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General context: from centralization to decentralization

Networking has switched from the centralized telephone network to
the decentralized Internet (scalability reason).

Decentralization (or deregulation) is a key factor.

Illustration: ”failure” of ATM networks.

In such a situation:
I From the decentralization, there is a general envisaged/advised

behavior
I But each selfish user can try to modify his behvior at his benefits and

at the expense of the network performance.
I How to analyze this, and how to control and prevent such a thing?

It is the purpose of non-cooperative game theory.
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What it changes

While before optimization was the tool for routing, QoS provisionning,
interactions between players has to be taken into account.

Game theory: distributed optimization: individual users make their
own decisions. ”Easier” than to solve NP-hard problems
(approximation).

We need to look at a stable point (Nash equilibrium) for interactions.

Tool used befor in Economics, Transportation...

and has recently appeared in telecommunications.

We may have parodoxes (Braess paradox) that can be studied that
way.

A way to control things: to introduce pricing
incentives/discouragements (TBC).
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Typical networking applications

P2P networks: a node tries to benefit from others, but limits its
available resource (free riding)?

Grid computing: same issue, try to benefit from others’ computing
power, while limiting its own contribution.

Routing games: each sending node tries to find the route minimizing
dealy, but intermediate links shared with other flows (interactions).

Ad hoc networks: what is the incentive of nodes to forward traffic of
neighbors? If no one does, no traffic is successfully sent.

Congestion control game (TCP...): why reducing your sending rate
when congestion is detected?

Power control in wireless networks: maximizing your power will induce
a better QoS, but at the expense of others’ interferences.

Transmission games (Wifi...): if collision, when resubmitting packets?
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Competitive actors: not only users

The Internet has also evolved from an academic to a commercial
network with providers in competition for customers and services.

As a consequence, users are not the only competitive actors, but also
I network providers: several providers propose the same type of network

access
I applications/services providers: the same type of application can be

proposed by several entities (ex: search engines...)
I platforms/technologies: you may access the Internet from ADSL, WiFi,

3G, WiMAX...

All those interacting actors have to be considered.
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Basic definitions

Game theory: set of tools to understand the behavior of interacting
decision makers or players.

Classical assumption: players are rational: they have well-defined
objectives, and they take into account the behavior of others.

In this course: strategic or normal games, players play
(simultaneously) once and for all.

There are also branches called
I extensive games, for which players play sequentially;
I repeated games for which they can change their choices over time;
I Bayesian games, evolutionnary games...
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General modelling tools

Interactions of players through network performance. Tools:
I queueing analysis or
I signal processing.

The action of a player has an impact on the output of other players,
and therefore on their own strategies.

They all have to play strategically.

Each player i (user or provider) represented by its utility function
ui (x) representing quantitatively its level of satisfaction (in monetary
units for instance) when actions profile is x = (xi )i , where xi denotes
the action of player i .
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Strategic Games

A strategic game Γ consists of:
I A finite set of players, N.
I A set Ai of actions available to each player i ∈ N. and A =

∏
i∈N Ai .

I For each player a utility function, (payoffs) ui : A→ R, characterizing
the gain/utility from a state of the game.

Players make decisions independently, without information about the
choice of other players.

We note Γ = {N,Ai , ui} .
For two players: description via a table, with payoffs corresponding to
the strategic choices of users:

C1 C2

F1 b11 c11 b12 c12

F2 b21 c21 b22 c22

N = {1, 2}, A1 = {F1,F2}, A2 = {C1,C2}, u1(Fj ,Ck) =
bjk , u2(Fj ,Ck) = cjk .
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Example: association game

Two users have the choice to connect to the Internet through WiFi
and 3G

If they both select the same technology, there will be interferences.

They may get different throughput due to heterogeneous terminals
and/or radio conditions

Table of payoffs (obtained throughputs):

3G WiFi

3G 3; 3 6; 4

WiFi 5; 6 1; 1

What is the best strategy for both players? Is there an “equilibrium”
choice?
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Nash equilibrium

Most important equilibrium concept in game theory.

Let a ∈ A strategy profile, ai ∈ Ai player i ’s action, and a−i denote
the actions of the other players.

Each player makes his own maximization.

A Nash equilibrium is an action profile at which no user may gain by
unilaterally deviating.

Definition

A N.E of a strategic game Γ is a profile a∗ ∈ A such that for every player
i ∈ N :

ui (a∗i , a
∗
−i ) ≥ ui (ai , a

∗
−i ) ∀ai ∈ Ai
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How to look for a Nash equilibrium?

For each player i , look for the best response ai in terms of a−i , the.

To find out a point such that no one can deviate (i.e. improve his
utility): a strategy profile such that each player’s action is a best
response

In a table with two players (can be generalized):
1 Write in bold the best response of a player for each choice of the

opponent;
2 A Nash equilibrium is a profile where both actions are in bold.
3 Example (blue is also used here):

C1 C2

F1 b11 c11 b12 c12

F2 b21 c21 b22 c22

4 Remark: on this example, dominant strategies so that the table can be
simplified.
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Classical illustration: The Battle of the Sexes

Bach or Stravisky ? Married people want to go together to a concert
of Bach or Stravisky. Their main concern is to go together, but one
person prefers Stravisky and the other Bach.

B S

B 2; 1 0; 0

S 0; 0 1; 2

⇒
B S

B 2; 1 0; 0

S 0; 0 1; 2

The game has two N.E.: (B,B) and (S ,S).
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Nash equilibrium in our association game

Two users have the choice to connect to the Internet through WiFi
and 3G

If they both select the same technology, there will be interferences.

They may get different throughput due to heterogeneous terminals
and/or radio conditions

Table of payoffs (obtained throughputs):

3G WiFi

3G 3; 3 6; 4

WiFi 5; 6 1; 1

⇒
3G WiFi

3G 3; 3 6; 4
WiFi 5; 6 1; 1

Nash equilibria: (5; 6) and (6; 4).
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Prisonner’s Dilemna

Suspects in a crime are in separate cells.

If they both confess, each will be sentenced to a three years of prison.

If only one confesses, he will be free and the other will be sentenced
four years.

If neither confess the sentence will be a year in prison for each one.

Goal here: to minimize years in prison.

Utility ui = 4−number of year in jail.

don′t confess confess

don′t confess 3; 3 0; 4
confess 4; 0 1; 1

Best outcome: no one confesses, but this requires cooperation.

But, (confess, confess) is the unique N.E.

Not optimal!
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Prisonner’s Dilemna in wireless networks
Gaoning He PhD thesis, Eurecom, 2010

Two players sending information at a base station.

Two power levels: High or Normal.

Payoff table:

Normal High

Normal Win; Win Lose much; Win much

High Win much; Lose much Lose; Lose

Best outcome: Normal, but this requires cooperation.

But, (High, High) is the unique N.E.

Not optimal here too!
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A Nash equilibrium does not always exist

Game where 2 players play odd and even:

Odd Even

Odd 1;−1 −1; 1
Even −1; 1 1;−1

This game does not have a N.E.

So in general, games may have no, one, or several Nash equilibria...
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Case of continuous set of actions

In the case of a continuous set of strategies, simple derivation can be
used to determine the Nash equilibrium (always simpler!).

For two players 1 and 2: draw the best-response in terms

BR1(x2) = argmaxx1
u1(x1, x2) and BR2(x1) = argmaxx2

u2(x1, x2).

A Nash equilibrium is an intersection point of the best-response
curves:

x1

x2

BR1(x2)
BR2(x1)

0 1 2 3 4 5
0

1

2

3

4

5

Bruno Tuffin (INRIA) Game Theory PEV - 2010 21 / 102



Mixed strategies

Previous Nash equilibrium also called pure Nash equilibrium.

A mixed strategy is a probability distribution over pure strategies:
πi (ai ) ∀ai ∈ Ai .

Player i utility function is the expected value over distributions

Eπ[ui ] =
∑
a∈A

ui (a)

(∏
i

πi (ai )

)
.

A Nash equilibrium is a set of distribution functions π∗ = (π∗i )i such
that no user i can unilaterally improve his expected utility by
changing alone his distribution πi .
Formally,

∀i ,∀πi , Eπ∗ [ui ] ≥ E(πi ,π
∗
−i )

[ui ].

Theorem

Advantage (proved by John Nash): for every finite game, there always
exist a (Nash) equilibrium in mixed strategies.
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Interpretation of mixed strategies

Concept of mixed strategies known as “intuitively problematic”.

Simplest and most direct view: randomization, from a ‘lottery”.

Other interpretation: case of a large population of agents, where each
of the agent chooses a pure strategy, and the payoff depends on the
fraction of agents choosing each strategy. This represents the
distribution of pure strategies (does not fit the case of individual
agents).

Or comes from the game being played several times independently.

Other interpretation: purification. Randomization comes from the
lack of knowledge of the agent’s information.
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Illustration of mixed strategies: jamming game

Consider two mobiles wishing to transmit at a base station: a regular
transmitter (1) and a jammer (2)

Two channels, c1 and c2for transmission, collision if they transmit on
the same channel, success otherwise

For the regular transmitter: reward for success 1, -1 if collision

For the jammer: reward 1 if collision, -1 if missed jamming.

payoff table
c1 c2

c1 −1; 1 1;−1

c2 1;−1 −1; 1

No pure Nash equilibrium.
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Mixed strategy equilibrium for the jamming game

the transmitter (resp. jammer) choose a probability pt (resp. pj) to
transmit on channel c1.
Utilities (average payoff values):

ut(pt , pj) = −1(ptpj + (1− pt)(1− pj)) + 1(pt(1− pj) + (1− pt)pj)

= −1 + 2pt + 2pj − 4ptpj

uj(pt , pj) = 1(ptpj + (1− pt)(1− pj)) +−1(pt(1− pj) + (1− pt)pj)

= 1− 2pt − 2pj + 4ptpj

For finding the Nash equilibrium:

∂ut(pt , pj)

∂pt
= 2− 4pj = 0

∂uj(pt , pj)

∂pj
= 2− 4pt = 0.

(pt = 1/2, pj = 1/2) mixed Nash equilibrium (sufficient conditions
verified too).
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Other notion: Stackelberg game

Decision maker (network adminsitrator, designer, service provider...)
wants to optimize a utility function.

His utility depends on the reaction of users (who want to maximize
their own utility, minimiez their delay...)

Hierarchical relationship: leader-follower problem called Stackelberg
game.

I For a set of parameters provided by the leader, followers (users)
respond by seeking a new algorithm between them.

I The leader has to find out the parameters that lead to the equilibrium
yielding the best outcome for him.

Typical application: the provider plays on prices, capacities, users
react on traffic rates...
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Stackelberg game: formal problem

Say that there are N users

Let u(x) = (u1(x), . . . , uN(x)) the utility function vector for users for
the set of parameters x set by the leader.

Denote by R(u(x), x) the utility of the leader.

Define u∗(x) as the (Nash) equilibrium (if any) corresponding to x .

Goal: find x∗ such that

R(u(x∗), x∗) = max
x

R(u(x), x).

Works fine if u∗(x) is unique

If not, and if U∗(x) is the set of equilibria, we may want to maximize
the worst case: find x∗ such that

R(u(x∗), x∗) = max
x

min
u∗(x)∈U∗(x)

R(u∗(x), x).
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Simple illustration of Stackelberg game

leader: service provider fixing its price p

followers: users, modeled by a demand function D(p) representing the
equilibrium population accepting the service for a given price.

Equilibrium among users therefore already included in the model.

The provider chooses the price p to maximize its revenue

R(p) = pD(p).

Obtained by computing the derivative of R(p).
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Wardrop equilibrium

Developped to analyze road traffic, to distribute traffic between
available routes.

Each user wants to minimize his transportation time
(congestion-dependent), non-cooperatively.

Definition (Wardrop’s first principle)

Time in all routes actually used are equal and less than those which would
be experienced by a single vehicle on any unused route.

Exactly the same idea that Nash equilibrium (with minimal
transportation cost), except that each user is infinitesimal (large
number of users), meaning that his own action does not have any
impact on the equilibrium; only an aggregated number does.
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Wardrop equilibrium illustration

s

v

w

t

c(x) = x

c(x) = 1

c(x) = 1

c(x) = x

Two disjoint routes from s to t. Volume of traffic to send: 1.
Cost functions c(x) on each link associated to traffic volume x .
How infinitesimal selfish users distribute themselves?
Wardrop’s principle: the cost on each route is the same, otherwise
some of them would switch to the other:
if x1 on route (s, v , t) and x2 on route (s, w , t),

I costs are equal: 1 + x1 = 1 + x2.
I Give that x1 + x2 = 1, this gives x1 = x2 = 1/2.
I Cost on each route: 3/2.
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Price of Anarchy

The optimal social utility function happens when we have a single
authority who dictates every agent what to do.

When agents choose their own action, we should study their behavior
and compare the obtained social utility with the optimal one.

Definition (Price of Anarchy)

It is the ratio of optimal social utility divided by the worst social utility at
a Nash equilibrium.

A price of Anarchy of 1 corresponds to the optimal case where
decentralization does not bring any loss of efficiency (that may
happen).

Research activity for computing bounds for the price of Anarcy in
specific games.
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Routing games

Users choose their route to send traffic to destination.

Goal: to minimize transportation cost: delay (pricing can be inserted, see
later).

Two types of games
I nonatomic routing games, where each player controls a negligible

fraction of the overall traffic. Wardrop equilibrium is the proper
concept.

I atomic routing games, where each player controls a nonnegligible
amount of traffic. Nash equilibrium here.

Existence of an equilibrium and uniqueness of cost at each edge proved in
the case of nonatomic games.

existence of an equilibrium proved in specific cases for the atomic case
(common value to send; affine cost functions).

Price of Anarchy can be studied. At most (3 +
√

5)/2 ≈ 2.618 for
nonatomic games with affine costs.

See T. Roughgarden. Routing Games.
http://theory.stanford.edu/~tim/papers/rg.pdf.
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Braess paradox. Total traffic sent: 1

s

v

w

t

c(x) = x

c(x) = 1

c(x) = 1

c(x) = x

s

v

w

t

c(x) = x

c(x) = 1

c(x) = 0

c(x) = 1

c(x) = x

Left: route costs 1 + x , split equally at equilibrium, i.e. cost 3/2.

Right: expansion of the network, adding a route (cost 0).

Right: at equilibrium everything on the new route (because never
worse than along old routes): cost 2!

Indeed cost x + x less than 1 + x of any other route (since x ≥ 1)
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Application to power control in 3G networks

In CDMA-based networks (Code Division Multiple Access), each user can
play on transmission power.

Quality of Service (QoS) based on the signal-to-interference-and-noise ratio
(SINR):

SINRi = γi =
W

R

hipi∑
j 6=i hjpj + σ2

with W spread-spectrum bandwdith, R rate of transmission, pi power
transmission, hi path gain, σ2 background noise.

Different utility functions found in the litterature. Ex: the number of bits
transmitted per Joule

uj(pi , γi ) =
R

pi
(1− 2BER(γi ))L =

R

pi
(1− e−γi/2)L

where BER(γi ) bit error rate and L length of symbols (packets).

Increasing alone your own power increases your QoS, but decreases the
others’.
⇒ Game theory.
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Game for power allocation

In a one-shot game (strategic game), there is a unique Nash equilibrium.

The equilibrium is Pareto inefficient.

Pareto efficiency: no individual can be made better off without another
being made worse off.

Several proposals to cope with this and improve efficiency:

I Pricing
I Repeated games
I ...

Specific references:

I C. Saraydar, N. Mandayam, and D. Goodman, Pricing and power control in a
multicell wireless data network, IEEE JSAC Wireless Series, vol. 19, no. 2, p.
277-286, 2001.

I T. Alpcan, T. Basar, R. Srikant, and E. Altman, CDMA uplink power control
as a noncooperative game, Wireless Networks, 2002.

I V. Siris, Resource control for elastic traffic in CDMA networks, in Proc. of
MOBICOM’02, 2002.
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Application to P2P

Peer-To-Peer (P2P) networks are self-organizing, distributed systems,
with no centralized authority or infrastructure.

Typical candidate for game theory to study the interaction of
strategic and rational peers.

Ultimate goal: propose incentives or to improve the system’s
performance at the equilibrium of the game.

In general, rational users are free riders: they contribute to little or
nothing to the network.

Different ways to enforce participation:
I pricing incentives: money awarded when you share your files, and cost

when dowloading files of others.
I reputation incentives: the quality of your participation is dependent of

your reputation, which is based on your participation.
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P2P, some references

Some specific references:
I C. Buragohain, D. Agrawal, S. Suri. A Game Theoretic Framework for

Incentives in P2P Systems. (google the title)
I See also http://nes.aueb.gr/p2p.html
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Application to ad hoc networks

Ad hoc networks: networks without any infrastructure.

Nodes send their one traffic, but also forward traffic of peers.

Typical application: military ones, or emergency ones but aimed to be
extended to commercial ones.

Same problem than for P2P: what is the interest of forwarding the traffic of
others?

I Pricing or reputation can be used.

Simular utility than in 3G networks, with a specificity: power battery.

Therefore combines both characteristics.

Some specific references:
I Shen Zhong, Jiang Chen, Yang Richard Yang. Sprite : A Simple, Cheat- Proof,

Credit-Based System for Mobile Ad Hoc Networks. In Proceedings of IEEE Infocom
2003. March 2003.

I Levente Buttyan and Jean-Pierre Hubaux. Stimulating Cooperation in
Self-Organizing Mobile Ad Hoc Networks. ACM Journal for Mobile Networks
(MONET) special issue on Mobile Ad Hoc Networks. 2002.

I ...
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Application to grid computing

Problems similar to P2P: how to yield incentives to participate in
grids?

Some specific references:
I Grid Economy project: http://www.gridbus.org/ecogrid/
I J. Altmann and S. Routzounis, Economic Modeling of Grid Services,

e-Challenges2006, Barcelona, Spain, October 2006.
http://it.i-u.de/schools/altmann/publications/Economic_Modeling_of_Grid_Services_v09.pdf

I Some references at http://www.zurich.ibm.com/grideconomics/refs.html
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Pricing for producing incentives. Why changing?

Increase of Internet traffic due to
I increasing number of subscribers
I more and more demanding applications.

Congestion is a consequence, with erratic QoS.

Increasing capacity difficult if not impossible in access networks (last
mile problem).

We also need to provide incentives to participate with a fair use
of resources (see all above applications).

Properties to be verified:
I Efficiency (provider’s revenue or social welfare)
I Incentive compatibility (truthful revelation of valuation)
I Individual rationality (each user’s best interest is to participate).
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Again, why pricing?

Return on investment for providers
I providers need to get their money back
I if no revenue made, no network improvement possible

Demand/congestion control
I the higher the price, the smaller demand, and the better the QoS
I an “optimal” situation can be reached

Why changing the current (flat) pricing scheme?
I flat-rate pricing unfair, demand uncontrolled
I service differentiation impossible to favor QoS-demanding applications

otherwise

Heterogeneity of technologies/applications
I different services (telephony, web, email, TV) available through

multiple medias (fix, 3G, WiFi...)
I appropriate and bundle contracts to be proposed.

A lot of new contexts: MNO vs MVNO, cognitive networks...
I adaptation of economic models to be realized for an optimal network

use.
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Other reasons for pricing

Regulation issue
I When no equilibrium, pricing can help to drive to such a point.
I By playing on prices, a better situation can be obtained

But, network neutrality problem: not everything can be proposed
I current political debate
I introduced because network providers wanted to differentiate among

service providers
I could limit the user-benefit-oriented service differentiation.
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Illustration of pricing interest Courcoubetis & Weber, 2003

User i buying a service quantity xi at unit price p.
ui (xi , y) utility for using quantity xi , where y =

∑
i xi/k with k

resource capacity.
ui assumed decreasing in y : negative externality because of
congestion.
Net benefit of user i :

ui (xi , y)− pxi

Benefit of provider: p
∑

i xi − c(k).
Social welfare: sum of benefits of all actors in the game (provider +
users):

SW =
∑

i

ui (xi , y)− c(k).

Optimal SW determined by maximizing over x1, . . . ; xn. Leads to (by
differentiating over each xi )

∂ui (x∗i , y
∗)

∂xi
+

1

k

∑
j

∂uj(x∗j , y
∗)

∂y
= 0 ∀i .
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Illustration of pricing interest (2) Courcoubetis & Weber, 2003

Define the price as the marginal increase in SW due to a marginal
increase in congestion, at the SW optimum,

pE = −1

k

∑
j

∂uj(x∗j , y
∗)

∂y

(positive thanks to the decreasingness of ui in y)

With this price, a user acting selfishly tries to optimize his net benefit

max
xi

ui (xi , y)− pE xi .

Differentiating with respect to xi , this gives

∂ui

∂xi
+

1

k

∂ui

∂y
− pE = 0

For a large n, assuming
∣∣∣∂ui
∂y

∣∣∣ << ∣∣∣∑j
∂uj

∂y

∣∣∣, we get approximately the

same system of equations then when optimizing SW .

Pricing can therefore help to drive to an optimal situation.
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Proposed pricing schemes

Pricing for guaranteed services through reservation and admission
control.
Drawback: scalability.

Paris Metro Pricing: separate the network into logical subnetworks
with different acces charges.
Advantage: simple. Drawback: does not work in a competion market.

Cumulus pricing scheme: +/- points awarded if predefined contract
respected. Penalities and renegociations.
Advantage: easy to implement.
Priority pricing: classes of traffic with different priority levels and
access prices;

I schedulling priority
I rejection or dropping priority.

Advantage: easy to implement.

Auctionning, for priority at the packet level, or for bandwidth at the
flow level.

Pricing based on transfer rates and shadow prices.
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Example: pricing and schedulling

Goal of DiffServ architecture: to introduce differentiation of service by
providing mutiple classes

I introduced to deal with congestion
I because applications are more or less stringent in terms of QoS.

If no pricing associated to DiffServ, all users/applications will likely
choose the “best” service class.

DiffServ architecture deals with strict priority or generalized processor
sharing.
Which one is the “best” from an economical point of view?

Questions to solve:
I For eah schedulling policy, what are the prices maximizing the

provider’s benefits?
I Which schedulling policy to implement? I.e., which one yields larger

benefits (at optimal prices)?
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Basic model

Bottleneck node of the network represented by an M/M/1 queue with
service rate µ.

Infinite number of potential users, users being assumed infinitesimal

Two types of flows: voice and data (voice more sensitive to delay
than data), with rate λv , λd per user.

Two classes of service with possible schedulling policies:
I strict priority:

F class-1 always served before class-2
I generalized processor sharing (GPS):

F a part of the server is dedicated to class-1, the other to class-2, except
when no server in one class (full service then)

F FIFO scheduling within a class
I or discriminatory processor sharing (DPS):

F a weight wi (corresponding to its class) associated to a flow i
F a proportion wi/(

P
j wj) of the server is allocated to flow i .

Cases of dedicated classes or open classes
I we restrict ourselves to dedicated classes here.
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User behaviour

Utility depending on the average delay D and per-packet price p:

Ud(D) = D−αd − p and Uv (D) = D−αv − p

where αd < αv : voice users have preference for small delays.

A user enter as soon as his utility is positive, or leaves if it is negative
⇒ Game between classes on the steady state number of active
connections (users).

I The number of users Nd and Nv in one class may influence the number
in the other class.

I Prices influence that number too.

At (Wardrop) equilibrium, ∀j ∈ {v , d}:
I either Nj > 0 and Uj(D) = 0
I or Nj = 0 and Uj(D) ≤ 0.
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Schedulling Policies considered: priority, GPS, DPS

If only one class, average response time when N users:
D = 1/(µ− Nλ).

Priority: closed form available for delay per class, with higher priority
for voice users:

Dv =
1

µ− Nvλv
and Dd =

µ

(µ− Nvλv )(µ− Nvλv − Ndλd)
.

GPS: no closed-form formula. Though, under heavy load assumption,
can be approximated by independent queues (similar to so-called Paris
Metro Pricing). If γv and γd proportions allocated to v and d :

Dv =
1

γvµ− Nvλv
and Dd =

1

γdµ− Ndλd
.

DPS: closed-form formula also. If γ relative priority of data users,

Dv =

(
1 + λdNd (2γ−1)

µ−(1−γ)λvNv−γλdNd

)
µ− λv Nv − λdNd

and Dd =

(
1− λvNv (2γ−1)

µ−(1−γ)λvNv−γλdNd

)
µ− λv Nv − λdNd

.
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Dedicated classes, strict priority

Nv

Utility

Uv (Dv (Nv ))
pv

N∗v

Nv

Utility

Ud(Dd(Nd ,N
∗
v ))pd

N∗d

High priority user demand N∗v computed first:

I Nv increases up to Uv (Dv ) =
(

1
µ−Nvλv

)−αv

decreases to pv ;

I If Nv too large and Uv (Dv ) < pv , then Nv naturally decreases.

I it gives N∗v =
µ−p−αv

v

λv
.

Next, with this value of N∗v , N∗d computed similarly, solution of

Ud(Nd ,N
∗
v ) =

(
µ

(µ−λvN∗v )(µ−λvN∗v −λdNd )

)αd

= pd .

User equilibrium easily explicitely characterized.
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Dedicated classes, GPS

Nv

Utility

Uv (Dv (Nv ))
pv

N∗v

Nv

Utility

Ud(Dd(Nd))pd

N∗d

Both queues considered independently. ∀j ∈ {v , d},
I Nj increases up to Uj(Dj) =

(
1

γjµ−Njλj

)−αj

decreases to pj ;

I If Nj too large and Uj(Dj) < pj , then Nv naturally decreases.
I it gives

N∗j =
µ− p

−αj

j

λj
.
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Open classes, strict priority

For the high priority class 1
I respective utilities Uv = D−αv − p1 and Uv = D−αd − p1.
I If p1 > 1, curve Uv = 0 always above Ud = 0;
I If p1 < 1 Uv = 0 always under Ud = 0.

Nv

Nd

Uv = 0

Ud = 0
Nv

Nd

Ud = 0

Uv = 0

Only voice (resp. date) users in class 1 if p1 > 1 (resp. p1 > 1).

Similar results for low priority class.

Four situations with easy chracterization of (N∗v ,N
∗
d):

I p1, p2 > 1: only voice users
I p1, p2 > 1: only data users
I p1 > 1, p2 < 1: voice users in class 1, data users in class 2
I p1 < 1, p2 > 1 (strange!): data users in class 1, voice users in class 2.
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Open classes, GPS

Same analysis that with the highest queue with strict priority,
cinsidering both queues separately.

Four situations with easy explicit characterization of (N∗v ,N
∗
d):

I p1, p2 > 1: only voice users
I p1, p2 > 1: only data users
I p1 > 1, p2 < 1: voice users only in class 1, data users only in class 2
I p1 < 1, p2 > 1: data users only in class 1, voice users only in class 2.
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Economic issues

Results Hayel, Ros & T., Infocom 04

Prices optimizing the network revenue found for each policy using the
user equilibrium:

I Revenue defined as

R = Rv + Rd

= λv N∗v pv + λdN∗d pd

I simple derivation applied each time in terms of prices;
I optimal revenue computed then.

Policy that produces the best revenue: strict priority: γ1 ∈ {0, 1}
optimal in terms of revenue for the GPS case.

I for dedicated classes
I and open classes as well.
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Dedicated classes, DPS; dynamics

Nv

Nd

Uv = 0

Ud = 0
Nv

Nd

Ud = 0

Uv = 0
Nv

Nd

Uv = 0

Ud = 0

The value of Nj influences directly the utility of the other class i .
Three possible situations

I One curve Ui is always below the other (two cases)
F The numbers of customers increase up to reaching the lowest curve

Ui = 0
F but Nj still increases (Uj > 0), it slides on the curve to Ni = 0 on

Ui = 0
F the on the axis to the equilibrium point Ni = 0 and Uj = 0.

I The curves have an intersection point
F The number of customers increase up to reaching one curve;
F Then thit slides up to the intersection point.
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Remark: DPS and TCP modelling

DPS not applicable at the packet level.

Though, DPS in an M/M/1 queue is a good approximation of
interactions of TCP sessions in comptetion at the flow level.

The results remain valid, but the λ are here for session lengths, and
the number of sessions are considered in average.

It therefore provides a pricing scheme for TCP sessions.
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Example: auctionning for bandwidth

The problem of resource allocation

.

3

1

4

2

.

Allocate bandwidth among users on a link with a capacity constraint
Q

More general results also obtained

Allocation and pricing mechanism: determines the allocation ai for
each player i , and the price ci he is charged.

Which allocation and pricing rule? Based on Vickrey-Clarke-Groves (VCG)
auction mechanism.

Bruno Tuffin (INRIA) Game Theory PEV - 2010 63 / 102



General Vickrey-Clarke-Groves (VCG) auctions description

Applicable to any problem where players (users) have a quasi-linear
utility function.

Utility of user i :
Ui (a, ci ) = θi (a)− ci ,

with
I θi is called the valuation or willingness-to-pay function of user i
I a outcome (say, the resource allocation vector), a = (a1, . . . , an).
I ci total charge to i (can be non-positive).

VCG asks users to declare their valuation function θ̃i
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VCG allocation and pricing rules

the mechanism computes an outcome a(θ̃) that maximizes the
declared social welfare:

a(θ̃) ∈ arg max
x

∑
i

θ̃i (x);

the price paid by each user corresponds to the loss of declared welfare
he imposes to the others through his presence:

ci = max
x

∑
j 6=i

θ̃j(x)−
∑
j 6=i

θ̃j(a(θ̃)).
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VCG mechanism properties

The mechanism verifies three major properties:

Incentive compatibility: for each user, bidding truthfully (i.e.
declaring θ̃i = θi ) is a dominant strategy.

Individual rationality: each truthful player obtains a non-negative
utility.

Efficiency: when players bid truthfully, social welfare (
∑

i θi ) is
maximized.
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Back to the auction for bandwidth issue N. Semret PhD thesis, 1999

For a link of capacity Q.

Each player i submits bid si = (qi , pi ) with
I qi asked quantity
I pi associated price.

Allocation ai and total charge ci such that
I
∑

i ai ≤ Q: do not allocate more than the available capacity
I ci ≤ piqi : charge less than the declated total valuation.

bid profile s = (s1, . . . sn) and s−i bid profile excluding player i .

Unused capacity for user i at price y :

Qi (y ; s−i ) =

Q −
∑

j 6=i :pj>y

qj

+

.
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Allocation and pricing rule

Allocation: priority to highest bids,

ai (s) = min

(
qi ,

qi∑
k:pk=pi

qk
Qi (pi ; s−i )

)

I you get 0 if nothing remains,
I your quantity if still available at your bid and enough remains to serve

all quantities at same unit price,
I or you share proportionally what remains if not to serve to cover all

bids at pi .

Charge

ci (s) =
∑
j 6=i

pj [aj(0; s−i )− aj(si ; s−i )]

I you pay the loss of valuation your presence creates on other players.
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Numerical illustration

p

Q

q6
p6

q5
p5 q3
p3

q2p2

q1 p1

q5
p5

q

pi

qi

bid (qi , pi ) does not allows i to get the required quantity.

Bids with higher price are allocated first.

Player i gets what remains.

Charge: loss declared by i ’s presence (here players 2 and 3); grey zone.
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Algorithm and results

Users’ preferences: determined by their utility function
ui (s) = θi (ai (s))− ci (s)

θi =player i ’s valuation function, assumed non-decreasing and
concave

User i ’s goal: maximizing his utility θi (ai )− ci .

Users play sequentially, optimizing their utility given s−i , up to
reaching an ε-Nash equilibrium where no user can improve his utility
by more then ε.

ε: bid fee. Avoids oscillations around the real Nash equilibrium.
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Properties of the scheme

a) Incentive compatibility: A player cannot do much better than
simply revealing his valuation.

b) Individual rationality: Ui ≥ 0, whatever the other players bid.

c) Efficiency: When players submit truthful bids, the allocation
maximizes social welfare.

Issues:

1 requires a lot of signalling: at each round, users need to know the
whole bid profile

2 takes time to reach an ε-Nash equilibrium

3 when users leave or enter: needs a new application of the sequential
algorithm, with a loss of efficiency during the transient phase.

Those aspects solved by the next proposition.
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Multi-bid auctions Maillé & T., Infocom 04, IEEE/ACM ToN 06

Improvement in-between sending a single bid several times and sending a
whole function (not practical).

When entering the game, each player i submits Mi two-dimensional
bids of the form smi

i = (qmi
i , pmi

i ) where{
qj
i = asked quantity of resource

pj
i = corresponding proposed unit price

Allocations ai and charges ci computed based on s.
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User behaviour

Set I of users (players)
I Users’ preferences: determined by their utility function

ui (s) = θi (ai (s))− ci (s)
I θi =player i ’s valuation function, assumed non-decreasing and

concave
I User i ’s goal: maximizing his utility θi (ai )− ci .

The auctioneer uses player i ’s multi-bid si to compute:
I the pseudo-marginal valuation function θ̄′i
I the pseudo-demand function d̄i
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.

Pseudo-marginal valuation and pseudo-demand functions associated with

the multi-bid si

θ̄′i(q) = max
1≤m≤Mi

{pm
i : qm

i ≥ q} if q1
i ≥ q, 0 otherwise.

d̄i(p) = max
1≤m≤Mi

{qm
i : pm

i ≥ p} if pMi
i < p, 0 otherwise.
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Allocation and pricing rule
.

0

q

Prices
p

Q
ua
nt
iti
es Q

ū

d̄ p ! d̄i p

d̄2 p

d̄3 p

d̄1 p

.

ū: pseudo market clearing price (highest unit price at which demand
exceeds capacity).

Multi-bid allocation: ai (s) = d̄i (ū+) + d̄i (ū)−d̄i (ū
+)

d̄(ū)−d̄(ū+)
(Q − d̄(ū+))

Pricing principle : each user pays for the declared ”social opportunity
cost” he imposes on others
If s denotes the bid profile,

ci (s) =
∑

j∈I∪{0},j 6=i

∫ aj (s−i )

aj (s)
θ̄′j
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Properties of the scheme

Here too, we have been able to prove the following properties are satisfied:

a) Incentive compatibility;

b) Individual rationality;

c) Efficiency (in terms of social welfare).

Advantages:

Bids given only once (when entering the game);

No information required about network conditions and bid profile;

No convergence phase needed: if network conditions change, new
allocations and charges automatically computed (no associated loss of
efficiency).

Other mechanisms since: double-sided auctions for instance...
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Interdomain problem

AS 1

AS 1

AS 2

AS 3

AS 4

AS 4

AS 5 AS 6

AS 5 AS 6

AS 7

AS 7

AS 8

AS 9

AS 10

AS 10

Network made of Autonomous Systems (ASes) acting selfishly.

A node (an AS) needs to send traffic from its own customers to other ASes.

Introduce incentives for intermediate nodes to forward traffic , via pricing.

What is the best path?
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Interdomain issues

similar problems in
I ad-hoc networks: individual nodes should be rewarded for forwarding

traffic (especially due to power use);
I P2P systems: free riding can be avoided through pricing.

How to implement it?
I The AS can contacts all potential ASes on a path to learn their costs,

and then make its decisions.
I More likely: he contacts only its neighbors, which ask the cost to their

own neighbors with a BGP-based algorithm.
On the way back, declared costs are added.

Two different mathematical problems
I Finite capacity at each AS: it becomes similar to a knapsack problem.
I Capacity assumed infinite if networks overprovisionned thanks to optic

fiber (last mile problem, i.e., connection to users, not considered here).
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Relevant (desirable) properties

Individual rationality: ensures that participating to the game will give
non-negative utility.

Incentive compatibility: ASes’ best interest is to declare their real
costs.

Efficiency: mechanism results in a maximized sum of utilities.

Budget Balance: sum of money exchanged is null.

Decentralized: decentralized implementation of the mechanism.

Collusion robustness: no incentive to collusion among ASes.

Is there a pricing mechanism:

verifying the whole set or a given set of properties?

Or/and verifying almost all of them?
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Interdomain pricing when no resource constraints
Feigenbaum et al. 2002

Inter-domain routing handled by a simple modification of BGP.
Amount of traffic Tij from AS i to AS j , with per-unit cost ck for
forwarding for AS k.
Valuation of intermediate domain k for a given allocation (a routing
decision) is

θk(routing) = −ck

∑
{(i ,j) routed trough k}

Tij .

Maximizing sum of utilities is equivalent to minimizing the total
routing cost ∑

i ,j

Tij

∑
k∈path(i ,j)

ck ,

where
I each AS declares its transit cost ck

I the least (declared) cost route path(i , j) is computed for each
origin-destination pair (i , j).
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VCG auctions and drawback in interdomain context
Payment rule to intermediate node k (opportunity cost-based):

pk = ck +

 ∑
` on path−k (i ,j)

c` −
∑

` on path(i ,j)

c`


with path−k(i , j) the selected path when k declares an infinite cost.
Subsequent properties

I Efficiency
I Incentive compatibility
I Individual rationality

Only pricing mechanism to provide the three properties at the same
time.

But who should pay the subsidies? Sender’s willingness to pay not
taken into account. That should be!
The VCG payment from sender is the sum of declared costs if traffic
is effectively sent: always below the sum of subsidies.
Very unlikely to apply in practice: no central authority to permanently
inject money.
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Impossibility result and what is the good choice?

General result: no mechanism can actually verify efficiency, incentive
compatibility, individual rationality and budget balance.

Current question: what set of properties to verify? Which mechanism
to apply?

I The “almost” property could be amore flexible choice.
I Strict requirement: budget balance. Decentralization too if dealing

with large topologies.
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Specific model of competition among providers

But providers play first!

WiFi 1 WiFi 2

WiMAXDSL

p1 p2

p3

p4

Interactions among non-cooperative consumers: game

Congested networks provide poorer quality (packet losses)
Study of the two-level noncooperative game.

1 Higher level: providers set prices to maximize revenue

2 Lower level: consumers choose their provider
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Communication model: packet losses

Time is slotted

Each provider i has finite capacity Ci

If total demand di at provider i exceeds Ci : exceeding packets are
randomly lost

di
Ci served

lost

P(successful transmission) = min

(
1,

Ci

di

)
⇒ Expected number of transmissions =

1

P(success)
= max

(
1,

di

Ci

)
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Only “regulation”: pay for what you send

The price pi at each provider i is per packet sent Marbach’02

⇒ If several transmissions are needed, the user pays several times

p̄i := perceived price at i = E[price per packet] = pi max

(
1,

di

Ci

)

pi

Ci Demand di

Price p̄i

p̄i
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Model for user choices: Wardrop equilibrium

Users choose the provider(s) i with lowest p̄i = pi max
(

1, di
Ci

)
⇒ For a given coverage zone Z , all providers with customers from that

zone end up with the same perceived price p̄i = p̄z Wardrop’52

The total amount of data that users want to successfully transmit in
a zone z depends on that price:∑

i

di ,z min(1,Ci/di ) = αzD(p̄z),

i .e. p̄z = v︸︷︷︸
marg. val. function

(∑
i di ,z min(1,Ci/di )

αz

)
with D the total demand function, αz the population proportion in
zone z , and di ,z the demand in zone z for provider i .
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Higher level: price competition game

Providers set their price pi anticipating users reaction
⇒ Providers are Stackelberg leaders

We can assume management costs of the form `i (di )︸ ︷︷ ︸
nondecreasing, convex

Provider i ’s objective: Ri := pidi − `i (di ).
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Competition model

Simplified topology: common coverage area

N competing providers declaring price and capacity (I := {1, . . . ,N})

p1 p2

p3
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User equilibrium

Users choose the provider(s) i with lowest p̄i = pi max
(

1, di
Ci

)
⇒ All providers with customers end up with the same perceived price

p̄i = p̄ Wardrop’52

The total demand level depends on that price:

p̄ = v︸︷︷︸
marg. val. function

(∑
min(Ci , di )

)

Unit price

Served quantities

D(p)

C1

p1

C2

p2

C3

p3

C4

p4

p̄
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User equilibrium: formal description
p̄i = pi max

(
1,

di

Ci

)
p̄i > min

j
p̄j ⇒ di = 0∑

i

di ,z min(1,Ci/di )︸ ︷︷ ︸
effectively received at i

= D(min
j

p̄j).

Proposition

There exist a (possibly not unique) user (Wardrop) equilibrium demand
configuration. The common perceived unit price p̄ of providers i with
di > 0 is unique and equals

p̄ = min{p : D(p) ≤
∑

i

fi (p)},

where fi (p) = Ci1{p≥pi}, with 1X indicator function.

Non-uniqueness happens only when several providers have price pi = p̄:
users can choose indifferently those providers.
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Price competition, main result

Proposition

Under sufficient condition A, there exists a unique Nash equilibrium on
price war among providers, given by

∀i ∈ I,

{
pi = v

(∑
j∈I Cj

)
di = Ci .

Sufficient condition A: each `i is Lipschitz with constant κi , and

∀y ≥ p∗ := v
(∑

j∈I Cj

)
, the demand function D is sufficiently

elastic:
−yD ′(y)

D(y)
≥ 1

1− κ/y
, (1)

where κ := maxi∈I κi .

Without cost functions, it just means a demand elasticity larger than
-1.

Quantities

Unit price v(q)

C1 C2 C3 C4

p∗ := v(
∑

Ci )
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Social Welfare considerations

A performance measure of the outcome (d1, ..., dI ) of the game
= overall value of the system

Social Welfare :=

∫ P
i∈I di

u=0

∑
i∈I min(di ,Ci )∑

i∈I di
v(u)du −

∑
i

`i (di ).

First term: total valuation for the service experienced. Comes from actual (per
traffic unit) utility of a user having (per traffic unit) willingness-to-pay v is its
willingness-to-pay times the probability to be served, i.e.,P

i∈I min(di , Ci )P
i∈I di

v .

Remark: the Social Welfare maximization problem leads to the same
outcome di = Ci ∀i as the price war.

Consequence: The Nash equilibrium corresponds to the socially
optimal situation: the Price of Anarchy is 1!.
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Game on declared capacities: a third level

We now consider a 3-stage game:

1 Providers i ∈ I declare their capacity Ci

2 Providers fix their selling price pi

3 Users select their providers

Opposite effects of lowering one’s capacity:

the unit selling price at equilibrium increases and the managing cost
decreases because the quantity sold decreases

whereas on the other hand less quantity sold means less revenue.

Proposition

Under the same conditions about demand elasticity, no provider can
increase its revenue by artificially lowering its capacity.
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Competition model

Assumptions

Two competing providers declaring price and capacity

One coverage area included in the other

Prov. 1: WiMAX

Prov. 2: WiFi
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User equilibrium: illustration

Prov. 1

Prov. 2

zone A (1− α)

zone B (α)

p

q

p

q

v
“

q
1−α

”
v
` q
α

´

C1 C1 + C2

p1

p2

p1

p̄2

C1 − d1,B

C2

C1 − d1,A

d1,Ap1/p̄1 d1,Bp1/p̄1 + d2p2/p̄2

P
er

ce
iv

ed
p

ri
ce

s

P
er

ce
iv

ed
p

ri
ce

s

Served quantities Served quantities
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User equilibrium: mathematical formulation
At user equilibrium, according to Wardrop principle

p̄1 = p1 max

(
1,

d1,A + d1,B

C1

)
p̄2 = p2 max

(
1,

d2

C2

)

d1,A min

(
1,

C1

d1,A + d1,B

)
= (1− α)D(p̄1)

d1,B min

(
1,

C1

d1,A + d1,B

)
+ d2 min(1,C2/d2) = αD(min(p̄1, p̄2))

p̄1 > p̄2 ⇒ d1,B = 0

p̄1 < p̄2 ⇒ d2 = 0.
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User equilibrium: existence and uniqueness

Proposition

For all price profile, there exists at least a user (Wardrop) equilibrium.
Moreover, the corresponding perceived prices of each provider are unique.

NB: demand repartition among providers is not necessarily unique.

Higher level: price competition game

Provider i ’s objective: Ri := pidi − `i (di ).
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Proposition

If −D′(p)p
D(p) > 1, ∀p (elastic demand), then there exists a unique Nash

equilibrium (p∗1 , p
∗
2) in the price war between providers.

If α ≤ C2
C1+C2

, then p∗1 = v
(

C1
1−α

)
≥ p∗2 = v

(
C2
α

)
. The common

zone is left to provider 2 by provider 1.

If α > C2
C1+C2

then p∗1 = p∗2 = p∗ = v(C1 + C2). The common zone is
shared by the providers.

Prov. 1: WiMAX

(Darker=more expensive)

Prov. 2: WiFi
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Concluding remarks

Game Theory has gained a lot of attention in the networking
community (see the number of related publications in major
conferences such as IEEE Infocom).

It allows to model and study the behavior of selfish users in
competition for resources.

We can then play on parameters of the model to drive the equilibrium
to a better point.

Applications in all areas of networking.

Pricing is a typical (and quite natural) way to yield proper incentives.
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