
1

Credits: Anne-Marie Déplanche, Irccyn, Nantes (many slides come
from her presentation at ETR, Brest, September 2011)

Multi-core real-time scheduling

Real Time Systems – 2012-2013 2

Multi-core real-time scheduling

!  Introduction: problem definition and classification
!  Some anomalies of multiprocessor scheduling
!  Model and assumptions
!  Extension of uni-processor scheduling strategies
!  Pfair approaches

Real Time Systems – 2012-2013 3

Introduction

!  Mono-processor scheduling: one-dimension
problem
"  Temporal organization

•  When to start, interrupt, resume every task?

n tasks

1 processor

…
T1 T2 T3

Time

T1 ?

Real Time Systems – 2012-2013 4

Introduction

!  Multi-processor (multi-core) scheduling: two-
dimension problem
"  Temporal organization +
"  Spatial organization

•  On which processor execute every task?

n tasks

m processors

T1

T3

t

…

T2 t

T4 T2 t

…

?

Real Time Systems – 2012-2013 5

Classification

!  Partitioned scheduling
"  Each of the two dimensions is dealt with separately

!  Global scheduling
"  Temporal and spatial dimensions are deal with jointly

!  Semi-partitioned scheduling
"  Hybrid

Real Time Systems – 2012-2013 6

Classification: partitioned scheduling

!  Each of the two dimensions is dealt with separately
"  Spatial organization: the n tasks are partitioned onto

the m cores. No task migration at run-time
"  Temporal organization: Mono-processor scheduling

is used on each core

C1 T1

T3

t

T2 t

T4

T2 C2

?

?
…

Real Time Systems – 2012-2013 7

Classification: partitioned scheduling

!  Two points of view
"  Number of processors to be determined: optimization

problem (bin-packing problem)
•  Bin = task, size = utilization (or other expression

obtained from the task temporal parameters)
•  Boxes = processors, size = ability to host tasks

"  Fixed number of processors: search problem
(knapsack problem)

!  Both problems are NP-hard

Real Time Systems – 2012-2013 8

Classification: partitioned scheduling

!  Optimal mono-processor scheduling strategies: XX
"  RM, DM
"  EDF, LLF (see uni-processor scheduling chapter)

!  Bin-packing heuristics: YY
"  FF: First-Fit
"  BF: Best-Fit
"  WF: Worst-Fit, NF: Next-Fit
"  FFD, BFD, WFD: First/Best/Worst-Fit Decreasing

!  Partitioning algorithms XX-YY

Real Time Systems – 2012-2013 9

Classification: partitioned scheduling

!  Benefits
"  Implementation: local schedulers are independent
"  No migration costs
"  Direct reuse of mono-processor schedulability tests
"  Isolation between processors in case of overload

!  Limits
"  Rigid: suited to static configurations
"  NP-hard task partitioning
"  Largest utilization bound for any partitioning

algorithm [Andersson, 2001]
(m+1 tasks of execution time 1+! and period 2)

!

m +1
2

Real Time Systems – 2012-2013 10

Classification: global scheduling

!  Temporal and spatial dimensions are dealt with
jointly
"  Global unique scheduler and run queue
"  At each scheduling point, the scheduler decides

when and where schedule at most m tasks
"  Task migration allowed

T1

T3

t

T2 t

T4 T2 t

…
?

Real Time Systems – 2012-2013 11

Classification: global scheduling

!  Benefits
"  Suited to dynamic configurations
"  Dominates all other scheduling policies

•  (if unconstrained migrations + dyn. priorities – see
later)

"  Optimal schedulers exist
"  Overloads/underloads spread on all processors

!  Drawbacks
"  System overheads: migrations, mutual exclusion for

sharing the run queue

Real Time Systems – 2012-2013 12

Classification: global scheduling

!  (Preemptive) global RM/DM/EDF: definition
"  Task priorities assigned according to RM/DM/EDF
"  Scheduling algorithm: the m higher priority tasks are

executed on the m processors

Real Time Systems – 2012-2013 13

Classification: semi-partitioned scheduling

!  Partitioned scheduling as far as possible
!  Some statically determined tasks may migrate

"  Constraint: migrating tasks (T4 on the example) must
execute on a single processor at a time

C1 T1

T3

t

T2 t

T4

T2 C2

?

?
…

Migrating task

T4

T4

Real Time Systems – 2012-2013 14

Terminology

!  A task set is schedulable if there exists a
scheduling policy such that all deadlines are met

!  A task set is schedulable by a scheduling policy if
under that scheduling policy all deadlines are met

!  A scheduling policy is optimal if it is able to
correctly schedule all schedulable task sets
"  Different from the optimality defined before

!  Utilization bound of a scheduling policy: utilization
Ulim below which all task sets meet their deadline

Real Time Systems – 2012-2013 15

Terminology

!  Priorities
"  Fixed per task (FTP)
"  Fixed per job (FJP)
"  Dynamic per job (DJP)

Real Time Systems – 2012-2013 16

Overview of global scheduling policies

!  Assumptions
"  Tasks

•  Periodic tasks (Pi)
•  Implicit deadlines (Di=Pi)
•  Synchronous tasks (Oi=0 for all i)
•  Independent tasks
•  A single job of a task can be active at a time

"  Architecture
•  Identical processors
•  System costs are neglected (preemption, migration,

scheduling policy)

Real Time Systems – 2012-2013 17

Scheduling anomalies (1/3)

!  Dhall’s effect [Dhall & Liu, 1978]
"  Periodic task sets with utilization close to 1 are

unschedulable using global RM / EDF
"  n = m+1, Pi = 1, Ci = 2!, ui=2! for all 1"i"m
"  Pm+1=1+!, Cm+1=1, um+1=1/(1+!)
"  Task m+1 misses its deadline although U very close

to 1
T1

Tm

Tm+1

1

0
1+ε 2ε

Real Time Systems – 2012-2013 18

Scheduling anomalies (2/3)

!  Period increase for periodic tasks and fixed
priorities [Anderson, 2003]
"  n = 3, m=2, (P1= 3, C1=2), (P2=4,C2=2),

(P3=12,C3=7)
"  Schedulable under global RM
"  If P1 is increased to P1=4 and priorities stay the

same, T3 misses its deadline

Real Time Systems – 2012-2013 19

Scheduling anomalies (2/3)

!  (P1= 3, C1=2), (P2=4,C2=2), (P3=12,C3=7)

!  (P1= 4, C1=2), (P2=4,C2=2), (P3=12,C3=7)

T2

T3

T1 T1 T1 T1

T2 T2 T2

T3

T1

T2

T3

T1 T1 T1 T1 T1

T2 T2 T2

T3

T3

Real Time Systems – 2012-2013 20

Scheduling anomalies (3/3)

!  Critical instant not necessarily the simultaneous
release of higher priority tasks
"  n=3, m=2
"  (P1=2, C1=1), (P2=3,C2=2), (P3=4,C3=2)
"  Under RM scheduling

•  Response time of T3 higher at time 4 than at time 0

T1

T2

T3

T1 T1 T1

T2 T2

T3 T3

3 4

Real Time Systems – 2012-2013 21

General properties of multiprocessor
scheduling (1/2)

!  Exact schedulability condition
"  U " m and umax " 1
"  U = total utilization
"  Umax = maximum utilization
"  Does not tell for which scheduling algorithm!

!  Schedule is cyclic on the hyperperiod H (PPCM(Pi))
for:
"  Deterministic
"  Without memory scheduling algorithms

Real Time Systems – 2012-2013 22

General properties of multiprocessor
scheduling (2/2)

!  Theorem [Srinavasan & Baruah, 2002]
"  Non existence of FJP (FJP+FTP) scheduling with

utilization bound strictly larger than (m+1)/2 for
implicit deadline periodic task sets

Real Time Systems – 2012-2013 23

Global multiprocessor scheduling: detailed
outline

!  Transposition of uni-processor algorithms
!  Extensions of uni-processor algorithms

"  US (Utilization Threshold)
"  EDF(k)
"  ZL (Zero Laxity)

!  Pfair approaches (Proportional Fair)

Real Time Systems – 2012-2013 24

Transposition of uni-processor algorithms
(1/2)

!  Main algorithms
"  RM (Rate Monotonic) # G-RM, Global RM
"  EDF (Earliest Deadline First) # G-EDF, Global

EDF
!  Not optimal anymore
!  Sufficient schedulability tests (depend on umax)

G-RM G-EDF

umax " m/(3m-2) and U " m2/(3m-2) umax " m/(2m+1) and U " m2/(2m+2)
umax " 1/3 and U " m/3 umax " 1/2 and U " (m+1)/2
U " m/2 * (1-umax) + umax U " m – (m-1) umax

Real Time Systems – 2012-2013 25

Transposition of uni-processor algorithms
(2/2)

Real Time Systems – 2012-2013 26

Extensions of global RM/EDF: US (Utilization
Threshold) policies

!  Priority assignment depend on an utilization
threshold #
"  If ui > #, then Ti is assigned maximal priority
"  Else, Ti’s priority assigned as in original algorithm

(RM/EDF)
"  Arbitrary deterministic tie resolution

!  Remarks
"  Still non optimal,
"  Outperforms the base policy
"  Defies Dhall’s effect

Real Time Systems – 2012-2013 27

Extensions of global RM/EDF: US (Utilization
Threshold) policies

!  Example: RM-US[#=1/2]

Ci Pi Ui Prio

T1 4 10 2/5 2
T2 3 10 3/10 2
T3 8 12 2/3 $
T4 5 12 5/12 1
T5 7 12 7/12 $

Real Time Systems – 2012-2013 28

Extensions of global RM/EDF: US (Utilization
Threshold) policies

!  Utilization bounds

!  Remarks
"  Utilization bounds do not depend on umax anymore
"  EDF-US[1/2] attains the best utilization bound

possible for FJP

RM-US EDF-US

#=m/(3m-2) U " m2/(3m-2) #=m/(2m-1) U " m2/(2m-1)
#=1/3 U " (m+1)/3 #=1/2 U " (m+1)/2

Real Time Systems – 2012-2013 29

Extensions of global RM/EDF: EDF(k)

!  Task indices by decreasing utilization
"  ui >= ui+1 for all i in [1,n]

!  Priority assignment depends on a threshold on task
index
"  i < k, then maximum priority
"  Else, priority assignment according to original

algorithm

Real Time Systems – 2012-2013 30

Extensions of global RM/EDF: EDF(k)

!  Example, EDF(4)

Ci Pi Ui Prio

T1 4 10 2/5 EDF
T2 3 10 3/10 EDF
T3 8 12 2/3 $
T4 5 12 5/12 $
T5 7 12 7/12 $

Real Time Systems – 2012-2013 31

Extensions of global RM/EDF: EDF(k)

!  Sufficient schedulability test

"  kmin = value minimizing right side of the equation
"  With k=kmin, utilization bound of (m+1)/2 (best

possible for FJP)
"  Comparison with EDF[1/2]

•  Same utilization bound
•  EDF(kmin) dominates EDF[1/2]

!

m " k #1() #
ui

i=k+1

n

$
1# uk

%

&

&
&
&
&

'

(

(
(
(
(

Real Time Systems – 2012-2013 32

Extensions of global RM/EDF: ZL (Zero
Laxity) policies

!  XX-ZL: apply policy XX until Zero Laxity
"  Maximal priority when laxity reaches zero

(regardless of the currently running job), original
priority assignment for the others

"  In category DJP (dynamic job scheduling)
!  Policies: EDZL [Lee, 1994], RMZL [Kato & al,

2009], FPZL [Davis et al, 2010]
!  Utilization bound: (m+1)/2
!  Dominates G-EDF

Real Time Systems – 2012-2013 33

Extensions of global RM/EDF: ZL (Zero
Laxity) policies

!  Example: m=3,m=2; all Pi to 2, all Ci to 2
"  G-EDF: T3 misses its deadline

"  EDZL: OK

T1

T2

T1

T2

T3 T3

T1

T2

T1

T3 T3

T2 T2 T2

Real Time Systems – 2012-2013 34

Pfair algorithms

!  Principle
!  Construction of a Pfair schedule
!  Pfair scheduling policies

Real Time Systems – 2012-2013 35

Pfair algorithms: principle

!  Pfair: “Proportionate Fair”
"  [Baruah et al, 1996]
"  Allocate time slots to tasks as close as possible to a

“fluid” system, proportional to their utilization factor
!  Example

"  C1=C2=3, P1=P2=6 (u1=u2=1/2)
"  Each task will be “approximately” allocated 1 slot out

of 2 (whatever the processor)

Real Time Systems – 2012-2013 36

Pfair algorithms: principle

!  Lag function: difference between real and fluid
execution
"  Discrete time, successive time slots [t,t+1[
"  Weight of a task: %i=ui

!  Lag

"  First term: fluid execution
"  Second term: real execution, with S(Ti,u)=1 if Ti

executed in slot u, else 0
!  Pfair schedule: for all time t, lag in interval]-1,1[!

lag(Ti,t) =" it # S(Ti,u)u=0

t#1
$

Real Time Systems – 2012-2013 37

Pfair algorithms: principle

!  Example

(slope ui)

+/- 1

Execution domain of Pfair

Real Time Systems – 2012-2013 38

Pfair algorithms: principle

!  Property
"  If a Pfair schedule exists, deadlines are met

!  Exact test of existence of a Pfair schedule

"  Full processor utilization!

!

ui
i=1

n

" # m

Real Time Systems – 2012-2013 39

Pfair algorithms: construction of a Pfair
schedule

!  Divide tasks in unity-length sub-tasks
"  Pfair condition: each subtask j executes in a time

window between a pseudo-arrival and a pseudo-
deadline

"  Pseudo-arrival:

"  Pseudo-deadline:

!

r(Ti
j) =

j "1
i

$

%
$

&

'
&

!

d(Ti
j) =

j
" i

$
$

%

&
&

Real Time Systems – 2012-2013 40

Pfair algorithms: construction of a Pfair
schedule

!  Example (to be fixed)

Real Time Systems – 2012-2013 41

Pfair algorithms: scheduling algorithms

!  EPDF (Earliest Pseudo-Deadline First)
"  Apply EDF to pseudo-deadlines
"  Optimal only for m=2 (2 processors)

!  PF, PD, PD2

"  EPDF with non-arbitrary tie breaking rules in case of
identical pseudo-deadlines

"  All of them are optimal
"  Most efficient one: PD2

!  Ongoing works
"  Reduce numbers of context switches and migrations

while maintaining optimality

Real Time Systems – 2012-2013 42

Conclusion

!  Multi-processor scheduling is an active research
area

!  Ongoing works
"  Global multi-core scheduling
"  Semi-partitioned scheduling
"  Determining upper bounds of practical factors

(preemption, migration, …)
"  Implementation in real-time operating systems

