GPU programming: Code optimization part 3 and advanced features

Sylvain Collange
Inria Rennes – Bretagne Atlantique
sylvain.collange@inria.fr
Outline

- Instruction-level optimization
 - A few device code features
 - Warp divergence
- Advanced features
 - Device-mapped memory, Unified virtual address space, Unified memory
 - Global and shared memory atomics
 - Warp-synchronous programming, warp vote, shuffle
Device functions

- Kernel can call functions
- Need to be marked for GPU compilation
  ```c
  __device__ int foo(int i) {
  }
  ```

- A function can be compiled for both host and device
  ```c
  __host__ __device__ int bar(int i) {
  }
  ```

- Device functions can call device functions
 - Older GPUs do not support recursion
Local memory

- Registers are fast but
 - Limited in size
 - Not addressable

- Local memory used for
 - Local variables that do not fit in registers (*register spilling*)
 - Local arrays accessed with indirection

```c
int a[17];
b = a[i];
```

Warning: local is a misnomer!
- Physically, local memory usually goes off-chip
- About same performance as coalesced access to global memory
Loop unrolling

- Can improve performance
 - Amortizes loop overhead over several iterations
 - May allow constant propagation, common sub-expression elimination...
- Unrolling is **necessary** to keep arrays in registers

```
Not unrolled
int a[4];
for(int i = 0; i < 4; i++) {
    a[i] = 3 * i;
}

Unrolled
int a[4];
    a[0] = 3 * 0;
    a[1] = 3 * 1;
    a[2] = 3 * 2;
    a[3] = 3 * 3;
```

- The compiler can unroll for you

```
#pragma unroll
for(int i = 0; i < 4; i++) {
    a[i] = 3 * i;
}
```
Device-side functions: C library support

- Extensive math function support
 - Standard C99 math functions in single and double precision:
 e.g. `sqrtf, sqrt, expf, exp, sinf, sin, erf, j0`
 - More exotic math functions:
 `cospi, erfcinv, normcdf`
 - Complete list with error bounds in the CUDA C programming guide

- Starting from CC 2.0
 - `printf`
 - `memcpy, memset`
 - `malloc, free`: allocate global memory on demand
Device-side intrinsics

- C functions that translate to one/a few machine instructions
 - Access features not easily expressed in C

- Hardware math functions in single-precision
 - GPUs have dedicated hardware for reverse square root, inverse, log2, exp2, sin, cos in single precision
 - Intrinsics: `__rsqrt`, `__rcp`, `exp2f`, `__expf`, `__exp10f`, `__log2f`, `__logf`, `__log10f`, `__sinf`, `__cosf`, `__sincosf`, `__tanf`, `__powf`
 - Less accurate than software implementation (except `exp2f`), but much faster

- Optimized arithmetic functions
 - `__brev`, `__popc`, `__clz`, `__ffs`...
 - Bit reversal, population count, count leading zeroes, find first bit set...
 - Check the CUDA Toolkit Reference Manual

- We will see other intrinsics in the next part
Outline

- Instruction-level optimization
 - A few device code features
 - Warp divergence

- Advanced features
 - Device-mapped memory, Unified virtual address space, Unified memory
 - Global and shared memory atomics
 - Warp-synchronous programming, warp vote, shuffle
Warp-based execution

Reminder

- Threads in a warp run in lockstep
- On current NVIDIA architectures, warp is 32 threads
- A block is made of warps
 - Warps do not cross block boundaries
 - Block size multiple of 32 for best performance
Branch divergence

• Conditional block

```c
if(c) {
    // A
}
else {
    // B
}
```

• When all threads of a warp take the same path:

With imaginary 4-thread warps
Branch divergence

- Conditional block

```c
if(c) {
   // A
}
else {
   // B
}
```

- When threads in a warp take different paths:

- Warps have to go through both A and B: lower performance
Avoiding branch divergence

- Hoist identical computations and memory accesses outside conditional blocks

```c
if(tid % 2) {
    s += 1.0f/tid;
} else {
    s -= 1.0f/tid;
}
```

```c
float t = 1.0f/tid;
if(tid % 2) {
    s += t;
} else {
    s -= t;
}
```

- When possible, re-schedule work to make non-divergent warps

```c
// Compute 2 values per thread
int i = 2 * tid;
s += 1.0f/i – 1.0f/(i+1);
```

- What if I use C's ternary operator (?:) instead of if? (or tricks like ANDing with a mask, multiplying by a boolean...)

Answer: ternary operator or predication

- Run both branches and select: \(R = c \ ? \ A : B ; \)
 - No more divergence?

- All threads have to take both paths
 No matter whether the condition is divergent or not

- Does not solve divergence: we lose in all cases!
- Only benefit: fewer instructions
 - May be faster for short, often-divergent branches
- Compiler will choose automatically when to use predication
 - Advice: keep code readable, let the compiler optimize
Barriers and divergence

- Remember barriers cannot be called in divergent blocks
 - All threads or none need to call __syncthreads()

- If: need to split

  ```cpp
  if(p) {
  ... // Sync here?
  ...
  }
  if(p) {
  ... // Sync here?
  ...
  }
  __syncthreads();
  if(p) {
  ... // Sync here?
  ...
  }
  ```

- Loops: what if trip count depends on data?

  ```cpp
  while(p) {
  ... // Sync here?
  ...
  }
  ```
Barriers instructions

- Barriers with boolean reduction
 - __syncthreads_or(p) / __syncthreads_and(p)
 Synchronize, then returns the boolean OR / AND of all thread predicates p
 - __syncthreads_count(p)
 Synchronize, then returns the number of non-zero predicates

- Loops: what if trip count depends on data?
 - Loop while at least one thread is still in the loop

```c
while(p) {
    ...
    // Sync here?
    ...
}
```

```c
while(__syncthreads_or(p)) {
    if(p) {
        ...
    }
    __syncthreads();
    if(p) {
        ...
    }
}
```
Recap: instruction optimization

- Beware of local arrays
 use static indices and loop unrolling
- Use existing math functions
- Keep in mind branch divergence when writing algorithm
 - But do not end up managing divergence yourself
Code optimization tools

- IDE + profiler: nView
- Profile application: NVIDIA Visual Profiler
- Examine assembly code: cuobjdump
 - cuobjdump --dump-sass
OK, I lied

- You were told
 - CPU and GPU have distinct memory spaces
 - Blocks cannot communicate
 - You need to synchronize threads inside a block
- This is the least-common denominator across all CUDA GPUs
- This is not true (any more). We now have:
 - Device-mapped, Unified virtual address space, Unified memory
 - Global and shared memory atomics
 - Warp-synchronous programming, warp vote, shuffle
 - Dynamic parallelism
- Many features are still specific to CUDA and Nvidia GPUs
 - Should become available in OpenCL eventually...
Outline

- Instruction-level optimization
 - A few device code features
 - Warp divergence

- Advanced features
 - Device-mapped memory, Unified virtual address space, Unified memory
 - Global and shared memory atomics
 - Warp-synchronous programming, warp vote, shuffle
Device-mapped memory

- The GPU can access host memory directly, if explicitly mapped in the device address space.
- **Lower bandwidth** but **lower latency** than DMA transfers
 - Useful for light or sparse memory accesses
- Advantageous for integrated GPUs
- Still different **address spaces**
 Device address is different than host address
// Allocate device-mappable memory
float* a;
cudaHostAlloc((void**)&a, bytes, cudaHostAllocMapped);

// Get device-side pointer
float* da;
cudaHostGetDevicePointer((void**)&d_a, a, 0);

// Write using host pointer on CPU
a[0] = 42;

// Read/write using device pointer on GPU
mykernel<<<grid, block>>>(d_a);

// Wait for kernel completion
cudaDeviceSynchronize();

// Read using host pointer
printf("a=%f\n", a[0]);

// Free memory
cudaFreeHost(a)
Unified virtual address space (UVA)

- Coordinate allocation in CPU and GPU address space
 - Can tell if an address is on the device, host or both
- `cudaHostAlloc` returns an address valid in both host and device space
- No need to specify direction in `cudaMemcpy`
- Caveat: not a true unified address space
 - Having an address does not mean you can access the data it points to
 - Memory allocated with `malloc` still cannot be accessed by GPU
- Requirements: CUDA ≥ 4.0, 64-bit OS, CC ≥ 2.0
 - Not available on Windows Vista/7 under WDDM
Unified memory: the real thing

- Allocate memory using `cudaMallocManaged`
 - The CUDA runtime will take care of the transfers
 - No need to call `cudaMemcpy` any more
 - Behaves as if you had a single memory space

- Suboptimal performance: software-managed coherency
 - Still call `cudaMemcpy` when you can

- Requires CUDA ≥ 6.0, CC ≥ 3.0 (preferably 5.x), 64-bit Linux or Windows
VectorAdd using unified memory

int main()
{
 int numElements = 50000;
 size_t size = numElements * sizeof(float);

 float *A, *B, *C;
 cudaMallocManaged((void **)&A, size);
 cudaMallocManaged((void **)&B, size);
 cudaMallocManaged((void **)&C, size);
 Initialize(A, B);

 int blocks = numElements;
 vectorAdd2<<<blocks, 1>>>(A, B, C);
 cudaDeviceSynchronize();
 Display(C);

 cudaFree(A);
 cudaFree(B);
 cudaFree(C);
}

- Can I replace cudaMallocManaged by cudaHostAlloc (with UVA?)
 - What is the difference?
Multi-GPU programming

- What if I want to use multiple GPUs on the same machine?
- `cudaGetDeviceCount`, `cudaGetDeviceProperties` enumerate devices
- `cudaSetDevice(i)` selects the current device
 - All following CUDA calls in the thread will concern this device
- Streams are associated with devices
 - But `cudaStreamWaitEvent` can synchronize with events on other GPU: allow inter-GPU synchronization
- Host memory accessible from multiple devices: `cudaHostAlloc(..., cudaHostAllocPortable)`
 - Then call `cudaHostGetDevicePointer` for each GPU
Peer-to-peer memory copy/access

- Transfer memory between GPUs
 - cudaMemcpyDeviceToDevice will not work. Why?
 - Without UVA
 cudaMemcpyPeer()
 cudaMemcpyPeerAsync()
 - With UVA: just plain cudaMemcpy

- Direct access to other GPU's memory
 - Check result of cudaMemcpyDeviceCanAccessPeer
 - Call cudaMemcpyDeviceEnablePeerAccess from accessing GPU
Recap

- We have too many mallocs...
 - cudaMalloc
 - cudaMallocHost
 - cudaHostAlloc(..., cudaHostAlloc{Portable|Mapped})
 - cudaMallocManaged

- And too many memcpys
 - cudaMemcpy(dest, src, cudaMemcpy{HostToDevice, DeviceToHost, DeviceToDevice, Default})
 - cudaMemcpyAsync
 - cudaMemcpyPeer[Async]

- Quizz: do you remember what they do and when we should use them?
Recap: evolution of the memory model

New features: going away from the split memory model

- Device-mapped: GPU can map and access CPU memory
 - Lower bandwidth than DMA transfers
 - Higher latency than GPU memory access

- Uniform virtual addressing (CC 2.0): synchronize memory space between CPU and GPU
 - Addresses are unique across the system
 - No need to specify direction in cudaMemcpy

- Unified memory (CC 3.x): both CPU and GPU share a managed memory space
 - Driver manages transfers automatically
 - Only for memory allocated as managed
 - Unmanaged + cudaMemcpy still useful for optimized transfers
Outline

- Instruction-level optimization
 - A few device code features
 - Warp divergence

- Advanced features
 - Device-mapped memory, Unified virtual address space, Unified memory
 - Global and shared memory atomics
 - Warp-synchronous programming, warp vote, shuffle
Atomics

- Read, modify, write in one operation
 - Cannot be mixed with accesses from other thread
- Available operators
 - Arithmetic: atomic{Add, Sub, Inc, Dec}
 - Min-max: atomic{Min, Max}
 - Synchronization primitives: atomic{Exch, CAS}
 - Bitwise: atomic{And, Or, Xor}
- On global memory
 - From CC 1.1
- On shared memory
 - From CC 1.2
- Performance impact in case of contention
Example: reduction

- After local reduction inside each block, use atomics to accumulate the result in global memory.

Complexity?

Time including kernel launch overhead?
Floating-point atomics

- atomicAdd supports single-precision floating-point (float) operands
- Remember floating-point addition is not associative
 - You will get a different answer depending on the scheduling
Memory consistency model

- x86 CPUs implement a strong consistency model
 - Pretend there is a global ordering between memory accesses
- Nvidia GPUs implement a relaxed consistency model
 - Threads may not see the writes/atomics in the same order

![Diagram]

- Need to enforce explicit ordering
Memory consistency model

- `__threadfence_block`
- `__threadfence`
- `__threadfence_system`
make all previous writes of the thread visible at the block / device / system level

```
T1
write A
__threadfence()
write B

T2
read B New value of B
read A New value of A
```

Or, old values of A, B
Outline

- Instruction-level optimization
 - A few device code features
 - Warp divergence

- Advanced features
 - Device-mapped memory, Unified virtual address space, Unified memory
 - Global and shared memory atomics
 - Warp-synchronous programming, warp vote, shuffle
Warp-synchronous programming

- We know threads in a warp run synchronously
 - No need to synchronize them explicitly
- Can use SIMD (PRAM-style) algorithms inside warps
- Example: last steps of a reduction

```plaintext
warp 0
  t0 t1 t2

warp 1
  t31

x32
__syncthreads()__syncthreads()__threadfence_block()__threadfence_block()__threadfence_block()

x64
__syncthreads()__syncthreads()__threadfence_block()__threadfence_block()__threadfence_block()

x128
__syncthreads()__syncthreads()__threadfence_block()__threadfence_block()__threadfence_block()

... No syncthreads needed, but still needs fences...
Warp-synchronous programming: tools

- We need warp size, and thread ID inside a warp: lane ID
- Official support
  - Predefined variable: warpSize
  - Lane ID exists in PTX, not in C for CUDA
  - Needs to be computed:
    \[
    \text{unsigned int laneId} = \text{threadIdx.x} \mod \text{warpSize};
    \]
- Note: as of CUDA 5.0, this is essentially useless
  - warpSize is a variable in PTX, only becomes a constant in SASS
  - PTX optimizer does not know warp size is a power of 2:
    does not turn \% into shift
- Often use a WARP_SIZE constant hardcoded to 32…
Warp vote instructions

- \( p_2 = \text{__all}(p_1) \)
  horizontal AND between the predicates \( p_1 \)
  of all threads in the warp

- \( p_2 = \text{__any}(p_1) \)
  OR between all \( p_1 \)

- \( n = \text{__ballot}(p) \)
  Set bit \( i \) of integer \( n \)
  to value of \( p \) for thread \( i \)
  i.e. get bit mask as an integer

Like \( \text{__syncthreads\{and,or\}} \) for a warp
Use: take control decisions for the whole warp
For CC \( \geq 2.0 \)
How to write an if-then-else in warp-synchronous style?
i.e. without breaking synchronization

- Using predication:
  execute both sides always

- Using vote instructions:
  only execute taken paths
  Skip block if no thread takes it

How to write a while loop?

```c
if(p) { A(); B(); }
else { C(); }

if(p) { A(); }
// Threads synchronized
if(p) { B(); }
// Threads synchronized
if(!p) { C(); }

if(__any(p)) {
 if(p) { A(); }
 // Threads synchronized
 if(p) { B(); }
}
}
if(__any(!p)) {
 // Threads synchronized
 if(!p) { C(); }
}
```
Shuffle

Exchange data between lanes

- \texttt{__shfl}(v, i)
  - Get value of thread i in the warp
  - Use: 32 concurrent lookups in a 32-entry table
  - Use: arbitrary permutation...

- \texttt{__shfl\_up}(v, i) = \texttt{__shfl}(v, \text{tid}-i)
  - \texttt{__shfl\_down}(v, i) = \texttt{__shfl}(v, \text{tid}+i)
  - Same, indexing relative to current lane
  - Use: neighbor communication, shift

- \texttt{__shfl\_xor}(v, i) = \texttt{__shfl}(v, \text{tid} \oplus i)
  - Use: exchange data pairwise: “butterfly”

For CC $\geq 3.0$
Example: reduction + broadcast

- Naive algorithm

  Step 0

  \[
  \begin{align*}
  \sum_{0-1} & \sum_{2-3} \sum_{4-5} \sum_{6-7}
  \end{align*}
  \]

  \[
  \begin{align*}
  a_0 & \oplus \sum_{0-1} \\
  a_1 & \oplus \sum_{2-3} \\
  a_2 & \oplus \sum_{4-5} \\
  a_3 & \oplus \sum_{6-7}
  \end{align*}
  \]

  \[
  \begin{align*}
  a[2i] & \leftarrow a[2i] + a[2i+1] \\
  a[4i] & \leftarrow a[4i] + a[4i+2] \\
  a[8i] & \leftarrow a[8i] + a[8i+4]
  \end{align*}
  \]

  a[i] \leftarrow a[0]

- Let's rewrite it using shuffle
Example: reduction + broadcast

- With shuffle

  ![Diagram]

  
  Step 0
  \[ a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5 \oplus a_6 \oplus a_7 \]
  \[ \Sigma_{0-1} \Sigma_{0-1} \Sigma_{2-3} \Sigma_{2-3} \Sigma_{4-5} \Sigma_{4-5} \Sigma_{6-7} \Sigma_{6-7} \]

  Step 1
  \[ a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5 \oplus a_6 \oplus a_7 \]
  \[ \Sigma_{0-3} \Sigma_{0-3} \Sigma_{0-3} \Sigma_{0-3} \Sigma_{4-7} \Sigma_{4-7} \Sigma_{4-7} \Sigma_{4-7} \]

  Step 2
  \[ a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5 \oplus a_6 \oplus a_7 \]
  \[ \Sigma_{0-7} \Sigma_{0-7} \Sigma_{0-7} \Sigma_{0-7} \Sigma_{0-7} \Sigma_{0-7} \Sigma_{0-7} \Sigma_{0-7} \]

  \[ a_i += \_\_shfl\_xor(a_i, 1); \]
  \[ a_i += \_\_shfl\_xor(a_i, 2); \]
  \[ a_i += \_\_shfl\_xor(a_i, 4); \]

- Exercise: implement complete reduction without \_\_syncthreads
  - Hint: use shared memory atomics
Other example: parallel prefix

- Remember our PRAM algorithm

\[ \Sigma_{i-j} \text{ is the sum } \sum_{k=i}^{j} a_k \]

**Step 0**

- \( s[i] \leftarrow a[i] \)
- if \( i \geq 1 \) then \( s[i] \leftarrow s[i-1] + s[i] \)

**Step 1**

- if \( i \geq 2 \) then \( s[i] \leftarrow s[i-2] + s[i] \)

**Step 2**

- if \( i \geq 4 \) then \( s[i] \leftarrow s[i-4] + s[i] \)

**Step d:** if \( i \geq 2^d \) then \( s[i] \leftarrow s[i-2^d] + s[i] \)
Other example: parallel prefix

- Using warp-synchronous programming

\[
\Sigma_{i-j} \text{ is the sum } \sum_{k=i}^{j} a_k
\]

```
s = a;
n = __shfl_up(s, 1);
if(laneid >= 1)
s += n;
n = __shfl_up(s, 2);
if(laneid >= 2)
s += n;
n = __shfl_up(s, 4);
if(laneid >= 4)
s += n;
```

for (d = 1; d <= 5; d *= 2) {
    n = __shfl_up(s, d);
    if (laneid >= d)
        s += n;
}
**Example: multi-precision addition**

- Do an addition on 1024-bit numbers
- Represent numbers as vectors of 32×32-bit
  - A warp works on a vector
- First step: add elements of the vectors in parallel and recover carries

```c
uint32_t a = A[tid], b = B[tid], r, c;

r = a + b; // Sum

c = r < a; // Get carry
```
Second step: propagate carries

- This is a parallel prefix operation
  - We can do it in \( \log(n) \) steps
- But in most cases, one step will be enough
  - Loop until all carries are propagated

```c
uint32_t a = A[tid], b = B[tid], r, c;

r = a + b; // Sum
if (laneid == 0) c = 0;
c = r < c; // Get carry
while (__any(c)) { // Carry left?
 c = __shfl_up(c, 1); // Move left
 if (laneid == 0) c = 0;
 r = r + c; // Sum carry
 c = r < c; // New carry?
}
R[tid] = r;
```
Takeaway

- Two ways to program an SIMT GPU
  - With independent threads, grouped in warps
  - With warps operating on vectors

- 3 levels
  - Blocks in grid: independent tasks, no synchronization
  - Warps in block: concurrent “threads”, explicitly synchronizable
  - Threads in warp: implicitly synchronized
Things we have not talked about

- **Constant memory**
  - Memory-space that is read-only on the device
  - Being replaced by cached, read-only access to global memory on recent GPUs

- **Texture memory**
  - Cached, read-only memory space optimized for 2D locality
  - Can unpack compact integer and floating-point encoded data
  - Can perform filtering: interpolation between data points

- **Dynamic parallelism**
  - Starting from CC 3.5, kernels can launch kernels
Conclusion: trends

- GPU: rapidly evolving hardware and software
- Going towards CPU-GPU tighter coupling
  - On-chip integration
  - Shared physical memory
  - Shared virtual memory space
- Most development is going into mobile
  - Nvidia: Kepler GPUs in Tegra 4 support CUDA
  - Many GPUs supporting OpenCL:
    ARM Mali, Qualcomm Adreno, Imagination Technologies PowerVR Rogue...
- Still much work to do at the operating system level
  - GPU currently a second-class citizen
  - Need to move from CPU+devices model to heterogeneous compute model
### Updated schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Course: Tuesday 1:00pm room 2014</th>
<th>Lab: Thursday 1:00pm room 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/10</td>
<td>Programming models</td>
<td>Parallel algorithms</td>
</tr>
<tr>
<td>13/10</td>
<td>GPU architecture 1</td>
<td>Know your GPU</td>
</tr>
<tr>
<td>20/10</td>
<td>GPU programming</td>
<td>Computing $\ln(2)$ the hard way</td>
</tr>
<tr>
<td>27/10</td>
<td>GPU optimization 1</td>
<td></td>
</tr>
<tr>
<td>03/11</td>
<td>GPU optimization 2</td>
<td>Game of life</td>
</tr>
<tr>
<td>10/11</td>
<td>Advanced features</td>
<td></td>
</tr>
<tr>
<td>17/11</td>
<td>Lecture by Fernando Pereira</td>
<td></td>
</tr>
<tr>
<td>24/11</td>
<td>Exam</td>
<td>Project</td>
</tr>
<tr>
<td>01/12</td>
<td>Project presentations</td>
<td></td>
</tr>
</tbody>
</table>
For next week: choose a CUDA programming project

Work by yourself or in pair

Ideas of subjects

- Image processing: filtering, convolution
- Cryptography: brute-force password “recovery”
- Data compression

Any proposition?
References and further reading/watching

- CUDA C Programming Guide
Pitfalls and fallacies
GPUs are 100x faster than CPUs
GPUs are 100x faster than CPUs

- Wrong
  - The gap in peak performance (compute and memory) is 10x
  - In practice, 5x to 8x against optimized CPU code

- Right: you can get a 100x speedup when porting an application to GPU
  - You get 10x because of the higher GPU throughput
  - ... and 10x more because you optimized the application
    But spending the same effort on optimization for CPU would also result in 10x improvement

- Right: if you use GPU hardware features not available on CPUs
  - Texture filtering, elementary functions (exp, log, sin, cos)...

GPUs have thousands of cores
GPUs have thousands of cores

- Official definition of CUDA Core: one execution unit
  - Right: GPUs have thousands of cores
  - Under this metric, CPUs have hundreds of cores!
- The closest to a CPU core is a GPU SM
  - Wrong: 15 to 20 SMs “only” on a GPU
  - Wide SIMD units inside
    But just x2 to 4x wider than on CPU
- Often-overlooked aspect:
  GPUs have 10s of thousands of threads
  - But: CPU thread ~ GPU warp
  - Still thousands of warps
I can avoid divergence with predication
I can avoid divergence with predication

Do not confuse predication with prediction!

- In a superscalar CPU, branches are predicted
  - Cost of misprediction $\sim$ pipeline depth
    independent from length of mispredicted path
  - Inefficient on **short** ifs governed by **random** conditions
    Predication **might** help in this case

- In a GPU, instructions are predicated
  - Cost of divergence $\sim$ divergent section size
  - Inefficient on **long** ifs/loops governed by divergent conditions
    Predication **does not** help in this case
Texture memory

- Primarily made for graphics
- Optimized for 2D accesses
  - Takes advantage of locality in space
- Read-only
- Initialization through specific host functions
  - cudaCreateTextureObject(), cudaBindTexture2D()...
- Access through specific device functions
  - tex1D(), tex2D(), tex3D()...
Constant memory

- Array or variable declared as __const__
- Initialized in place or from host code, then read-only
- Single-ported memory: good performance when all threads in a warp access the same word (broadcast)
  - Similar to shared memory with 1 bank
  - Generally not worth using with divergent accesses