numerical
illustrations of our results are given in Section 5

and the conclusions and directions for future re-

search are presented in Section 6.
2. The cumulus pricing scheme (CPS)

In Section 2.1, we describe the cumulus pricing

scheme as devised in [10,13,12,16,17]. The truthful

anticipated consumption revelation property is

studied in Section 2.3.
2.1. Model presentation

The CPS is characterized by a feedback mecha-

nism that operates at different time-scales. First,

over a long time-scale, a contract is negotiated be-

tween the user and the provider, defining a flat-rate

pricing. Over a short time-scale, the actual con-

sumption is monitored and, over a medium time-
scale, the cumulative user behavior is reported

back through a feedback mechanism (the so-called

cumulus points) indicating how far the consump-

tion is from the service requirement specification.

The accumulation of points over the long time-

scale can then result in a renegotiation of the

flat-rate contract, and so on.

Formally, define V(t) as the actual resource
consumption at time t (i.e., short time-scale) and

let x be the stated expected requirement (as defined

in the contract). The time interval is decomposed

in measurement periods [ti, ti+1] (i.e., the medium
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time-scale) (iP 1), so that the over- or under-uti-

lization over period [ti, ti+1] is

Di ¼
Z tiþ1

ti

V ðtÞdt � xðtiþ1 � tiÞ:

At the end of each period, some cumulus points

are assigned by the ISP according to the following

rule. Let N be the maximum number of points that

can be assigned and define hn, n = �N, . . . ,N with
h±(N+1) = ±1 (h0 = 0) as thresholds such that

Ci := C(Di) positive points are assigned if

0 6 hCi 6 Di < hCiþ1;

and Ci := C(Di) negative points are assigned if

hCi�1 < Di 6 hCi 6 0:

Fig. 1 illustrates this cumulus points assignment

when we consider four positive and two negative
thresholds.

As a reaction rule, the provider decides to rene-

gotiate the contract after the monitoring period K

as soon asXK
i¼1

Ci

�����
����� P H;

that is, as soon as the sum of cumulus points as-

signed since the start of the contract reaches a

threshold H [12].

In order to establish the contract, the provider

has to define a tariff function p(x) per resource
unit, when the user is requiring x resource units
0
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Fig. 1. Cumulus points assignment in terms of the deviation Di
from the expected resource consumption.
[12]. The total charge as defined in the contract will

then be c(x) = xp(x). Moreover, an extra-fee is

charged after accumulating a sufficient number

of (positive) cumulus points. Assume that a user

having required x actually consumes n = x + D
(with D > 0). The extra-fee is based on the estima-
tion d of the over-use D for the period during

which cumulus points have been accumulated

(meaning that d ¼ X � x where X is the standard

estimator of n). For convenience, function c is used
to define this additional charge, which is then c(d).
The compound charge is then c(x) + c(d).
In [12], the authors are presented the following

properties that function c has to satisfy in order to

provide correct economic incentives. First, let

Wðx; nÞ ¼ cðnÞ � ðcðxÞ þ cðn � xÞÞ
be the penalty function, corresponding to the over-

charge for not telling the right requirement n when
the actual consumption is x. Functions p, c and W
are required to verify the following properties:

(1) "x > 0, p(x) > 0 and p(x) is monotonically

decreasing (economy of scale property).

(2) "x > 0, c(x) = xp(x) is monotonically increas-
ing (increasing cost property).

(3) if x5 n, W(x,n) < 0 and W(x,n) = 0 if x = n
(truthful declaration incentive: a customer is
penalized from not stating correctly his

resource consumption).

(4) W(x,x + d) is monotonically decreasing in d
(this property ensures that the absolute value

of penalty increases with the deviation from

the expected requirement).

(5) jW(x, n)j < jW(bx,bn)j 6 bjW(x, n)j for b > 1
(scaling property: similar relative error yields a
higher penalty for higher bandwidth require-

ments, and the penalty does not grow more

than linearly with the scaling factor).

For instance, cðxÞ ¼ ffiffiffi
x

p
fulfills these require-

ments [12]. In the next subsections, our model will

extend this set of properties by adding the cumulus

points in the user�s revenue/cost.
With respect to the current Internet flat-rate pric-

ing scheme, the CPS needs to measure the resources

that are actually used. The precision of these mea-

surements has to be good enough in order to limit
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the probability of wrongly assigning cumulus

points. Assuming that V(t) is a stochastic process

in steady-state, from the usual central limit theorem

(with an unknown variance) using l independent

measurements, at confidence level a, we can obtain
a confidence interval with half-width ea;l ¼ qa

bS= ffiffi
l

p

where bS is the unbiased estimator of the variance of
the stochastic process V(t) and qa is the (1 � a/2)
quartile of the normal distribution. In order to

make the model more or less independent of the

measurement method, any two neighboring thresh-

olds need to be at least at distance 2ea,l [12].
2.2. Mathematical definitions of revenues

In this subsection, we define the network revenue

and the user level of satisfaction. Our goal is to

carry out a deeper analysis of CPS than in the pre-

vious subsection, by fixing threshold values to those

optimizing the provider�s revenue under the con-
straint that customers have an incentive to reveal
their anticipated consumption. Before formally

expressing the network revenue and user level of

satisfaction, let us enumerate their components.

We assume that each cumulus point (positive or

negative) has an economic effect on the user and

the provider, which could be either direct, by

assigning a charge for each point, or indirect, since

(for instance) a customer will gain or be penalized
from each cumulus point in the renegotiation pro-

cedure. We hope that this assumption (with re-

spect to the general model defined in the

previous subsection) will provide some elements

when defining threshold values. The economic im-

pact of each point is expressed by a parameter c,
meaning that we assume it to be linear. Thus,

depending on the sign of d, the difference between
the actual use and the contract, and whether you

are a customer or the provider, the positive or neg-

ative cumulus points are translated into a positive

or negative financial impact cC(d).
Another cost for the network comes from the

measurement sample size l. As we have seen above,

in order to make the model more or less indepen-

dent of the measurement method, lmust satisfy the
following condition [12]:

8i 2 f�N ; . . . ;N � 1g; hiþ1 � hi P 2ea;l; ð1Þ
where ea;l ¼ qa
bS= ffiffi

l
p
, as defined in the previous

subsection. Condition (1) gives a minimum dis-

tance between two neighboring thresholds, leading

to the following condition over l:

l P
4bS 2q2a

minðhiþ1 � hiÞ2
: ð2Þ

Introducing a parameter b representing the cost of
a single measurement and assuming that the sam-
pling cost is linear with respect to l gives a mea-

surement cost bl.
We also set a last cost for the provider which

depends on the measurement error estimation. In-

deed, it seems relevant to penalize the provider

with this kind of ‘‘ethical’’ cost from the precision

of the model. We suppose that this cost is linear

with the length of the confidence interval
2ea;l ¼ 2bSqa=

ffiffi
l

p
. So we use the function Fnet to ex-

press the network costs (the measurement cost plus

the ethical cost) depending on the sample size l,

F netðlÞ ¼ blþ 2l
bSqaffiffi
l

p :

The network benefits also come from the total

charge c(x) for the demand in the SLA and the ex-

tra-fee c(d) from the over-consumption if the spe-

cific renegotiation threshold H is reached (where

d ¼
Pk

i¼1di is the sum of the deviations from the

stated consumption up to period k) and, of course,
the cumulus points if the user under-estimates his

consumption. So, for the kth monitoring period

between two renegotiation, the network revenue

for a user is expressed in the following definition:

Definition 1. The expression of the network rev-

enue, during the kth monitoring period, for user

who requires x but consumes x + dk is

Gnetðx; dk; h; k; lÞ ¼ cðxÞ þ c
Xk
i¼1

di

 !
1nPk

i¼1
ciPH

o
þ cCðdkÞ � F netðlÞ:

In Definition 1, we can remark that h is in R2N ,

dk is a real representing the difference between ac-
tual and contract consumptions, H is the threshold
in terms of cumulus points in order to charge the
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extra-fee and to start the contract renegotiation,

and x is the expected resource consumption as

specified in the contract.

To express the user level of satisfaction, we

introduce a utility function U(x) when consuming
x. In economics, the notion of utility function is

used to rank user preferences. Here, like in net-

work pricing papers, one can think of U(x) as

the amount of money the user is willing to pay

to receive x [1]. At the kth period, the level of sat-

isfaction of a user can then be defined by the utility

of consuming x + dk minus the costs which are the
charge from the contract c(x), the extra charge
cð
Pk

i¼1diÞ from the over-consumption if the spe-

cific renegotiation threshold H is reached, and

the cost from positive cumulus points cC(dk).
This leads to the following definition:

Definition 2. The level of satisfaction of a user

that requires x but consumes x + dk over the kth

period is

Guðx; dk; h; kÞ ¼ Uðxþ dkÞ � cðxÞ � cCðdkÞ

� c
Xk
i¼1

di

 !
1nPk

i¼1
ciPH

o:
Note that the discrete random variable C(dk)

depends not only on di, but also on the thresholds
hn.

2.3. CPS and incentives to cheat

From Point 3 of the assumptions over the cost

functions in Section 2.1, the assumed role of the

penalty function W is to prevent the user from an

a priori over- or under-estimation of his consump-
tion. Indeed, a counter-attitude would penalize the

provider in a phase of capacity planning. But the

translation into financial terms of measurements

and cumulus points requires further analysis. The

following definition describes how a user has an

incentive to truthfully reveal his anticipated

consumption.

Definition 3. The property of truthful anticipated

consumption revelation of the model is expressed

by the following condition: "h,k $x* > 0 such

that
argmax
x;d

Guðx; d; h; kÞ ¼ ðx; 0; h; kÞ: ð3Þ

This means that a customer chooses his expected

consumption optimizing his level of satisfaction
and that, if the model behaves correctly, the de-

clared consumption x is exactly this expected con-

sumption (meaning that d = 0).
Now, we show in the next theorem that the CPS

model does not verify this property of truthful

revelation.

Theorem 4. The CPS model defined in this section
does not verify the property of truthful revelation

of anticipated consumption expressed in Definition 3.

Proof. Let x be a customer�s declared expected
resource consumption (as expressed in the con-

tract). Suppose that this user consumes exactly

the same quantity of resource x + dk during each

period. Then

Guðx; dk; h; kÞ ¼ Uðxþ dkÞ � cðxÞ � cCðdkÞ
� cðkdkÞ1nPk

i¼1
ciPH

o:
To prevent an hysteresis due to the measurements,

the first threshold h1 is assumed to be strictly posi-
tive. Suppose that dk is between 0 and h1. A neces-
sary condition to obtain (3) is that "k,h, $x > 0,
"dk 2 [�x,+1[n{0},
Guðx;�dk; dk; h; kÞ < Guðx; 0; h; kÞ;
meaning that the user benefits from declaring

in his contract his expected consumption. As

0 6 dk < h1, Ci(dk) = 0"i, we have
Pk

i¼1Ci ¼ 0 and

Guðx � dk; dk; h; kÞ � Guðx; 0; h; kÞ
¼ cðxÞ � cðx � dkÞ > 0;

which shows that (3) is not verified, so that the

property of truthful anticipated consumption revela-

tion is not satisfied by the model. h

Remark 5. Note that, interestingly, the result of

this theorem is independent of the utility function.

Specifically, we have shown that the property is

not verified since a customer has an incentive to

under-estimate his consumption to x � d with
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d 2 [0,h1[ so that he will not be penalized by a
cumulus point. In the following proposition, we

present a sufficient condition on the first threshold

h1 constraining the user to restrict their under-
estimation to less than h1.

Proposition 6. If the positive thresholds verify that

h1ðxÞ < c�1ðc þ cðxÞÞ � x ð4Þ
and for j P 2,

hjðxÞ < c�1ððk � 1Þc þ cðxÞÞ � x; ð5Þ
then "h,k,x > 0, dk 2 [h1,+1[, we have

Guðx; dk; h; kÞ < Guðxþ dk; 0; h; kÞ:

This proposition implies that users do not have

an incentive to over-use the resource by more than

h1. More exactly, it ensures that the cost of being
assigned k � 1 points is higher than the difference
of costs between a declared consumption x + hj
and a declared consumption x.

Proof. Let x > 0 and dk P h1. The difference of
user level of satisfaction, when the anticipated

belief of consumption is x + dk, between a false

declaration x and a truthful revelation x + dk is

Guðx; dk; h; kÞ � Guðxþ dk; 0; h; kÞ
¼ cðxþ dkÞ � cðxÞ � cCðdkÞ

� c
Xk
i¼1

di

 !
1nPk

i¼1
ciPK

o:
A sufficient condition to make sure that this quan-

tity is negative is that

DðdkÞ ¼ cðxþ dkÞ � cðxÞ � cCðdkÞ < 0 8dk P h1

ð6Þ
(since this expression corresponds to the case when

the extra-fee is not applied).

Assume first that dk = h1. From (4), we obtain

that

Dðh1Þ ¼ cðxþ h1Þ � cðxÞ � c < 0:

Next, since function D is strictly increasing with

dk when dk 2 [hj�1,hj[ (k P 2), it is sufficient to

make sure that condition (6) is verified when dk

tends to hj. As
lim
e!0

Dðhj � eÞ ¼ DðhjÞ þ c

¼ cðxþ hjÞ � cðxÞ � cðk � 1Þ;

a sufficient condition is provided by inequality

(5). h

In the next section, we modify the model in or-

der to generate incentives for users to reveal their

anticipated consumption. In particular, they will

not even have an interest to under-estimate their
consumption by an amount smaller than the first

threshold h1.
3. The total penalty CPS

In order to prevent from a false declaration of

the anticipated consumption, we introduce a small

variation of the model described above. It consists

in charging the penalty c(d) at the end of each per-
iod instead of just when a number H of cumulus

points have been assigned. This is a particular case
of the precedent model where the extra-fee thresh-

old H is fixed to 0 but where, now, we charge as

soon as there is an over-consumption, i.e. as soon

as d > 0. Then, the definitions of the network
revenue and of the user level of satisfaction need

to be modified. We present them in the next

subsection.
3.1. Definitions

Definition 7. For any period of measurements, the

network revenue for a user who requires x and
consumes x + d is

Gnetðx; d; h; lÞ ¼ cðxÞ þ cðdÞ1fd>0g þ cCðdÞ � F netðlÞ;

and the level of satisfaction of a user is

Guðx; d; hÞ ¼ Uðxþ dÞ � cðxÞ � cðdÞ1fd>0g � cCðdÞ:

Remark that since the extra-fee is charged at the

end of each measurement period k, the definitions,

with respect to those of Section 2, become inde-

pendent of k. The extra-fee allows to avoid incen-

tives to cheat. We prove this result in the next
subsection.
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3.2. About incentives to cheat in the total penalty

CPS

In this part, we analyze the property of truthful

revelation of anticipated consumption of Definition
3 for this new model. In the next theorem we for-

mulate a sufficient condition to obtain this

property.

Theorem 8. The total penalty cumulus pricing
scheme satisfies the truthful revelation of anticipated

consumption property if the negative thresholds

verify

8i P 1 and x > 0; cðh�i þ xÞ < cðxÞ � ic:

Before proving this theorem, we first show the

following result.

Lemma 1. A sufficient condition for truthful antic-

ipated consumption revelation for the total penalty

CPS is that "x > 0, "d 2 [�x,+1[n{0},
cðxþ dÞ � cðxÞ � cðdÞ1fdP0g � cCðdÞ < 0:

Proof of Lemma 1. A sufficient condition for

truthful anticipated consumption revelation is that
for all x and d, the difference in level of satisfaction
between a user who requires x and consumes

x + d, and a user who requires x + d, and respects
its contract, is negative, i.e.,

8d; x; h Guðx; d; hÞ � Guðxþ d; 0; hÞ < 0:
If we replace the expression of Gu from Definition

7 in this inequality, we immediately get Lemma

1. h

Proof of Theorem 8. We separate the cases of
over- (i.e., d > 0) and under-use (i.e., d < 0). For
all k and h, in the case where d is positive, we
have

Guðx; d; h; kÞ � Guðxþ d; 0; h; kÞ
¼ cðxþ dÞ � cðxÞ � cðdÞ � cCðdÞ
6 Wðx; xþ dÞ < 0:

Thus, from the properties over function W, this
difference is strictly negative when we have an

over-use.
Next, let x > 0 and d 2 [�x, 0[ (i.e., negative).

Let i be the integer such that h�i�1 < d 6 h�i and

thus C(d) = �i. Then "x > 0, "d 2 [�x,+1[n{0},
cðxþ dÞ � cðxÞ � cðdÞ1fdP0g � cCðdÞ

¼ cðxþ dÞ � cðxÞ þ ic

6 cðxþ h�iÞ � cðxÞ þ ic < 0

using the assumption over the thresholds. Lemma

1 then gives the result. h

Note that this sufficient condition deals with the

negative thresholds only. Another important re-

mark is that it is independent of the utility func-
tion. Nevertheless, it is not unique. For instance,

another condition is when, whatever the contract

specification x is, the level of satisfaction of a user

respecting his contract is higher than when deviat-

ing from it, i.e.,

Guðx; d; hÞ � Guðx; 0; hÞ < 0 8h; d; x:

This leads to the following equations over the

thresholds h�i: "i > 0, "x > 0, "d 2 [�x,+1[n{0},

Uðh�i þ xÞ � UðxÞ � cðdÞ1fd>0g � cCðdÞ < 0;

but it is less attractive since it depends on the util-
ity function. Another important remark is that the

thresholds depend on the contract specification x.

This will have some consequences on the optimiza-

tion of the network revenue in the next section.
4. Optimization of the provider�s revenue

4.1. Optimization problem and minimization of the

cost function Fnet

We have provided in Theorem 8 sufficient con-

ditions over the negative thresholds that the model

can satisfy in order to verify the property of truth-

ful anticipated consumption revelation. Our goal

now is to find out the configuration of thresholds
optimizing the total revenue of the network, under

the assumptions of Theorem 8.

We consider that users come into the network

with a mean rate k which is a function of the aver-
age level of satisfaction introduced in Definition 2.

So, we define the total network revenue by
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Z þ1

0

EðGnetðx; d; h; lÞÞdkðEðGuðx; d; hÞÞÞ:

Under the sufficient conditions of Theorem 8

for truthful revelation of anticipated consumption

(where the thresholds depend on the amount of re-

source x required in the contract), either a cus-

tomer enters the network with its anticipated
consumption x, or does not enter if it is too expen-

sive for him. Anyway, he has no interest in enter-

ing at another declared level x 0. Thus, the

maximization of the total network revenue is

equivalent to finding out

max
h

ðkðEðGuðx; d; hÞÞÞEðGnetðx; d; h; lÞÞÞ; ð7Þ

for all x, subject to the constraint

8i P 1 and x > 0; cðh�iðxÞ þ xÞ < cðxÞ � ic:

Assumption 1. We will assume from now and

throughout the paper that the difference d between
the actual and the anticipated consumption is a

random variable. Following the truthful revelation

of anticipated consumption property, it is reason-

able to assume that the density of d is symmetric, so
that its mean value is zero (assuming that it exists).

In order to maximize the network revenue given

by Eq. (7), the provider has first to minimize the

cost function F netðlÞ ¼ blþ 2l
�bSqa=

ffiffi
l

p �
under

the constraint defined by Eq. (2). Since Fnet reaches
its minimum at

l ¼
bSqal

b

 !2=3
;

we have the following relation between l and the

thresholds: if l* is larger than 4bS 2q2a=minðhiþ1�
hiÞ2 (the constraint value in (2)), i.e., if

minðhiþ1 � hiÞ P 2ðb=lÞ1=3ðbSqaÞ
2=3
, then the mini-

mum is obtained for l = l* and is equal to

3b1=3ðlbSqaÞ
2=3
(by replacing l by l* in the formulas).

Otherwise, the minimum is obtained for l ¼
4ð4bS 2q2a=minðhiþ1 � hiÞ2Þ and is equal to 4bðbS 2q2a=
minðhiþ1 � hiÞ2Þ þ lminðhiþ1 � hiÞ.
We can then express the cost function in terms

of the thresholds by
F netðhÞ ¼ L1fminðhiþ1�hiÞPjg

þ 4b
bS 2q2a

minðhiþ1� hiÞ2
þ lminðhiþ1� hiÞ

 !
� 1fminðhiþ1�hiÞ<jg

with

j ¼ 2 b
l

 �1=3
ðbSqaÞ

2=3 ð8Þ

and

L ¼ 3b1=3ðlbSqaÞ
2=3

:

As l is actually a function of h, we now write
Gnet(x,d,h) instead of Gnet(x,d,h, l).

4.2. Optimization in a general setting

The difficulty with the optimization stems from

the non-differentiability of the function Fnet(h).
Thus, we need to resort to numerical approaches.
In this paper, we use a simulated annealing algo-

rithm. This class of continuous global optimiza-

tion algorithms seems the most adapted for our

objective function because, first, this method re-

quires no specifications of differentiability and,

second, it is specifically adapted to functions with

multiple local optima. We use the algorithm called

ASA for adaptive simulated annealing [9]. It is one
of the most widely tested SA algorithm in the liter-

ature, and its code is publicly available at the web

site http://www.ingber.com. We use more specifi-

cally ASAMIN which is a gateway function to

ASA developed by Sakata [15]. One particularity

of this simulated annealing algorithm is the use

of the temperature to define the densities of the

next candidate point [7].
In Section 5, we illustrate numerically this

method on one example. Nevertheless, under some

restrictions over the thresholds, we are able to ob-

tain some analytic results.

4.3. Analytic results in particular cases

In this section, we investigate analytically the

optimization problem in three particular cases of

thresholds. First, we look at the configuration pro-

posed by Reichl et al. in [12,17] where the thresh-

http://www.ingber.com
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olds are considered symmetric. This configuration

seems realistic when users have no incentive to

consume more or less than specified in the con-

tract. Second, we consider the linear thresholds

configuration to reward (resp. penalize) users pro-
portionally to their under-use (resp. over-use).

Finally, we take into account the special configura-

tion where thresholds are fixed so that the proba-

bility of obtaining one or more positive points is

uniform, with the same property for negative

points.
4.3.1. Symmetric thresholds

We consider the configuration proposed by

Reichl et al. in [12,17] where the thresholds verify,

for all k, hk = �h�k. Then, using Assumption 1,
the mean number of assigned cumulus points

2{0,±1, . . . ,±N} is zero and, when optimizing

kðEðGuðx; d; hÞÞÞEðGnetðx; d; h; lÞÞ, the thresholds

intervene only in the cost function Fnet of the

network revenue (since EðGuðx; d; hÞÞ ¼ Uðx þ dÞ
�cðxÞ � cðdÞ1fd>0g does not depend on h). Conse-
quently, maximizing the total network revenue

is equivalent to maximizing the network revenue

for one user, which is itself equivalent to minimiz-

ing the cost function Fnet(h) in terms of the

minimal difference between two neighboring

thresholds.

Thus, in order to optimize the total network
revenue, we have to set the thresholds so that

min(hi+1 � hi)P j, meaning that Fnet(h) reaches
its minimum without the limitation of constraint

(2), where j is given by Eq. (8). Note that the

negative thresholds have to satisfy the sufficient

condition defined in Theorem 8. Note also that,

in this case, the total network revenue is inde-

pendent of the number of thresholds (as it actu-
ally depends only on the minimal difference

between successive thresholds), so we can take

like Reichl et al. in [12], 3–5 thresholds on each

direction for simplicity. This is illustrated in Sec-

tion 5.

4.3.2. Linear thresholds

Let us now consider the case where the thresh-

old values are linear, i.e.,

8i > 0; hi ¼ ihþ and h�i ¼ �ih�:
The optimization is then carried out with respect

to the variables h+ > 0 and h� > 0 representing
the distance between positive thresholds and be-

tween negative thresholds respectively. Let Fd be

the cumulative distribution function d of and let
fd denote its density. The mean number of cumulus

points obtained by a user, expressed in terms of

those variables is
EðCðdÞÞ ¼
XN
k¼1

kðF dððk þ 1ÞhþÞ � F dðkhþÞÞ

þ
XN
k¼1

ð�kÞðF dð�kh�Þ � F dð�ðk þ 1Þh�ÞÞ

¼ N �
XN
k¼1

F dðkhþÞ �
XN
k¼1

F dð�kh�Þ: ð9Þ
In order to optimize the network revenue, we con-

sider separately the three following cases, h+ < h�,
h+ > h� and h+ = h�. A numerical comparison of

the maxima obtained over these domains will pro-

vide the global maximum.

(a) h+ < h�. The network cost Fnet then only de-
pends on h+ since min(hi+1 � hi) = h+. Note that,
to simplify the expression, we will write k(�) and
EðGnetÞ without their arguments in all following
equations. A first equation of the system defined

by the first order conditions of the optimization

problem gives

o

oh�
ðkð�ÞEðGnetÞÞ

¼ EðGnetÞk0 o

oh�
EðGuÞ þ k

o

oh�
EðGnetÞ

¼ EðGnetÞk0c
XN
k¼1

ð�kÞfdð�kh�Þ

� kc
XN
k¼1

ð�kÞfdð�kh�Þ

¼ c
XN
k¼1

ð�kÞfdð�kh�Þ
 !

ðEðGnetÞk0 � kÞ ¼ 0;

ð10Þ
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and the second one gives

o

ohþ
ðkEðGnetÞÞ ¼ EðGnetÞk0 o

ohþ
EðGuÞ þ k

o

ohþ
EðGnetÞ

¼ EðGnetÞk0c
XN
k¼1

kf dðkhþÞ

� kc
XN
k¼1

kf dðkhþÞ � k
o

ohþ
F netðhþÞ

¼ c
XN
k¼1

kf dðkhþÞðEðGnetÞk0 � kÞ

� k
o

ohþ
F netðhþÞ ¼ 0: ð11Þ

Eq. (10) gives that EðGnetÞk0 � k ¼ 0 since

c
PN

k¼1ð�kÞfdð�kh�Þ 6¼ 0, which, yields from (11)

that o
ohþ

F netðhþÞ ¼ 0. Since

o

ohþ
F netðhþÞ ¼ �8b

bS 2q2a
h3þ

þ l

 !
1fhþ<jg;

we get the solution h
þ ¼ j (with j defined in Eq.

(8)). Then, inserting h
þ ¼ j in Eq. (10), we can

determine h
�.

(b) Suppose now that h� < h+. We use the same
idea than in the previous case to derive the solu-

tion, just by inverting the roles of h+ and h�, since
Fnet now depends on h�. It leads to h

� ¼ j, while
h
þ is determined by inserting h

� into one of the

first order equations.

(c) Let h� = h+. In this case, Fnet is not differen-
tiable because of the minimum function. Neverthe-

less, the thresholds are symmetric; we are then in
the particular case studied Section 4.3.1 and the

solution gives h
þ ¼ h

� ¼ j.
Finding out which of the three local optimum

solutions obtained in the above cases yields the

global optimum can be realized by a numerical

comparison.

4.3.3. Uniform thresholds

We consider here that we have N+ positive

thresholds and N� negative thresholds, distributed

according to the quartiles of the distribution of the

random variable d, so that the probability to ob-
tain n points is equal (and a similar property is as-

sumed over negative thresholds) for all n 6 N+.

Formally,
hk ¼
F �1

d

1

2
þ k
2ðNþ þ 1Þ

 �
if k > 0;

F �1
d

1

2
þ k
2ðN� þ 1Þ

 �
if k < 0:

8>>><>>>:
The expression of the mean number of assigned

points is

EðCðdÞÞ ¼
XNþ

k¼1
kðF dðhkþ1Þ � F dðhkÞÞ

þ
XN�

k¼1
ð�kÞðF dð�hkÞ � F dðh�k�1ÞÞ

¼
XNþ

k¼1

k
2ðNþ þ 1Þ �

XN�

k¼1

k
2ðN� þ 1Þ

¼ 1
4
Nþ � 1

4
N�:

The optimization problem is then defined in terms

of the two parameters N+ and N�.

If we consider the case where d follows a uni-
form distribution over the interval [�Z,Z], the
thresholds are given by

hk ¼

Z
Nþ þ 1 if k > 0;

� Z
N� þ 1 if k < 0:

8>><>>:
To get the values maximizing the revenue, we look

at the first order conditions following the lines of

the linear thresholds case. Also, we consider that

N+ and N� are real in order to get derivatives.

(a) Assume that N+ > N�, so that minimal dif-

ference between consecutive thresholds is

h1 ¼
Z

Nþ þ 1 : ð12Þ

As in the linear case, first order conditions are

o

oN�
ðkEðGnetÞÞ ¼ EðGnetÞk0 o

oN�
EðGuÞ

þ k
o

oN�
EðGnetÞ

¼ o

oN�
EðGuÞðEðGnetÞk0 � kÞ ¼ 0

since it can be observed that o
oN�

EðGnetÞ ¼
� o

oN�
EðGuÞ.
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Similarly, since o
oNþ

EðGnetÞ ¼ � o
oNþ

EðGuÞ�
o

oNþ
F net,

o

oNþ
ðkEðGnetÞÞ ¼

o

oNþ
EðGuÞðEðGnetÞk0 � kÞ

� k
o

oNþ
F netðh1ðNþÞÞ ¼ 0:

As o
oN�

EðGuÞ ¼ c=4 6¼ 0, this system of equations

leads to

o

oNþ
F netðh1ðNþÞÞ ¼ 0;

with the expression of h1 described in (12). It again
leads to

h1 ¼ j; so that N 
þ ¼ � 1

F dðjÞ � 1
� 1:

To obtain N 
�, we replace N 

þ by its value in the

first order condition

o

oN�
kðEðGuðx; d; hÞÞÞEðGnetÞ ¼

c
4
EðGnetÞk0 � c

4
k ¼ 0:
For instance, if we suppose that the arrival rate

is expressed by kðxÞ ¼
ffiffiffi
x

p
and that d is uniformly

distributed over [�Z,Z], we have N 
þ ¼ ðZ=jÞ � 1

and N 
� is the solution of

c
4

A� c
4
N�

� � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðUðxþ dÞÞ � A� Lþ ðc=4ÞN�

p
� c
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðUðxþ dÞÞ � A� Lþ c

4
N�

r
¼ 0

with A ¼ cðxÞ þ EðcðdÞ1fd>0gÞ þ ðc=4ÞN 
þ � L, i.e.,

N 
� ¼ 16

8c þ c2
9c
4
A� 2EðUðxþ dÞÞ þ 2K

 �
:

(b) If N� > N+, we use exactly the same proce-
dure, but invert the roles of N� and N+. The differ-

ence is that the minimum difference between

consecutive thresholds is h�1. From the first order
conditions

o

oNþ
ðkEðGnetÞÞ ¼

o

oNþ
EðGuÞðEðGnetÞk0 � kÞ ¼ 0;
and

o

oN�
ðkEðGnetÞÞ ¼

o

oN�
EðGuÞðEðGnetÞk0 � kÞ

� k
o

oN�
F netðh1ðN�ÞÞ ¼ 0;

we obtained N 
� ¼ 1=ðF dðjÞ � 1Þ � 1 while N 

þ is

obtained by replacing N 
� by its value in one of

the first order conditions.

(c) If N = N+ = N�, the thresholds are symmet-

ric. This is (again) a sub-case of the symmetric
thresholds studied in Section 4.3.1. From o

oN F net�
ðh1ðNÞÞ ¼ 0, we get N+ = N� = 1/(Fd(j) � 1) � 1.
Again, in order to find the maximum between

the three local optimum solutions obtained in the

different cases, we compare them numerically in

the next section.
5. Numerical illustrations

In this section, we illustrate the results that can

be obtained. Firstly, we are interested in the prop-

erty of truthful anticipated consumption revela-

tion: we compare the user level of satisfaction of

the two CPS models. Secondly, we observe the re-

sults obtained with the simulated annealing algo-
rithm and discuss the evolution of the total

network revenue in terms of the number of thresh-

olds. Finally, we look at the results obtained in the

particular cases defined in Section 4.3.

In all the following examples, the demand func-

tion is defined by

kðyÞ ¼ ffiffiffi
y

p

and, assuming the traffic elastic, the utility func-
tion is given (like in [8]) by

UðxÞ ¼ 10 logð1þ xÞ:
For the optimization of the network revenue in

the symmetric and linear particular cases, we arbi-

trarily use the following parameters:

• user�s required consumption x = 100,
• cost per cumulus point c = 100,
• unit measurement cost b = 0.1,
• unit error cost l = 0.1.

For the uniform case, we use the same

parameters, apart from the unit cost for
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measurement set to b = 0.05 and the unit error cost
set to l = 5.

5.1. Truthful anticipated consumption revelation

We present here a numerical application illus-

trating the property of truthful anticipated con-

sumption revelation. We plot the difference of

level of satisfaction between a user who requires

x but consumes x + d and another who requires
and consumes x + d. It is important to note that
we present results with the first model where H is

very large, to have the worst case for the network
revenue and to use the sufficient condition of Pro-

position 6. The results are displayed in Fig. 2

where we have considered the thresholds h =
[�40,�20,0,10,18,40,60,90] so that sufficient con-
50 0 50 100
–12

–10

–8

–6

–4

–2

0

2

intial CPS model 

second CPS model 

Fig. 2. Evolution of Gu(x,d,h) � Gu(x + d, 0,h) in terms of d.

Table 1

Thresholds maximizing the total network revenue, obtained with sim

Number of thresholds Thresholds positions

1 �2.57
2 �2.57 0.84
3 �2.57 0.92 1.85
4 �1.89 0.85 1.71 2.57
5 �2.57 �1.74 0.82 1.65 2.47
6 �2.57 �1.89 �1.22 0.67 1.34 2.
7 �2.55 �1.9 �1.08 0.64 1.28 1.9
8 �2.43 �1.89 �0.58 0.51 1.02 1.
9 �2.49 �1.47 �1.2 �0.77 0.33 0
10 �2.56 �2.11 �1.66 �1.2 �0.75
ditions on the positive thresholds (Proposition 6)

and on the negative thresholds (Theorem 8) for

each model are satisfied. The user specified de-

mand is x = 100 and the cost by cumulus point is

c = 1. We remark that, for the initial CPS model,
the difference of level of satisfaction cannot be neg-

ative when the over-use d is under the first thresh-
old h1. This illustrates the fact that this model does
not verify the property of truthful anticipated con-

sumption revelation. But we see that for the total

penalty CPS model, this difference is always nega-

tive. Furthermore, the difference is much larger in

the case of over-use for the total penalty CPS,
which is a desirable situation preventing even more

from cheating.

5.2. Simulated annealing for the general case

We assume here that d follows a Gaussian dis-
tribution with mean 0 and variance 1. In Table 1,

we give the results obtained using simulated
annealing.

We have fixed the number of thresholds from 1

to 10 and the best threshold values have been

determined each time (but note that the number

of positive or negative thresholds is not fixed). If

we compare each case, we can observe that the

maximum revenue is obtained when there are three

thresholds, one being negative and two being posi-
tive. The small number of thresholds might be due

to the measurement error cost: the larger the num-

ber of thresholds, the less the measurement preci-

sion has to be. Also, having at least one negative

thresholds prevents users from cheating.
ulated annealing

Total network revenue

54.49

111.17

113.17

112.22

111.63

01 107.31

2 2.57 106.13

54 2.05 2.56 98.39

.87 1.36 1.61 2.51 37.54

0.45 0.89 1.34 1.8 2.52 91.98
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Fig. 3. Network total revenue when there are two thresholds:

one positive and one negative.
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Fig. 4. Network total revenue with symmetric thresholds in

terms of the minimum distance between consecutive thresholds.
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In order to verify the relevance of our results,

we have also plotted in Fig. 3 the revenue in the

case when there are only two thresholds, one posi-

tive and one negative. We can verify that the value

obtained in Table 1 (second line) is the maxi-
mum.
e

5.3. Special cases

In order to illustrate the theoretical results, we

look at the special cases introduced before. First

we suppose that the thresholds are symmetric, so

that the mean number of cumulus points assigned
in one monitoring period is null. Second, the

thresholds are assumed to be linear, and finally

they are supposed to be uniform. In those three

cases, the numerical results are verified to be in

accordance with theoretical ones.
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Fig. 5. Network total revenue with linear thresholds in terms of

the distance between neighboring positive thresholds h+ and
negative h�.
5.3.1. Symmetric thresholds

In this special case, the total network revenue is
expressed in terms of the minimum distance be-

tween consecutive thresholds. In Fig. 4, we plot

the total network revenue in terms of the required

quantity of resources x. The vertical line on the

right represents the value j (from Eq. (8)) and

we see that behind this frontier, the total network

revenue is constant. We remark as well that, as

it could be expected, the revenue is increasing with
x.
5.3.2. Linear thresholds

In this configuration, we obtain that j = 3.73.
We observe in Fig. 5, that the total network reve-

nue is constant when h+ and h� are above j, since
the cost Fnet is then independent of the thresholds.

The local maximum revenue when h+ = h� is

reached for h+ = h� = j as we minimize the cost
function Fnet. One can observe that the global

maximum is reached when h+ < h� and that the
optimal value obtained when h� < h+ gives actu-
ally a negative minimum, so that users are not al-

lowed to enter and the revenue is therefore zero.
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of the number of positive threshold N+ and negative ones N�.
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5.3.3. Uniform threshold

For this numerical illustration, we use the same

parameters as defined in the beginning of this sec-

tion, except that b = 0.05 and l = 5. We display in
Fig. 6 the total network revenue when the numbers

of positive and negative thresholds vary. The dis-

tribution of d is taken uniform over the interval

[�50,50]. Like in the previous case, we observe
that one of the theoretical optimum solution (ob-

tained when N+ > N�) is valid because it gives a

positive value whereas and the other (obtained

when N+ < N�) is not, because it gives a negative
value. Moreover, note that the revenue is null

when N+ = N� as the mean number of cumulus

points assigned is zero and because the user�s level
of satisfaction does not depend on the thresholds

then.

It can be verified that the optimum is the same

than given by equations in Section 4.3.3:

N 
þ ¼ 5:57 and N 

� ¼ 2:56:
6. Conclusions

This paper was motivated by the parameters

optimization problem in the cumulus pricing

scheme. First, after proving that the initial CPS
provided an incentive to cheat, we have slightly

modified the model to circumvent this problem.

Second, we have analytically optimized the pro-
vider�s revenue for this modified model under the
following particular restrictions over the thresholds:

• symmetric case: the thresholds verify hk = �h�k
for all k > 0;

• linear case: the distances between the neighbor-

ing thresholds are equal;

• uniform case: the threshold are determined in

order to equalize the probabilities of being

assigned i cumulus points "i.

In the general case, we have used a simulated

annealing algorithm to optimize the total network
revenue in terms of the thresholds.

As future directions of research, one can be

interested in time-scales: how does the model be-

have if the cumulus points are assigned every sec-

ond, every hour or every month? We also plan to

extend the model by including service differentia-

tion, or traffic parameters like delay and jitter like

in [14]. Finally, analyzing the CPS under competi-
tion between ISPs is an important aspect.
References

[1] C. Courcoubetis, R. Weber, Pricing Communications

Networks, Wiley, New York, 2003.

[2] L.A. DaSilva, Pricing of QoS-enabled networks: a survey,

IEEE Communications Surveys & Tutorials 3 (2) (2000).

[3] P. Dolan, Internet pricing. Is the end of the World Wide

Wait in view?Communications& Strategies 37 (2000) 15–46.

[4] M. Falkner, M. Devetsikiotis, I. Lambadaris, An overview

of pricing concepts for broadband IP networks, IEEE

Communications Surveys & Tutorials 3 (2) (2000).

[5] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, Assured

forwarding phb group, IETF: RFC 2597, 1999.

[6] T. Henderson, J. Crowcroft, S. Bhatti, Congestion pricing.

Paying your way in communication networks, IEEE

Internet Computing 5 (5) (2001) 85–89.

[7] L. Ingber, Simulated annealing: practice versus theory,

Mathematical Computing Modelling 18 (11) (1993) 29–57.

[8] F.P. Kelly, A.K. Mauloo, D.K.H. Tan, Rate control in

communication networks: shadow prices, proportional

fairness and stability, Journal of the Operational Research

Society 49 (1998) 237–252.

[9] M. Locatelli, Simulated annealing algorithms for contin-

uous global optimization, Journal of Optimization Theory

and Applications 104 (2000) 121–133.

[10] P. Reichl, P. Flury, J. Gerke, B. Stiller, How to overcome

the feasibility problem for tariffing internet services: the

cumulus pricing scheme, in: Proceedings of IEEE ICC

2001, vol. 7, 2001, pp. 2079–2083.



Y. Hayel, B. Tuffin / Computer Networks 47 (2005) 907–921 921
[11] J.W. Roberts, Quality of service guarantees and charging

in multiservice networks, IEICE Transactions on Commu-

nications Electronics Information and Systems E 81 (5)

(1998) 824–831.

[12] P. Reichl, B. Stiller, Edge pricing in space and time:

theoretical and practical aspects of the cumulus pricing

scheme, in: Proceedings of the 17th International Teletraf-

fic Congress, 2001.

[13] P. Reichl, B. Stiller, Nil nove sub sole: Why internet

charging schemes look like as they do, in: Proceedings of

the 4th Berlin Internet Economic Workshop, 2001.

[14] P. Reichl, B. Stiller, T. Ziegler, Charging multi-dimen-

sional QoS with the cumulus pricing scheme, in: Proceed-

ings of ITCom�01, 2001.
[15] S. Sakata. Asamin, 2002. Available from <http://www.

econ.lsa.umich.edu/ssakata/software>.

[16] B. Stiller, J. Gerke, P. Reichl, P. Flury, A generic and

modular internet charging system for the cumulus pricing

scheme, Journal of Network Management 3 (9) (2001) 293–

325.

[17] B. Stiller, J. Gerke, P. Reichl, P. Flury, Management of

differentiated services usage by the cumulus pricing scheme

and a generic internet charging system, in: Proceedings of

the Symposium on Integrated Network Management,

2001.

[18] B. Stiller, P. Reichl, S. Leinen, Pricing and cost recovery

for internet services: practical review, classification, and

application of relevant models, Netnomics 2 (1) (2000).

[19] B. Tuffin, Charging the Internet without bandwidth

reservation: an overview and bibliography of mathematical
approaches, Journal of Information Science and Engineer-

ing 19 (5) (2003).

Yezekael Hayel has a M.Sc. in Statis-
tics and Stochatic Modeling and a
M.Sc. in Computer Science both from
University of Rennes 1, France in 2001
and 2002, respectively. He is currently
a PhD student at Rennes 1, work-
ing at the INRIA/IRISA Labs. His
research interests include pricing, net-
work model, performance evaluation,
queueing network, optimization.
Bruno Tuffin (IRISA/INRIA) received
his PhD degree in applied mathematics
from Rennes 1 University in 1997.
Since, he has been with INRIA-
Rennes, France. His research interests
include developing Monte Carlo and
quasi-Monte Carlo simulation tech-
niques for the performance evaluation
of computer and telecommunication
systems, and more recently developing
Internet active measurement tech-
niques and new pricing schemes. On
this last topic, he is the coordinator of

the INRIA�s cooperative research action PRIXNET (see http://

www.irisa.fr/armor/Armor-Ext/RA/prixnet/ARC.htm).

http://www.econ.lsa.umich.edu/ssakata/software
http://www.econ.lsa.umich.edu/ssakata/software
http://www.irisa.fr/armor/Armor-Ext/RA/prixnet/ARC.htm
http://www.irisa.fr/armor/Armor-Ext/RA/prixnet/ARC.htm

	A mathematical analysis of the cumulus pricing scheme
	Introduction
	The cumulus pricing scheme (CPS)
	Model presentation
	Mathematical definitions of revenues
	CPS and incentives to cheat

	The total penalty CPS
	Definitions
	About incentives to cheat in the total penalty CPS

	Optimization of the provider rsquo s revenue
	Optimization problem and minimization of the cost function Fnet
	Optimization in a general setting
	Analytic results in particular cases
	Symmetric thresholds
	Linear thresholds
	Uniform thresholds


	Numerical illustrations
	Truthful anticipated consumption revelation
	Simulated annealing for the general case
	Special cases
	Symmetric thresholds
	Linear thresholds
	Uniform threshold


	Conclusions
	References


