
Translation Caching: Skip, Don’t Walk (the Page Table)

Thomas W. Barr, Alan L. Cox, Scott Rixner

Rice University
Houston, TX

{twb, alc, rixner}@rice.edu

ABSTRACT
This paper explores the design space of MMU caches that accel-
erate virtual-to-physical address translation in processor architec-
tures, such as x86-64, that use a radix tree page table. In particular,
these caches accelerate the page table walk that occurs after a miss
in the Translation Lookaside Buffer. This paper shows that the most
effective MMU caches are translation caches, which store partial
translations and allow the page walk hardware to skip one or more
levels of the page table.

In recent years, both AMD and Intel processors have imple-
mented MMU caches. However, their implementations are quite
different and represent distinct points in the design space. This
paper introduces three new MMU cache structures that round out
the design space and directly compares the effectiveness of all five
organizations. This comparison shows that two of the newly intro-
duced structures, both of which are translation cache variants, are
better than existing structures in many situations.

Finally, this paper contributes to the age-old discourse concern-
ing the relative effectiveness of different page table organizations.
Generally speaking, earlier studies concluded that organizations
based on hashing, such as the inverted page table, outperformed
organizations based upon radix trees for supporting large virtual
address spaces. However, these studies did not take into account
the possibility of caching page table entries from the higher lev-
els of the radix tree. This paper shows that any of the five MMU
cache structures will reduce radix tree page table DRAM accesses
far below an inverted page table.

Categories and Subject Descriptors
C.0 [General]: Modelling of computer architecture; C.4
[Performance of systems]: Design studies; D.4.2 [Operating Sys-
tems]: Virtual Memory

General Terms
Performance, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

Keywords
TLB, Memory Management, Page Walk Caching

1. INTRODUCTION
This paper explores the design space of memory-management

unit (MMU) caches for accelerating virtual-to-physical address
translation in processor architectures, like x86-64, that implement
paged virtual memory using a radix tree for their page table. In
particular, these caches accelerate the page table walk that occurs
after a miss in the Translation Lookaside Buffer (TLB). In fact, a
hit in some of these caches enables the processor to skip over one
or more levels of the tree and, in the best case, access only the tree’s
lowest level.

For several generations of x86 processors, from the Intel 80386
to the Pentium, the page table had at most two levels. Conse-
quently, whenever a TLB miss occurred, at most two memory ac-
cesses were needed to complete the translation. However, as the
physical and virtual address spaces supported by x86 processors
have grown in size, the maximum depth of the tree has increased,
first to three levels in the Pentium Pro to accommodate a 36-bit
physical address within a page table entry, and more recently to
four levels in the AMD Opteron to support a 48-bit virtual address
space. In fact, with each passing decade since the introduction of
the 80386, the depth of the tree has grown by one level.

Recent work has shown the impact of TLB misses on overall
system performance ranges from 5-14% for nominally sized ap-
plications, even in a non-virtualized environment [9]. As the ap-
plication’s memory footprint increases, TLB misses have a signif-
icantly larger impact on performance, approaching 50% in some
cases [19]. Although the use of large pages can lessen this impact,
with further increases in the memory footprint their effectiveness
declines. Therefore, both AMD and Intel have implemented MMU
caches for page table entries from the higher levels of the tree [3,
9]. However, their caches have quite different structure. For exam-
ple, AMD’s Page Walk Cache stores page table entries from any
level of the tree, whereas Intel implements distinct caches for each
level of the tree. Also, AMD’s Page Walk Cache is indexed by
the physical address of the cached page table entry, whereas Intel’s
Paging-Structure Caches are indexed by portions of the virtual ad-
dress being translated. Thus, in this respect, the Page Walk Cache
resembles the processor’s data cache, whereas the Paging-Structure
Caches resemble its TLB.

This paper’s primary contribution is that it provides the first
comprehensive exploration of the design space occupied by these
caches. In total, it discusses five distinct points in this space, in-
cluding three new designs. Specifically, it presents the first head-
to-head comparison of the effectiveness of these designs. In gen-
eral, the results of this comparison show that the translation caches,

48

which store partial translations and allow the page walk hardware
to skip one or more levels of the page table, are the best. In addi-
tion, the new translation caches that are introduced by this paper are
better than the existing caches in many situations and workloads.

Finally, this paper contributes to the age-old discourse concern-
ing the relative effectiveness of different page table organizations.
Generally speaking, earlier studies concluded that organizations
based on hashing, such as the inverted page table, outperformed
organizations based upon radix trees for supporting large virtual
address spaces [23, 15]. However, these studies did not take into
account the possibility of caching page table entries from the higher
levels of the radix tree. This paper shows that radix tables cause up
to 20% fewer total memory accesses and up to 400% fewer DRAM
accesses than hash-based tables because of the locality in virtual
address use.

This paper is organized as follows. The next section provides the
background for the rest of the paper. Specifically, it summarizes the
relevant aspects of x86/x86-64 virtual-to-physical address transla-
tion. Section 3 describes the design space, identifying the essen-
tial differences between AMD’s Page Walk Cache, Intel’s Paging-
Structure caches, and the new structures developed in this paper.
Section 4 qualitatively compares these structures, and Section 5
describes this paper’s methodology for quantitatively comparing
them. Section 6 presents quantitative simulation results of their
effectiveness as compared to one another, and Section 7 compares
the effectiveness of a radix tree page table with these structures to
competing page table designs. Additionally, Section 7 examines
the interaction between the MMU caches and large pages. Sec-
tion 8 discusses the related work. Finally, Section 9 summarizes
this paper’s conclusions.

2. X86 ADDRESS TRANSLATION
All x86 processors since the Intel 80386 have used a radix tree

to record the mapping from virtual to physical addresses. Although
the depth of this tree has increased, to accommodate larger physi-
cal and virtual address spaces, the procedure for translating virtual
addresses to physical addresses using this tree is essentially un-
changed. A virtual address is split into a page number and a page
offset. The page number is further split into a sequence of indices.
The first index is used to select an entry from the root of the tree,
which may contain a pointer to a node at the next lower level of the
tree. If the entry does contain a pointer, the next index is used to
select an entry from this node, which may again contain a pointer
to a node at the next lower level of the tree. These steps repeat until
the selected entry is either invalid (in essence, a NULL pointer in-
dicating there is no valid translation for that portion of the address
space) or the entry instead points to a data page using its physical
address. In the latter case, the page offset from the virtual address
is added to the physical address of this data page to obtain the full
physical address. In a simple memory management unit (MMU)
design, this procedure requires one memory access per level in the
tree.

Figure 1 shows the precise decomposition of a virtual address by
x86-64 processors [1]. Standard x86-64 pages are 4KB, so there
is a single 12-bit page offset. The remainder of the 48-bit virtual
address is divided into four 9-bit indices, which are used to select
entries from the four levels of the page table. The four levels of
the x86-64 page table are named PML4 (Page Map Level 4), PDP
(Page Directory Pointer), PD (Page Directory) and PT (Page Table).
In this paper, however, for clarity, we will refer to these levels as L4
(PML4), L3 (PDP), L2 (PD) and L1 (PT). Finally, the 48-bit virtual
address is sign extended to 64 bits. As the virtual address space

63:48 47:39 38:30 29:21 20:12 11:0
se L4 idx L3 idx L2 idx L1 idx page offset

Figure 1: Decomposition of the x86-64 virtual address.

Figure 2: An example page walk for virtual address (0b9,
00c, 0ae, 0c2, 016). Each page table entry stores the
physical page number for either the next lower level page ta-
ble page (for L4, L3, and L2) or the data page (for L1). Only
12 bits of the 40-bit physical page number are shown in these
figures for simplicity.

grows, additional index fields (e.g., L5) may be added, reducing
the size of the se field.

An entry in the page table is 8 bytes in size regardless of its level
within the tree. Since a 9-bit index is used to select an entry at
every level of the tree, the overall size of a node is always 4KB,
the same as the page size. Hence, nodes are commonly called page
table pages. The tree can be sparsely populated with nodes—if at
any level, there are no valid virtual addresses with a particular 9-bit
index, the sub-tree beneath that index is not instantiated. For exam-
ple, if there are no valid virtual addresses with L4 index 0x03a,
that entry in the top level of the page table will indicate so, and the
262,657 page table pages (1 L3 page, 512 L2 pages, and 262,144
L1 pages) beneath that entry in the radix tree page table will not
exist. This yields significant memory savings, as large portions of
the 256 TB virtual address space are never allocated for typical ap-
plications.

Figure 2 illustrates the radix tree page table walk for the vir-
tual address 0x00005c8315cc2016. For the remainder of the
paper, such 64-bit virtual addresses will be denoted as (L4 index,
L3 index, L2 index, L1 index, page offset) for clarity. In this case,
the virtual address being translated is (0b9, 00c, 0ae, 0c2,
016). Furthermore, for simplicity of the examples, only 3 hex-
adecimal digits (12 bits) will be used to indicate the physical page
number, which is actually 40 bits in x86-64 processors.

As shown in the figure, the translation process for this address
proceeds as follows. First, the page walk hardware must locate the
top-level page table page, which stores L4 entries. The physical
address of this page is stored in the processor’s CR3 register. In
order to translate the address, the L4 index field (9 bits) is extracted
from the virtual address and appended to the physical page number
(40 bits) from the CR3 register. This yields a 49-bit physical ad-
dress that is used to address the appropriate 8-byte L4 entry (offset
0b9 in the L4 page table page in the figure). The L4 entry may
contain the physical page number of an L3 page table page (in this

49

case 042). The process is repeated by extracting the L3 index field
from the virtual address and appending it to this physical page num-
ber to address the appropriate L3 entry. This process repeats until
the selected entry is invalid or specifies the physical page number
of the actual data in memory, as shown in the figure. Each page
table entry along this path is highlighted in grey in the figure. The
page offset from the virtual address is then appended to this phys-
ical page number to yield the data’s physical address. Note that
since page table pages are always aligned on page boundaries, the
low order bits of the physical address of the page table pages are
not stored in the entries of the page table.

Given this structure, the current 48-bit x86-64 virtual address
space requires four memory references to “walk” the page table
from top to bottom to translate a virtual address (one for each level
of the radix tree page table). As the address space continues to
grow, more levels will be added to the page table, further increas-
ing the cost of address translation. A full 64-bit virtual address
space will require six levels, leading to six memory accesses per
translation.

Alternatively, an L2 entry can directly point to a contiguous and
aligned 2MB data page instead of pointing to an L1 page table page.
In Figure 2, virtual address (0b9, 00d, 0bd, 123f5d7) is
within a large page. This large-page support greatly increases max-
imum TLB coverage. In addition, it lowers the number of memory
accesses to locate one of these pages from four to three. Finally, it
greatly reduces the number of total page table entries required since
each entry maps a much larger region of memory.

3. CACHING PAGE WALKS
While radix-tree page tables require many accesses to translate

a single address, the accesses to the upper level page table entries
have significant temporal locality. Walks for two consecutive pages
in the virtual address space will usually use the same three upper
level entries, since the indices selecting these entries come from
high-order bits of the virtual address, which change less frequently.

While the MMU does access the page table through the mem-
ory hierarchy, it only has access to the L2 data cache in at least
one major commercial x86 design [9]. Since the L2 data cache is
relatively slow on modern CPUs, accessing three upper-level page
table entries on every page walk will incur a penalty of several tens
of cycles per TLB miss, even if all entries are present in the L2 data
cache.

Therefore, the x86 processor vendors have developed private,
low-latency caches for the MMU that store upper level page ta-
ble entries [9, 3]. In this section, we describe the design space and
provide a nomenclature for the different tagging and partitioning
schemes used by these MMU caches.

MMU caches may store elements from the page table tagged
by their physical address in memory, as a conventional data cache
might. We call such MMU caches page table caches. Examples
include AMD’s Page Walk Cache and the L2 data cache, although
it is not private to the MMU. Alternatively, MMU caches can be
indexed by parts of the virtual address, like a TLB. We call such
MMU caches translation caches. Intel’s Paging-Structure Caches
are translation caches.

For either of these tagging schemes, elements from different lev-
els of the page table can be mixed in a single cache (a unified
cache), or placed into separate caches (a split cache). Finally, each
cache entry can store an entry from one level along the page walk,
or it can store an entire path (a path cache).

3.1 Page table caches
The simplest example of a page table cache is the processor’s L2

Base Location Index Next Page
125 0ae 508
042 00c 125
613 0b9 042
· · · · · · · · ·

Figure 3: An example of the contents of a UPTC. Each entry is tagged
with the address of a page table entry, consisting of the 40-bit physical
page number of the page table page and a 9-bit index into it. The entry
then provides a 40-bit physical page number for the next lower level
page table page. (Only 12 bits of the physical page numbers are shown,
for simplicity.)

Base Location Index Next Page

L2 entries
125 0ae 508
· · · · · · · · ·

L3 entries
042 00c 125
· · · · · · · · ·

L4 entries
613 0b9 042
· · · · · · · · ·

Figure 4: An example of the contents of a SPTC. Each entry holds the
same tag and data as in the UPTC.

data cache. The page walker generates a physical address based
upon the page table page to be accessed and an index from the
virtual address. This physical address is then fetched from the pro-
cessor’s memory hierarchy starting with the L2 data cache.

Page table caches use this same indexing scheme. Elements are
tagged with their physical address in the page table. These tags are
the size of the physical page number plus the size of one page table
index. L1 entries are not cached in any of the designs presented
here (since the TLB itself caches those entries).

3.1.1 Unified Page Table Cache (UPTC)
The simplest design for a dedicated page table cache is a sin-

gle, high-speed, read-only cache for page table entries, tagged by
their physical address in memory. Entries from different levels of
the page table are mixed in the same cache, all indexed by their
physical address. Such a cache is analogous to a private, read-only
L1 data cache for page table entries. However, like a TLB, coher-
ence between this cache and the page table can be maintained by
software with little overhead. AMD’s Page Walk Cache has this
design [9].

Figure 3 shows an example of the Unified Page Table Cache
(UPTC) after the MMU walks the page table to translate the virtual
address (0b9, 00c, 0ae, 0c2, 016). If the MMU subse-
quently tries to translate the virtual address (0b9, 00c, 0ae,
0c3, 103), the page walk will begin by looking for the page table
entry 0b9 in the L4 page table page (located at 613 and referenced
by the CR3 register). Since this page table entry is present in the
UPTC, it does not need to be loaded from the memory hierarchy.

This entry indicates that the L3 page table page has physical page
number 042. The same process is then repeated to locate the L2 and
L1 page table pages. Once the address of the L1 page table page is
found, the appropriate entry is loaded from memory to determine
the physical page address of the desired data.

Without a page table cache, all four of these accesses to page
table entries would have required a memory access, each of which
may or may not hit in the L2 data cache. In contrast, with the page
table cache, the three top entries hit in the private page table cache,
and only one entry (the L1 entry) requires a memory access, which
may or may not hit in the L2 data cache.

50

L4 index L3 index L2 index Next Page

L2 entries
0b9 00c 0ae 508
· · · · · · · · · · · ·

L3 entries
0b9 00c 125
· · · · · · · · ·

L4 entries
0b9 042
· · · · · ·

Figure 5: An example of the contents of a STC. Each index is 9-bits,
and the data holds a 40-bit physical page number of the next page table
level. An entry in the L2 cache must match on all three indices, an entry
in the L3 must match on two and the L4 on one.

L4 index L3 index L2 index Next Page
0b9 00c 0ae 508
0b9 00c xx 125
0b9 xx xx 042
· · · · · · · · · · · ·

Figure 6: An example of the contents of a UTC. An “xx” means “don’t
care”.

3.1.2 Split Page Table Cache (SPTC)
An alternate design for the page table cache separates the page

table entries from different levels into separate caches. Figure 4
illustrates a Split Page Table Cache (SPTC). In this design, each
individual entry contains the same tag and data as it would in the
unified page table cache. The primary difference is that each page
table level gets a private cache, and entries from different levels do
not compete for common slots.

3.2 Translation caches
As an alternative to tagging cache entries by their physical ad-

dress, they can be tagged by their indices in the virtual address. An
L4 entry will be tagged by the 9 bit L4 index, an L3 entry with the
L4 and L3 indices, and an L2 entry with the L4, L3, and L2 in-
dices. We call this device a translation cache, because it is storing
a partial translation of a virtual address.

With this tagging scheme, data from one entry is not needed to
lookup the entry at the next lower level of the page table. All of the
lookups can be performed independently of each other. In the end,
the MMU will select the entry that matches the longest prefix of
the virtual address because it allows the page walk to skip the most
levels.

3.2.1 Split Translation Cache (STC)
Like an SPTC, the Split Translation Cache (STC) stores entries

from different levels of the page table in separate caches. However,
as shown in Figure 5, the STC uses a different way of tagging the
entries. The Intel Paging-Structure Caches [3] exemplify the STC
organization.

The example in Figure 5 shows the split translation cache af-
ter the MMU walks the page table to translate the virtual address
(0b9, 00c, 0ae, 0c2, 016). If the MMU subsequently
starts to translate the virtual address (0b9, 00c, 0dd, 0c3,
929), it will attempt to locate the L1, L2 and L3 page table pages
in their corresponding caches using portions of the virtual address.
The location of the L3 page table page would be stored in the L4
entry cache and tagged by the L4 index, (0b9). Similarly, the lo-
cation of the L2 page table page would be stored in the L3 entry
cache and tagged by the L4 and L3 indices, (0b9, 00c). Finally,
the location of the L1 page table page would be stored in the L2 en-
try cache and tagged by the L4, L3 and L2 indices, (0b9, 00c,
0dd).

These searches can be performed in any order, and even in paral-
lel. In the above example, the cache can provide the location of the
appropriate L3 and L2 page table pages, but not the L1 page table
page, as (0b9, 00c, 0dd) is not present in the L2 entry cache.
Ultimately, the MMU would use the (0b9, 00c) entry from the
L3 entry cache because it allows the page walk to begin further
down the tree, at the L2 page table page.

3.2.2 Unified Translation Cache (UTC)
Just as the page table caches can be built with either a split or a

unified organization, a Unified Translation Cache (UTC) can also
be built. Moreover, just like the UPTC, the UTC mixes elements
from all levels of the page table in the same cache.

Figure 6 shows the UTC after the MMU walks the page table to
translate the virtual address (0b9, 00c, 0ae, 0c2, 016). If
the MMU subsequently starts to translate the virtual address (0b9,
00c, 0dd, 0c3, 929), it will first look in the UTC for the
physical page numbers of the L1, L2 and L3 page table pages. As
with the previous example that used the STC, the MMU finds two
matching entries in the UTC. Ultimately, the MMU decides to use
the UTC’s second entry, which is an L3 entry that has the L4 and
L3 indices (0b9, 00c) as its tag, because this tag matches the
longest prefix of the virtual address. Thus, the MMU can skip the
L4 and L3 page table pages and start walking from the L2 page
table page.

3.3 Translation-Path Cache (TPC)
Note that in the UTC example in Figure 6, the tags for the three

entries representing a single path down the page table all have the
same content. The L4 and L3 entries use less of the virtual ad-
dress than the L2 entry does, but the fragments that they do use
are the same. Consequently, it is possible to store all three phys-
ical page numbers from this example in a single entry. In such a
Translation-Path Cache (TPC), a single entry represents an entire
path, including all of the intermediate entries, for a given walk in-
stead of a single entry along that walk.

L4 index L3 index L2 index L3 L2 L1
0b9 00c 0ae 042 125 508
· · · · · · · · · · · · · · · · · ·

Figure 7: An example of the contents of the TPC after the vir-
tual address (0b9, 00c, 0ae, 0c2, 016) is walked. The
TPC holds three 9 bit indices, as the translation caches do, but
all three 40-bit physical page numbers are stored for all three
page table levels.

The example in Figure 7 shows the TPC after the MMU walks
the page table to translate the virtual address (0b9, 00c, 0ae,
0c2, 016). All data from that walk is stored in one entry. If the
MMU subsequently starts to translate the virtual address (0b9,
00c, 0ae, 0c3, 929), the entry referencing the L1 page ta-
ble page is discovered just as it would have been in the unified
translation cache. Specifically, the MMU finds the entry in the
cache with the tag (0b9, 00c, 0ae) and reads the physical page
number 508 of the L1 page table page from this entry.

If the MMU later starts to translate the virtual address (0b9,
00c, 0de, 0fe, 829), this address shares a partial path
(0b9, 00c) with the previously inserted entry. Therefore, the
translation-path cache will provide the physical address of the ap-
propriate L2 page table page.

51

3.4 Design space summary
In summary, the caches described in this section fit into the fol-

lowing two-dimensional design space (annotated with the section
number in which each design is described):

Unified Split Path
Page Table Cache 3.1.1 3.1.2 N/A
Translation Cache 3.2.2 3.2.1 3.3

The unified page table cache (UPTC) is the design that appears in
modern AMD x86-64 processors. The split translation cache (STC)
is the design that appears in modern Intel x86-64 processors. The
remaining three designs have been introduced in this paper.

Note that there is no useful page table counterpart to the
translation-path cache. This is a direct result of the indexing
scheme. While a “path” of physical addresses could be stored as
an MMU cache index, it would have to be searched sequentially
because the MMU cannot create a path of physical page numbers
directly from the virtual address. It must look up each physical page
in turn. Therefore, storing complete paths would yield no benefit
over the other page table cache designs.

4. DESIGN COMPARISON
All of the designs presented in the previous section are able to

accelerate page walks by caching information from the upper lev-
els of the page table. However, these designs have differences in
their indexing, partitioning, coverage, and complexity. This sec-
tion discusses the effects of these differences.

4.1 Indexing
The indexing scheme determines how the cache is searched.

Cache indices can be derived from the physical addresses of com-
ponents of the page table or they can be derived from the virtual
address and correspond to the levels of the page table.

Page table caches use the physical addresses of the page table
entries as indices. In fact, they operate identically to any physi-
cally indexed cache—a UPTC is essentially another data cache in
the memory hierarchy dedicated to the page table. The MMU will
generate a physical address for the page table entry at each stage
of the page walk, and that address will be used as an index into the
appropriate page table cache. While this leads to a simple design, it
requires the cache lookups to occur in a top-down order. The result
of the L4 entry search is required before the L3 entry search can be-
gin, because the L4 entry gives the physical page number of the L3
page table page, which is needed to generate the physical address
of the L3 page table entry. Similarly, the L2 search is dependent
on the result of the L3 search. In the case where the cache holds
all three entries (L4, L3, and L2), the cache must be accessed three
times to generate the physical address of the L1 page table entry.

In contrast, translation caches use components of the virtual ad-
dress as indices. For example, the TLB is an L1 translation cache
that uses the virtual page number as its index. In general, for trans-
lation caches, the MMU uses a subset of the virtual page number as
the index. This allows the translation caches to be searched in any
order (L4 first, L2 first, or in parallel). Thus, on a TLB miss, the L2
translation cache can immediately be searched. Upon a hit which
yields the L2 translation, the address of the L1 page table entry can
be computed immediately. If no L2 translation is available, the L3,
then L4, translation caches can be searched. Upon a hit, the page
walk would begin at that point in the tree.

4.2 Partitioning
MMU caches can either be unified or partitioned, or they can

store complete path information. The partitioning of the cache
determines how the entries of the cache are allocated to different
levels of the page table. This effectively determines how well the
entries from different levels are isolated from each other.

The impact of the partitioning scheme largely depends on
whether the application densely or sparsely utilizes its virtual ad-
dress space. For applications that densely use their virtual memory,
a few L4 and L3 entries are heavily utilized and there is significant
reuse of the L2 entries. In contrast, for applications that sparsely
use their virtual memory, there will be little reuse for L2 entries,
but a larger number of L4 and L3 entries will exhibit reuse. The
partitioning strategy and replacement policy determine how these
entries will compete for slots, which can have a significant impact
on the effectiveness of the MMU cache.

For applications that densely use their virtual memory, there will
be many more L2 entries than upper level entries in use. However,
for a page table cache design, these upper level entries are critical
for translation performance. If a random replacement scheme is
used in conjunction with a unified cache, these important entries
can be frequently replaced, resulting in memory accesses to entries
at or near the top of the table. However, if entries from different
levels are kept in separate caches, a random replacement policy is
less detrimental.

For applications that sparsely use many gigabytes of virtual
memory, L2 entries will have very little reuse, and effective caching
of L3 entries is critical. In a split entry cache, a static allocation of
entries to each level must be made. If this allocation is optimized
for small applications, it will have many more L2 entries than L3
entries, harming performance in this situation. Moreover, if an ap-
plication makes heavy use of large pages and limited use of small
pages, the dedicated L2 entries will be of little or no use. In con-
trast, in a unified cache, the allocation happens dynamically, but
recently accessed L2 entries that will not be reused might evict L3
entries that might otherwise be reused. A level-aware replacement
policy can help to avoid this.

The Greedy Dual algorithm is a popular content-aware replace-
ment scheme [25]. This algorithm will replace recently used entries
early if they are easier to reload into the cache. This scheme can
be adapted for MMU caches by preferentially replacing lower-level
entries with upper-level entries, thus reducing conflict between en-
tries of high and low reuse. While Greedy Dual is not an algorithm
that can easily be implemented in hardware, it is possible to im-
plement a similar algorithm with minimal modification to an LRU
cache.

In our modified LRU algorithm, entries from lower levels of the
page table are inserted into the LRU queue at a recency position
behind the most-recently-used position. If these lower level entries
are reused, they are promoted to the most recently used position.
However, if they are not reused, the portion of the cache in which
lower level entries compete with upper level entries is small. These
positions can be fixed, for simplicity, or they can change to adapt
to different workloads. We propose a variable insertion-point LRU
replacement policy whereby entries from lower levels of the cache
are inserted into a recency position below the most recently used
position that is proportional to the current number of upper level
entries stored. For example, if there are two L4 entries and six L3
entries currently in the cache, a new L2 entry is inserted in the ninth
most recently used position in the cache.

The path translation cache avoids these partitioning problems, as
each slot holds an entry from all levels. This prevents the com-
petition for slots while not requiring a static allocation of slots to

52

Unified Split Path
C 1 l − 1

Page Table T p − 3 {p − 3, ..., p − 3} N/A
D p − 12 {p − 12, ..., p − 12}
C 1 l − 1 1

Translation T (l − 1) · n {n, ..., (l − 1) · n} (l − 1) · n
D p − 12 {p − 12, ..., p − 12} 3(p − 12)

Table 1: The number of caches (C), the number of tag bits per entry
(T), and the number of data bits per entry (D) for each design.

Unified Split Path
C 1 3

Page Table T 49 {49, 49, 49} N/A
D 40 {40, 40, 40}
C 1 3 1

Translation T 27 {9, 18, 27} 27
D 40 {40, 40, 40} 120

Table 2: MMU cache parameters for x86-64 processors. We have used
the architectural definition of physical address width, 52 bits [1]. Ac-
tual implementations may use fewer bits.

levels. However, since this cache may hold many paths with the
same upper level entries, its effective capacity for holding upper
level entries is less than three equally sized split entry caches.

4.3 Coverage
Characterizing the coverage of an MMU cache is not straight-

forward. In particular, the exact meaning of coverage for an MMU
cache must first be considered. For example, suppose an address
translation hits on an L3 entry in a page table or translation cache
but does not hit on an L2 entry. In this case, the translation was
accelerated by the MMU cache, but nonetheless required a mem-
ory access to fetch the page table’s L2 entry. Thus, it is arguable
whether or not the MMU cache provided coverage. We take the
strict position that coverage means that no memory accesses were
required to fetch L4, L3, or L2 page table entries.

In general, with the same number of entries, translation caches
are able to cover a larger portion of the address space than page
table caches. The reason is that a translation cache can make more
efficient use of its entries than a page table cache. For a page ta-
ble cache to provide coverage it must simultaneously hold an L4,
L3, and L2 entry, whereas a translation cache can provide coverage
with only an L2 entry. In other words, the translation cache may
be able store additional L2 entries in place of the L4 and L3 entries
that are required to provide coverage in the page table cache.

When the application is simply too large for the MMU cache to
provide full coverage, the unified caches with intelligent replace-
ment policies, the split caches, and the TPC are able to accelerate
translations for more of the address space than the unified caches
with conventional replacement policies. This is due to the fact that
the former caches upper level entries, which provide partial transla-
tion for larger regions, are less likely to be evicted in favor of lower
level entries. Since these effects are highly dependent on workload,
the relative hit rates of the cache designs are studied experimentally
in Section 6.

4.4 Complexity
All of the organizations are effectively fully associative caches,

which can be implemented by a CAM array to match the tags and
a RAM array to store the data entries. However, the different cache
organizations have different tag and data widths, and will poten-
tially require differing numbers of entries to achieve similar hit
rates. These factors will lead to different implementation complex-
ities for the different organizations.

Table 1 shows the number of caches, tag bits per entry, and data
bits per entry that are needed for each organization. These char-
acteristics are parameterized by the number of levels of address
translation, l, the number of bits in a physical address, p, and the
number of offset bits in a page table index for a particular level, n.
In x86-64 processors, l = 4, p = 52, and n = 9, which leads to
the values shown in Table 2.

It should be noted that for current architectural parameters, trans-
lation caches require significantly smaller tags. This will make a
translation cache smaller and more power efficient than an equiva-
lent page table cache, as the CAM array is likely to dominate the
cost of the structure.

5. METHODOLOGY
The MMU cache architectures presented in Section 3 were eval-

uated by running application memory traces through a memory sys-
tem simulator. The trace-based approach is warranted here for two
reasons. First and foremost, the number of memory references re-
quired for a page walk is effectively independent of all architec-
tural parameters except for the MMU and the L2 cache organiza-
tion. A cycle-accurate simulation would have presented a more
limited view of the differences for a single point in the processor
design space. Second, from a practical standpoint, it would have
been nearly impossible to run the types of large memory footprint
applications that benefit most from these structures on a slow cycle-
accurate simulator.

5.1 Application Memory Traces
The AMD SimNow [8] platform simulator was used to run var-

ious benchmarks under FreeBSD 8.0-Release for x86-64. A cus-
tom analyzer plugin to SimNow records each virtual memory ac-
cess made by the simulated system. This trace includes all mem-
ory loads and stores made by the tested operating system and pro-
cesses, but it does not include instruction or page table loads. TLB
and MMU invalidations are included in the trace by monitoring the
value of the CR3 register, which must change on a context switch.
Finally, the plugin counts the total number of instructions executed
during the trace.

Virtual memory access traces were captured from these appli-
cations, including the SPEC CPU2006 floating-point suite [14],
SPECjbb2005 [21], ASCI Sweep3d [2] and HPCC RandomAc-
cess [11]. However, not all of the benchmarks in the SPEC
CFP2006 suite could be compiled with the standard tool chain in
FreeBSD 8.0, so soplex, calculix and wrf are not included in this
study. SPECjbb2005 was run on one warehouse, and Sweep3d was
run on a 150x150x150 grid.

5.2 Memory System Simulation
A custom memory system simulator was built to simulate the

various MMU cache designs. The simulator includes an MMU that
closely resembles the L1 and L2 TLBs in the AMD Opteron [9].
It consists of a 64-entry, fully-associative L1 TLB with random
replacement, and a 512-entry, 4-way set associative L2 TLB with
LRU replacement. Furthermore, the simulator is able to model all
five cache designs described in Section 3. The simulator stores tags
(virtual addresses), but not data (physical addresses), to eliminate
any operating system dependent behavior from the simulation. This
simplifies the design of the simulator and generalizes the results.
Unless otherwise specified, the simulator divides all memory into
4KB pages.

A 1MB L2 cache was included in the model, simulated using the
Dinero IV cache simulator [12]. Both application data accesses and
MMU page table accesses are simulated using a shared L2 cache

53

model. In general, instruction loads are not instrumented are not
included in this study. The cache parameters were based on the
same AMD Opteron processor that was the basis for the TLB pa-
rameters. The L1 cache was not simulated, since the page walk
hardware does not use it on the Opteron.

While our simulation environment did not permit us to directly
measure power and system performance, the reduction in mem-
ory accesses we directly measure here should translate directly into
reduced interconnect power consumption and latency. Recall that
previous work has shown the uncached system performance impact
of unvirtualized TLB misses to be up to 14% for nominally sized
applications [9] and up to 50% for large applications [19].

5.3 Synthetic Application Memory Traces
To study the behavior of an application that uses more virtual

memory than we can practically trace on our real machines, a trace
synthesizer was developed that simulates the memory access pat-
tern of an in-memory database, performing a hash join. Such joins
are common, and the performance of large joins is representative
of overall database performance [6].

The simulated join is an inner join on two equally sized tables, A
and B. The hash join process starts by creating a hash table contain-
ing the entries of B, using an open addressing collision resolution
scheme. The database then iterates through A, checking to see if
each entry is present in the hash table. The result is then placed in
an output table [13].

Since the simulation is designed to scale to arbitrary sizes, the
simulation works probabilistically rather than operating on a real
data set. First, an element is read from the region of memory hold-
ing table A. Then, a random element is read from the region of
memory storing the hash table, since the hash function will uni-
formly distribute accesses throughout the table. After the first el-
ement is read, a second element is sometimes also read, based on
the probability of a hash collision. The collision probability was
derived from the expected collision chain length [17]. Finally, an
element is written to the result table, and the process repeats itself
with the next consecutive element of table A.

6. CACHE DESIGN SIMULATIONS
This section evaluates the five different MMU cache organiza-

tions using a wide variety of applications. The TLB miss penalty,
structure sizing, and replacement policies are explored. The re-
sults show that the unified translation cache with a modified LRU
replacement scheme is the best design for the entire range of appli-
cations. For the small benchmarks, this cache design is able to re-
duce the number of memory accesses required per TLB miss from
4 without a dedicated cache to 1.13. It also adapts dynamically to
large applications, avoiding the conflicts present in traditional uni-
fied caches without the static partitioning required in split caches.

6.1 TLB miss penalty
The purpose of any MMU cache is to lessen the penalty of a

TLB miss and the cost of walking the page table. This penalty can
be broken down into the number of accesses to the private MMU
cache and the number of memory hierarchy accesses required per
TLB miss. Without a private cache, there will be four memory
hierarchy accesses per walk, one per level. These memory accesses
can be further broken down into L2 data cache hits and DRAM
accesses, which are far more costly.

6.1.1 Small Memory Applications
Even applications that use a modest amount of memory can have

frequent TLB misses. Table 3 shows the frequency of TLB misses

DRAM accesses/Walk
Workload Ins/Walk Mem/Walk 2MB 1MB 512KB

bwaves 3637.7 2183.8 102.6 104.4 106.2
gamess 37927.8 16905.0 1.1 1.1 1.1

milc 202.3 83.1 3.9 3.9 4.0
zeusmp 3105.2 562.0 77.0 77.8 79.0

gromacs 25399.1 12025.0 42.2 55.4 69.5
cactus 3916.9 2919.4 28.7 30.2 31.9

leslie3d 4185.2 1679.8 67.5 70.5 72.0
namd 49024.9 18498.7 9.0 12.3 16.2

deal 29235.3 10046.7 12.3 14.5 16.9
povray 38328.8 19498.9 1.9 1.9 1.9
Gems 50817.5 19447.8 1.4 1.4 1.4
tonto 30414.8 13711.6 4.5 7.2 28.8
lbm 1844.5 908.1 97.5 101.7 106.7

sphinx3 1858.2 574.4 26.3 28.6 30.2
(avg) 19992.7 8503.2 34.0 36.5 40.4

specjbb 351.0 162.0 2.4 3.4 4.8
Sweep3d 6098.6 3161.3 81.9 83.9 85.4

Table 3: The frequency of TLB misses for each workload,
shown as the number of instructions, memory accesses and
DRAM accesses between TLB misses. These results are shown
for three different L2 data cache sizes and the TLB configura-
tion described in Section 5.2.

for each of the SPEC CFP2006 benchmarks, the SPEC JBB2005
Java server benchmark and the ASCI Sweep3d benchmark. Specif-
ically, the table shows the average number of instructions, program
memory accesses and program DRAM accesses (L2 data cache
misses) that occur between TLB misses. The number of instruc-
tions issued between TLB misses varies from tens of thousands for
compute-intensive workloads to hundreds, for data-intensive work-
loads. For SPECjbb2005, less than five DRAM accesses are made
between TLB misses. For data-intensive workloads that may be
memory bottlenecked, the DRAM accesses related to page walks
are significant.

Table 4 compares the behavior of the different MMU caches.
For each kind of MMU cache the table shows how many times the
MMU cache, the L2 data cache and DRAM are accessed per TLB
miss under each of the benchmarks. All caches are using a least-
recently-used replacement policy. In these simulations, the unified
and path caches have 24 entries and the split caches have 3 × 24
entries. While there are some outliers, most of the applications
exhibit similar behavior.

As a baseline, Table 4 also presents results with no MMU cache.
As expected, with no cache there are four memory accesses per
walk. Interestingly, there are only 0.15 DRAM accesses per walk
for SPEC CFP2006, meaning that there is a 96% hit rate for page
table entries in the L2 data cache. This number varies from appli-
cation to application, but it never drops below 90%. This demon-
strates that page table access for these applications has very high
reuse.

Adding any MMU cache drops the average number of mem-
ory hierarchy accesses per walk from 4.00 to no more than 1.13
(0.99+0.14) for SPEC CFP2006. Note that DRAM accesses only
decrease approximately 7%, from 0.15 to 0.14. This means that
most of the avoided memory accesses come out of L2 hits, not
DRAM accesses. The decrease in TLB miss latency from a MMU
cache with these applications comes from the decreased access la-
tency of an MMU cache as compared to the L2 data cache, not an
improved hit rate. For Sweep3d, there is so much locality in virtual
address use that memory accesses per TLB miss is further reduced
to 1.07.

Since these caches do not store L1 page table entries, this result

54

No Cache UPTC (24 entry) SPTC (3x24 entry) UTC (24 entry) STC (3x24 entry) TPC (24 path)
S L2 DRAM S L2 DRAM S L2 DRAM S L2 DRAM S L2 DRAM S L2 DRAM

bwaves - 3.72 0.28 2.98 0.82 0.25 2.99 0.80 0.24 1.06 0.81 0.26 1.03 0.80 0.24 1.03 0.80 0.23
gamess - 3.95 0.05 2.94 1.13 0.05 2.94 1.13 0.05 1.15 1.13 0.05 1.15 1.13 0.05 1.15 1.13 0.05

milc - 3.90 0.10 3.00 0.91 0.10 3.00 0.91 0.09 1.01 0.91 0.09 1.00 0.91 0.09 1.00 0.91 0.09
zeusmp - 3.81 0.19 2.99 0.85 0.17 2.99 0.85 0.17 1.02 0.85 0.17 1.02 0.85 0.17 1.02 0.85 0.17

gromacs - 3.80 0.20 2.96 0.91 0.20 2.96 0.91 0.20 1.08 0.90 0.20 1.08 0.91 0.20 1.08 0.91 0.20
cactus - 3.84 0.16 2.96 1.12 0.16 2.99 0.98 0.15 1.23 1.10 0.15 1.13 0.98 0.15 1.13 0.99 0.15

leslie3d - 3.79 0.21 2.98 0.88 0.20 2.99 0.85 0.19 1.06 0.88 0.20 1.04 0.85 0.19 1.04 0.86 0.19
namd - 3.86 0.14 2.88 1.15 0.13 2.88 1.14 0.13 1.23 1.15 0.13 1.23 1.14 0.13 1.23 1.14 0.13

deal - 3.89 0.11 2.93 1.07 0.11 2.93 1.07 0.11 1.15 1.07 0.11 1.15 1.07 0.11 1.15 1.07 0.11
povray - 3.92 0.08 2.92 1.10 0.08 2.92 1.10 0.08 1.15 1.10 0.08 1.14 1.10 0.08 1.14 1.10 0.08
Gems - 3.93 0.07 2.89 1.18 0.07 2.89 1.18 0.07 1.20 1.18 0.07 1.20 1.18 0.07 1.20 1.18 0.07
tonto - 3.93 0.07 2.94 1.07 0.08 2.94 1.07 0.08 1.12 1.07 0.08 1.12 1.07 0.08 1.12 1.07 0.08

lbm - 3.79 0.21 2.99 0.83 0.19 2.99 0.83 0.18 1.02 0.83 0.19 1.01 0.83 0.18 1.01 0.83 0.18
sphinx3 - 3.76 0.24 2.99 0.80 0.23 2.99 0.79 0.23 1.02 0.80 0.23 1.02 0.79 0.23 1.02 0.79 0.23

(avg) - 3.85 0.15 2.95 0.99 0.14 2.96 0.97 0.14 1.11 0.98 0.14 1.09 0.97 0.14 1.09 0.97 0.14
specjbb - 3.83 0.17 2.98 0.97 0.17 3.00 0.93 0.17 1.14 0.97 0.17 1.11 0.93 0.17 1.11 0.95 0.17

Sweep3d - 3.77 0.23 2.95 1.01 0.22 2.98 0.87 0.20 1.13 0.94 0.21 1.07 0.87 0.20 1.07 0.88 0.20

Table 4: The number of caching structure accesses (S), L2 data cache hits (L2), and DRAM accesses (DRAM) per TLB miss for the
various LRU cache designs over the SPEC CFP2006, SPECjbb2005 and Sweep3d benchmarks.

is very close to the minimum number of memory accesses per TLB
miss of 1.00. On these applications, all the caches have similar hit
rates. In nearly all TLB misses, all the MMU caches can provide
the physical page number of the L1 page table page without having
to do any memory accesses. From here, the L2 cache still provides
most of the L1 entries at a hit rate of 88% (only 0.14 of the 1.13
memory accesses are DRAM accesses). These hits come from the
fact that the L2 cache is much larger than the MMU caches and can
store eight entries in a single cache line.

One benchmark, tonto, has more DRAM accesses when an
MMU cache is used. However, the rounding in Table 4 exaggerates
this effect. The actual increase in DRAM accesses is only 0.001
per TLB miss. The MMU cache changes the access pattern to the
L2 data cache, so page table entries may be replaced sooner than
they would be without an MMU cache, slightly increasing DRAM
accesses.

SPECjbb has low address locality at a page and cache line granu-
larity compared to other small memory applications leading to high
TLB and cache miss rates. However, there is still enough locality
in upper level bits of the address to allow reasonably high MMU
cache hit rates. On this workload, 2.87 of the three upper level page
table entries are still served by the MMU cache, leaving 0.99 and
0.14 accesses for the L2 data cache and DRAM respectively. These
0.14 DRAM accesses per TLB miss are significant compared to the
3.4 DRAM accesses between TLB misses that come from program
execution itself.

Since these caches all provide high hit rates, their primary dif-
ference is in the number of accesses to the cache required per walk.
Since the translation and path cache search for L2 entries first, they
are typically only accessed one time per TLB miss. This reduces
both latency and power consumption. The page table caches are
accessed an average of three times per walk, since they must walk
down the page table. If the size of the virtual address space is ex-
panded by adding an additional level, this penalty will increase.

6.1.2 Large Memory Applications
In contrast to the results for small memory applications, the dif-

ferent MMU caches have substantially different hit rates for ap-
plications with random access patterns over gigabytes of virtual
memory, such as an in-memory database hash join or HPCC Ran-
domAccess. For these applications, the reuse of lower level page
table entries is low, and there are many upper level page table en-
tries in use. Consequently, caching as many L3 entries as possible,
each of which covers a 1GB region of virtual memory, is critical,

Cache size (n entries)

L
3
p
a
g
e
ta
b
le

h
it
ra
te

Split (3 x n entries)

Split (n entries)

Unified (n entries)

Figure 8: Hit rate compared for the caches with the database join
simulation using a 16GB hash table. The different split and unified
designs have equivalent coverages.

but caching L2 entries is of little or no benefit. For a unified cache,
a TLB miss that hits on an L3 entry but not an L2 entry will load a
new L2 entry into the cache. With LRU replacement, the cache will
have about the same number of L2 and L3 entries. The TPC also
keeps track of an L2 entry for each L3 entry stored, but it does so in
the same associative entry. Therefore, for such applications, a TPC
of n paths is roughly equivalent to a UPTC of 2 · n entries. When
the TPC becomes large, there is the possibility that different stored
paths will contain the same L3 entry, reducing hit rate. The split
caches do not exhibit this effect, so once the cache is large enough
to hold all L3 entries in use, there is a 100% hit rate.

A database hash join running over a 16GB region (Figure 8)
demonstrates this scaling. Here, to have a 50% hit rate on the L3
page table, a 22 entry unified cache is required, while only an 11
path TPC, or a 3 × 11 entry STC is required.

An application using many terabytes of virtual memory would
only have high reuse on L4 page table entries, causing 2/3 of uni-
fied cache entries to be wasted, instead of just 1/2 for the 16GB
application. This is because for every L4 entry stored, an L3 and an
L2 entry are also stored, which are effectively wasted. This causes
the TPC to be equivalent to a unified cache of three times the size
for such workloads.

55

0 5 10 15 20
Cache size (entries)

0.0

0.2

0.4

0.6

0.8

1.0
L2

 p
ag

e
ta

bl
e

hi
t r

at
e

Split/Path
UTC
UPTC

Figure 9: Hit rate for the L2 table for ASCI Sweep3d. This application
is very sensitive to sizing. Note that size represents per-level size (all
three levels hold n entries) for the split cache included in Figures 9-11.

6.2 Sizing considerations
Appropriate sizing of caches is critical for hit rate in many ap-

plications. The ability to not store levels that are skipped in the
translation cache allows them to be smaller for a given hit rate. Ad-
ditionally, the fixed allocation of entries for each level in the split
cache designs demands that all levels be large to properly adapt
to differing workloads. The TPC and unified caches dynamically
allocate entries and adapt well.

ASCI Sweep3d operates on a set of different memory regions.
When the first is processed, it moves to the next, and so on. After
processing the last region, the program wraps around to the first,
and the cycle repeats. If the cache is not large enough to hold all
the regions, entries corresponding to earlier regions are pushed out
before they are used again, and hit rate is very poor (Figure 9).
Since upper levels of the page table are skipped in the translation
cache, the UTC can be slightly smaller than the UPTC.

For the small memory applications, there are relatively few upper
level page table entries that are in use. As a result, the hit rate of the
unified caches holding n entries only slightly trails that of the split
caches, which hold a total of 3×n entries. In this example (Figure
10), a unified page table cache holding 23 entries is equivalent to a
split cache holding 3× 19 = 57 entries. Only four entries from the
unified cache are stored in upper levels of the split caches. These
entries are combined with lower level entries in the TPC, allowing
a 19 path TPC to be equivalent to the 23 entry unified cache.

While these applications use more lower level entries than upper
level entries, having small upper-level caches in a split cache dra-
matically reduces hit rate for large applications. If the split cache
is reduced in size to 3 × 8 entries to match the total size of the
unified cache, the L3 table hit rate in the database benchmark is re-
duced from 99% to 44%. Skewing the distribution of entries from
higher levels to lower levels will further impact hit rate. Therefore,
it is imperative that all levels of a split cache be large, resulting in
considerable area overhead.

6.3 Replacement policy
In the unified caches, entries of high reuse (upper level entries)

are mixed with entries of lower reuse (lower level entries). This
causes the cache to be relatively sensitive to the LRU replacement
policy which ensures that frequently accessed components (L4 and
L3 entries) are not evicted. In the path and translation caches, these
upper level entries are skipped, so they do not need to be protected.

0 5 10 15 20
Cache size (entries)

0.0

0.2

0.4

0.6

0.8

1.0

L2
 p

ag
e

ta
bl

e
hi

t r
at

e

Split/Path
UTC
UPTC

Figure 10: Hit rate for the L2 table alone for the CactusADM compo-
nent of SPEC CPU2006.

Cache LRU Random Increase
UPTC 0.61 1.00 63%
UTC 0.53 0.79 49%
TPC 0.51 0.65 28%

SPTC 0.51 0.64 25%
STC 0.51 0.63 23%

Table 5: The average number of misses per walk for random and
LRU replacement, normalized to Random UPTC (lower is better), and
the relative increase in misses using random replacement over LRU re-
placement.

Table 6.3 shows the impact of using a random replacement
scheme on the number of MMU cache misses (measured by the
number of required memory accesses to locate upper level page
table entries). While all structures have a lower hit rate using a
random replacement scheme, the unified designs are much more
reliant on an LRU replacement scheme.

The primary problem with the unified cache designs for the large
applications is that entries with high reuse are evicted to make room
for entries of low reuse. For example, in the database join the LRU
unified caches hold a relatively useless L2 entry for every useful
L3 entry in the cache. If a content-aware replacement scheme is
used, this problem can be significantly reduced. If the Greedy Dual
algorithm is implemented in the UTC instead of using LRU, the
size required for 90% L3 entry hit rate in the 16GB database join is
reduced from 52 to 30 entries.

Using our modified LRU replacement scheme (described in Sec-
tion 4.2) with fixed insertion points, this algorithm actually has a
higher hit rate than Greedy Dual for the database benchmark. Only
23 entries are required for 90% hit rate. However, the fixed inser-
tion point for L2 entries reduces hit rate significantly for some other
applications, such as Sweep3d. The L2 entries used by Sweep3d, if
they are inserted near the least recently used position, are replaced
before they are reused resulting in a near zero hit rate.

Using the variable insertion-point LRU scheme solves this. For
SPEC CFP2006, SPECjbb2005 and Sweep3d, VI-LRU has a hit
rate that is equal to or slightly greater than standard LRU. For the
database join, where there are many L2 entries to cache, VI-LRU
adapts far better than other replacement schemes. Only 16 entries
are required for 90% hit rate in the join benchmark, as opposed
to 52 for standard LRU (Figure 11). The VI-LRU cache nearly
eliminates the conflict between levels seen in the unified cache, and

56

Cache size (n entries)

L
3
p
a
g
e
ta
b
le

h
it
ra
te

Unified (VI-LRU)

Split

Unified (LRU)

Unified (Greedy)

Figure 11: An n entry unified translation-cache with VI-LRU has
nearly the same hit rate as a 3 × n split cache.

an n entry VI-LRU UTC has nearly the same hit rate as a 3×n entry
split translation cache.

7. ALTERNATE PAGE TABLE FORMATS
We compared the memory access behavior of the cached page

table with its biggest rivals, hash-table based Inverted Page Tables
and direct-mapped Translation Storage Buffers. These structures
are attractive since they contain only one level, and are therefore
insensitive to address space size. However, the unavoidable pres-
ence of hash and structural collisions, low access locality and their
inability to handle multiple page sizes efficiently cause them to re-
quire far more memory accesses than a cached radix table.

7.1 Hashed page tables
We have shown that MMU caches can significantly reduce the

overhead of using a radix tree page table, however the possibility
remains that the radix tree page table itself should be replaced. The
traditional competitor to the radix tree page table is the inverted
page table, which uses a hash table to store a large and sparsely
used address space efficiently [15]. These designs are usually seen
as superior to a multi-level table, because they only need to be ref-
erenced once, whereas the radix table requires one access per level.
However, hash collisions are unavoidable, so many accesses may
require more than one reference to follow a collision chain.

Additionally, we have shown in this paper that MMU caches can
reduce the number of memory accesses per walk to nearly one as
well. To compare the cached radix table against an inverted page
table, a simulator was constructed that maintains and references a
hash table storing all the memory locations used during a process’
lifetime. The hash table used closely models that used by the Intel
Itanium [4]. The number of accesses to this table were counted, as
well as the number of such accesses that hit in the L2 data cache.

When the hash table contains twice as many buckets as there are
pages to store, the hash table walker references approximately 1.2
locations per TLB miss, regardless of benchmark or access pat-
tern. This number comes from the average length of a collision
chain, which is a function only of the fullness of the hash table if a
sufficiently uniform hash function is used [17]. This number com-
pares poorly to the average number of L2 and memory accesses
required per walk of the SPEC CFP2006 applications using page
table caching of 1.13. While the hashed page table is insensitive
to address space size, it is unable to take advantage of the great
locality seen in virtual address space usage like MMU caches can.

Uncached TPC
Page Size 4KB 2MB 4KB 2MB
L2 Hits 2.90 2.92 1.11 1.15
DRAM 1.10 0.06 1.09 0.06

IPT (1) IPT (2) IPT (16)
Page Size 4KB 2MB 4KB 2MB 4KB 2MB
L2 Hits 0.01 0.00 1.16 1.16 0.55 0.54
DRAM 1.29 1.29 1.14 1.14 1.48 1.49

Table 6: L2 hits and DRAM accesses to the page table per walk
for a radix tree page table for the 16GB database join bench-
mark. Results are shown for an uncached radix tree, a cached
radix tree, and a half-full inverted page table with various num-
bers of clustered translations per tag.

Compounding this issue is the fact that references into the hash
table show no spatial locality. Whereas consecutive pages in virtual
memory are usually mapped by consecutive entries in the radix ta-
ble, they are not usually mapped by consecutive entries in a hash
table. Since there is usually locality in the access pattern of L1
page table entries in a radix table, these entries are much more ef-
fectively cached by the L2 data cache than the entries of the hashed
table are. For the SPEC CFP2006 applications examined earlier,
only 44% of the 1.2 accesses/walk are served by the L2 data cache.
Overall, the inverted page table increases the number of DRAM
accesses per walk by over 400%.

Spatial locality can be increased by storing multiple adjacent
translations with a single tag, as used in clustered page tables [23].
This technique also reduces the overhead (virtual address tag and
chain pointer) for the hash table. However, for this technique to
be effective each virtual tag must be associated with many transla-
tions. This means that some translations will need to load multiple
cache lines. Additionally, the frequency of hash collisions is not
reduced over a standard inverted page table.

Even if the virtual address space is used without locality, as in the
database join, the radix tree page table still requires fewer DRAM
accesses than a hashed page table. Table 6 shows the memory use
per TLB miss for a join using a 16GB hash table. With 4KB pages,
the radix tree page table requires fewer DRAM accesses/walk than
the inverted page table until a 48GB inverted page table is used.

For this application, clustering does improve L2 cache hit rate
since the page table is smaller. However, the tag and data often lie
in different cache lines, which requires an increase in the total over-
all memory references required to perform a translation. Matching
the total cluster size to the size of a cache line improves this. How-
ever since cache line size may change from implementation to im-
plementation, the appropriate cluster size may change as well.

For larger applications such as this, large page support becomes
important. When it comes to supporting the simultaneous use of
multiple page sizes, radix trees have an advantage over inverted
page tables. With the radix tree, if 2MB pages are used for map-
ping most of the virtual address space, the entire page table can
be cached in the L2 data cache, because the 2MB page mapping
takes the place of an L2 entry in the page table and eliminates the
need for an entire L1 page table page (see Figure 2). This reduces
the number of DRAM accesses per walk dramatically for the radix
table designs and also the number of overall memory hierarchy ac-
cesses to below that seen in the inverted page table, as shown in
Table 6.

In contrast, the simultaneous use of large and small pages does
not reduce the size of an inverted page table, and so its memory
accesses do not change. In essence, the hash function must take into
account the size of the virtual page, but it cannot know the page’s

57

size a priori if multiple page sizes are in use. Consequently, for a
large page, the inverted page table must still have a page table entry
corresponding to each of the small pages that make up the large
page. Each of these page table entries will, however, designate the
mapping as part of a large page, and the TLB will be loaded with a
single large page mapping.

7.2 Translation Storage Buffers
The SPARC architecture has traditionally handled TLB misses

in software. To accelerate TLB misses, the processor supports a
software-managed, direct-mapped cache of translations called the
Translation Storage Buffer [5]. On a TLB miss, the CPU derives an
index from the lower entry bits in the virtual address and checks to
see if a corresponding entry is present in the TSB. Although earlier
processors performed this TSB lookup in software, some current
processors implement it in hardware. Like the inverted page table,
a TSB entry stores a tag (a virtual page number) and a translation
(a physical page number). Unlike the inverted-page table, there is
no chaining. If a translation is not present in the TSB, a software
fault occurs.

To compare this design to the radix-tree design, a TSB simulator
was also developed. Like the inverted page table simulator, the
TSB simulator counts L2 and DRAM accesses per TLB miss. In
addition, the TSB simulator also counts software faults that occur
when a translation is not present in the cache. Traces are simulated
in a two-pass manner. The first pass populates the cache with the
translations present in the trace. The second pass actually simulates
accesses to the cache, counting hits and misses. This ensures that
only conflict misses are counted, providing a lower-bound for cache
misses.

Our results show that the TSB uses the L2 data cache poorly as
compared to the radix-tree. For example, the zeusmp component
of the SPEC CFP benchmark generates 0.058 DRAM accesses per
TLB miss using the radix-tree with an MMU cache whereas the
TSB required 0.078 DRAM accesses per TLB miss. This increase
is due solely to the larger size of a TSB entry as compared to a
radix tree page table entry. The TSB entry contains a tag and data,
whereas the radix-tree only needs to hold data. This increased size
reduces the number of entries that will fit in a single L2 cache line
from eight to four.

In addition, the TSB also generates 0.024 software faults per
TLB miss using the current architectural maximum size of 1
megabyte. These are likely to be extremely expensive, generat-
ing not only data cache misses, but also instruction cache misses.
While increasing the size of the L2 data cache would reduce the
number of L2 cache misses, it would not reduce the number of
software faults.

8. RELATED WORK
Some early work on caching page table entries was done be-

fore the introduction of AMD and Intel’s MMU caches. This work
was targeted at accelerating software TLB miss handling. Bala et
al. introduced a software cache for page table entries [7]. This
cache is read by the software page fault handler and manages en-
tries in physical memory to avoid cascading TLB misses that come
from reading page table entries in virtual memory space. Wu and
Zwanepoel expanded this to a hardware/software design [24]. They
propose a single level translation cache to handle only L2 entries.
If a translation hits in their structure, the MMU loads the L1 entry
directly, as in the caches presented in this paper. If the translation
misses, a software fault is triggered.

In a virtualized system using nested paging, both the guest vir-
tual machine and the underlying virtual machine monitor have their

own page table. In effect, the virtual machine monitor’s page ta-
ble is used to create a private guest physical address space for the
virtual machine. Thus, the guest’s page table is used to translate
from virtual addresses to guest physical addresses, and the virtual
machine monitor’s page table is used to translate from guest physi-
cal addresses to host physical addresses. Nested paging with radix
tree-based page tables leads to a two-dimensional page table walk
because every access to the guest’s page table during a page walk
may result in a page walk on the virtual machine monitor’s page
table.

Bhargava et al. showed that an extended version of AMD’s Page
Walk Cache could effectively cache most of the upper level page
table entries in both the guest’s page table and the virtual machine
monitor’s page table [9]. In addition, they proposed the introduc-
tion of a Nested TLB (NTLB) that caches guest physical to host
physical translations. In effect, a hit in the NTLB allows the two-
dimensional page walk to skip the page walk on the virtual machine
monitor’s page table. Thus, if every access to the guest’s page table
hits in the NTLB, then the number of accesses to the Page Walk
Cache and the memory hierarchy is the same as it would be for
native execution.

The translation and path caches presented in this paper could
also be extended to support nested paging. Moreover, the NTLB is
not inextricably tied to the Page Walk Cache or page table caches
in general. A NTLB could be beneficially combined with transla-
tion and path caches. A NTLB hit allows the two-dimensional page
walk to skip the entire page walk on the virtual machine monitor’s
page table for a single guest page table access, but not the accesses
to the upper levels of the guest’s page table. This requires a trans-
lation or path cache. Moreover, a translation or path cache could
accelerate page walks on the virtual machine monitor’s page table
when a NTLB miss occurs.

Talluri and Hill recognized the importance of efficient use of spa-
tial locality in the page table and developed their clustered and sub-
block page tables to increase the spatial locality found in inverted
page tables [22, 23]. We simulate a similar system in Section 7.1
and compare it to both traditional inverted page tables and cached
radix tree tables.

McCurdy et al. previously investigated the importance of the L2
data cache in storing page table entries [19]. They show that appli-
cations that use large pages can show improved performance even
in the face of decreased TLB hit rates. This is due to the shallower,
and therefore smaller, page table when using large pages.

Jacob and Mudge [15] show that MMU related memory accesses
can cause higher than expected cost due to user program and data
being evicted by page table entries. This effect further emphasizes
the importance of efficient storage of page table entries.

Saulsbury et. al. propose a prefetching scheme for TLBs that
preload pages based recently accessed pages [20]. Unlike the tech-
niques presented in this paper, their techniques require page table
modification. More recent work [16, 10] has proposed architec-
turally independent prefectching techniques based on access pat-
terns and inter-core cooperation. These techniques all focus on re-
ducing the frequency of TLB misses while our work focuses on
reducing the cost of servicing a TLB miss. Both techniques could
easily be combined.

In terms of space, a radix tree-based page table can be an in-
efficient representation for a large, sparsely-populated virtual ad-
dress space. Liedtke introduced Guarded Page Tables to address
this problem [18]. In particular, Guarded Page Tables allow for
path compression. If there is only one valid path through multiple
levels of the tree, then the entry prior to this path can be configured
such that the page walk will skip these levels.

58

9. CONCLUSION
Since the x86 architecture began using a radix tree page table

for address translation in the 80386, the depth of the page table has
increased by one level with each passing decade. Unfortunately,
without an MMU cache, the page table walk for address translation
requires a memory reference for each level of the radix tree. There-
fore, MMU caches have become critical components of current and
future x86 processors. This paper has presented a quantitative and
qualitative comparison of the design space of such MMU caches,
including three new designs. While this paper has focused on x86
processors, the results should apply generally to any architecture
that uses a radix tree page table.

While AMD and Intel have both developed MMU caches for
their microprocessors, this paper has introduced a unified transla-
tion cache with a modified LRU replacement scheme that is supe-
rior to both existing devices. It adapts well to varying workloads,
unlike a split translation cache, as implemented in Intel’s Paging
Structure Cache. It also prevents conflict between entries of low
and high reuse, unlike the LRU unified page table cache, as imple-
mented in AMD’s Page Walk Cache.

This paper has also shown that MMU caches dramatically
change the trade-offs in page table design for large address spaces.
Radix tree page tables make more effective use of the processor’s
L2 cache than either inverted page tables or translation storage
buffers. Radix tree page tables have a smaller page table entry size,
because both inverted page tables and translation storage buffers
must include a tag in the page table entry. Thus, the L2 cache is
able to hold more page table entries from the radix tree, increasing
its coverage and reducing DRAM accesses. So, while these alter-
nate structures are superior to the radix tree page table on its own
for large address spaces, a well designed MMU cache renders the
radix tree organization far superior.

10. REFERENCES
[1] AMD x86-64 Architecture Programmer’s Manual, Volume 2.
[2] The ASCI sweep3d Benchmark Code.
[3] Intel 64 and IA-32 Architectures Software Developer’s

Manual Volume 3A: System Programming Guide Part 1.
[4] Intel Itanium Architecture Software Developer’s Manual -

Volume 2: System Architecture, Revision 2.2.
[5] UltraSPARC III Cu User’s Manual.
[6] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.

DBMSs on a Modern Processor: Where Does Time Go? In
VLDB ’99: Proceedings of the 25th International Conference
on Very Large Data Bases, pages 266–277, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[7] K. Bala, M. F. Kaashoek, and W. E. Weihl. Software
prefetching and caching for translation lookaside buffers. In
OSDI ’94: Proceedings of the 1st USENIX conference on
Operating Systems Design and Implementation, page 18,
Berkeley, CA, USA, 1994. USENIX Association.

[8] R. Bedicheck. SimNow: Fast platform simulation purely in
software. In Hot Chips 16, 2004.

[9] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne.
Accelerating two-dimensional page walks for virtualized
systems. In ASPLOS XIII: Proceedings of the 13th
international conference on Architectural support for
programming languages and operating systems, pages
26–35, New York, NY, USA, 2008. ACM.

[10] A. Bhattacharjee and M. Martonosi. Inter-core cooperative
tlb for chip multiprocessors. In ASPLOS ’10: Proceedings of
the fifteenth edition of ASPLOS on Architectural support for

programming languages and operating systems, pages
359–370, New York, NY, USA, 2010. ACM.

[11] J. J. Dongarra and P. Luszczek. Introduction to the
HPCChallenge Benchmark Suite. Technical Report 05-544,
University of Tennessee - Knoxville,
http://icl.cs.utk.edu/hpcc/, 2005.

[12] J. Edler and M. D. Hill. Dinero IV Trace-Driven
Uniprocessor Cache Simulator, 1998.

[13] H. Garcia-Molina, J. Ullman, and J. Widom. Database
System Implementation. Prentice Hall, 2000.

[14] J. L. Henning. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, 2006.

[15] B. L. Jacob and T. N. Mudge. A look at several memory
management units, TLB-refill mechanisms, and page table
organizations. In ASPLOS-VIII: Proceedings of the eighth
international conference on Architectural support for
programming languages and operating systems, pages
295–306, New York, NY, USA, 1998. ACM.

[16] G. B. Kandiraju and A. Sivasubramaniam. Going the
distance for tlb prefetching: an application-driven study. In
ISCA ’02: Proceedings of the 29th annual international
symposium on Computer architecture, pages 195–206,
Washington, DC, USA, 2002. IEEE Computer Society.

[17] D. E. Knuth. The Art of Computer Programming 3. Sorting
and Searching: The Classic Work Newly Updated and
Revised. Addison-Wesley Longman, Amsterdam, 2. a.
edition, 1998.

[18] J. Liedtke. Address space sparsity and fine granularity. In EW
6: Proceedings of the 6th workshop on ACM SIGOPS
European workshop, pages 78–81, New York, NY, USA,
1994. ACM.

[19] C. McCurdy, A. L. Cox, and J. Vetter. Investigating the TLB
Behavior of High-end Scientific Applications on Commodity
Microprocessors. In ISPASS ’08: Proceedings of the ISPASS
2008 - IEEE International Symposium on Performance
Analysis of Systems and software, pages 95–104,
Washington, DC, USA, 2008. IEEE Computer Society.

[20] A. Saulsbury, F. Dahlgren, and P. Stenström. Recency-based
tlb preloading. In ISCA ’00: Proceedings of the 27th annual
international symposium on Computer architecture, pages
117–127, New York, NY, USA, 2000. ACM.

[21] Standard Performance Evaluation Corporation. The SPEC
JBB2005 Benchmark, 2005.

[22] M. Talluri and M. D. Hill. Surpassing the tlb performance of
superpages with less operating system support. In
Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1994.

[23] M. Talluri, M. D. Hill, and Y. A. Khalidi. A new page table
for 64-bit address spaces. In SOSP ’95: Proceedings of the
fifteenth ACM symposium on Operating systems principles,
pages 184–200, New York, NY, USA, 1995. ACM.

[24] M. Wu and W. Zwaenepoel. Improving tlb miss handling
with page table pointer caches. Technical Report TR97-296,
Rice University, 1996.

[25] N. Young. On-line caching as cache size varies. In SODA
’91: Proceedings of the second annual ACM-SIAM
symposium on Discrete algorithms, pages 241–250,
Philadelphia, PA, USA, 1991. Society for Industrial and
Applied Mathematics.

59

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

