Parallel programming:
Introduction to GPU architecture

Sylvain Collange
Inria Rennes – Bretagne Atlantique
sylvain.collange@inria.fr

PPAR - 2017
Outline of the course

- March 6: Introduction to GPU architecture
 - Parallelism and how to exploit it
 - Performance models
- March 13: GPU programming
 - The software side
 - Programming model
- March 20: Performance optimization
 - Possible bottlenecks
 - Common optimization techniques
- 4 lab sessions, starting March 14-15
 - Labs 1&2: computing log(2) the hard way
 - Labs 3&4: Conway's Game of Life
Graphics processing unit (GPU)

- Graphics rendering accelerator for computer games
 - Mass market: low unit price, amortized R&D
 - Increasing programmability and flexibility
- Inexpensive, high-performance parallel processor
 - GPUs are everywhere, from cell phones to supercomputers
- General-Purpose computation on GPU (GPGPU)
GPUs in high-performance computing

- GPU/accelerator share in Top500 supercomputers
 - In 2010: 2%
 - In 2016: 17%

- 2016+ trend:
 Heterogeneous multi-core processors influenced by GPUs

#1 Sunway TaihuLight (China)
40,960 × SW26010 (4 big + 256 small cores)

#2 Tianhe-2 (China)
16,000 × (2×12-core Xeon + 3×57-core Xeon Phi)
GPGPU in the future?

- Yesterday (2000-2010)
 - Homogeneous multi-core
 - Discrete components

- Today (2011-...)
 Chip-level integration
 - Many embedded SoCs
 - Intel Sandy Bridge
 - AMD Fusion
 - NVIDIA Denver/Maxwell project...

- Tomorrow
 Heterogeneous multi-core
 - GPUs to blend into throughput-optimized cores?
Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling
The free lunch era... was yesterday

- 1980's to 2002: *Moore's law, Dennard scaling, micro-architecture improvements*
 - Exponential performance increase
 - Software compatibility preserved

Hennessy, Patterson. Computer Architecture, a quantitative approach. 4th Ed. 2006

- Do not rewrite software, buy a new machine!
Technology evolution

- **Memory wall**
 - Memory speed does not increase as fast as computing speed
 - Harder to hide memory latency

- **Power wall**
 - Power consumption of transistors does not decrease as fast as density increases
 - Performance is now limited by power consumption

- **ILP wall**
 - Law of diminishing returns on Instruction-Level Parallelism
 - Pollack rule: cost \approx performance2
Usage changes

- New applications demand parallel processing
 - Computer games: 3D graphics
 - Search engines, social networks… “big data” processing
- New computing devices are power-constrained
 - Laptops, cell phones, tablets…
 - Small, light, battery-powered
 - Datacenters
 - High power supply and cooling costs
Latency vs. throughput

- **Latency**: time to solution
 - Minimize time, at the expense of power
 - Metric: time
e.g. seconds

- **Throughput**: quantity of tasks processed per unit of time
 - Assumes unlimited parallelism
 - Minimize energy per operation
 - Metric: operations / time
e.g. Gflops / s

- CPU: optimized for latency
- GPU: optimized for throughput
Amdahl's law

- Bounds speedup attainable on a parallel machine

\[S = \frac{1}{(1 - P) + \frac{P}{N}} \]

- Time to run sequential portions
- Time to run parallel portions

- S Speedup
- P Ratio of parallel portions
- N Number of processors

Why heterogeneous architectures?

- **Latency-optimized multi-core (CPU)**
 - Low efficiency on parallel portions: spends too much resources

- **Throughput-optimized multi-core (GPU)**
 - Low performance on sequential portions

- **Heterogeneous multi-core (CPU+GPU)**
 - Use the right tool for the right job
 - Allows aggressive optimization for latency or for throughput

\[
S = \frac{1}{(1-P) + \frac{P}{N}}
\]

Example: System on Chip for smartphone

- Big cores for applications
- Small cores for background activity
- Lots of interfaces
- Special-purpose accelerators
- GPU
Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling
The (simplest) graphics rendering pipeline

Primitives (triangles...)

Vertices

Vertex shader

Clipping, Rasterization

Attribute interpolation

Fragments

Fragment shader

Z-Compare

Blending

Framebuffer

Textures

Programmable stage

Parametrizable stage

Pixels

Z-Buffer
How much performance do we need

… to run 3DMark 11 at 50 frames/second?

<table>
<thead>
<tr>
<th>Element</th>
<th>Per frame</th>
<th>Per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>12.0M</td>
<td>600M</td>
</tr>
<tr>
<td>Primitives</td>
<td>12.6M</td>
<td>630M</td>
</tr>
<tr>
<td>Fragments</td>
<td>180M</td>
<td>9.0G</td>
</tr>
<tr>
<td>Instructions</td>
<td>14.4G</td>
<td>720G</td>
</tr>
</tbody>
</table>

Intel Core i7 2700K: 56 Ginsn/s peak

- We need to go 13x faster
- Make a special-purpose accelerator

Source: Damien Triolet, Hardware.fr
Beginnings of GPGPU

Microsoft DirectX

- 7.x
- 8.0 (2004)
- 8.1
- 9.0 (2007)
- 9.0a
- 9.0b
- 9.0c (2009)
- 10.0 (2002)
- 10.1
- 11

Unified shaders

NVIDIA

- NV10
 - FP 16
 - Programmable shaders

- NV20
 - FP 32

- NV30
 - Dynamic control flow

- NV40
 - SIMT
 - CUDA

- G70
- G80-G90
- GT200
- GF100

ATI/AMD

- R100
- R200
- R300
- R400
- R500
- R600
- R700
- Evergreen

Unified shaders

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GPGPU traction
Today: what do we need GPUs for?

1. 3D graphics rendering for games
 - Complex texture mapping, lighting computations…

2. Computer Aided Design workstations
 - Complex geometry

3. GPGPU
 - Complex synchronization, data movements

 • One chip to rule them all
 - Find the common denominator
Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose

- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical

- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

- High-level performance modeling
What is parallelism?

Parallelism: independent operations which execution can be overlapped
Operations: memory accesses or computations

How much parallelism do I need?
- Little's law in queuing theory
 - Average customer arrival rate λ ← throughput
 - Average time spent W ← latency
 - Average number of customers $L = \lambda \times W$ ← Parallelism = throughput \times latency

- Units
 - For memory: $B = \text{GB/s} \times \text{ns}$
 - For arithmetic: $\text{flops} = \text{Gflops/s} \times \text{ns}$

J. Little. A proof for the queuing formula $L = \lambda W$. JSTOR 1961.
Throughput and latency: CPU vs. GPU

CPU memory: Core i7 4790, DDR3-1600, 2 channels

Latency (ns) 67
Throughput (GB/s) 25.6

GPU memory: NVIDIA GeForce GTX 980, GDDR5-7010, 256-bit

Latency x6
Throughput x8
Parallelism: x56

→ Need 56 times more parallelism!
Sources of parallelism

- **ILP: Instruction-Level Parallelism**
 - Between independent instructions in sequential program

- **TLP: Thread-Level Parallelism**
 - Between independent execution contexts: threads

- **DLP: Data-Level Parallelism**
 - Between elements of a vector: same operation on several elements

```
add r3 ← r1, r2
mul r0 ← r0, r1
sub r1 ← r3, r0

Thread 1

add
mul

(Parallel)

vadd r ← a, b

\[
\begin{array}{ccc}
  + & + & + \\
  b_1 & b_2 & b_3 \\
  \hline \\
  r_1 & r_2 & r_3
\end{array}
\]
```
Example: $X \leftarrow a \times X$

- In-place scalar-vector product: $X \leftarrow a \times X$

 Sequential (ILP)

 For $i = 0$ to $n-1$ do:

 $X[i] \leftarrow a \times X[i]

 Threads (TLP)

 Launch n threads:

 $X[tid] \leftarrow a \times X[tid]

 Vector (DLP)

 $X \leftarrow a \times X$

- Or any combination of the above
Uses of parallelism

- “Horizontal” parallelism for throughput
 - More units working in parallel

- “Vertical” parallelism for latency hiding
 - Pipelining: keep units busy when waiting for dependencies, memory
How to extract parallelism?

<table>
<thead>
<tr>
<th></th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP</td>
<td>Superscalar</td>
<td>Pipelined</td>
</tr>
<tr>
<td>TLP</td>
<td>Multi-core</td>
<td>Interleaved / switch-on-event multithreading</td>
</tr>
<tr>
<td></td>
<td>SMT</td>
<td></td>
</tr>
<tr>
<td>DLP</td>
<td>SIMD / SIMT</td>
<td>Vector / temporal SIMT</td>
</tr>
</tbody>
</table>

- We have seen the first row: ILP
- We will now review techniques for the next rows: TLP, DLP
Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose

- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical

- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

- High-level performance modeling
Sequential processor

- Focuses on instruction-level parallelism
 - Exploits ILP: vertically (pipelining) and horizontally (superscalar)
The incremental approach: multi-core

- Several processors on a single chip sharing one memory space

- Area: benefits from Moore's law
- Power: extra cores consume little when not in use
 - e.g. Intel Turbo Boost

Source: Intel
Homogeneous multi-core

- Horizontal use of thread-level parallelism

- Improves peak throughput
Example: Tilera Tile-GX

- Grid of (up to) 72 tiles
- Each tile: 3-way VLIW processor, 5 pipeline stages, 1.2 GHz
Interleaved multi-threading

- Vertical use of thread-level parallelism

- Hides latency thanks to explicit parallelism improves achieved throughput
Example: Oracle Sparc T5

- 16 cores / chip
- Core: out-of-order superscalar, 8 threads
- 15 pipeline stages, 3.6 GHz
Clustered multi-core

- For each individual unit, select between
 - Horizontal replication
 - Vertical time-multiplexing

Examples
- Sun UltraSparc T2, T3
- AMD Bulldozer
- IBM Power 7

Area-efficient tradeoff
- Blurs boundaries between cores
Implicit SIMD

- **Factorization** of fetch/decode, load-store units
 - Fetch 1 instruction on behalf of several threads
 - Read 1 memory location and broadcast to several registers

- In NVIDIA-speak
 - SIMT: Single Instruction, Multiple Threads
 - Convoy of synchronized threads: *warp*

- Extracts DLP from multi-thread applications
Explicit SIMD

- Single Instruction Multiple Data
- Horizontal use of data level parallelism

Examples
- Intel MIC (16-wide)
- AMD GCN GPU (16-wide×4-deep)
- Most general purpose CPUs (4-wide to 8-wide)
Quizz: link the words

Parallelism
- ILP
- TLP
- DLP

Use
- Horizontal: more throughput
- Vertical: hide latency

Architectures
- Superscalar processor
- Homogeneous multi-core
- Multi-threaded core
- Clustered multi-core
- Implicit SIMD
- Explicit SIMD
Quizz: link the words

Parallelism
- ILP
- TLP
- DLP

Architectures
- Superscalar processor
- Homogeneous multi-core
- Multi-threaded core
- Clustered multi-core
- Implicit SIMD
- Explicit SIMD

Use
- Horizontal: more throughput
- Vertical: hide latency
Quizz: link the words

Parallelism
- ILP
- TLP
- DLP

Use
- Horizontal: more throughput
- Vertical: hide latency

Architectures
- Superscalar processor
- Homogeneous multi-core
- Multi-threaded core
- Clustered multi-core
- Implicit SIMD
- Explicit SIMD
Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose

- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical

- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

- High-level performance modeling
Example CPU: Intel Core i7

- Is a wide superscalar, but has also
 - Multicore
 - Multi-thread / core
 - SIMD units
- Up to 117 operations/cycle from 8 threads
Example GPU: NVIDIA GeForce GTX 980

- SIMT: warps of 32 threads
- 16 SMs / chip
- 4×32 cores / SM, 64 warps / SM

- 4612 Gflop/s
- Up to 32768 threads in flight
Taxonomy of parallel architectures

<table>
<thead>
<tr>
<th></th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP</td>
<td>Superscalar / VLIW</td>
<td>Pipelined</td>
</tr>
<tr>
<td>TLP</td>
<td>Multi-core SMT</td>
<td>Interleaved / switch-on-event multithreading</td>
</tr>
<tr>
<td>DLP</td>
<td>SIMD / SIMT</td>
<td>Vector / temporal SIMT</td>
</tr>
</tbody>
</table>
Classification: multi-core

Intel Haswell

<table>
<thead>
<tr>
<th>ILP</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fujitsu SPARC64 X

<table>
<thead>
<tr>
<th>TLP</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

IBM Power 8

<table>
<thead>
<tr>
<th>DLP</th>
<th>Cores</th>
<th>Hyperthreading</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oracle Sparc T5

<table>
<thead>
<tr>
<th>ILP</th>
<th>Cores</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General-purpose multi-cores: balance ILP, TLP and DLP

Sparc T: focus on TLP
How to read the table

- Given an application with known ILP, TLP, DLP, how much throughput / latency hiding can I expect?
 - For each cell, take minimum of existing parallelism and hardware capability
 - The column-wise product gives throughput / latency hiding

<table>
<thead>
<tr>
<th>Sequential code</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP 10</td>
<td>min(8, 10) =8</td>
<td></td>
</tr>
<tr>
<td>TLP 1</td>
<td>min(4, 1) =1</td>
<td>2</td>
</tr>
<tr>
<td>DLP 1</td>
<td>min(8, 1) =1</td>
<td></td>
</tr>
</tbody>
</table>

Max throughput = 8×1×1 for this application
Peak throughput = 8×4×8
→ Efficiency: ~3%

Given an application with known ILP, TLP, DLP, how much throughput / latency hiding can I expect?

- For each cell, take minimum of existing parallelism and hardware capability
- The column-wise product gives throughput / latency hiding
Classification: GPU and many small-core

<table>
<thead>
<tr>
<th></th>
<th>Intel MIC</th>
<th>Nvidia Kepler</th>
<th>AMD GCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>ILP: 2</td>
<td>TLP: 60</td>
<td>TLP: 20×4</td>
</tr>
<tr>
<td></td>
<td>TLP: 60</td>
<td>TLP: 16×4</td>
<td>TLP: 20×4</td>
</tr>
<tr>
<td></td>
<td>DLP: 16</td>
<td>DLP: 32</td>
<td>DLP: 16</td>
</tr>
<tr>
<td></td>
<td>SIMD: 17×16</td>
<td>SIMT: 32</td>
<td>SIMD: 16</td>
</tr>
<tr>
<td>Vertical</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SIMD Cores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cores×units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-threading</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tilera Tile-GX
- ILP: 3
- TLP: 72

Kalray MPPA-256
- ILP: 5
- TLP: 17×16

GPU
- Focus on DLP, TLP
- Horizontal and vertical

Many small-core
- Focus on horizontal TLP
Takeaway

- Parallelism for throughput and latency hiding
- Types of parallelism: ILP, TLP, DLP
- All modern processors exploit the 3 kinds of parallelism
- GPUs focus on Thread-level and Data-level parallelism
Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
What is inside a graphics card?

NVIDIA GeForce GTX 980 Maxwell GPU. Artistic rendering!
External memory: discrete GPU

Classical CPU-GPU model

- Split memory spaces
- Need to transfer data explicitly
- Highest bandwidth from GPU memory
- Transfers to main memory are slower

Example configuration:
Intel Core i7 4790, Nvidia GeForce GTX 980

We will assume this model for CUDA programming
Most GPUs today are integrated

- Same physical memory
- May support memory coherence
 - GPU can read directly from CPU caches
- More contention on external memory

![Diagram of System on Chip with CPU, GPU, Cache, and Main Memory]
GPU high-level organization

- **Processing units**
 - Streaming Multiprocessors (SM) in Nvidia jargon
 - Compute Unit (CU) in AMD's
 - Closest equivalent to a CPU core
 - Today: from 1 to 20 SMs in a GPU

- **Memory system: caches**
 - Keep frequently-accessed data
 - Reduce throughput demand on main memory
 - Managed by hardware (L1, L2) or software (Shared Memory)
Each SM is a highly-multithreaded processor

- Today: 24 to 48 warps of 32 threads each
 → ~1K threads on each SM, ~10K threads on a GPU
Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling
First-order performance model

Questions you should ask yourself, before starting to code or optimize

- Will my code run faster on the GPU?
- Is my existing code running as fast as it should?
- Is performance limited by computations or memory bandwidth?

Pen-and-pencil calculations can (often) answer such questions
Performance: metrics and definitions

Optimistic evaluation: upper bound on performance
Assume perfect overlap of computations and memory accesses

- Memory accesses: \textit{bytes}
 - Only external memory, not caches or registers

- Computations: \textit{flops}
 - Only “useful” computations (usually floating-point) not address calculations, loop iterators..

 \textbf{Arithmetic intensity}: \textit{flops} / \textit{bytes} = \text{computations} / \text{memory accesses}
 - Property of the code

 \textbf{Arithmetic throughput}: \textit{flops} / \text{s}
 - Property of code + architecture
The roofline model

- How much performance can I get for a given arithmetic intensity?
 - Upper bound on arithmetic throughput, as a function of arithmetic intensity
 - Property of the architecture

Building the machine model

- Compute or measure:
 - Peak memory throughput
 - \(\text{GTX 980: 224 GB/s} \)
 - Ideal arithmetic intensity = peak compute throughput / mem throughput
 - \(\text{GTX 980: 6412 (Gflop/s) / 224 (GB/s) = 28.6 flop/B} \)
 - \(\times 4 \text{ (B/flop)} = 114 \text{ (dimensionless)} \)

- Achievable peaks may be lower than theoretical peaks
 - Lower curves when adding realistic constraints

Beware of units: float=4B, double=8B!
Using the model

- Compute arithmetic intensity, measure performance of program
- Identify bottleneck: memory or computation
- Take optimization decision

Arithmetic intensity
(flop/byte)

Arithmetic throughput
(Gflop/s)

Optimize
memory accesses

Optimize
computation

Measured
performance

Reuse data

Arithmetic intensity
(flop/byte)
Example: dot product

```plaintext
for i = 1 to n
    r += a[i] * b[i]
```

- How many computations?
- How many memory accesses?
- Arithmetic intensity?
- Compute-bound or memory-bound?
- How many Gflop/s on a GTX 980 GPU?
 - With data in GPU memory?
 - With data in CPU memory?
- How many Gflop/s on an i7 4790 CPU?

GTX 980: 4612 Gflop/s, 224 GB/s
i7 4790: 460 Gflop/s, 25.6 GB/s
PCIe link: 16 GB/s
Example: dot product

```plaintext
for i = 1 to n
  r += a[i] * b[i]
```

- How many computations? → 2 n flops
- How many memory accesses? → 2 n words
- Arithmetic intensity? → 1 flop/word = 0.25 flop/B
- Compute-bound or memory-bound? → Highly memory-bound
- How many Gflop/s on a GTX 980 GPU?
 - With data in GPU memory? 224 GB/s × 0.25 flop/B → 56 Gflop/s
 - With data in CPU memory? 16 GB/s × 0.25 flop/B → 4 Gflop/s
- How many Gflop/s on an i7 4790 CPU?
 25.6 GB/s × 0.25 flop/B → 6.4 Gflop/s

Conclusion: don't bother porting to GPU!

GTX 980: 4612 Gflop/s, 224 GB/s
i7 4790: 460 Gflop/s, 25.6 GB/s
PCIe link: 16 GB/s
Takeaway

- Result of many tradeoffs
 - Between locality and parallelism
 - Between core complexity and interconnect complexity
- GPU optimized for throughput
 - Exploits primarily DLP, TLP
 - Energy-efficient on parallel applications with regular behavior
- CPU optimized for latency
 - Exploits primarily ILP
 - Can use TLP and DLP when available
- Performance models
 - Back-of-the-envelope calculations and common sense can save time
- Next time: GPU programming in CUDA