GPU programming: Code optimization

Sylvain Collange
Inria Rennes – Bretagne Atlantique
sylvain.collange@inria.fr

PPAR 2017
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Asynchronous execution

- By default, most CUDA function calls are *asynchronous*
 - Returns immediately to CPU code
 - GPU commands are queued and executed in-order
- Some commands are synchronous by default
 - cudaMemcpy(..., cudaMemcpyDeviceToHost)
 - Asynchronous version: cudaMemcpyAsync
- Keep it in mind when checking for errors and measuring timing!
 - Error returned by a command may be caused by an earlier command
 - Time taken by kernel<<<>>> launch is meaningless
- To force synchronization: cuThreadSynchronize()
Asynchronous transfers

- Overlap CPU work with GPU work

Can we do better?
Multiple command queues / streams

- Application: Fat binary
- CUDA Runtime API: cudaXxx functions
- CUDA Driver API: cuYyy functions

- GPU code

- User mode
- Kernel mode

- CPU
- GPU Driver
- Command queues

Push: CPU to GPU
Pop: GPU to CPU
Streams: pipelining commands

- **Command queues** in OpenCL
 - Commands from the same stream run in-order
 - Commands from different streams run out-of-order

CPU
- `cudaMemcpyAsync DtoH, a`
- `kernel<<<a, a>>>
 - `cudaMemcpyAsync HtoD, a`
 - `cudaMemcpyAsync DtoH, b`
 - `kernel<<<b, b>>>
 - `cudaMemcpyAsync HtoD, c`
 - `kernel<<<c, c>>>
 - `cudaMemcpyAsync DtoH`

DMA
- `copy a HtoD`
- `copy b HtoD`
- `copy c HtoD`

GPU
- `kernel a`
- `kernel b`
- `kernel c`

Copy A: `HtoD`
Copy B: `DtoH`
Copy C: `DtoH`

CUDA Streams: `CUDAStreamSynchronize a`
CUDA Streams: `CUDAStreamSynchronize b`
CUDA Streams: `CUDAStreamSynchronize c`
Streams: benefits

- Overlap CPU-GPU communication and computation: Direct Memory Access (DMA) copy engine runs CPU-GPU memory transfers in background
 - Requires page-locked memory
 - Some Tesla GPUs have 2 DMA engines: simultaneous send and receive

- Concurrent kernel execution
 - Start next kernel before previous kernel finishes
 - Reduces loss due to load imbalance

Example

Serial kernel execution

<table>
<thead>
<tr>
<th>a block 0</th>
<th>a 3</th>
<th>b 0</th>
<th>b 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 1</td>
<td>a 4</td>
<td>b 1</td>
<td></td>
</tr>
<tr>
<td>a 2</td>
<td></td>
<td>b 2</td>
<td></td>
</tr>
</tbody>
</table>

Concurrent kernel execution

<table>
<thead>
<tr>
<th>a block 0</th>
<th>a 3</th>
<th>b 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 1</td>
<td>a 4</td>
<td>b 1</td>
</tr>
<tr>
<td>a 2</td>
<td>b 0</td>
<td>b 3</td>
</tr>
</tbody>
</table>
Page-locked memory

- By default, allocated memory is *pageable*
 - Can be swapped out to disk, moved by the OS...
- DMA transfers are only safe on *page-locked* memory
 - Fixed virtual → physical mapping
 - `cudaMemcpy` needs an intermediate copy: slower, **synchronous only**
- `cudaMallocHost` allocates page-locked memory
 - Mandatory when using streams
- **Warning:** page-locked memory is a limited resource!
Streams: example

- Send data, execute, receive data

```c
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i]);
MyKernel <<<100, 512, 0, stream[i]>>> (outputDevPtr + i * size, inputDevPtr + i * size, size);
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size, cudaMemcpyDeviceToHost, stream[i]);
}
for (int i = 0; i < 2; ++i)
    cudaStreamDestroy(stream[i]);
```
Events: synchronizing streams

- Schedule synchronization of one stream with another
 - Specify dependencies between tasks

```c
cudaEvent_t e;
cudaEventCreate(&e);
kernel1<<<,,,a>>>();
cudaEventRecord(e, a);
cudaStreamWaitEvent(b, e);
kernel2<<<,,,b>>>();
cudaEventDestroy(e);
```

- Measure timing

```c
cudaEventRecord(start, 0);
kernelll<<<>>>();
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
```
With streams and events, we can express task dependency graphs

- Equivalent to threads and events (e.g. semaphores) on CPU

Example:

- 2 GPU streams: \(a \) \(b \)
- and 1 CPU thread:
- Where should we place events?
kernel1<<<,,,a>>>();
cudaEventRecord(e1, a);

kernel2<<<,,,b>>>();
cudaStreamWaitEvent(b, e1);
kernel3<<<,,,b>>>();
cudaEventRecord(e2, b);

kernel5<<<,,,a>>>();
cudaEventRecord(e3, a);
cudaEventSynchronize(e2);

CPU code

cudaStreamWaitEvent(b, e3);
kernel4<<<,,,b>>>();

wait(e1)
NVIDIA Compute capabilities

- Newer GPUs introduce additional features

<table>
<thead>
<tr>
<th>GPU</th>
<th>G80</th>
<th>G92</th>
<th>GT200</th>
<th>GT21×GF100</th>
<th>GF104</th>
<th>GK104</th>
<th>GK110</th>
<th>GM107</th>
<th>GM204</th>
<th>GP100</th>
<th>GP102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute capability</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2</td>
<td>2.0</td>
<td>2.1</td>
<td>3.0</td>
<td>3.5</td>
<td>5.0</td>
<td>5.2</td>
<td>6.0</td>
</tr>
</tbody>
</table>

- Compute capability means both
 - Set of features supported
 Who can do more can do less: \(x > y \) → CC \(x \) includes CC \(y \)
 - Native instruction set
 Not always backward-compatible
 e.g. GPU of CC 6.0 cannot run binary for CC 5.2
Compiler targets

- Compiler flags: `--generate-code arch=<arch>,code=<code>,...`
 - `arch=CC`: directs PTX generation; my code requires features of CC
 - `code=CC`: directs native code gen.; generate code for GPU CC
 - Multiple targets possible

- CC can be
 - `compute_xx` for PTX
 - `sm_xx` for native

- Example

```
nvcc --generate-code arch=compute_10,code=sm_10
   --generate-code arch=compute_11,code='sm_12,sm_13'
   -o hello hello.cu
```
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Memory access patterns

In traditional vector processing

- **Easy**
 - Registers
 - Memory
 - Scalar load & broadcast
 - Reduction & scalar store

- **Hard**
 - Registers
 - Memory
 - (Non-unit) strided load
 - (Non-unit) strided store

- **Hardest**
 - Registers
 - Memory
 - Gather
 - Scatter

On GPUs
- Every load is a gather, every store is a scatter
Breakdown of memory access patterns

- Vast majority: uniform or unit-strided
 - And even aligned vectors

“In making a design trade-off, favor the frequent case over the infrequent case.”
Memory coalescing

- In hardware: compare the address of each vector element
- Coalesce memory accesses that fall within the same segment

- Dynamically detects parallel memory regularity

Diagram:
- Unit-strided requests → One transaction
- Irregular requests → Multiple transactions
Consequences: threading granularity

- **Coarse-grained threading**
 - Decouple tasks to reduce **conflicts** and inter-thread communication
 - e.g. MPI, OpenMP

- **Fine-grained threading**
 - Interleave tasks
 - Exhibit **locality**: neighbor threads share memory
 - Exhibit **regularity**: neighbor threads have a similar behavior
 - e.g. CUDA, OpenCL
Array of structures (AoS)

- Programmer-friendly memory layout
 - Group data logically
- Memory accesses not coalesced
 - Bad performance on GPU

```
struct Pixel {
  float r, g, b;
};
Pixel image_AoS[480][640];

kernel void luminance(Pixel img[][],
                      float luma[][]) {
  int x=tid.x; int y=tid.y;
  luma[y][x]=.59*img[y][x].r
              + .11*img[y][x].g
              + .30*img[y][x].b;
}
```

- Need to rethink data structures for fine-grained threading
Structure of Arrays (SoA)

- Transpose the data structure
 - Group together similar data for different threads
- Benefits from memory coalescing
 - Best performance on GPU

```cpp
struct Image {
    float R[480][640];
    float G[480][640];
    float B[480][640];
};
Image image_SoA;

custom kernel void luminance(Image img, float luma[][]) {
    int x=tid.x; int y=tid.y;
    luma[y][x]=.59*img.R[y][x] + .11*img.G[y][x] + .30*img.B[y][x];
}
```
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities

- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication

- Instruction-level optimization
Vector loads

- We can load more data at once with vector types
 - float2, float4, int2, int4...
 - More memory parallelism
 - Allows to reach peak throughput with fewer threads

Multiple outstanding loads

- Multiple independent loads from the same thread can be pipelined
 - More memory parallelism
 - Peak throughput with yet fewer threads

```c
__global__ void luminance(Image img,
                           float luma[][][]) {
    int x=threadIdx.x, y=threadIdx.y;
    luma[y][x]=.59*img.R[y][x]
               + .11*img.G[y][x]
               + .30*img.B[y][x];
}
```
Global memory accesses are the most expensive
- Focus on optimizing global memory accesses

Strategy: use shared memory as a temporary buffer

1. Load with regular accesses
2. Read and write shared memory with original pattern
3. Store back to global memory with regular accesses
Example: matrix transpose

- \(B = A^T \)

- Naive algorithms
 - Option 1
 - Thread \(i,j: \)
 - \(B[j,i] = A[i,j] \)

 - Option 2
 - Thread \(i,j: \)
 - \(B[i,j] = A[j,i] \)

- Which one is better?
 - What is the problem?
Example: matrix transpose

- $B = A^T$

- Naive algorithms
 - Option 1
 - Option 2

- Both are equally bad
 - Access to one array is non-coalesced
Matrix transpose using shared memory

- Split matrices in blocks
- Load the block in shared memory
- Transpose in shared memory
- Write the block back

Example with 16×16 blocks

Block bx, by, Thread tx, ty:
\[a[ty,tx] = A[by*16+ty, bx*16+tx] \]
Sync threads
\[b_local = a[tx,ty] \]
\[B[by*16+ty, bx*16+tx] = b_local \]
Isn't it just moving the problem to shared memory?
Yes: shared memory has access restrictions too
But
- Shared memory is much faster, even for irregular accesses
- We can optimize shared memory access patterns too
Outline

• Host-side task and memory management
 ✷ Asynchronism and streams
 ✷ Compute capabilities

• Work partitioning and memory optimization
 ✷ Memory access patterns
 ✷ Global memory optimization
 ✷ Shared memory optimization
 ✷ Back to matrix multiplication

• Instruction-level optimization
Shared memory: banked

- Inside each SM, shared memory is distributed between multiple banks
 - 16 or 32 banks
Shared memory bank assignment

- Interleaved on a word-by-word basis: Modulo placement of data

![Diagram showing shared memory bank assignment]

- Actually 16 (or 32) banks

Shared memory address space
Shared memory: the good

- Threads access contiguous locations: no conflict
 - All threads can be served concurrently
Shared memory: the bad

- Threads access random locations: some conflicts
 - Some threads have to wait for a bank
Threads access locations spaced by 16: systematic conflict
- All threads have to wait for the same bank
Example: matrix transpose

- Where are bank conflicts?

Block bx, by, Thread tx, ty:

\[
\begin{align*}
a[ty*16+tx] &= A[by*16+ty, bx*16+tx] \\
\text{Syncthreads} \\
b[ty*16+tx] &= a[tx*16+ty] \\
\text{Syncthreads} \\
B[by*16+ty, bx*16+tx] &= b[ty*16+tx]
\end{align*}
\]
Example: matrix transpose

- Where are bank conflicts?

Block bx, by, Thread tx, ty:
- \[a[ty*16+tx] = A[by*16+ty, bx*16+tx] \]
 Syncthreads
- \[b[ty*16+tx] = a[tx*16+ty] \]
 Syncthreads
- \[B[by*16+ty, bx*16+tx] = b[ty*16+tx] \]

- How to avoid them?
Remapping data

- Solution 1: pad with empty cells

Block bx, by, Thread tx, ty:
\[
a_{ty*17+tx} = A_{by*16+ty,bx*16+tx}
\]

Syncthreads
\[
b_{ty*16+tx} = a_{tx*17+ty}
\]

Syncthreads
\[
B_{by*16+ty,bx*16+tx} = b_{ty*17+tx}
\]

- No bank conflicts
- Memory overhead
Remapping data

- Solution 2: different mapping function
 - Example: map \([y,x]\) to \(y\times16+(x+y \mod 16)\)
 - Or \(y\times16+(x \^ y)\)

Block \(bx,by\), Thread \(tx,ty\):
\[
a[ty\times16+(tx+ty)\mod16]=A[by\times16+ty,bx\times16+tx]
\]
Syncthreads
\[
b[ty\times16+tx]=a[tx\times16+(ty+tx)\mod16]
\]
Syncthreads
\[
B[by\times16+ty,bx\times16+tx]=b[ty\times17+tx]
\]

- No bank conflicts
- No memory overhead
Recap

- Overlap long-latency communications with computations
- Avoid global accesses when you can
 - Reuse data to get enough arithmetic intensity
 - Use registers and shared memory whenever possible
- Make consecutive threads access contiguous data
 - Stage data in shared memory if needed
- Avoid bank conflicts in shared memory
- Express locality and regularity
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Example: back to matrix multiplication

- Run loops on i, j, i2, j2 in parallel

```c
for // i = 0 to n-1 step 16
for // j = 0 to n-1 step 16
    c = {0}
    for k = 0 to n-1 step 16
        a = A[i..i+15,k..k+15]
        b = B[k..k+15,j..j+15]
        for k2 = 0 to 15
            for // i2 = 0 to 15
                for // j2 = 0 to 15
                    c[i2,j2]+=a[i2,k2]*b[k2,j2]
        C[i..i+15,j..j+15] = c
```

- Let's focus on threads
Memory access patterns

- On a block of 256 threads

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T16</th>
<th>T17</th>
<th>T255</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>y 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

\[c = 0 \]

\[
\text{for } k = 0 \text{ to } n-1 \text{ step 16} \\
\]

\[
a[x,y] = A[i+x,k+y] \\
b[x,y] = B[k+x,j+y] \\
\]

Barrier

\[
\text{for } k2 = 0 \text{ to } 15 \\
c += a[x,k2]*b[k2,y] \\
\]

Barrier

\[
C[i+x,j+y] = c \\
\]

- Which accesses are coalesced?
- Are there bank conflicts?
Memory access patterns

- On a block of 256 threads

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T16</th>
<th>T17</th>
<th>T255</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[c = 0 \]
for \(k = 0 \) to \(n-1 \) step 16
\[a[x,y] = A[i+x,k+y] \]
\[b[x,y] = B[k+x,j+y] \]
Barrier
for \(k2 = 0 \) to 15
\[c += a[x,k2]*b[k2,y] \]
Barrier
\[C[i+x,j+y] = c \]
No coalesced access

Massive bank conflicts

c = 0
for k = 0 to n-1 step 16
 a[x,y] = A[i+x,k+y]
 b[x,y] = B[k+x,j+y]
 Barrier
 for k2 = 0 to 15
 c += a[x,k2]*b[k2,y]
 Barrier
 C[i+x,j+y] = c

Can we improve it?
Memory optimization

- Exchange x and y

\[
c = 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
\quad a[y,x] = A[i+y,k+x] \\
\quad b[y,x] = B[k+y,j+x] \\
\quad \text{Barrier} \\
\quad \text{for } k2 = 0 \text{ to } 15 \\
\quad \quad c += a[y,k2] \times b[k2,x] \\
\quad \text{Barrier} \\
\quad C[i+y,j+x] = c
\]

- Success!
- Now can we improve memory parallelism?
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Workload partitioning
- Instruction-level optimization
Workload partitioning

How to choose grid dimensions?

- **Number of blocks per grid**
 - Linear with data size, or constant
 - Min: at least number of SMs * blocks per SM
 - No max in practice

- **Number of threads per block**
 - Constant: should not depend on dataset size
 - Max: hardware limitation, 512 or 1024 threads
 - Min: size of a warp: 32 threads

- **Iterations per thread**
 - Constant or variable
 - Min: enough to amortize thread creation overhead
 - No max, but shorter-lived threads reduce load imbalance
Multiple grid/block dimensions

- Grid and block size are of type `dim3`
 - Support up to 3 dimensions
    ```
    dim3 dimBlock(tx, ty, tz);
    dim3 dimGrid(bx, by, bz);
    my_kernel<<<dimGrid, dimBlock>>>(arguments);
    ```
 - Implicit cast from int to `dim3`
 y and z sizes are 1 by default
- On device side, `threadIdx`, `blockDim`, `blockIdx`, `gridDim` are also of type `dim3`
 - Access members with `.x`, `.y`, `.z`
Occupancy metric

- Threads per SM / max threads per SM
- Resource usage may cause non-ideal occupancy
 - Register usage
 - Shared memory usage
 - Non-dividable block size

Available shared memory: 16KB
Usage: 12KB/block
→ Only 1 block / SM

Available registers: 32768
Usage: 64 registers/thread, blocks of 256 threads
→ Only 2 blocks / SM
Max threads/SM: 768 threads
Block size: 512 threads
→ Only 1 block / SM
Could run 3 blocks of 256 threads
GPU: on-chip memory

- Conventional wisdom
 - Cache area in CPU vs. GPU according to the NVIDIA CUDA Programming Guide:

- But... if we include registers:

<table>
<thead>
<tr>
<th>GPU</th>
<th>Register files + caches</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA GM204 GPU</td>
<td>8.3 MB</td>
</tr>
<tr>
<td>AMD Hawaii GPU</td>
<td>15.8 MB</td>
</tr>
<tr>
<td>Intel Core i7 CPU</td>
<td>9.3 MB</td>
</tr>
</tbody>
</table>

- GPU/accelerator internal memory exceeds desktop CPU's
How many threads?

• As many as possible (maximize occupancy)?

 + Maximal data-parallelism

 ➜ Latency hiding

 - Locality

 ➜ Store private data of each thread

 - Thread management overhead

 ➜ Initialization, redundant operations

• Trade-off between parallelism and memory locality
Multiple elements per thread

- Block size (16, 16) → (8, 16)
- 2 elements per thread: (x, y) and (x+8, y)

\[
\begin{align*}
c[0] &= 0 \\
c[1] &= 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
a[y,x] &= A[i+y,k+x] \\
b[y,x] &= B[k+y,j+x] \\
a[y+8,x] &= A[i+y+8,k+x] \\
b[y+8,x] &= B[k+y+8,j+x] \\
\text{Barrier} \\
\text{for } k2 = 0 \text{ to } 15 \\
c[0] &=+ a[y,k2] \cdot b[k2,x] \\
c[1] &=+ a[y+8,k2] \cdot b[k2,x] \\
\text{Barrier} \\
C[i+y,j+x] &= c[0] \\
C[i+y+8,j+x] &= c[1]
\end{align*}
\]

- What about shared memory?
Data reuse

- Share reads to submatrix b
 - Fewer shared memory accesses
 - Exchange data through registers

\[
c[0] = 0 \\
c[1] = 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step 16} \\
\quad a[y,x] = A[i+y,k+x] \\
\quad b[y,x] = B[k+y,j+x] \\
\quad a[y+8,x] = A[i+y+8,k+x] \\
\quad b[y+8,x] = B[k+y+8,j+x] \\
\text{Barrier} \\
\quad \text{for } k2 = 0 \text{ to } 15 \\
\quad \quad b[l] = b[k2,x] \\
\quad \quad c[0] += a[y,k2] \times b[l] \\
\quad \quad c[1] += a[y+8,k2] \times b[l] \\
\text{Barrier} \\
C[i+y,j+x] = c[0] \\
C[i+y+8,j+x] = c[1]
\]

- Improves register usage too. Why?
True story: SGEMM from CUBLAS 1.1

- 512 threads / CTA, 15 registers / thread
- 9 registers / 15 contain redundant data
- Only 2 registers really needed
Fewer threads, more computations

- New SGEMM in CUBLAS 2.0
 - 8 elements computed / thread
 - Unrolled loops
 - Less traffic through shared memory, more through registers

- Overhead amortized
 - 1920 registers vs. 7680 for the same amount of work
 - Works for redundant computations too

- Instruction-level parallelism is still relevant

64 threads / CTA

30 registers / thread

Temporary data

Duplicated data

Useful data

Adresses, indices
Re-expressing parallelism

- Converting types of parallelism
 - ILP
 - TLP
 - DLP

- General strategy
 - Design phase: focus on thread-level parallelism
 - Optimization phase: convert TLP to Instruction-level or Data-level parallelism
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Workload partitioning
- Instruction-level optimization
Loop unrolling

- Can improve performance
 - Amortizes loop overhead over several iterations
 - May allow constant propagation, common sub-expression elimination...
- Unrolling is **necessary** to keep arrays in registers

```c
int a[4];
for(int i = 0; i < 4; i++) {
    a[i] = 3 * i;
}
```

- Indirect addressing: `a` in local memory
- Static addressing: `a` in registers

- The compiler can unroll for you

```c
#pragma unroll
for(int i = 0; i < 4; i++) {
    a[i] = 3 * i;
}
```

- Trivial computations: optimized away
Warp-based execution

- Threads in a warp run in lockstep
- On NVIDIA architectures, warp is 32 threads
- A block is made of warps (warps do not cross block boundaries)
 - Block size multiple of 32 for best performance
Branch divergence

- **Conditional block**

  ```
  if(c) {
    // A
  }
  else {
    // B
  }
  ```

- **All threads of a warp take the same path**

 With imaginary 4-thread warps
Branch divergence

- Conditional block
  ```c
  if(c) {
      // A
  }
  else {
      // B
  }
  ```

- Threads in a warp take different paths

- Warps have to go through both A and B: lower performance
Avoiding branch divergence

- Hoist identical computations and memory accesses outside conditional blocks

```c
if(tid % 2) {
    s += 1.0f/tid;
} else {
    s -= 1.0f/tid;
}
```

```c
float t = 1.0f/tid;
if(tid % 2) {
    s += t;
} else {
    s -= t;
}
```

- When possible, re-schedule work to make non-divergent warps

```c
// Compute 2 values per thread
int i = 2 * tid;
s += 1.0f/i - 1.0f/(i+1);
```

- What if I use C's ternary operator (?:) instead of if? (or tricks like ANDing with a mask, multiplying by a boolean...)
Ternary operator \(\text{? good : bad} \)

- Run both branches and select: \(R = c \ ? \ A : B; \)
 - No more divergence?

- All threads have to take both paths
 No matter whether the condition is divergent or not

Does **not** solve divergence: we lose in all cases!

- Only benefit: fewer instructions
 - May be faster for short, often-divergent branches

- Compiler will choose automatically when to use predication
 - Advice: keep the code readable, let the compiler optimize
Recap

- Beware of local arrays
 use static indices and loop unrolling
- Keep in mind branch divergence when writing algorithm
 but do not end up in managing divergence yourself
Takeaway

- Distribute work and data
 - Favor SoA
 - Favor locality and regularity
 - Use common sense (avoid extraneous copies or indirections)

- More threads ≠ higher performance
 - Saturate instruction-level parallelism first (almost free)
 - Complete with data parallelism (expensive in terms of locality)

- Usual advice applies
 - First write correct code
 - Profile
 - Optimize
 - Repeat
References and further reading/watching

- CUDA C Programming Guide