PPAR: CUDA basics

Caroline Collange
Inria Rennes – Bretagne Atlantique

caroline.collange@inria.fr
https://team.inria.fr/pacap/members/collange/

PPAR - 2020
This lecture: CUDA programming

- We have seen some GPU architecture

- Now how to program it?
Outline

- GPU programming environments
- CUDA host side
- Parallel programming models: BSP, multi-BSP
- CUDA device side: threads, blocks, grids
- Expressing parallelism
 - Vector add example
- Managing communications
 - Parallel reduction example
- Re-using data
 - Matrix multiplication example
GPU development environments

For general-purpose programming (not graphics)

- Multiple toolkits
 - NVIDIA CUDA
 - Khronos OpenCL
 - Vulkan Compute
 - Microsoft DirectCompute
 - Google RenderScript
- Mostly syntactical variations
 - Underlying principles are the same
- In this course, focus on NVIDIA CUDA
Higher-level programming

- Directive-based
 - OpenACC
 - OpenMP 4.x

- Language extensions / libraries
 - Microsoft C++ AMP
 - Intel Cilk+
 - NVIDIA Thrust, CUB

- Languages
 - Intel ISPC

...

Most corporations agree we need common standards...
 - But only if their own product becomes the standard!
Outline

- GPU programming environments
- CUDA host side
- Parallel programming models: BSP, multi-BSP
- CUDA device side: threads, blocks, grids
- Expressing parallelism
 - Vector add example
- Managing communications
 - Parallel reduction example
- Re-using data
 - Matrix multiplication example
Hello World in CUDA

- CPU “host” code + GPU “device” code

```c
__global__ void hello() {
    printf("Hello World!\n");
}

int main() {
    hello<<<1,1>>>();
    return 0;
}
```

Device code

Host code
Compiling a CUDA program

- Executable contains both host and device code
 - Device code in PTX and/or native
 - PTX can be recompiled on the fly (e.g. old program on new GPU)
- NVIDIA's compiler driver takes care of the process:

 \texttt{nvcc} -o hello hello.cu
Control flow

- Program running on CPUs
- Submit work to the GPU through the GPU driver
- Commands execute asynchronously
Data flow

- Main program runs on the host
 - Manages memory transfers
 - Initiate work on GPU
- Typical flow
Data flow

- Main program runs on the host
 - Manages memory transfers
 - Initiate work on GPU

- Typical flow
 - 1. Allocate GPU memory
Data flow

- Main program runs on the host
 - Manages memory transfers
 - Initiate work on GPU
- Typical flow
 - 1. Allocate GPU memory
 - 2. Copy inputs from CPU mem to GPU memory
Data flow

- Main program runs on the host
 - Manages memory transfers
 - Initiate work on GPU

- Typical flow
 - 1. Allocate GPU memory
 - 2. Copy inputs from CPU mem to GPU memory
 - 3. Run computation on GPU
Data flow

- Main program runs on the host
 - Manages memory transfers
 - Initiate work on GPU

- Typical flow
 - 1. Allocate GPU memory
 - 2. Copy inputs from CPU mem to GPU memory
 - 3. Run computation on GPU
 - 4. Copy back results to CPU memory
Our Hello World example did not involve the GPU
Let's add up 2 numbers on the GPU
Start from host code

```c
int main()
{
    float ab[2] = {1515, 149}; // Inputs

    float c[1]; // Output
    // c[0] = ab[0] + ab[1];
    printf("c = %f\n", c[0]);
}
```

vectorAdd example: cuda/samples/0_Simple/vectorAdd
int main()
{
 float ab[2] = {1515, 149}, c[1]; // Inputs, in host mem

 // Allocate GPU memory
 float *d_AB, *d_C;
 cudaMalloc((void **)&d_AB, 2*sizeof(float));
 cudaMalloc((void **)&d_C, sizeof(float));

 // Free GPU memory
 cudaFree(d_AB);
 cudaFree(d_C);
}

- Allocate space for a, b and c in GPU memory
- At the end, free memory

Passing a pointer to the pointer to be overwritten
```c
int main()
{
    float ab[2] = {1515, 149}, c[1];  // Inputs/outputs, CPU mem

    // Allocate GPU memory
    float *d_AB, *d_C;
    cudaMemcpy((void **) &d_AB, 2*sizeof(float));
    cudaMemcpy((void **) &d_C, sizeof(float));

    // Copy from CPU mem to GPU mem
    cudaMemcpy(d_AB, ab, 2*sizeof(float), cudaMemcpyHostToDevice);

    // Copy results back to CPU mem
    cudaMemcpy(c, d_C, sizeof(float), cudaMemcpyDeviceToHost);
    printf("c = %f\n", c[0]);

    // Free GPU memory
    cudaFree(d_AB);
    cudaFree(d_C);
}
```
Step 3: launch kernel

```c
int main()
{
    float ab[] = {1515, 159}; // Inputs, CPU mem
    // Allocate GPU memory
    float *d_AB, *d_C;
    cudaMemcpy((void**)&d_AB, 2*sizeof(float));
    cudaMemcpy((void**)&d_C, sizeof(float));
    // Copy from CPU mem to GPU mem
    cudaMemcpy(d_AB, ab, 2*sizeof(float), cudaMemcpyHostToDevice);

    float c[1]; // Result on CPU
    // Copy results back to CPU mem
    cudaMemcpy(c, d_C, sizeof(float), cudaMemcpyDeviceToHost);
    printf("c = %f\n", c[0]);
    // Free GPU memory
    cudaFree(d_AB);
    cudaFree(d_C);
}
```

- Kernel is a function prefixed by `__global__`
 - Runs on GPU
 - Invoked from CPU code with `<<<>>>` syntax

What is inside the `<<<>>>`?

Note: we could have passed `a` and `b` directly as kernel parameters.
Outline

- GPU programming environments
- CUDA host side
- Parallel programming models: BSP, multi-BSP
- CUDA device side: threads, blocks, grids
- Expressing parallelism
 - Vector add example
- Managing communications
 - Parallel reduction example
- Re-using data
 - Matrix multiplication example
PRAM limitations

- PRAM model proposed in 1978
 - Inspired by SIMD machines of the time
- Assumptions
 - All processors synchronized every instruction
 - Negligible communication latency
- Useful as a theoretical model, but far from modern computers

ILLIAC-IV, an early SIMD machine
Modern architectures

- Modern supercomputers are clusters of computers
 - Global synchronization costs millions of cycles
 - Memory is distributed
- Inside each node
 - Multi-core CPUs, GPUs
 - Non-uniform memory access (NUMA) memory
- **Synchronization** cost at all levels

Mare Nostrum, a modern distributed memory machine
Bulk-Synchronous Parallel (BSP) model

- Assumes distributed memory
 - But also works with shared memory
 - Good fit for GPUs too, with a few adaptations
- Processors execute instructions independently
- Communications between processors are explicit
- Processors need to synchronize with each other

Superstep

- A program is a sequence of supersteps
- **Superstep**: each processor
 - Computes
 - Sends result
 - Receive data
- **Barrier**: wait until all processors have finished their superstep
- Next superstep: can use data received in previous step
Example: reduction in BSP

- Start from dependency graph

\[a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5 \oplus a_6 \oplus a_7 \]

\[\oplus \quad \oplus \]

[Diagram showing directed edges and reduction to r]
Reduction: BSP

- Add barriers

![Diagram showing the reduction process in BSP with barriers and communication between processes P0 to P7. Each process updates variables a0 to a7, with communication indicated by arrows and barriers marked with ⊕.]
Reducing communication

- Data placement matters in BSP
- Optimization: keep left-side operand local
The world is not flat

It is hierarchical!

Blue Gene/Q packaging hierarchy

1. Chip
 16 cores

2. Module
 Single Chip
 One single chip module, 16 GB DDR3 Memory

3. Compute Card

4. Node Card
 32 Compute Cards, Optical Modules, Link Chips, Torus

5a. Midplane
 16 Node Cards

5b. I/O Drawer
 8 I/O Cards
 8 PCIe Gen2 slots

6. Rack
 2 Midplanes
 1, 2 or 4 I/O Drawers

7. System
 20PF/s
Multi-BSP model

- Multi-BSP: BSP generalization with groups of processors in multiple nested levels

- Higher level: more expensive synchronization
- Arbitrary number of levels

Multi-BSP and multi-core

- Minimize communication cost on hierarchical platforms
 - Make parallel program hierarchical too
 - Take thread *affinity* into account

- On clusters (MPI): add more levels up
- On GPUs (CUDA): add more levels down
Reduction: multi-BSP

- Break into 2 levels
Recap

- **PRAM**
 - Single shared memory
 - Many processors in lockstep

- **BSP**
 - Distributed memory, message passing
 - Synchronization with barriers

- **Multi-BSP**
 - BSP with multiple scales
GPU programming environments
CUDA host side
Parallel programming models: BSP, multi-BSP
CUDA device side: threads, blocks, grids
Expressing parallelism
 Vector add example
Managing communications
 Parallel reduction example
Re-using data
 Matrix multiplication example
Workload: logical organization

- A kernel is launch on a grid: my_kernel<<<blocks, threads>>>>(...)
- Two nested levels
 - Blocks
 - Threads
Outer level: grid of blocks

- Blocks also named Concurrent Thread Arrays (CTAs)
- **No communication** between blocks of the same grid
- Practically **unlimited number** of blocks / grid
Inner level: threads

- Blocks contain threads
- All threads in a block
 - Run on the same SM: they can **communicate**
 - Run in parallel: they can **synchronize**
- Constraints on **number of threads / block**
 - Maximum: 512 to 1024 depending on arch
 - Recommended: at least 64 threads for good performance
 - Recommended: multiple of the warp size (32)
Multi-BSP and CUDA

Minor difference: BSP is based on message passing, CUDA on shared memory
GPU physical organization

Thread

Warp

Execution units

Registers

Shared memory

L1 cache

SM 1

To L2 cache / external memory

SM 2

...
Mapping blocks to hardware resources

- SM resources are partitioned across blocks
Block scheduling

- Blocks may
 - Run serially or in parallel
 - Run on the same or different SM
 - Run in order or out of order
- Should not assume anything on execution order of blocks
Block scheduling

- Blocks may
 - Run serially or in parallel
 - Run on the same or different SM
 - Run in order or out of order
- Should not assume anything on execution order of blocks
Block scheduling

- Blocks may
 - Run serially or in parallel
 - Run on the same or different SM
 - Run in order or out of order
- Should not assume anything on execution order of blocks

![Diagram showing blocks on SM 1 and SM 2]

Blocks may run in different modes and on different SMs.
Block scheduling

- Blocks may
 - Run serially or in parallel
 - Run on the same or different SM
 - Run in order or out of order
- Should not assume anything on execution order of blocks
Outline

- GPU programming environments
- CUDA host side
- Parallel programming models: BSP, multi-BSP
- CUDA device side: threads, blocks, grids
- Expressing parallelism
 - Vector add example
- Managing communications
 - Parallel reduction example
- Re-using data
 - Matrix multiplication example
Example: vector addition

- Addition example: only 1 thread
 - Now let's run a parallel computation
- Start with multiple blocks, 1 thread/block
 - Independent computations in each block
- No communication/synchronization needed
Host code: initialization

A and B are now arrays: just change allocation size

```c
int main()
{
    int numElements = 50000;
    size_t size = numElements * sizeof(float);

    float *h_A = (float *)malloc(size);
    float *h_B = (float *)malloc(size);
    float *h_C = (float *)malloc(size);
    Initialize(h_A, h_B);

    // Allocate device memory
    float *d_A, *d_B, *d_C;
    cudaMalloc((void **)&d_A, size);
    cudaMalloc((void **)&d_B, size);
    cudaMalloc((void **)&d_C, size);

    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

    ...  
}
```
Host code: kernel and kernel launch

```c
__global__ void vectorAdd2(float *A, float *B, float *C)
{
    int i = blockIdx.x;
    C[i] = A[i] + B[i];
}
```

- Launch n blocks of 1 thread each (for now)

```c
int blocks = numElements;
vectorAdd2<<<blocks, 1>>>(d_A, d_B, d_C);
```
Device code

```c
__global__ void vectorAdd2(float *A, float *B, float *C) {
    int i = blockIdx.x;
    C[i] = A[i] + B[i];
}
```

- Block number \(i\) processes element \(i\)
- Grid of blocks may have up to 3 dimensions (\(\text{blockIdx.x}, \text{blockIdx.y}, \text{blockIdx.z}\))
 - For programmer convenience: no effect on scheduling
Multiple blocks, multiple threads/block

Fixed number of threads / block: here 64

- Host code

```c
int threads = 64;
int blocks = (numElements + threads - 1) / threads; // Round up

vectorAdd3<<<blocks, threads>>>(d_A, d_B, d_C, numElements);
```

- Device code

```c
__global__ void vectorAdd3(const float *A, const float *B, float *C, int n)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if(i < n) {
        C[i] = A[i] + B[i];
    }
}
```

Thread block may also have up to 3 dimensions: threadIdx.{x,y,z}
Outline

- GPU programming environments
- CUDA host side
- Parallel programming models: BSP, multi-BSP
- CUDA device side: threads, blocks, grids
- Expressing parallelism
 - Vector add example
- Managing communications
 - Parallel reduction example
- Re-using data
 - Matrix multiplication example
Barriers

- Threads can synchronize inside one block
 - Wait until all threads in the block have reached the barrier
- In C for CUDA:
  ```c
  __syncthreads();
  ```
- Needs to be called at the same place for all threads of the block

```c
if(tid < 5) {
  ...
} else {
  ...
}_syncthreads();
```

```c
if(a[0] == 17) {
  __syncthreads();
} else {
  __syncthreads();
}
```

```c
if(tid < 5) {
  ...
} else {
  ...
}_syncthreads();
```

Correct

Correct

Wrong

Same condition for all threads in the block
Shared memory

- Fast, software-managed memory
 - Faster than global memory
- Valid only inside one block
 - Each block sees its own copy
- Used to exchange data between threads
- Concurrent writes: one thread wins, but we do not know which one
Thread communication: common pattern

- Each thread writes to its own location
 - No write conflict
- Barrier
 - Wait until all threads have written
- Read data from other threads

```
Compute
Write to smem[tid]
Barrier
Read from smem[f(tid)]
Barrier
Compute
```
Example: parallel reduction

- Algorithm for 2-level multi-BSP model

```
Example: parallel reduction

- Algorithm for 2-level multi-BSP model

```

![Diagram of parallel reduction process with levels 1 and 2 barriers and reduction operations.](image)

- L1 barrier
 - Level 1 reduction
- L2 Barrier
 - Level 2 reduction
__global__ void reduce1(float *g_idata, float *g_odata, unsigned int n) {
 extern __shared__ float sdata[];

 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

 // Load from global to shared mem
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

 for(unsigned int s = 1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;

 if(index < blockDim.x) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

 // Write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

cuda/samples/6_Advanced/reduction
Quick sanity check to remember

- Each thread block has its own shared memory space

 - If `blockIdx` appears in the calculation of a **shared** memory index, you are probably doing something wrong!

```c
__global__ void reduce1(float *g_idata, float *g_odata, unsigned int n) {
    extern __shared__ float sdata[];

    unsigned int tid = threadIdx.x;
    unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

    // Load from global to shared mem
    sdata[tid] = (i < n) ? g_idata[i] : 0;
    __syncthreads();

    for(unsigned int s = 1; s < blockDim.x; s *= 2) {
        int index = 2 * s * tid;

        if(index < blockDim.x) {
            sdata[index] += sdata[index + s];
        }
        __syncthreads();
    }

    // Write result for this block to global mem
    if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
```

Global memory index may depend on `blockIdx` and `threadIdx`

Shared memory index may depend on `threadIdx`, but never on `blockIdx`
Reduction: host code

```c
int smemSize = threads * sizeof(float);
reduce1<<<blocks, threads, smemSize>>>(d_idata, d_odata, size);
```

- Level 2: run reduction kernel again, until we have 1 block left
- By the way, is our reduction operator associative?
A word on floating-point

- Parallel reduction requires the operator to be **associative**
- Is addition associative?
A word on floating-point

- Parallel reduction requires the operator to be **associative**
- Is addition associative?
 - On reals: yes, \((a + b) + c = a + (b + c)\)
 - On floating-point numbers: **no**
 Example with 4 decimal digits:

 \[
 (1.234 + 123.4) - 123.4 = 124.6 - 123.4 = 1.200 \\
 1.234 + (123.4 - 123.4) = 1.234 + 0 = 1.234
 \]

- Consequence: different result depending on thread count
Outline

- GPU programming environments
- CUDA host side
- Parallel programming models: BSP, multi-BSP
- CUDA device side: threads, blocks, grids
- Expressing parallelism
 - Vector add example
- Managing communications
 - Parallel reduction example
- Re-using data
 - Matrix multiplication example
Example from first lecture

- NVIDIA GTX 980 needs ≥114 flops / word to reach peak performance

How to reach enough arithmetic intensity?

- Need to **reuse** values loaded from memory
Classic example: matrix multiplication

- Naive algorithm

```plaintext
for i = 0 to n-1
    for j = 0 to n-1
        for k = 0 to n-1
            C[i,j]+=A[i,k]*B[k,j]
```

- Arithmetic intensity: 1:1 :(
Reusing inputs

- Move loop on k up

```plaintext
for k = 0 to n-1
    for i = 0 to n-1
        for j = 0 to n-1
            C[i,j] += A[i,k] * B[k,j]
```

- Enable data reuse on inputs A and B
- But no more reuse on matrix C!
With tiling

- Block loops on \(i \) and \(j \)

\[
\text{for } i = 0 \text{ to } n-1 \text{ step 16} \\
\quad \text{for } j = 0 \text{ to } n-1 \text{ step 16} \\
\quad \quad \text{for } k = 0 \text{ to } n-1 \\
\quad \quad \quad \text{for } i2 = i \text{ to } i+15 \\
\quad \quad \quad \quad \text{for } j2 = j \text{ to } j+15 \\
\quad \quad \quad \quad \quad \text{C}[i2,j2] += \text{A}[i2,k] \times \text{B}[k,j2]
\]

- For one block: product between horizontal panel of \(A \) and vertical panel of \(B \)

![Diagram showing block loops and matrix multiplication](image.png)
With more tiling

- Block loop on k

```
for i = 0 to n-1 step 16
  for j = 0 to n-1 step 16
    for k = 0 to n-1 step 16
      for k2 = k to k+15
        for i2 = i to i+15
          for j2 = j to j+15
```

Constant size
for i = 0 to n-1 step 16
 for j = 0 to n-1 step 16
 c = {0}
 for k = 0 to n-1 step 16
 a = A[i..i+15,k..k+15]
 b = B[k..k+15,j..j+15]
 for k2 = 0 to 15
 for i2 = 0 to 15
 for j2 = 0 to 15
 c[i2,j2] += a[i2,k2] \times b[k2,j2]
 C[i..i+15,j..j+15] = c

\{\text{Load submatrices } a \text{ and } b\}
\{\text{Multiply submatrices } c = a \times b\}
\{\text{Store submatrix } c\}

Arithmetic intensity?
Breaking into two levels

- Run loops on i, j, i2, j2 in parallel

```plaintext
for // i = 0 to n-1 step 16
for // j = 0 to n-1 step 16
    c = {0}
    for k = 0 to n-1 step 16
        a = A[i..i+15,k..k+15]
        b = B[k..k+15,j..j+15]
        for k2 = 0 to 15
            for // i2 = 0 to 15
                for // j2 = 0 to 15
                    c[i2,j2] += a[i2,k2] * b[k2,j2]
        C[i..i+15,j..j+15] = c

Let's focus on threads
```
Level 1: SIMD (PRAM-style) version

- Each processor has ID (x,y)
 - Loops on i2, j2 are implicit

\[
\begin{align*}
\text{c}[x,y] &= 0 \\
\text{for } k &= 0 \text{ to } n-1 \text{ step 16} \\
\text{a}[x,y] &= \text{A}[i+x,k+y] \\
\text{b}[x,y] &= \text{B}[k+x,j+y]
\end{align*}
\]

\[
\begin{align*}
\text{for } k2 &= 0 \text{ to } 15 \\
\text{c}[x,y] &= \text{c}[x,y] + \text{a}[x,k2] \times \text{b}[k2,y]
\end{align*}
\]

\[
\text{C}[i+x,j+y] = \text{c}[x,y]
\]

- Private writes: no conflict
- Load submatrices a and b
- Multiply submatrices: \(c = a \times b \)
- Store submatrix c
- Read from other processors

How to translate to SPMD (BSP-style)?
SPMD version

Place synchronization barriers

c[x,y] = 0
for k = 0 to n-1 step 16
 a[x,y] = A[i+x,k+y]
 b[x,y] = B[k+x,j+y]
 Barrier
 for k2 = 0 to 15
 c[x,y] += a[x,k2]*b[k2,y]
 Barrier
C[i+x,j+y] = c[x,y]

Why do we need the second barrier?
Data allocation

- 3 memory spaces: **Global**, **Shared**, **Local**

- Where should we put: A, B, C, a, b, c?

```plaintext
c[x,y] = 0
for k = 0 to n-1 step 16
    a[x,y] = A[i+x,k+y]
    b[x,y] = B[k+x,j+y]
    Barrier
    for k2 = 0 to 15
        c[x,y] += a[x,k2]*b[k2,y]
    Barrier
C[i+x,j+y] = c[x,y]
```
Data allocation

- Memory spaces: **Global**, **Shared**, **Local**
 - As local as possible

```plaintext
\[
c = 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
a[x,y] = A[i+x,k+y] \\
b[x,y] = B[k+x,j+y] \\
\text{Barrier} \\
\text{for } k2 = 0 \text{ to } 15 \\
c += a[x,k2] \times b[k2,y] \\
\text{Barrier} \\
C[i+x,j+y] = c
\]
```

- **Local**: private to each thread (indices are implicit)
- **Global**: shared between blocks / inputs and outputs
- **Shared**: shared between threads, private to block
CUDA version

- Straightforward translation

```c
float Csub = 0;

for(int a = aBegin, b = bBegin;
    a <= aEnd;
    a += aStep, b += bStep) {
    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

    As[ty][tx] = A[a + wA * ty + tx];
    Bs[ty][tx] = B[b + wB * ty + tx];

    __syncthreads();
    for(int k = 0; k < BLOCK_SIZE; ++k)
    {
        Csub += As[ty][k] * Bs[k][tx];
    }
    __syncthreads();
}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
```

matrixMul example: cuda/samples/0_Simple/matrixMul
Local memory

- Registers are fast but
 - Limited in size
 - Not addressable
- Local memory used for
 - Local variables that do not fit in registers (*register spilling*)
 - Local arrays accessed with indirection

```c
int a[17];
b = a[i];
```

Warning: local is a misnomer!
- Physically, local memory usually goes off-chip
Device functions

- Kernel can call functions
- Need to be marked for GPU compilation

  ```c
  __device__ int foo(int i) {
  }
  ```

- A function can be compiled for both host and device

  ```c
  __host__ __device__ int bar(int i) {
  }
  ```

- Device functions can call device functions
 - Older GPUs do not support recursion
Recap

- Memory management:
 Host code and memory / Device code and memory
- Writing GPU Kernels
- Dimensions of parallelism: grids, blocks, threads
- Memory spaces: global, local, shared memory

Next time: advanced features and optimization techniques
References and further reading

- CUDA C Programming Guide
- Mark Harris. Introduction to CUDA C.
- David Luebke, John Owens. Intro to parallel programming. Online course.
 https://www.udacity.com/course/cs344
- Paulius Micikevicius. GPU Performance Analysis and Optimization.
 GTC 2012.