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Abstract

TPCalc is a throughput calculator for microarchitecture studies concerned with multi-program work-
loads consisting of sequential programs. Because microarchitecture simulators are slow, it is difficult
to simulate throughput experiments (TPEX) where many jobs execute successively on a multicore. The
usual practice of measuring instantaneous throughput on independent coschedules chosen more or less
randomly is not a rigorous practice because it assumes that all the coschedules are equally important,
which is not always true. TPCalc can compute the average throughput of a TPEX without actually sim-
ulating the TPEX. The user first defines the workload heterogeneity (number of different job types),
the multicore configuration (number of cores and symmetries). TPCalc provides a list of base cosched-
ules. The user then simulates these coschedules, using some benchmarks of his choice, and feeds back
to TPCalc the measured execution rates (e.g., instructions per cycle or instructions per second).TPCalc
eventually outputs the average throughput. Several throughput metrics are available, corresponding to
different workload assumptions. The theory behind TPCalc can be found in our ACM TACO paper [1].

1 Throughput experiment (TPEX)

TPCalc allows to compute the maximum average throughput corresponding to a throughput experiment
(TPEX). The sort of TPEX considered by TPCalc is the following:

• Jobs arrive at a rate greater than what the processor can execute (they wait in a queue).

• There are N different sorts of jobs in the TPEX. N is the workload heterogeneity degree, it is a
parameter chosen by the user.

• The N job types are equally likely.

• The jobs are sequential programs.

• At any time, the number of jobs actually being executed is equal to the maximum number K of
sequential threads that the processor can execute simultaneously.

• When a job is finished, the core on which it was running immediately starts executing a new job.

The average throughput of the TPEX is the total work executed divided by the total TPEX time. The total
number of jobs executed is assumed to be very large, that is, TPCalc computes the asymptotic throughput.
TPCalc can compute different throughput metrics corresponding to different workload assumptions.

1



Although TPCalc computes the average throughput of a TPEX, it does not actually simulate the TPEX.
TPCalc considers all the possible coschedules, that is, all the possible combinations of K jobs. The average
throughput is computed from the per-coschedule execution rates.

2 Using TPCalc

TPCalc is written in C++. It works on Unix systems (Linux, OS X, ...). To compile it with GCC:

g++ -O3 -std=c++0x -o tpcalc tpcalc.cpp

Or if you prefer Clang:

clang++ -O3 -stdlib=libc++ -o tpcalc tpcalc.cpp

TPCalc is used like a Unix command. It reads user data from the standard input and returns average through-
put on the standard output. The general usage format is:

tpcalc JOBTYPES CONFIG [OPTIONS] [< DATAFILE]

• JOBTYPES is the number of different job types in the TPEX (i.e., the workload heterogeneity degree
N ). If JOBTYPES is set to 1, the workload is homogeneous. If JOBTYPES is greater than or equal
to 2, the workload is heterogeneous.

• CONFIG is a string describing the multicore configuration, the number of cores and the symmetries.
The multicore symmetry description language is explained in Section 5

• OPTIONS: the main options are
−list : tell TPCalc to output the list of base coschedules
−metric M : tell TPCalc to compute throughput metric M (see Table 1)
−ref R0 R1 ... RN−1 : specify the N=JOBTYPES reference execution rates (default Ri = 1)

• DATAFILE is a file containing the execution rates (typically, IPC or IPS values) obtained from simu-
lations.

3 Example

Suppose we want to evaluate the maximum throughput of a 4-thread SMT core running workloads consisting
of 2 different sorts of jobs. We type the following command:

tpcalc 2 "4"

for a heterogeneity degree of 2 and 4 interchangeable logical cores. The output of this command is

4 logical cores
5 base coschedules
These cores are identical: 0 1 2 3
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metric’s name unit of work type of workload TPEX assumptions

AVI instruction variable all coschedules equally likely in time

AVW
weighted

variable all coschedules equally likely in time
instruction

AFI instruction fixed
jobs execute equal number of instructions
all job types equally likely

AFW
weighted

fixed
jobs execute equal number of weighted instructions

instruction all job types equally likely

Table 1: List of average throughput metrics that TPCalc can compute (see reference [1]). All JOB-
TYPES job types are equally likely. We do not recommend using the AVI and AVW metrics unless a
variable workload is really what you want.

On this example, there are 5 base coschedules. We can obtain the list of base coschedules with the following
command:

tpcalc 2 "4" -list

which outputs

0 : 0 0 0 0
1 : 1 0 0 0
2 : 1 1 0 0
3 : 1 1 1 0
4 : 1 1 1 1

Here, ”0” represents one job type and ”1” represents the other job type. Each of the 4 columns corresponds to
one particular logical core. For instance, coschedule #3 executes a job of type ”1” on logical cores #0, #1 and
#2, and a job of type ”0” on logical core #3. Notice that, in this example, all the cores are interchangeable:
however we permute the jobs, the job execution rates remain unchanged. Hence we only need to simulate 5
base coschedules instead of all 24 = 16 coschedules.

We just need to replace the ”0” and ”1” with some benchmarks of our choice (or some execution phases
extracted from benchmarks). For example, let’s say that we have 4 benchmarks named A, B, C and D. We
can form 6 different 2-heterogeneous workloads from these 4 benchmarks: AB, AC, AD, BC, BD and CD.
Let’s say we are interested by workload AB. We simulate the 5 base coschedules formed from workload
AB, and we measure the IPCs, i.e., the number of instructions executed per cycle by each of the 4 jobs in
each coschedule. Table 2 gives some example IPC values. Here we have 5 base coschedules and 4 logical
cores, hence a total of 20 IPC values, that we feed to TPCalc through the standard input. For example, to
compute the AFI throughput:

tpcalc 2 "4" -metric AFI
1 1 1 1
.5 .9 .9 .9
.5 .5 .9 .9
.4 .4 .4 .8
.4 .4 .4 .4
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core 0 core 1 core 2 core 3
coschedule 0 A A A A

IPC 1 1 1 1
coschedule 1 B A A A

IPC 0.5 0.9 0.9 0.9
coschedule 2 B B A A

IPC 0.5 0.5 0.9 0.9
coschedule 3 B B B A

IPC 0.4 0.4 0.4 0.8
coschedule 4 B B B B

IPC 0.4 0.4 0.4 0.4

Table 2: Example IPC values for a 2-heterogeneous workload consisting of job types A and B (Section 3)

which gives 2.2828 instructions per cycle. Notice that the IPC values are entered in one-to-one correspon-
dence with the list of coschedules given by the −list option. Equivalently, we can feed the IPC values to
TPCalc through a Unix pipe:

echo 1 1 1 1 .5 .9 .9 .9 .5 .5 .9 .9 .4 .4 .4 .8 .4 .4 .4 .4 | tpcalc
2 "4" -metric AFI

But the more convenient solution is probably to write the IPC values in a file, say IPCFILE, and redirect the
standard input:

tpcalc 2 "4" -metric AFI < IPCFILE

The AFI throughput is expressed in the same unit as that of the input execution rates. In this example,
the execution rates are IPCs (instructions per cycle), hence the AFI is also in instructions per cycle (if the
execution rates were in billion instructions per second, the AFI throughput would be in billion instructions
per second).

In computer architecture studies, we typically compute the throughput for several workloads. Four
benchmarks, as in this example, lead to 6 different 2-heterogeneous workloads, each workload correspond-
ing to a distinct TPEX (for a given metric). When there is a large number of possible workloads, evaluating
the throughput of all of them may require too much simulation time. In this case, the usual solution is to
sample the workload space [2, 3]. Then, one can summarize the workload space by computing a measure of
central tendency, such as the arithmetic mean of per-workload throughputs, or the median throughput.

4 Weighted-instruction throughput

The instruction throughput metrics, AVI and AFI, assume that one instruction of any benchmark is worth
one instruction of any other benchmark in terms of average quantity of work executed. Moreover, the AFI
metric assumes that all the jobs execute the same quantity of work, hence the same number of instructions.

The weighted-instruction throughput metrics, AVW and AFW, weight the instructions of different bench-
marks differently: the instructions of a benchmark have a weight inversely proportional to the reference
execution rate of that benchmark. The reference execution rate is the execution rate of the benchmark when
running alone on a reference machine. For instance, if benchmark A has a reference IPC of 1 and benchmark
B a reference IPC of 2, one instruction of benchmark A is worth 2 instructions of benchmark B in terms of
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average quantity of work executed. Moreover, the AFW metric assumes that all the jobs execute the same
quantity of work, which means that all the jobs have the same execution time when running alone on the
reference machine.

In the example of Section 3, a natural choice for defining reference IPCs would be to run benchmarks A
and B in isolation on the processor being considered, that is, we choose as reference machine the machine
whose throughput we seek to evaluate. In this situation, the reference IPC for a benchmark is typically
greater than or equal to its IPCs in the coschedules, because running the benchmark in isolation allows it to
use all the processor resources. For instance, let’s assume that the reference IPC of benchmark A is 1 and
that of B is 2. We can compute the AFW throughput as follows:

tpcalc 2 "4" -ref 1 2 -metric AFW
1 1 1 1
.5 .9 .9 .9
.5 .5 .9 .9
.4 .4 .4 .8
.4 .4 .4 .4

which gives 1.3190 weighted instructions per cycle. In fact, there is no fundamental difference between
instruction throughput and weighted instruction throughput. Computing AFW with the same reference
execution rate for all job types is equivalent to AFI, and computing AFI by replacing IPCs with speedups is
equivalent to AFW. For instance,

tpcalc 2 "4" -metric AFI
1 1 1 1
.25 .9 .9 .9
.25 .25 .9 .9
.2 .2 .2 .8
.2 .2 .2 .2

gives 1.3190. Nevertheless, the−ref option is convenient for computing instruction throughput and weighted-
instruction throughput simultaneously, for instance:

tpcalc 2 "4" -ref 1 2 -metric AFI -metric AFW
1 1 1 1
.5 .9 .9 .9
.5 .5 .9 .9
.4 .4 .4 .8
.4 .4 .4 .4

which gives

2.2828 1.3190

Reference execution rates. The reference execution rates are part of the definition of the AVW/AFW
metrics. Different reference execution rates lead to different AVW/AFW metrics. The reference execution
rates are typically defined from isolated execution on a reference machine. But other methods are possible.
For instance, reference execution rates could be defined from the execution of homogeneous coschedules.
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0 1 2 3 4 5 6 7

A C D

description: 1  1  +  2  x  4  +

E

A B

C
D

E 8 cores

2 symmetric nodes C and D

3 asymmetric nodes A,B and E

Figure 1: Tree-based multicore symmetry description language. Example of heterogeneous 8-core proces-
sor. Nodes A and B are identical, cores 4,5,6,7 are identical. The description language uses reverse polish
notation.

5 Multicore symmetry description language

So far we have considered multicore examples where logical cores are interchangeable. Taking advantage of
multicore symmetries allows to reduce considerably the number of base coschedules. However, in practice,
multicores are generally not fully symmetric. Still, it is important to exploit the existing symmetries for
having a reasonable number of base coschedules.

The multicore symmetry description language used by TPCalc is based on a tree representation. Figure
1 shows an example of heterogeneous 8-core processor. The logical cores are the leaves of the tree. They
are numbered from left to right, from 0 to 7. This ordering of logical cores, from left to right, is the one
assumed by the −list and −metric options. The tree nodes correspond to multicore nodes, i.e., groups of
cores. Logical cores #4, #5, #6 and #7 are grouped in node D, which is a symmetric node, meaning that
the 4 cores are interchangeable (for instance, node D could be a 4-thread SMT physical core). Node A is
an asymmetric node containing 2 different cores, core #0 and core #1. Node C is a symmetric node formed
of nodes A and B, meaning that nodes A and B are identical and interchangeable: if at the same time we
permute the jobs on cores #0 and #2 and we permute the jobs on cores #1 and #3, the 4 jobs have their
execution rates unchanged. Node E is the grouping of nodes C and D, it represents the whole multicore.
Node E is necessarily asymmetric here because nodes C and D have a different structure.

The multicore symmetry description language uses Reverse Polish Notation to describe the tree. The
string describing the tree shown in Figure 1 is

"1 1 + 2 x 4 +"

Asymmetric nodes are created with the symbol ”+”, which groups 2 previously created nodes (or cores) in
a new node. Simple symmetric nodes like D are created by specifying an integer value greater than one,
representing the number of cores in the node. Complex symmetric nodes like C are created with the symbol
”x”, which creates several identical instances of a previously created node and groups them in a new node.
TPCalc evalutes the description string sequentially, using a stack. In the example of Figure 1, ”1 1 +”
creates node A, ”2 x” duplicates node A and creates node C, ”4” creates node D and the final ”+” creates
node E. For obtaining the number of coschedules corresponding to a 2-heterogeneous workload, we use the
following command

tpcalc 2 "1 1 + 2 x 4 +"

whose output is
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hardware configuration
number of

description string
logical cores

2-thread SMT core 2 "2"
2 different cores 2 "1 1 +"
3 different cores 3 "1 1 + 1 +"
4 different cores 4 "1 1 + 1 + 1 +

1 core of type X and 4
5 "1 4 +"

interchangeable cores of type Y
3 interchangeable 2-thread SMT cores 6 "2 3 x"

3 interchangeable nodes,
6 "1 1 + 3 x"

2 different cores per node
2 interchangeable nodes, 3 interchangeable

24 "4 3 x 2 x"
4-thread SMT cores per node

3 interchangeable 2-thread SMT cores and
14 "2 3 x 4 2 x +"

2 interchangeable 4-thread SMT cores

Table 3: Examples of multicore configuration and their description in TPCalc tree-based language.

8 logical cores
50 base coschedules
These cores are identical: 0 2
These cores are identical: 1 3
These cores are identical: 4 5 6 7

Table 3 provides some examples of multicore configurations and their description in the tree-based lan-
guage. It should be noted that TPCalc tree-based language does not allow to express all possible kinds of
symmetries. But it should be sufficient for most studies.

6 Limitations and recommendations

When possible, the AFI and AFW metrics should be used in computer architecture studies concerned with
multi-program workloads consisting of sequential programs. We do not recommend using the AVI and AVW
metrics unless a variable workload is really what you want.

6.1 Monte Carlo method

The TPCalc software computes the AFI and AFW metrics by solving a Markov chain. To validate the
software, we also implemented a Monte Carlo method for computing the AFI and AFW metrics. The Monte
Carlo method provides an approximation of AFI and AFW. In case users have doubts about an AFI value,
they can invoke the Monte Carlo method with the -metric AFI˜ option (AFI with a tilde). For example,

tpcalc 2 "4" -metric AFI -metric AFI˜ -mcsimexp -mcsim 1000000
1 1 1 1
.5 .9 .9 .9
.5 .5 .9 .9
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.4 .4 .4 .8

.4 .4 .4 .4

gives

2.2828 2.2859

The -mcsimexp option tells TPCalc to use exponentially distributed job sizes (by default, the Monte Carlo
method assumes fixed size jobs). The -mcsim 1000000 option tells TPCalc to simulate the execution
of 1 million jobs (by default, the Monte Carlo method assumes 10000 jobs). Similarly, the Monte Carlo
method for the AFW metric can be invoked with the -metric AFW˜ option.

6.2 Large number of base coschedules

Because the number of base coschedules increases quickly with the number of logical cores when the multi-
core is not fully symmetric, the number of base coschedules may become so large that a rigorous evaluation
of the AFI/AFW throughput becomes infeasible. In such a case, TPCalc can still be useful, provided some
approximations are made.

For example, the IBM POWER7 processor features 8 interchangeable cores, each core being 4-thread
SMT, for a total of 32 logical cores [4]. However, core resource sharing between the 4 threads is com-
plex1 and the 4 logical cores are not completely interchangeable. Therefore, the description string for the
POWER7 multicore is

"1 1 + 2 x 8 x"

which leads to 24310 base coschedules assuming a heterogeneity degree of just 2.
Nevertheless, evaluating multi-program throughput is generally not a goal by itself. In computer archi-

tecture studies, it is a means for studying resource sharing (is it better to share a resource or replicate it ?
what is the best way to manage a shared resource ?). In practice, it is often possible to simplify the problem.

If we want to study core resource sharing, we probably do not need to consider the 8 cores simultane-
ously to identify good design decisions. We can evaluate the AFI/AFW throughput of a single core:

"1 1 + 2 x"

If we want to study last-level cache (LLC) sharing, we can conjecture that an LLC implementation is good
(or bad) independently of how core resource sharing is precisely implemented, and assume fully symmetric
cores:

"4 8 x"

which leads to ”only” 495 base coschedules assuming a heterogeneity degree of 2. Our ACM TACO paper
discusses some alternatives to the AFI and AFW metrics in case the number of base coschedules is too large
[1].

1When 4 threads are running on the POWER7 core, the issue queue, integer pipelines and integer physical registers are split
in two partitions: integer instructions of threads 0 and 1 go in one partition, integer instructions of threads 2 and 3 go in the other
partition [4]. The floating-point and vector physical registers are split in two partitions, one partition for threads 0 and 2, the other
partition for threads 1 and 3.
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