Interval arithmetic on graphics processing units

Sylvain Collange*, Jorge Flórez** and David Defour*

RNC'8
July 7-9, 2008

* ELIAUS, Université de Perpignan Via Domitia
** GILab, Universitat de Girona

http://www.udg.edu
How to draw implicit surfaces

- Applications in computer graphics
- Several approaches

Polygonal Approximation

- Computationally efficient (implementation on GPUs)
- Inaccurate
How to draw implicit surfaces

- Applications in computer graphics
- Several approaches

Polygonal Approximation

Ray tracing, not guaranteed (91 seconds)

- Search of function roots using heuristics
- More accurate, may still miss solutions
How to draw implicit surfaces

- Applications in computer graphics
- Several approaches

Polygonal Approximation

Ray tracing, not guaranteed (91 seconds)

Ray tracing, guaranteed (137 seconds)

- Search of function roots using an interval Newton method
- Interval operations required:
 \(+, -, \times, \div, \sqrt{}, x^i, e^x\)
Outline

- Interval arithmetic
- Graphics Processing Units (GPUs)
- Implementing directed rounding
- Further optimizations
Interval arithmetic

- Redefinition of basic operators +, -, ×, /,... on intervals
 - eg. [1, 5] + [-2, 3] = [-1, 8]
- Inclusion property: for X, Y, Z intervals, ◦ any operator $Z = X \circ Y \rightarrow (\forall x \in X, \forall y \in Y, \ z = x \circ y \rightarrow z \in Z)$
 - Need to take rounding errors into account
- May return a wider interval
- Loss of variable dependency
 - $X \times (1 - X) \neq (X-1/2)^2 - 1/4$
Outline

- Interval arithmetic
- Graphics Processing Units (GPUs)
- Implementing directed rounding
- Further optimizations
- Concluding remarks
What is a GPU?

- NVidia GeForce 8800
Single precision FP arithmetic on GPUs

NVIDIA GeForce 8000/9000/200 families, AMD Radeon HD 2000

- Multiplication, addition correctly rounded to nearest
 - With Cuda, can round toward zero
 - No directed rounding (towards +/- infinity)

- Division, square root accurate to 2 units on the last place (ulp)

- Multiply-Add with multiply rounded toward zero on NVIDIA

AMD Radeon HD 3000, HD 4000

- Division correctly rounded to nearest
SIMD execution

- The same instruction is run on multiple threads
- When a branch instruction occurs
 - If all threads follow the same path, do a real branch
 - Otherwise, execute both paths and use predication

Diverging branches are expensive
How to program GPUs

- NVIDIA CUDA
 - For GeForce 8000/9000/200 GPUs only
 - Subset of C++ language
 - Templates not officially supported as of CUDA 2.0
 - but their use is encouraged [Harris07]
 - in practice, most C++ features are supported

- AMD CAL/Brook+

- Graphics API + shader language
 - Limited languages and features
 - Remains the only portable way for low-level arithmetic
Outline

- Interval arithmetic
- GPU architectural issues
- Implementing directed rounding
- Further optimizations
We developed two libraries

- CUDA version
 - In C++
 - Adapted from the Boost Interval library
 - Provides various levels of consistency checking (NaNs, Infs...) and precision

- Cg version
 - Need GPU-specific routines

- We focus on the CUDA version in this talk
Implementing directed rounding

- We want round-down and round-up
- CUDA provides round-toward-zero
 - Equivalent to either round-down or round-up, depending on sign
Implementing directed rounding

- For the other direction
 - Add one ulp to the magnitude of the rounded-toward-zero value
 - An integer addition on FP representation does this
 - Except in case of underflow/overflow
 - Or a multiplication by \((1+\text{EPS})\) \(\text{EPS}=2^{-23}\) for single precision
 - No special cases for overflows/NaNs
Porting the Boost Interval library

- CUDA on a NVIDIA GeForce 8500 GT
 - Measured throughput in cycles/warp (1 warp = 32 threads)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar Add</td>
<td>4</td>
</tr>
<tr>
<td>Interval Add</td>
<td>24</td>
</tr>
<tr>
<td>Interval Multiply</td>
<td>33 – 55 (*)</td>
</tr>
<tr>
<td>Interval Square</td>
<td>20 – 25 (*)</td>
</tr>
<tr>
<td>Interval x^5</td>
<td>141 – 148 (*)</td>
</tr>
</tbody>
</table>

* Without divergent branching
Outline

- Interval arithmetic
- GPU architectural issues
- Implementing directed rounding
- Further optimizations
if (interval_lib::user::is_neg(xl))
 if (interval_lib::user::is_pos(xu))
 if (interval_lib::user::is_neg(yl))
 // M * M
 return I(min(rnd.mul_down_neg(xl, yu), rnd.mul_down_neg(xu, yl)),
 max(rnd.mul_up_pos(xl, yl), rnd.mul_up_pos(xu, yu)), true);
 else
 // M * N
 return I(rnd.mul_down_neg(xu, yl), rnd.mul_up_pos(xl, yl), true);
 else
 if (interval_lib::user::is_pos(yu))
 // M * P
 return I(rnd.mul_down_neg(xl, yu), rnd.mul_up_neg(xu, yl), true);
 else
 // M * Z
 return I(static_cast<T>(0), static_cast<T>(0), true);
else
 if (interval_lib::user::is_pos(xu))
 if (interval_lib::user::is_neg(yl))
 if (interval_lib::user::is_pos(yu))
 // P * M
 return I(rnd.mul_down_neg(xu, yl), rnd.mul_up_pos(xu, yu), true);
 else
 // P * N
 return I(rnd.mul_down_neg(xu, yl), rnd.mul_up_neg(xu, yl), true);
 else
 if (interval_lib::user::is_pos(yu))
 // P * P
 return I(rnd.mul_down_pos(xl, yl), rnd.mul_up_pos(xu, yu), true);
 else
 // P * Z
 return I(static_cast<T>(0), static_cast<T>(0), true);
 else
 if (interval_lib::user::is_pos(xu))
 if (interval_lib::user::is_neg(yl))
 if (interval_lib::user::is_pos(yu))
 // P * M
 return I(rnd.mul_down_neg(xu, yl), rnd.mul_up_pos(xu, yu), true);
 else
 // P * N
 return I(rnd.mul_down_neg(xu, yl), rnd.mul_up_neg(xu, yl), true);
 else
 if (interval_lib::user::is_pos(yu))
 // P * P
 return I(rnd.mul_down_pos(xl, yl), rnd.mul_up_pos(xu, yu), true);
 else
 // P * Z
 return I(static_cast<T>(0), static_cast<T>(0), true);
 else
 return I(static_cast<T>(0), static_cast<T>(0), true);
Rewriting multiplication

- We do not want branches
- Starting from the general formula:
 \[[a, b] \times [c, d] = [\min(ac, ad, bc, bd), \max(ac, ad, bc, bd)] \]

- We need to round all subproducts both up and down
 - Cost: \(4 \times (2 \text{ mul} + 1 \text{ min} + 1 \text{ max}) + 3 \text{ min} + 3 \text{ max} \)
 \[= 22 \text{ flops} \]
- Or do we?
What is the sign of \([a, b] \times [c, d]\)?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(ac)</td>
<td>(bd)</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(ad)</td>
<td>(bd)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(ad)</td>
<td>(bc)</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>(bc)</td>
<td>(bd)</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>(bc)</td>
<td>(max(\frac{bc}{ac}, \frac{ad}{bd}))</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>(ad)</td>
<td>(ac)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(bd)</td>
<td>(ac)</td>
</tr>
</tbody>
</table>

- \(ac\) and \(bd\) are always positive when used
- \(ad\) and \(bc\) are always negative when used
- We know in advance the rounding direction
 - No need to select it dynamically
 - Now 12 flops
Power to an integer: existing algorithm

T pow_dn(const T& x_, int pwr, Rounding& rnd) // x and pwr are positive
{
 T x = x_; // x and pwr are positive
 T y = (pwr & 1) ? x_ : 1;
 pwr >>= 1;
 while (pwr > 0) {
 x = rnd.mul_down(x, x);
 if (pwr & 1) y = rnd.mul_down(x, y);
 pwr >>= 1;
 }
 return y;
}

T pow_up(const T& x_, int pwr, Rounding& rnd) // x and pwr are positive
{
 // [idem using mul_up]
}

interval<T, Policies> pow(const interval<T, Policies>& x, int pwr)
{
 // [...]
 if (interval_lib::user::is_neg(x.upper())) { // [-2,-1]
 T yl = pow_dn(-x.upper(), pwr, rnd);
 T yu = pow_up(-x.lower(), pwr, rnd);
 if (pwr & 1) // [-2,-1]^1
 return I(-yu, -yl, true);
 else // [-2,-1]^2
 return I(yl, yu, true);
 } else if (interval_lib::user::is_neg(x.lower())) { // [-1,1]
 if (pwr & 1) { // [-1,1]^1
 return I(-pow_up(-x.lower(), pwr, rnd), pow_up(x.upper(), pwr, rnd), true);
 } else {
 // [-1,1]^2
 return I(0, pow_up(::max(-x.lower(), x.upper()), pwr, rnd), true);
 }
 } else {
 // [1,2]
 return I(pow_dn(x.lower(), pwr, rnd), pow_up(x.upper(), pwr, rnd), true);
 }
}
Improvements

- Exponent is constant: we can unroll the loop
 - Cuda 1.0 cannot do loop unrolling
 - Cuda 1.1 can, but without constant propagation and dead code removal
 - Cuda 2.0 beta ignores the directive
 - We use template metaprogramming instead

- We can compute pow_up from pow_down
 - Add a bound on the error: multiply by $(1+n\ \text{EPS})$
Performance results

- Cuda on a NVIDIA GeForce 8500 GT
 - Measured Throughput in cycles/warp

<table>
<thead>
<tr>
<th>Operation</th>
<th>Original</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Multiplication</td>
<td>33 – 55 (*)</td>
<td>36</td>
</tr>
<tr>
<td>x^5</td>
<td>141 – 148 (*)</td>
<td>23</td>
</tr>
</tbody>
</table>

* Without divergent branching

- Multiplication in constant time
- x^5 as fast as an addition
Application to ray-tracing

- Xeon 3GHz vs 8800 GTX

<table>
<thead>
<tr>
<th>Surface</th>
<th>CPU (s)</th>
<th>GPU (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>Kusner-Schmitt</td>
<td>720</td>
<td>2</td>
</tr>
<tr>
<td>Tangle</td>
<td>900</td>
<td>3</td>
</tr>
<tr>
<td>Gumdrop Torus</td>
<td>1080</td>
<td>3</td>
</tr>
</tbody>
</table>
Future directions

- NVIDIA GeForce GTX 280 now supports double precision
 - In all 4 IEEE rounding modes
 - With no switching overhead
- More efficient for interval arithmetic than current CPUs!
- Still not available for single precision
- Could use double precision for the last convergence steps of interval Newton method
Thank you for your attention
Earlier GPUs

- Non-compliant rounding for basic operations
- nVidia GeForce 7, multiplication
 - Faithful rounding
- AMD ATI Radeon X1x00, multiplication
 - Not toward zero, not faithful
Memory access issues

- Memory access units are shared among a SIMD block
- Fast memory accesses must obey specific patterns
 - Broadcast: all threads access the same address
 - Coalescing: all threads access consecutive addresses
- In Cuda
 - On-chip shared memory accessible in both modes
 - On-chip constant memory in broadcast mode
 - Off-chip global memory with coalescing capabilities