Optimization Techniques for Parallel Code: 4: GPU code optimization

Sylvain Collange
Inria Rennes – Bretagne Atlantique
http://www.irisa.fr/alf/collange/
sylvain.collange@inria.fr

OPT 2017
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Asynchronous execution

- By default, most CUDA function calls are *asynchronous*
 - Returns immediately to CPU code
 - GPU commands are queued and executed in-order
- Some commands are synchronous by default
 - cudaMemcpy(..., cudaMemcpyDeviceToHost)
 - Asynchronous version: cudaMemcpyAsync
- Keep it in mind when checking for errors and measuring timing!
 - Error returned by a command may be caused by an earlier command
 - Time taken by kernel<<<>>> launch is meaningless
- To force synchronization: cuThreadSynchronize()
Asynchronous transfers

- Overlap CPU work with GPU work

Can we do better?
Multiple command queues / streams

- Application: Fat binary
- CUDA Runtime
- GPU Driver
- CUDA Runtime API (cudaXxx functions)
- CUDA Driver API (cuYyy functions)
- GPU code

- User mode (push)
- Kernel mode (pop)

- Command queues: push, pop
Streams: pipelining commands

- **Command queues** in OpenCL
 - Commands from the same stream run in-order
 - Commands from different streams run out-of-order
Streams: benefits

- Overlap CPU-GPU communication and computation: Direct Memory Access (DMA) copy engine runs CPU-GPU memory transfers in background
 - Requires page-locked memory
 - Some Tesla GPUs have 2 DMA engines: simultaneous send and receive

- Concurrent kernel execution
 - Start next kernel before previous kernel finishes
 - Mitigates impact of load imbalance / tail effect

Example

Serial kernel execution

```
Kernel<<<5,,,a>>>
Kernel<<<4,,,b>>>
```

Concurrent kernel execution

```
Kernel<<<5,,,a>>>
Kernel<<<4,,,b>>>
```
Page-locked memory

- By default, allocated memory is *pageable*
 - Can be swapped out to disk, moved by the OS...
- DMA transfers are only safe on *page-locked* memory
 - Fixed virtual → physical mapping
 - `cudaMemcpy` needs an intermediate copy: slower, **synchronous only**
- `cudaMallocHost` allocates page-locked memory
 - Mandatory when using streams
- Warning: page-locked memory is a limited resource!
Streams: example

- Send data, execute, receive data

```c
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
    cudaStreamCreate(&stream[i]);

float* hostPtr;
cudaMallocHost(&hostPtr, 2 * size);

for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size, cudaMemcpyHostToDevice, stream[i]);

    MyKernel <<<100, 512, 0, stream[i]>>> (
        outputDevPtr + i * size, inputDevPtr + i * size, size);

    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size, cudaMemcpyDeviceToHost, stream[i]);
}

for (int i = 0; i < 2; ++i)
    cudaStreamDestroy(stream[i]);
```
Events: synchronizing streams

- Schedule synchronization of one stream with another
 - Specify dependencies between tasks

```c
cudaEvent_t e;
cudaEventCreate(&e);
kernel1<<<,,a>>>();
cudaEventRecord(e, a);
cudaStreamWaitEvent(b, e);
kernel2<<<,,b>>>();
cudaEventDestroy(e);
```

- Measure timing

```c
cudaEventRecord(start, 0);
kernel<<<>>>();
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
```
Scheduling data dependency graphs

- With streams and events, we can express task dependency graphs
 - Equivalent to threads and events (e.g. semaphores) on CPU
- Example:
 - 2 GPU streams: a b
 - and 1 CPU thread:
 - Where should we place events?
kernel1<<<,,,a>>>();
cudaEventRecord(e1, a);

kernel2<<<,,,b>>>();
cudaStreamWaitEvent(b, e1);
kernel3<<<,,,b>>>();
cudaEventRecord(e2, b);

kernel5<<<,,,a>>>();
cudaEventRecord(e3, a);
cudaEventSynchronize(e2);

CPU code

cudaStreamWaitEvent(b, e3);
kernel4<<<,,,b>>>();
NVIDIA Compute capabilities

- Newer GPUs introduce additional features

<table>
<thead>
<tr>
<th>GPU</th>
<th>Compute capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80</td>
<td>1.0</td>
</tr>
<tr>
<td>G92</td>
<td>1.1</td>
</tr>
<tr>
<td>GT200</td>
<td>1.3</td>
</tr>
<tr>
<td>GT21x</td>
<td>1.2</td>
</tr>
<tr>
<td>GF100</td>
<td>2.0</td>
</tr>
<tr>
<td>GF104</td>
<td>2.1</td>
</tr>
<tr>
<td>GK104</td>
<td>3.0</td>
</tr>
<tr>
<td>GK110</td>
<td>3.5</td>
</tr>
<tr>
<td>GM107</td>
<td>5.0</td>
</tr>
<tr>
<td>GM204</td>
<td>5.2</td>
</tr>
<tr>
<td>GP100</td>
<td>6.0</td>
</tr>
<tr>
<td>GP102</td>
<td>6.1</td>
</tr>
</tbody>
</table>

- Compute capability means both
 - Set of features supported
 Who can do more can do less: \(x > y \) \(\rightarrow \) CC \(x \) includes CC \(y \)
 - Native instruction set
 Not always backward-compatible
 e.g. GPU of CC 6.0 cannot run binary for CC 5.2
Compiler targets

- Compiler flags: `--generate-code arch=<arch>,code=<code>,...`
 - `arch=CC`: directs PTX generation, my code requires features of CC
 - `code=CC`: directs native code gen., generate code for GPU CC
 - Multiple targets possible

- CC can be
 - `compute_xx` for PTX
 - `sm_xx` for native

- Example

```
nvcc --generate-code arch=compute_10,code=sm_10
   --generate-code arch=compute_11,code='sm_12,sm_13'
   -o hello hello.cu
```
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Memory access patterns

In traditional vector processing

Easy

Registers

Memory

Scalar load & broadcast
Reduction & scalar store

Hard

Registers

Memory

(Non-unit) strided load
(Non-unit) strided store

On GPUs

• Every load is a gather, every store is a scatter
Breakdown of memory access patterns

- Vast majority: uniform or unit-strided
 - And even aligned vectors

“As making a design trade-off, favor the frequent case over the infrequent case.”
Memory coalescing

- In hardware: compare the address of each vector element
- Coalesce memory accesses that fall within the same segment

- Dynamically detects parallel memory regularity
Consequences: threading granularity

- Coarse-grained threading
 - **Decouple** tasks to reduce *conflicts* and inter-thread communication
 - e.g. MPI, OpenMP

- Fine-grained threading
 - **Interleave** tasks
 - Exhibit **locality**: neighbor threads share memory
 - Exhibit **regularity**: neighbor threads have a similar behavior
 - e.g. CUDA, OpenCL
Array of structures (AoS)

- Programmer-friendly memory layout
 - Group data logically
- Memory accesses not coalesced
 - Bad performance on GPU
- Need to rethink data structures for fine-grained threading

```cpp
struct Pixel {
    float r, g, b;
};
Pixel image_AoS[480][640];

kernel void luminance(Pixel img[][], float luma[][]) {
    int x=tid.x; int y=tid.y;
    luma[y][x]=.59*img[y][x].r
              + .11*img[y][x].g
              + .30*img[y][x].b;
}
```
Structure of Arrays (SoA)

- Transpose the data structure
 - Group together similar data for different threads

- Benefits from memory coalescing
 - Best performance on GPU

```c
struct Image {
  float R[480][640];
  float G[480][640];
  float B[480][640];
};

Image image_SoA;

kernel void luminance(Image img, float luma[][[]]) {
  int x = tid.x; int y = tid.y;
  luma[y][x] = .59 * img.R[y][x] + .11 * img.G[y][x] + .30 * img.B[y][x];
}
```
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Vector loads

- We can load more data at once with vector types
 - float2, float4, int2, int4...
 - More memory parallelism
 - Allows to reach peak throughput with fewer threads

Multiple outstanding loads

- Multiple independent loads from the same thread can be pipelined
 - More memory parallelism
 - Peak throughput with yet fewer threads

```c
__global__ void luminance(Image img,
float luma[][[]]) {
    int x=threadIdx.x, y=threadIdx.y;
    luma[y][x]=.59*img.R[y][x] + .11*img.G[y][x] + .30*img.B[y][x];
}
```
Buffer accesses through shared memory

- Global memory accesses are the most expensive
 - Focus on optimizing global memory accesses
- Strategy: use shared memory as a temporary buffer

1. Load with regular accesses
2. Read and write shared memory with original pattern
3. Store back to global memory with regular accesses
Example: matrix transpose

- $B = A^T$

- Naive algorithms
 - Option 1
 - Option 2

- Which one is better?
 - What is the problem?
Example: matrix transpose

- **B = A^T**

- **Naive algorithms**
 - **Option 1**
 - Coalesced
 - **Option 2**
 - Non-coalesced

- **Both are equally bad**
 - Access to one array is non-coalesced
Matrix transpose using shared memory

- Split matrices in blocks
- Load the block in shared memory
- Transpose in shared memory
- Write the block back

Example with 16×16 blocks

Block \(bx, by, \) Thread \(tx, ty: \)

\[
a[ty, tx] = A[by*16+ty, bx*16+tx]
\]

Syncthreads

\[
b_local = a[tx, ty]
\]

\[
B[by*16+ty, bx*16+tx] = b_local
\]

Coalesced
Objection

- Isn't it just moving the problem to shared memory?
- Yes: shared memory has access restrictions too
- But
 - Shared memory is much faster, even for irregular accesses
 - We can optimize shared memory access patterns too
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Shared memory: banked

- Inside each SM, shared memory is distributed between multiple banks
 - 16 or 32 banks
Shared memory bank assignment

- Interleaved on a word-by-word basis: Modulo placement of data

Shared memory address space

0x0000 to 0x00ff

Bank 0
Bank 1
Bank 2
Bank 3

Actually 16 (or 32) banks
Shared memory: the good

- Threads access contiguous locations: no conflict
 - All threads can be served concurrently
Shared memory: the bad

- Threads access random locations: some conflicts
 - Some threads have to wait for a bank

![Diagram of shared memory access with bank conflicts](image-url)
Shared memory: the ugly

- Threads access locations spaced by 16: systematic conflict
 - All threads have to wait for the same bank
Example: matrix transpose

- Where are bank conflicts?

Block bx, by, Thread tx, ty:

\[
\begin{align*}
 a[ty*16+tx] &= A[by*16+ty, bx*16+tx] \\
 \text{Syncthreads} \\
 b[ty*16+tx] &= a[tx*16+ty] \\
 \text{Syncthreads} \\
 B[by*16+ty, bx*16+tx] &= b[ty*16+tx]
\end{align*}
\]
Example: matrix transpose

- Where are bank conflicts?

Block bx, by, Thread tx, ty:
\[a[ty*16+tx] = A[by*16+ty, bx*16+tx] \]
Syncthreads
\[b[ty*16+tx] = a[tx*16+ty] \]
Syncthreads
\[B[by*16+ty, bx*16+tx] = b[ty*16+tx] \]

- How to avoid them?
Remapping data

- Solution 1: pad with empty cells

Block bx, by, Thread tx, ty:
\[a[ty*17+tx] = A[by*16+ty, bx*16+tx] \]

Syncthreads
\[b[ty*16+tx] = a[tx*17+ty] \]

Syncthreads
\[B[by*16+ty, bx*16+tx] = b[ty*17+tx] \]

- No bank conflicts
- Memory overhead
Remapping data

- **Solution 2: different mapping function**
 - Example: map \([y,x]\) to \(y*16+(x+y \mod 16)\)
 - Or \(y*16+(x \ ^\ y)\)

Block \(bx,by,\) Thread \(tx,ty\):
\[
\begin{align*}
 a[ty*16+(tx+ty)\%16] &= A[by*16+ty,bx*16+tx] \\
 \text{Syncthreads} \\
 b[ty*16+tx] &= a[tx*16+(ty+tx)\%16] \\
 \text{Syncthreads} \\
 B[by*16+ty,bx*16+tx] &= b[ty*17+tx]
\end{align*}
\]

- **No bank conflicts**
- **No memory overhead**
Recap

- Overlap long-latency communications with computations
- Avoid global accesses when you can
 - Reuse data to get enough arithmetic intensity
 - Use registers and shared memory whenever possible
- Make consecutive threads access contiguous data
 - Stage data in shared memory if needed
- Avoid bank conflicts in shared memory
- Express locality and regularity
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Work partitioning and memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Instruction-level optimization
Arithmetic intensity

- Example from first lecture
 - NVIDIA GTX 980 needs ≥ 114 flops / word to reach peak performance

- How to reach enough arithmetic intensity?
 - Need to **reuse** values loaded from memory
Classic example: matrix multiplication

- Naive algorithm

\[
\text{for } i = 0 \text{ to } n-1 \\
\hspace{1cm} \text{for } j = 0 \text{ to } n-1 \\
\hspace{2cm} \text{for } k = 0 \text{ to } n-1 \\
\hspace{3cm} C[i,j]+=A[i,k]*B[k,j]
\]

- Arithmetic intensity: 1:1 :(
Reusing inputs

- Move loop on k up

\[
\text{for } k = 0 \text{ to } n-1 \\
\quad \text{for } i = 0 \text{ to } n-1 \\
\quad \quad \text{for } j = 0 \text{ to } n-1 \\
\quad \quad \quad C[i,j] += A[i,k] \times B[k,j]
\]

- Enable data reuse on inputs A and B
- But no more reuse on matrix C!
With tiling

- Block loops on i and j

```plaintext
for i = 0 to n-1 step 16
    for j = 0 to n-1 step 16
        for k = 0 to n-1
            for i2 = i to i+15
                for j2 = j to j+15
                    C[i2,j2]+=A[i2,k]*B[k,j2]
```

- For one block: product between horizontal panel of A and vertical panel of B
With more tiling

- Block loop on k

```latex
\begin{align*}
\text{for } i &= 0 \text{ to } n-1 \text{ step 16} \\
&\quad \text{for } j = 0 \text{ to } n-1 \text{ step 16} \\
&\quad \quad \text{for } k = 0 \text{ to } n-1 \text{ step 16} \\
&\quad \quad \quad \text{for } k2 = k \text{ to } k+15 \\
&\quad \quad \quad \quad \text{for } i2 = i \text{ to } i+15 \\
&\quad \quad \quad \quad \quad \text{for } j2 = j \text{ to } j+15 \\
C[i2,j2] &= A[i2,k] \times B[k,j2]
\end{align*}
```

![Diagram showing the block loop on k and the constant size](image)
Pre-loading data

for $i = 0$ to $n-1$ step 16
 for $j = 0$ to $n-1$ step 16
 $c = \{0\}$
 for $k = 0$ to $n-1$ step 16
 $a = A[i..i+15,k..k+15]$
 $b = B[k..k+15,j..j+15]$
 for $k2 = 0$ to 15
 for $i2 = 0$ to 15
 for $j2 = 0$ to 15
 $c[i2,j2] += a[i2,k2] \times b[k2,j2]$

$C[i..i+15,j..j+15] = c$

Load submatrices a and b
Multiply submatrices $c = a \times b$
Store submatrix c

Arithmetic intensity?
Breaking into two levels

- Run loops on i, j, i2, j2 in parallel

```plaintext
for // i = 0 to n-1 step 16
for // j = 0 to n-1 step 16
    c = {0}
    for k = 0 to n-1 step 16
        a = A[i..i+15,k..k+15]
        b = B[k..k+15,j..j+15]
        for k2 = 0 to 15
            for // i2 = 0 to 15
                for // j2 = 0 to 15
                    c[i2,j2] += a[i2,k2] * b[k2,j2]

    C[i..i+15,j..j+15] = c
```

- Let's focus on threads
Each processor has ID (x,y)
 - Loops on i2, j2 are implicit

\[
\begin{align*}
 c[x,y] &= 0 \\
 &\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
 a[x,y] &= A[i+x, k+y] \\
 b[x,y] &= B[k+x, j+y] \\
 &\left\{ \begin{array}{l}
 \text{Load submatrices } a \text{ and } b \\
 \end{array} \right.
\end{align*}
\]

\[
\begin{align*}
 &\text{for } k2 = 0 \text{ to } 15 \\
 c[x,y] &= a[x, k2] \times b[k2, y] \\
 &\left\{ \begin{array}{l}
 \text{Multiply submatrices } c = a \times b \\
 \end{array} \right.
\end{align*}
\]

\[
C[i+x, j+y] = c[x, y] \\
\left\{ \begin{array}{l}
 \text{Store submatrix } c \\
 \end{array} \right.
\]

Private writes: no conflict

Read from other processors

How to translate to SPMD (BSP-style)?
SPMD version

- Place synchronization barriers

\[
\begin{align*}
c[x,y] &= 0 \\
&\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
a[x,y] &= A[i+x,k+y] \\
b[x,y] &= B[k+x,j+y] \\
\text{Barrier} \\
&\text{for } k2 = 0 \text{ to } 15 \\
&\quad c[x,y] += a[x,k2]*b[k2,y] \\
\text{Barrier} \\
C[i+x,j+y] &= c[x,y]
\end{align*}
\]

- Why do we need the second barrier?
Data allocation

- 3 memory spaces: Global, Shared, Local

 - Where should we put: A, B, C, a, b, c?

  ```c
  c[x,y] = 0
  for k = 0 to n-1 step 16
      a[x,y] = A[i+x, k+y]
      b[x,y] = B[k+x, j+y]
      Barrier
      for k2 = 0 to 15
          c[x,y] += a[x, k2]*b[k2, y]
      Barrier
  C[i+x, j+y] = c[x, y]
  ```
Data allocation

- Memory spaces: **Global**, **Shared**, **Local**
 - As local as possible

```plaintext
\begin{align*}
\mathbf{c} & = 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
\mathbf{a}[x,y] & = A[i+x,k+y] \\
\mathbf{b}[x,y] & = B[k+x,j+y] \\
\text{Barrier} \\
\text{for } k2 = 0 \text{ to } 15 \\
\mathbf{c} & += \mathbf{a}[x,k2] * \mathbf{b}[k2,y] \\
\text{Barrier} \\
\mathbf{C}[i+x,j+y] & = \mathbf{c}
\end{align*}
```

Local: private to each thread (indices are implicit)

Global: shared between blocks / inputs and outputs

Shared: shared between threads, private to block
CUDA version

- Straightforward translation

```c
float Csub = 0;

for(int a = aBegin, b = bBegin;
    a <= aEnd;
    a += aStep, b += bStep) {
    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

    As[ty][tx] = A[a + wA * ty + tx];
    Bs[ty][tx] = B[b + wB * ty + tx];

    __syncthreads();
    for(int k = 0; k < BLOCK_SIZE; ++k)
    {
        Csub += As[ty][k] * Bs[k][tx];
    }
    __syncthreads();
}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
```

matrixMul example: cuda/samples/0_Simple/matrixMul
Optimizing memory access patterns

- Back to the tiled matrix multiply algorithm

```plaintext
for // i = 0 to n-1 step 16
   for // j = 0 to n-1 step 16
      c = {0}
      for k = 0 to n-1 step 16
         a = A[i..i+15,k..k+15]
         b = B[k..k+15,j..j+15]
         for k2 = 0 to 15
            for // i2 = 0 to 15
               for // j2 = 0 to 15
                  c[i2,j2] += a[i2,k2]*b[k2,j2]
      C[i..i+15,j..j+15] = c
```

- Let's focus on threads
Memory access patterns

- On a block of 256 threads

- Which accesses are coalesced?
- Are there bank conflicts?

\[
c = 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
a[x,y] = A[i+x,k+y] \\
b[x,y] = B[k+x,j+y] \\
\text{Barrier} \\
\text{for } k2 = 0 \text{ to } 15 \\
c += a[x,k2]\times b[k2,y] \\
\text{Barrier} \\
C[i+x,j+y] = c
\]
Memory access patterns

- On a block of 256 threads

```
T0  T1  T2  T3  T16 T17  T255
x  0  1  2  3  0  1  15
y  0  0  0  0  1  1  15
```

```
c = 0
for k = 0 to n-1 step 16
    a[x,y] = A[i+x,k+y]
    b[x,y] = B[k+x,j+y]
    Barrier
    for k2 = 0 to 15
        c += a[x,k2] * b[k2,y]
    Barrier
C[i+x,j+y] = c
```
- No coalesced access
- Massive bank conflicts

\[
c = 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step 16} \\
a[x,y] = A[i+x,k+y] \\
b[x,y] = B[k+x,j+y] \\
\text{Barrier} \\
\text{for } k2 = 0 \text{ to } 15 \\
c += a[x,k2] * b[k2,y] \\
\text{Barrier} \\
C[i+x,j+y] = c
\]

- Can we improve it?
Memory optimization

- Exchange x and y

\[
\begin{align*}
\text{c} &= 0 \\
\text{for } k &= 0 \text{ to } n-1 \text{ step 16} \\
\text{a}[y,x] &= A[i+y,k+x] \\
\text{b}[y,x] &= B[k+y,j+x] \\
\text{Barrier} \\
\text{for } k2 &= 0 \text{ to } 15 \\
\text{c} &= \text{c} + \text{a}[y,k2]\text{b}[k2,x] \\
\text{Barrier} \\
\text{C}[i+y,j+x] &= \text{c}
\end{align*}
\]

- Success!
- Now can we improve memory parallelism?
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Workload partitioning
- Instruction-level optimization
Workload partitioning

How to choose grid dimensions?

- **Number of blocks per grid**
 - Linear with data size, or constant
 - Min: at least number of SMs * blocks per SM
 - No max in practice

- **Number of threads per block**
 - Constant: should not depend on dataset size
 - Max: hardware limitation, 512 or 1024 threads
 - Min: size of a warp: 32 threads

- **Iterations per thread**
 - Constant or variable
 - Min: enough to amortize thread creation overhead
 - No max, but shorter-lived threads reduce load imbalance
Multiple grid/block dimensions

- Grid and block size are of type `dim3`
 - Support up to 3 dimensions
    ```
    dim3 dimBlock(tx, ty, tz);
    dim3 dimGrid(bx, by, bz);
    my_kernel<<<dimGrid, dimBlock>>>(arguments);
    ```
 - Implicit cast from int to `dim3`
 - y and z sizes are 1 by default
- On device side, `threadIdx`, `blockDim`, `blockIdx`, `gridDim` are also of type `dim3`
 - Access members with `.x`, `.y`, `.z`
Occupancy metric

- Threads per SM / max threads per SM
- Resource usage may cause non-ideal occupancy
 - Register usage
 - Shared memory usage
 - Non-dividable block size

Available shared memory: 16KB
Usage: 12KB/block
→ Only 1 block / SM

Available registers: 32768
Usage: 64 registers/thread, blocks of 256 threads
→ Only 2 blocks / SM

Max threads/SM: 768 threads
Block size: 512 threads
→ Only 1 block / SM
Could run 3 blocks of 256 threads
GPU: on-chip memory

- Conventional wisdom
 - Cache area in CPU vs. GPU according to the NVIDIA CUDA Programming Guide:

- But... if we include registers:

<table>
<thead>
<tr>
<th>GPU</th>
<th>Register files + caches</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA GM204 GPU</td>
<td>8.3 MB</td>
</tr>
<tr>
<td>AMD Hawaii GPU</td>
<td>15.8 MB</td>
</tr>
<tr>
<td>Intel Core i7 CPU</td>
<td>9.3 MB</td>
</tr>
</tbody>
</table>

- GPU/accelerator internal memory exceeds desktop CPU's
How many threads?

- As many as possible (maximize occupancy)?
 - Maximal data-parallelism
 - Latency hiding
 - Locality
 - Store private data of each thread
 - Thread management overhead
 - Initialization, redundant operations

- Trade-off between parallelism and memory locality
Multiple elements per thread

- Block size (16, 16) → (8, 16)
- 2 elements per thread: (x, y) and (x+8, y)

\[
\begin{align*}
c[0] &= 0 \\
c[1] &= 0 \\
\text{for } k = 0 \text{ to } n-1 \text{ step } 16 \\
a[y,x] &= A[i+y,k+x] \\
b[y,x] &= B[k+y,j+x] \\
a[y+8,x] &= A[i+y+8,k+x] \\
b[y+8,x] &= B[k+y+8,j+x] \\
\text{Barrier} \\
\text{for } k2 = 0 \text{ to } 15 \\
\quad c[0] &= a[y,k2]*b[k2,x] \\
\quad c[1] &= a[y+8,k2]*b[k2,x] \\
\text{Barrier} \\
C[i+y,j+x] &= c[0] \\
C[i+y+8,j+x] &= c[1]
\end{align*}
\]

- What about shared memory?
Data reuse

- Share reads to submatrix b
 - Fewer shared memory accesses
 - Exchange data through registers

\[c[0] = 0 \]
\[c[1] = 0 \]

for \(k = 0 \) to \(n-1 \) step 16

\[a[y,x] = A[i+y,k+x] \]
\[b[y,x] = B[k+y,j+x] \]
\[a[y+8,x] = A[i+y+8,k+x] \]
\[b[y+8,x] = B[k+y+8,j+x] \]
Barrier

for \(k2 = 0 \) to 15

\[bl = b[k2,x] \]
\[c[0] += a[y,k2] \times bl \]
\[c[1] += a[y+8,k2] \times bl \]
Barrier

\[C[i+y,j+x] = c[0] \]
\[C[i+y+8,j+x] = c[1] \]

- Improves register usage too. Why?
Expressing vector loads

- Multiple **consecutive** elements per thread
 - Here: 4\(x\), 4\(x+1\), 4\(x+2\), 4\(x+3\)

- Load, store, and compute on short vectors

\[
\begin{align*}
c[0..3] &= 0 \\
\text{for } k &= 0 \text{ to } n-1 \text{ step } 4*16 \\
a[y,4*x..4*x+3]) &= A[i+y,k+4*x..k+4*x+3] \\
b[y,4*x..4*x+3] &= B[k+y,j+4*x..j+4*x+3] \\
\text{Barrier} \\
\text{for } k2 &= 0 \text{ to } 15 \\
b[l[0..3] &= b[k2,4*x..4*x+3] \\
c[0..3] &= a[y,k2]*b[l[0..3] \\
\text{Barrier} \\
C[i+y,4*(j+x)..4*(j+x)+3] &= c[0..3]
\end{align*}
\]
True story: SGEMM from CUBLAS 1.1

- 512 threads / CTA, 15 registers / thread
- 9 registers / 15 contain redundant data
- Only 2 registers really needed
Fewer threads, more computations

- SGEMM in CUBLAS 2.0
 - 8 elements computed / thread
 - Unrolled loops
 - Less traffic through shared memory, more through registers

- Overhead amortized
 - 1920 registers vs. 7680 for the same amount of work
 - Works for redundant computations too

- Instruction-level parallelism is still relevant

Diagrams show: 64 threads / CTA, 30 registers / thread, Adresses, indices, Useful data, Duplicated data, Temporary data.
Re-expressing parallelism

- Converting types of parallelism
 - ILP
 - TLP
 - DLP

- General strategy
 - Design phase: focus on thread-level parallelism
 - Optimization phase: convert TLP to Instruction-level or Data-level parallelism
Outline

- Host-side task and memory management
 - Asynchronism and streams
 - Compute capabilities
- Memory optimization
 - Memory access patterns
 - Global memory optimization
 - Shared memory optimization
 - Back to matrix multiplication
- Workload partitioning
- Instruction-level optimization
Loop unrolling

- Can improve performance
 - Amortizes loop overhead over several iterations
 - May allow constant propagation, common sub-expression elimination...

- Unrolling is **necessary** to keep arrays in registers

```
Not unrolled
int a[4];
for(int i = 0; i < 4; i++) {
    a[i] = 3 * i;
}

Unrolled
int a[4];
a[0] = 3 * 0;
a[1] = 3 * 1;
a[2] = 3 * 2;
a[3] = 3 * 3;

Indirect addressing:
a in local memory

Static addressing:
a in registers
```

- The compiler can unroll for you

```
#pragma unroll
for(int i = 0; i < 4; i++) {
    a[i] = 3 * i;
}
```
Warp-based execution

- Threads in a warp run in lockstep
- On NVIDIA architectures, warp is 32 threads
- A block is made of warps (warps do not cross block boundaries)
 - Block size multiple of 32 for best performance
Branch divergence

- **Conditional block**

  ```
  if(c) {
    // A
  }
  else {
    // B
  }
  ```

- **All threads of a warp take the same path**

 With imaginary 4-thread warps
Branch divergence

- Conditional block
  ```
  if(c) {
      // A
  }
  else {
      // B
  }
  ```

- Threads in a warp take different paths

- Warps have to go through both A and B: lower performance
Avoiding branch divergence

- Hoist identical computations and memory accesses outside conditional blocks

```c
if(tid % 2) {
    s += 1.0f/tid;
}
else {
    s -= 1.0f/tid;
}
```

```c
float t = 1.0f/tid;
if(tid % 2) {
    s += t;
}
else {
    s -= t;
}
```

- When possible, re-schedule work to make non-divergent warps

```c
// Compute 2 values per thread
int i = 2 * tid;
s += 1.0f/i - 1.0f/(i+1);
```

- What if I use C's ternary operator `(? :)` instead of `if`? (or tricks like ANDing with a mask, multiplying by a boolean...)
Ternary operator ? good : bad

- Run both branches and select: \(R = c \ ? \ A : B; \)
 - No more divergence?

- All threads have to take both paths
 No matter whether the condition is divergent or not

- Does **not** solve divergence: we lose in all cases!
- Only benefit: fewer instructions
 - May be faster for short, often-divergent branches
- Compiler will choose automatically when to use predication
 - Advice: keep the code readable, let the compiler optimize
Recap

- Beware of local arrays
 use static indices and loop unrolling
- Keep in mind branch divergence when writing algorithm
 but do not end up in managing divergence yourself
Takeaway

- Distribute work and data
 - Favor SoA
 - Favor locality and regularity
 - Use common sense (avoid extraneous copies or indirections)
- More threads ≠ higher performance
 - Saturate instruction-level parallelism first (almost free)
 - Complete with data parallelism (expensive in terms of locality)
- Usual advice applies
 - First write correct code
 - Profile
 - Optimize
 - Repeat
References and further reading/watching

- CUDA C Programming Guide