
Lossless and Lossy Memory I/O Link Compression
for Improving Performance of GPGPU Workloads

Vijay Sathish†, Michael J. Schulte‡, Nam Sung Kim†

†The University of Wisconsin-Madison, WI, U.S.A. ‡Advanced Micro Devices, TX, U.S.A.

sathish@wisc.edu, michael.schulte@amd.com, nskim@engr.wisc.edu

Abstract
State-of-the-art graphic processing units (GPUs) provide very high
memory bandwidth, but the performance of many general-purpose
GPU (GPGPU) workloads is still bounded by memory bandwidth.
Although compression techniques have been adopted by commer-
cial GPUs, they are only used for compressing texture and color
data, not data for GPGPU workloads. Furthermore, the
microarchitectural details of GPU compression are proprietary and
its performance benefits have not been previously published. In this
paper, we first investigate required microarchitectural changes to
support lossless compression techniques for data transferred be-
tween the GPU and its off-chip memory to provide higher effective
bandwidth. Second, by exploiting some characteristics of floating-
point numbers in many GPGPU workloads, we propose to apply
lossless compression to floating-point numbers after truncating
their least-significant bits (i.e., lossy compression). This can reduce
the bandwidth usage even further with very little impact on overall
computational accuracy. Finally, we demonstrate that a GPU with
our lossless and lossy compression techniques can improve the
performance of memory-bound GPGPU workloads by 26% and
41% on average.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:
Single-instruction-stream, multiple-data-stream processors (SIMD)

General Terms
Performance, Design

Keywords
Graphics processing units, lossless and lossy data compression.

1. Introduction
To reduce the performance impact of long latency off-chip memory
accesses, GPUs rely on many threads in flight to hide memory
latency. A GPU’s hardware scheduler simply switches to a differ-
ent thread group when the current group is waiting for data to re-
turn from its off-chip memory. Since these context switches are
lightweight and involve practically no overhead for GPUs, the
memory access latency can be effectively hidden for workloads
with many threads. However, as the ratio of memory instructions to
compute instructions increases, this technique becomes less effec-
tive. Workloads exhibiting such a behavior can be classified as
memory-bound workloads.

Clearly, one way to improve the performance of these work-
loads is to improve the memory bandwidth by integrating more
memory channels (i.e., memory controllers (MCs) and their mem-
ory I/O links (i.e., I/O circuits and pins, and interconnects)) and/or
increasing their frequencies. The technical challenges, however,
include limits in off-chip memory speeds and the number of I/O
pins, neither of which scale well with technology scaling for a
given chip package. Moreover, individual memory channels consti-
tute a notable fraction of the power consumption in computing
platforms (e.g., 25W for four DDR3 memory channels for a 4GB
total capacity [1]), which can limit bandwidth and frequency in-
creases under a given platform power constraint.

Considering such challenges, we can improve the memory
bandwidth by utilizing the available memory channels more effi-
ciently. As an effective alternative, in this paper, we propose a GPU
architecture supporting lossless and lossy compression techniques
for data transferred through the memory I/O links. Although com-
pression techniques have been adopted by commercial GPUs [2],
they are customized for compressing texture and color data. Fur-
thermore, the microarchitectural details for GPU data compression
are proprietary and its performance benefits have not been previ-
ously published.

The key contributions of this paper are as follows. First, we
demonstrate the potential of a hardware-based lossless compression
technique to improve the performance of GPUs by showing the
compressibility of the data stored in GPU’s off-chip memory (Sec-
tion 2). Second, we propose necessary microarchitectural enhance-
ment to support lossless and lossy compression for data transferred
through the GPU memory I/O links (Section 3). The compression
technique and implementation for GPUs are different than those for
CPUs [3,4,5,6] because they exploit (i) a programming model and
platform architecture unique to GPUs, which allows the compres-
sion to be transparent to existing workloads and compilation tools,
and (ii) the impact of compression latency on performance is not as
critical for GPUs as it is for CPUs. Furthermore, our lossy com-
pression technique exploits the observation that reducing the preci-
sion of floating-point (FP) numbers incurs very little accuracy loss
for many GPGPU workloads [7,8]; we apply lossless compression
after truncating some least-significant bits (LSBs) of FP data to
reduce the bandwidth usage even further while producing accepta-
ble results for many GPGPU workloads in recognition, mining,
synthesis (RMS) and physics simulation domains. Finally, we
demonstrate the performance improvements of the GPU supporting
lossless and lossy compression techniques, respectively (Section 4).

2. The Case for GPU Memory I/O Link
Compression

GPUs typically provide much higher off-chip memory bandwidth
and shorter latency than CPUs by using more memory channels and
faster memory (e.g., GDDR); each channel is controlled by a MC.
For example, 4-8 MCs are integrated in NVIDIA GPUs. However,
many GPU workloads can still benefit from more memory channels
(i.e., higher bandwidth). Figure 1 shows the performance speedup
of 16 GPU workloads when the number of MCs (i.e., memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09...$15.00.

325

Figure 1: Speedup when varying the number of MCs, relative to a baseline GPU with 8 MCs.

channels) is increased from 8 to 10, 12, 16, and 32. While compute-
bound workloads (i.e., AES, MRI, PF, SAD, SHA, and STO) show
little or no performance improvement, memory-bound workloads
(i.e., BKP, FFT, HOT, JPG, LPS, NN, RAY, SPM, and STN) sig-
nificantly benefit from higher memory bandwidth provided by
more meory channels; GMM and GMA denote the geometric mean
speedup of memory-bound and all workloads, respectively. Dou-
bling the number of memory channels increases the geometric
mean of the performance of memory-bound workloads by 81%.
See Section 4.1 for the benchmark descriptions, properties, and
simulation methodology.

 Figure 2 shows pseudo code for (a) an NVIDIA CUDA appli-
cation, and (b) the corresponding data flow between a CPU (i.e.,
host) and a GPU (i.e., device). The CPU initializes the data for the
GPU, stores them in the CPU DRAM (i.e., CPU main memory),
and initiates a memory copy transaction by invoking the
“CUDAMemCpy” function. Once the GPU acknowledges the
transaction, the GPU’s DMA controller begins to copy the data,
which go through the GPU’s on-chip interconnect and MCs to the
GPU DRAM; see the dotted arrow lines in the “HostToDevice”
direction.

After the DMA controller finishes the copy transaction, the
CPU launches a GPU kernel and the GPU begins computations.
During the kernel execution, streaming multiprocessors (SMs),
each of which is comprised of 8-32 CUDA cores, read/write data
from/to the GPU DRAM through the on-chip interconnect and
MCs; see the solid arrow lines in the “MemRdWr” direction. After
the GPU finishes the kernel execution, it invokes another
“CUDAMemCpy,” requesting the DMA controller to copy the
computed results back to the CPU DRAM; see the dotted arrow
lines in the “DeviceToHost” direction. During the memory copy

transactions from the CPU DRAM to the GPU DRAM, the data can
be compressed on the fly if the compressors, which are integrated
with the GPU MCs, provide sufficiently high bandwidth.

When an SM requests a memory read (i.e., a 128-byte block
per request), an MC begins to fetch 16-byte compressed data
chunks from the GPU DRAM in burst mode (i.e., 4 bytes per trans-
fer). Since the number of transferred 16-byte chunks for the com-
pressed 128-byte block is fewer than for the uncompressed block,
the effective bandwidth and latency between the GPU and its off-
chip memory are improved; the compressors and decompressors
should support higher throughput than the memory channels. Then,
the compressed block can be decompressed in the MC using the
decompressors, and the decompressed 128-byte block is sent back
to the SM; the gray-shaded region in Figure 2-(b) represents the
region where the data resides in compressed form.

Figure 3 plots the average compression ratio of data copied
from the CPU DRAM to the GPU DRAM; a single block is consid-
ered as a single independent unit for compression, and the size of a
single block is denoted by block size. We applied a compression
algorithm presented by Chen et al. [9] to every block transferred to
the GPU DRAM. On average, the volume of the data can be com-
pressed to approximately a half of the uncompressed size for 128-
byte blocks. In turn, this can improve the effective (or perceived)
bandwidth by a factor of two.

Finally, integrating the CPU and GPU on the same chip can
enable them to share the same memory and may not require data
transfers between them. However, high-end GPUs will still contin-
ue to be discrete devices (i.e., they are not likely to be integrated
with CPUs in the same chip) because of power and thermal con-
straints.

Figure 2: (a) Pseudo code using CUDA. (b) The data transfer flows between a host CPU and a GPU device; some
GPUs have on-chip L2 caches.

//main routine that executes on the CPU
int main(void){
 .
 .
 // initializes data
 .
 .
 // initiates the data transfer to the GPU
 cudaMemcpy(..., MemcpyHostToDevice);

 // invokes the kernel
 foo <<<n_blocks, block_size>>> (...);

 // initiates the data transfer to the CPU
 cudaMemcpy(...,MemcpyDeviceToHost);
 .
 .

 (a) (b)

CPU

CPU
DRAM

SM

DMA

SM

On-Chip Interconnect

SM SM

MC MC MC

GPU
DRAM

GPU
DRAM

GPU
DRAM

MemRdWrMemCpyHostToDevice

MemCpyDeviceToHost

MemRdWr flow

MemCpy flow
Comp/Decomp
Boundary

L2 $ L2 $ L2 $

326

3. Microarchitectural Enhancement for Mem-
ory I/O Link Compression

There are two important observations for supporting hardware-
based memory I/O link compression to mitigate the memory band-
width and latency issues for GPUs. First, the data values for some
GPU workloads are likely to be highly correlated, resulting in high
compression ratios as shown in Section 2. This can potentially im-
prove the perceived bandwidth and latency. Second, threads run-
ning on an SM are executed as a group (i.e., warp) in a single in-
struction multiple thread (SIMT) fashion. Consequently, each warp,
which is comprised of 32 threads, generates 128-byte memory ac-
cesses. Thus, GPUs allow a larger block size for compression than
CPUs, potentially leading to a higher compression ratio.

3.1 General Requirements
In this paper, we make the compressed data residing in the GPU’s
DRAM transparent to the GPU’s SMs by compressing and decom-
pressing data with dedicated hardware in the GPU’s MCs. Moreo-
ver, the host CPU is also completely isolated from the compres-
sions and decompressions. Thus, this architectural change places no
need for modifications to the rest of the system. The objective of
the proposed compression technique for GPUs is not to increase the
effective capacity of the GPU DRAM, but to improve the effective

bandwidth and/or latency. Thus, our design still allocates 128 bytes
per block in the GPU’s DRAM, even though compressing a 128-
byte block results in fewer than 128 bytes, as illustrated in Figure
4(a); the space saved due to compression is left unused to eliminate
the complications often associated with space compaction and writ-
ing to compressed data.

3.2 Impact on Memory Bandwidth and Latency
In Figure 4(a), for the purpose of illustration, we assume that (i)
GDDR3 has a burst length of four with a 4-byte bus width (16 bytes
per burst) [10], and (ii) the throughput of our decompressor is 16
bytes per cycle with a 1-cycle latency [9]. Although the frequency of
the decompressor can be 1.2GHz in a 65nm technology [9] and the
frequency of GDDR3 and the MCs is 800MHz, we assume that the
decompressor is operating at 800MHz. For example, when a 128-
byte block is compressed to two 16-byte chunks (i.e., compression
ratio = 0.25), a compressed 16-byte chunk from each burst read
yields 64 uncompressed bytes on average. In this case, the bandwidth
usage and latency are reduced to 1/4 and 2/3 of fetching a 128-byte
block. While a compressed data block from a context is being de-
compressed, a memory access by another context can be interleaved
to maximize the usage of the memory I/O links (and thus the band-
width). Since these two data blocks are independent, they can also be
decompressed in parallel with an additional decompressor.

(a) (b)

Figure 4: (a) Data flow for compression and the corresponding DRAM read and decompression transaction for 128
bytes compressed to two 16-byte blocks. In the figure, GDDR3 has a burst length of 4 with a 4-byte bus width (16
bytes per burst) [10]; and the throughput of our compressor and decompressor is 4 bytes/cycle and 16 bytes/cycle,
respectively with a 1-cycle latency [9]. (b) Interaction between DRAM, DRAM controller, metadata LUT, and
decompressor, where N is the number of compressed 16-byte chunks to fetch, instead of the full 8 16-byte chunks.

comp

DRAM MC

decomp

ro
u

te
r8×16 (=128) bytes

Tdecomp = 1 cycle

Tburst = 2 cycles
(8B/cycle)

latency (uncompressed)

16B comp blks

64B decomp blks

(1)

(1)

(2)

(2)

0x00…000
0x00…080
0x00…100
0x00…180

0xff…100
0xf f…f80

DRAM

addr

DRAM
CNTR

N×16B

data

MD LUT

decompdata

blk_size

blk_addr blk_addr

N×16B

8×16B
data

MD LUT

0 1 0

4 bits

1
0 1 11

- - -0
1 0 11

DRAM

8×16 (=128) bytes

0x00…000
0x00…080

0xff…100
0xf f…f80

blk_addr

blk_size(N=2)

0xff…f80

latency (compressed)

Figure 3: Average compression ratio, which is defined as the size of the compressed blocks over the size of the
uncompressed blocks, when varying unit block size over which the compression algorithm is applied.

327

3.3 Metadata Cache
Need for compression metadata: There are two important reasons
to maintain metadata information for every original 128-byte block
stored in the GPU’s DRAM. First, we need to store 1 bit per origi-
nal 128-byte block to indicate whether or not the block is com-
pressed; it is not always possible to compress every original 128-
byte block to a block with fewer than 128 bytes. Second, we need
to fetch only the compressed 16-byte chunks from the correspond-
ing 128-byte block space. Although fetching the empty unused
chunks in a full 128-byte block space is not harmful, it will nullify
the bandwidth and latency benefit that we are seeking to maximize.
Since the number of 16-byte compressed chunks per 128-byte
block can vary from 1 to 8, we use three more bits per 128-byte
block to indicate the number of 16-byte chunks in each block.

The need for metadata raises the question of how and where
the metadata can be allocated, stored, and accessed. When the data
blocks are being copied for the first time from the CPU’s DRAM to
the GPU’s DRAM by the GPU’s DMA controller, look-up-table
(LUT) entries that contain metadata information for all the trans-
ferred 128-byte blocks, are populated on the fly during the com-
pression process. The entries will be updated later if writes change
the number of 16-byte compressed chunks. We also need to ensure
that each MC only holds metadata information for the blocks be-
longing to that particular MC’s address space; the consecutive LUT
entries within a MC correspond to consecutive original 128-byte
blocks belonging to the MC’s address space.

Naïve implementation of metadata LUT: For the naïve imple-
mentation of the LUT, we assume the presence of a perfect cache to
store all the metadata information. In Figure 4(b), for all read re-
quests, the LUT returns the number of compressed 16-byte chunks
(N) for a given block address (blk_addr). Then, the DRAM control-
ler fetches N 16-byte chunks instead of 8 16-byte chunks. No mat-
ter what the value of N is, N 16-byte chunks are always decom-
pressed into 8 16-byte chunks (i.e., the original 128-byte block).
However, the GPU’s DRAM can be up to 4GB for 32-bit address-
ing. Thus, we need 16MB (= 4GB / 128B × 4b) for LUT storage
considering 4 bits of metadata information per original 128-byte
block. Although the LUT size is just 0.4% of the total GPU
memory space, it is very large for an on-chip memory, and thus not
practical. On the other hand, if the LUT is located in the GPU’s
DRAM, the effective latency of memory accesses will increase
considerably since each read or write requires two memory access-
es, first for the metadata and then for the actual data.

Metadata cache: In this paper, we devise a microarchitectural
technique to allocate the metadata information in the GPU DRAM,
but cache the most-recently-used metadata information on the chip.
This reduces the on-chip memory usage and the latency penalty of
accessing metadata stored in the GPU’s off-chip memory. Since we
adopt a static one-to-one mapping of metadata information based
on the data block’s address, we reserve 16MB (this is sufficient for
32-bit addressing) of the GPU’s DRAM from a known base address
during the GPU initialization. When a particular data request ad-
dress is provided to the MC, the metadata information correspond-
ing to the block always maps to a location in the reserved 16MB
space.

MSHR for metadata cache: Caching metadata utilizes a dedicated
small two-way set-associative cache and a miss status handling
register (MSHR) tables per MC. The metadata requests are placed
by the MCs on behalf of the compressors or decompressors to the
GPU’s DRAM. Returning metadata responses from the GPU’s
DRAM are used to update the metadata caches and are not for-
warded to any of the SMs. The hardware overhead of adding such a
cache and a MSHR table per MC is negligible compared to storing

all the metadata on chip; we provide a detailed analysis showing
the cycle time, area and power consumption of a metadata cache
and a MSHR table later in Section 4.1. Whenever a request for
metadata misses, an MSHR entry, which is used to prevent duplica-
tion of metadata requests in flight, is allocated (if it has not already
been allocated previously) and the request is sent to the GPU’s
DRAM.

Technically, the original 128-byte block request associated
with the missed metadata must stall until the metadata returns and
is parsed by the request size modifier that converts 8 16-byte ac-
cesses to N 16-byte access. This is to ascertain whether or not a
block is compressed, and if so, how many 16-byte chunks need to
be fetched from the GPU’s DRAM. However, stalling memory
requests for a metadata cache miss wastes precious memory band-
width. Thus, the read request instead proceeds as a request for a full
128-byte block. This conservative sizing of data requests on a
metadata cache miss ensures that memory bandwidth is never wast-
ed due to stalling behind metadata requests. However, we note that
the received 128-byte block has to stall at the decompressor until
the metadata returns to verify whether or not the data block was
compressed. Since metadata requests are always given priority over
read/write requests, this stall period should be short. We also note
that metadata responses returning from the GPU’s DRAM require a
separate virtual network to ensure that they never get blocked be-
hind stalled data responses that are waiting for their corresponding
metadata responses, as this would lead to a deadlock scenario.

3.4 Lossy Compression Technique
The impact of reducing the precision of FP data on computing ac-
curacy has been widely studied for media, RMS, and physics simu-
lation domain workloads [7,8]; truncating some LSBs of FP data
before computing with them results in very little loss in overall
accuracy while reducing a considerable amount of chip area and/or
power consumption of FP units (FPUs). Furthermore, GPUs al-
ready support two different FP computation modes: IEEE compli-
ant and non-compliant FP computations where the latter is much
faster than the former at the cost of a small accuracy loss [11].
Since the LSBs in the data transferred from the GPU’s off-chip
memory are going to be truncated before computations in such a
computing method, we observe that the GPU does not need to bring
in the LSBs of the FP data. We hypothesize that this can also reduce
the memory bandwidth usage significantly with a negligible loss in
accuracy.

The main challenge, however, is that many GPGPU workloads
use a mix of both integer (INT) and FP data and truncating INT
data, unlike FP data, may have detrimental effects on accuracy
(and sometimes may lead to erroneous execution states). Therefore,
we propose to apply lossy compression only to FP data. Consider-
ing the CUDA programming style, which often transfers a set of
data with the same data type from/to the GPU’s off-chip memory
using the CUDAMemCpy function as shown in Figure 5(a), we can
selectively apply lossy compression only to FP data. For a pro-
grammer to specify the number of LSBs to be truncated for a set of
FP data, we modify the CUDAMemCpy function interface; in Fig-
ure 5(a) we truncate the 8 LSBs of array “bd” copied to the GPU
off-chip memory.

Figure 5(b) illustrates the hardware support for lossy compres-
sion. For example, if we truncate 8 out of 24 mantissa bits in every
32-bit single precision FP datum in a 128B block, effectively we
shrink it to 96B, reducing the bandwidth usage by 25%; two extra
bits in each MD LUT entry record the number of truncated LSBs,
which is needed for decompression later. In addition to the trunca-
tion, we apply the lossless compression technique to the remaining
96B. This results in a 32B compressed block in this example. Note

328

that some applications require greater accuracy and use double-
precision FP arithmetic. In this case, the proposed lossy compres-
sion can be an optional feature that programmers can turn on (e.g.,
to accelerate initial solution searches for large problem spaces).

3.5 MC Microarchitecture
Figure 6 illustrates the microarchitectural changes required for each
MC to support a hardware-based memory-link compression tech-
nique. The GPU’s DRAM (using NVIDIA’s architectural conven-
tion) is partitioned into four different address spaces depending on
the properties and caching patterns of the underlying data. The
global address space stores the data arrays used for computation
and can be both read from and written into. The read-only texture
address space stores graphics textures and read only data struc-

tures. The read-only constant address space stores constants re-
quired during computation while a local address space is used to
manage register spills (register data sent back from the SMs to the
GPU’s DRAM). Our proposed architecture only supports compres-
sion of the global and texture spaces, which represent the bulk of
the memory traffic. Therefore, only requests prefixed with a “g”
(global or texture space) in Figure 6 need to pass through the com-
pressor and decompressor.

The requests prefixed “l” represent traffic to local and constant
address spaces and safely bypass the compression scheme. The
abbreviations “rd,” “wr,” “req,” and “resp” refer to read, write,
request, and response. For example, “g_wr” refers to a global write
initiated by an SM. If a write is to a full 128-byte block, it passes
through the compressor before getting written to the GPU’s

Figure 6: MC microarchitecture to support compression and decompression. The gray-color blocks are
components added to an existing MC. The numbers in the parentheses represent the number of 16-byte chunks.

g_wr(8)

g_rdpaired(8)
if M < 8

pre_comprQ

post_comprQ

wr_reqQ

pre_decomprQ

g_rd_respQg_rdpaired_respQ

l_rd_resp(8)g_rd_resp(N)

g_rdpaired_resp (8)

g_wr (N)

mdata_resp(8)

mdata_wr(8)mdata_rd (8)

DRAM controller

decomprMD cache

MD MSHR

compr

rd_reqQ

reqsize mod N

g_wr (M)

l_rd (8)

g_rd (8)

l_wr (8)
g_rd (N)

g_wr (M) if M == 8

rd_respQ

Figure 5: (a) cudaMemcpy example code and (b) hardware support for lossy compression.

 int *a = new int[N*N];
 float *b = new float[N*N];

 for(int i = 0; i < M*M; ++i)
 a[i] = i; b[i] = 1.0f;

 int *ad; float *bd;
 const int intsize = N*N*sizeof(int);
 const int fpsize = N*N*sizeof(float);

 cudaMalloc((void**)&ad, intsize);
 cudaMalloc((void**)&bd, fpsize);

 //existing cudaMemcpy code
 //cudaMemcpy(ad, a, intsize, HostToDevice);
 //cudaMemcpy(bd, b, fpsize, HostToDevice);

 //new cudamMemcpy to support lossy compression
 cudaMemcpy(ad, a, intsize, 0, HostToDevice);

cudaMemcpy(bd, b, fpsize, 8, HostToDevice);

(a) (b)

exps mantissa

32 × 32b (=128B)

32 × 24b (=96B)

compressor

0 1 010 0

00
10
01
11

no truncation
8b truncation

12b truncation
16b truncation

truncator

32B

MD LUT entry

blk_size

329

Table 2: Simulation parameters (see [12] for details).

of SMs 42~60 # of Memory Channels 8

SM Freq 1.30GHz Memory Freqquency 800MHz (GDDR3)

On-chip Interconnect Freq 0.65GHz Memory Bandwidth 102.4 GB/s

Warp Size 32 Bus Width per Channel 4 (Bytes/Cycle)

SIMD Width 8 Memory Controller FR-FCFS

Max # of Threads per SM 1024 Branch Divergence Immediate post dominator

Max # of CTAs per SM 8 Warp Scheduling Round Robin

of Registers per SM 16384 Const. Cache Size per SM 8 KB

L1$ Memory per SM 32KB Texture Cache Size per SM 8 KB

Metadata cache 32 entries (128 bytes/entry) Metadata MSHR 10 entries

pre _compQ 32 entries (8 bytes/entry) pre/post_decompQ/ *_resQ 32 entries (16 bytes/entry)

Table 1: Description of abbreviations used in Figure 6.

g_rd/wr (l_rd/wr) global (local) read/write request by SM

g_rdpaired global read request by either SM or MC as part of read-modify-write operation

md_rd/wr MD line read/write request by MD MSHR in response to MD cache miss/dirty line eviction

g_rd_resp (l_rd_resp) global data (local data) from DRAM in response to g_rd (l_rd) or g_rdpaired

g_rdpaired_resp global data after decompression in response to g_rdpaired

md_resp MD line from DRAM in response to md_rd

rd/wr_reqQ A physical queue staging all read/write requests to the DRAM controller

pre/post_compQ A logical queue staging g_wr(16) and g_wr(N) data before/after compression

pre _decompQ A physical queue staging g_rd or g_rdpaired response data before decompression

g_rd/rdpaired_respQ A physical queue staging g_rd/g_rdpaired response data after decompression

rd_respQ A physical queue staging all read response data returning to SMs from MC

DRAM. However, a partial write, which is smaller than 128 bytes,
needs to be converted to a read request (marked “g_rdpaired”)
followed by an update and write back with decompression and
compression operations in between. Such an operation can be cost-
ly and is the main reason for potential performance degradations
with a larger block size than the L1 cache line size (i.e., 128 bytes).
The compressor also needs to update the corresponding metadata
entry in the LUT after compression for the write. The request size
modifier (“reqsize mod” in Figure 6) block is used to modify the
read request size by reading the metadata cache to ascertain the
number of compressed 16-byte chunks that need to be fetched from
the GPU’s off-chip memory, and thus plays an important role in the
memory traffic reduction. Table 1 describes the abbreviations used
in Figure 6.

4. Evaluation
4.1 Methodology
GPU architecture simulation: In this study, we analyze the per-
formance of a GPU using GPGPU-Sim, which was validated
against NVIDIA’s Quadro FX 5800 and showed more than 90%
performance correlation [12]. Our baseline GPU is configured to
simulate NVIDIA’s Quadro FX 5800 [13] with an enhanced num-
ber of streaming multiprocessors (SMs) and MCs to model recent
high-end GPUs like the GTX580; see Table 2 for detailed simula-
tion parameters. We modify GPGPU-sim to model a GPU architec-
ture supporting our compression technique. Note that NVIDIA’s
GTX580 has 16 SMs operating while our baseline GPUs have 42 to
60 SMs, but GTX580 has 32 CUDA cores per SM while Quadro
FX5800 has 8 CUDA cores per SM. That is, GTX580 has 512
CUDA cores, while our GPUs have 336 to 480 CUDA cores. We
use 16 benchmarks from the GPGPU-Sim [12], Rodinia [14], Par-

boil2 [15] and ERCBench [16] benchmark suites. Their characteris-
tics are summarized in Table 3.

Compressor/decompressor throughput, power, and area mod-
els: We assume that the architecture uses the compressor and
decompressor hardware design proposed in [9], and our proposed
microarchitectural enhancements described in Section 3. Table 4
summarizes the frequencies, throughputs per cycle, power con-
sumption, and area of a compressor and a decompressor designed
with a 65nm technology. The compressor is pipelined with a 3-
cycle initial latency and it can compress 64 bits per cycle. The
decompressor is not pipelined and it can decompress 128 bits per
cycle. The combined power consumption of 8 decompressor and
compressor pairs (one pair per MC) is 0.24% of the maximum
power consumption of a Quadro FX 5800 that typically consumes
187W. Similarly, the area overhead is negligible (the Quadro FX
5800 die area is close to 500mm2).

Metadata cache and its MSHR timing, power, and area models:
We use CACTI 6.5 with the 65nm technology itrs-hp option to
evaluate the cycle time, power, and area overhead of metadata
caches and their MSHR tables. The area per 32-entry metadata
cache with 128-byte line size is less than 0.05mm2. The maximum
cycle time is less than 800ps and the total power consumption is
roughly 10mW at 800MHz.

4.2 Results
Performance improvement with compression /decompression
using perfect LUT: Figure 7 shows the performance speedup trend
as the throughput per cycle of decompressors is varied from 4 to 32
bytes per cycle; the maximum throughput per cycle of
decompressors from [9] is 16 bytes per cycle at 1.2GHz while the
MCs operates at 800MHz. Assuming a perfect metadata LUT and

330

Compressor Decompressor

Maximum frequency 1.25GHz Maximum frequency 1.2GHz

Throughput/cycle 64 bits Throughput/cycle 128 bits (16 bytes)

Power consumption 32.63mW Power consumption 24.14mW

Area 0.043mm2 Area 0.043mm2

Table 4: Hardware parameters for compressor/decompressor designed with a 65nm technology [9].

16 bytes per cycle for the throughput of decompressors, the pro-
posed technique improves the geometric mean of performance for
memory-bound workloads by 26%. FFT and STN show good initial
compression ratios (i.e., the compression ratio achieved during the
initial data transfer from the CPU’s DRAM to the GPU’s DRAM)
in Section 2, but their compression ratios become close to 1 as the
workload progresses, which means little or no compression is
achieved, as the execution of workloads progresses. This results in
little or no improvement in performance for such workloads. The
proposed compression technique does not improve the performance
of compute-bound workloads notably, but it does not negatively
impact their performance either; PF was categorized as a compute-
bound workload in Section 2 where the bandwidth was increased to
identify compute- and memory-bound workloads, but the compres-
sion technique improves its performance. This is because the com-
pression technique also reduces DRAM access latency; we observe
that PF performance increases when the frequency of MC is in-
creased.

Impact of metadata cache size on performance: To analyze the
impact of metadata cache size on the performance of GPUs, we
vary the number of entries from 4 to 32. The miss rates are high if
the number of metadata cache entries is either 4 or 8. However, the
geometric mean of the miss rates become less than 2% if the num-
ber of metadata cache entries is 16. When the performance of a
GPU using perfect on-chip metadata LUTs is compared to that of a
GPU using metadata caches, we observe that the 16-entry metadata
data caches result in a geometric mean performance degradation of
roughly 1%. Note that most compute-bound workloads have rela-
tively high miss rates. This is because their memory accesses are
not frequent enough to exercise metadata caches, resulting in high
miss rates caused by compulsory misses. Furthermore, 32-entry

metadata caches have a negligible impact on performance relative
to perfect on-chip metadata LUTs. This is because (i) data accesses
by SMs show very high spatial locality, (ii) the metadata cache
retrieves 128 bytes of metadata information per metadata cache
miss, and (iii) a 32-entry metadata cache per MC exceeds the entire
data caching capacity of our baseline GPU. Since we need only
four-bit metadata for each 128B data block and the number of 128B
data blocks covered by one metadata cache line is 128 × 8 bits / 4
bits = 256, each 128-byte metadata cache line contains the metadata
for 256 × 128-byte data blocks (i.e., 32KB worth of data blocks).
Thus, a 32-entry metadata cache in each MC can contain the meta-
data for 32 × 256 × 128-byte data blocks (i.e., 1MB worth of data
blocks). Since each MC has one 32-entry metadata cache and our
baseline GPU has total eight MCs, eight 32-entry metadata caches
contain the metadata for 8MB worth of data blocks. Note that the
total L1 capacity in our baseline GPU is at most 1.875MB for L1
caches (i.e., 32KB × 60 SMs) (and another baseline GPU support-
ing L2 caches has 2MB for L2 caches (i.e., 256KB × 8 MCs)).
Thus, a 32-entry metadata cache per MC exceeds the entire data
caching capacity of our baseline GPU.

Impact of the number of decompressors per MC on perfor-
mance: An MC can access multiple DRAM banks. In such a case,
multiple decompressors may reduce the latency of decompression.
Otherwise, the 16-byte chunks from the second bank must wait
until the decompression of all the 16-byte chunks from the first
bank is completed. However, our experiments using decompressors
with 16 bytes per cycle throughput show that the performance of a
GPU with two decompressors per MC shows only marginal per-
formance increase (~1%) compared to a GPU with one
decompressor per MC across all the workloads we examine. This is
because the throughput (i.e., bandwidth) of a single decompressor

Table 3: Benchmark summary.

Benchmark Acronym Property Working Set Size Working Set Data Composition

Back Propagation BKP

memory-bound

55MB single-precision FP

Fast Fourier Transform FFT 165MB single-precision FP

HotSpot HOT 13MB single-precision FP

JPEG encoder/decoder JPG 7MB single-precision FP

Leukocyte LKT 20MB single-precision FP / INT

3D Laplace solver LPS 33MB single-precision FP

Neural Network NN 11MB single-precision FP

Ray Tracing RAY 76MB single-precision FP / INT

Sparse Matrix Vector Multiplication SPM 40MB single-precision FP / INT

3D Stencil Operation STN 328MB single-precision FP

AES encryption/decryption AES

compute-bound

4MB INT

Magnetic Resonance Imaging Q MRI 3MB FP

Particle Filter PF 116MB double-precision FP

Sum of Absolute Difference SAD 18MB INT

SHA 1 encryption SHA 7MB INT

StoreGPU STO 1MB INT

331

Figure 8. Performance speedup when varying the number of SMs to analyze the effectiveness of the compression
technique for different bandwidth-compute ratio values.

is already twice as high as the memory bandwidth. In situations
where the throughput of the decompressor is close to or less than
the memory bandwidth, having multiple decompressors may be
useful.

Impact of the peak bandwidth to peak compute ratio on per-
formance: The peak bandwidth to peak compute ratio is a key
measure to check whether or not the memory bandwidth is bal-
anced with the compute capability. A GTX580 has 512 cores (16
SMs × 32 cores per SM) operating at 1.55GHz and it has a band-
width over compute ratio (BCR) of 0.24, while our baseline GPUs
have 336 to 480 cores (42 to 60 SMs × 8 cores per SM) operating at
1.3GHz and BCR ranging from 0.26~0.16.

Figure 8 shows performance speedup with the compression
technique when varying the number of SMs in a GPU when we fix
the memory bandwidth to the value shown Table 2; the speedup of
42-, 48-, 54-, and 60-SM GPUs with compression is relative to the
performance of 42-, 48-, 54-, and 60-SM GPUs without compres-
sion, respectively. The overall relative improvement with 42 SMs is
slightly lower than with 60 SMs, which demonstrates that the com-
pression technique can still be effective for a GPU with higher
BCR since most memory-bound workloads congest the MCs even
with much fewer SMs. These memory-bound workloads can easily
congest the MCs even with 48 SMs; Lee et al. [17] show that just
32 SMs could generate enough memory accesses to congest the
MCs. The geometric mean of speedup for all the memory-bound
workloads for 42, 48, 54, and 60 SMs is 22%, 24%, 27%, and 26
%, respectively. Note that the speedup trends of some workloads
such as FFT, JPG, and RAY have slight ups and downs as the num-
ber of SMs increases. This is because the performance of the base-
line 42-, 48-, 54-, and 60-SM GPUs, which do not support com-
pression, does not increase linearly with more SMs. Finally, the
BCR is lower for our baseline GPU with 60 SMs than the GTX580,
but we expect that future GPUs will have lower BCRs.

Performance improvement with L2 caches + compres-
sion/decompression: Figure 9 plots the speedup when varying L2
cache size. We measure the performance speedup of a GPU sup-
porting the proposed compression technique (32-entry MD caches
and 16 bytes per cycle decompressor throughput) with 32KB,
64KB, 96KB, and 256KB L2 caches per MC (total 256KB, 512KB,
768KB, and 2MB L2 caches); the NVIDIA Fermi architecture sup-
ports a 768KB total L2 cache capacity [11]. Then, we plot the per-
formance speedup of the GPU relative to our baseline GPU that
neither has L2 caches nor supports the compression technique. The
geometric mean performance speedup of the memory-bound work-
loads is about 88% when a GPU with a 768KB L2 cache supports
the compression technique. For roughly half of workloads we ex-
amined (i.e., JPG, NN, BKP, HOT, LPS, and SPM), the perfor-
mance of a GPU supporting the compression technique with
768KB L2 caches is higher than or comparable to that of a GPU
with 2MB L2 caches only. To isolate the performance increase
contributed by the compression technique, we stack the speedup
numbers shown in Figure 9 on top of the speedup numbers obtained
with a GPU that has the same size L2 caches but does not support
the compression technique. JPEG, RAY, BKP, HOT, LPS, and SPM
show notable improvements over using L2 caches only. The com-
pression technique increases the geometric mean of performance of
a GPU with a 768KB L2 cache by 37% for memory-bound work-
loads.

Note that the compression technique without L2 caches im-
proves the performance by only 26% while the improvement with
the compression technique and L2 caches is nearly 37%. This can
be explained by the following observations we made based on sim-
ulation statistics. First, the L2 miss rates of some workloads are
reduced with the compression technique, because highly com-
pressed blocks arrive earlier than their uncompressed counterparts,
and the subsequent memory accesses for the blocks do not experi-
ence misses. Second, L2 caches filter some or many accesses to the
DRAM, reducing the contentions for accessing the memory chan-
nels. This allows the MCs and the compression technique to work

Figure 7. Performance speedup when varying throughput/cycle of decompressors. A perfect metadata LUT and 60
SMs are assumed.

332

more efficiently for servicing the same number of accesses. On the
other hand, if the MCs are flooded with too many concurrent re-
quests, their service efficiency goes down substantially and the
compression technique shows less benefit. Finally, the compression
technique improves the effective memory bandwidth and latency.
This leads to less memory contention and allows L2 caches to han-
dle misses more efficiently, leading to a synergistic effect of more
efficient services for memory requests.

Impact of lossy compression on performance and overall com-
puting accuracy: Figure 10(a) shows the performance speedup as
the number of truncated LSBs increases for the memory-bound
workloads. The GPU with more LSBs truncated provides higher
performance improvement for most workloads except for RAY; the
performance of RAY is limited by many simultaneous memory
accesses rather than high memory bandwidth usage and the trunca-
tion does not improve the performance since the LSBs of the data
are already zero. The compression after truncating 8~16 LSBs im-
proves the geometric mean performance by 41%~61%, which is
15%~41% higher than the lossless compression alone. Meanwhile,
as demonstrated in Figure 10(b), the impact on overall computing
accuracy (i.e., the geometric mean of normalized root-mean-square
error (NRMSE)) is 10-5 to10-3 for truncated single-precision data;
we obtain the NRMSE values for all the final data transferred back
to the CPU at the end of the kernel executions using double preci-
sion arithmetic. Note that RAY shows no error even after the lower
16-bits are truncated since the original input data applied to the FP
units have zeros in their 16 LSBs. This is because RAY only utiliz-
es the upper 8 bits of the mantissa for its input data. Thus, RAY is
excluded when calculating the geometric mean of the NRMSE
values.

5. Related Work
Hardware-based memory data compression techniques have been
primarily employed either to increase the effective memory size by
memory compaction, or to increase the effective cache size. Chen

et al. used a variant of the Lempel-Ziv (LZ) compression algorithm
to propose a scheme that dynamically partitions the cache into sec-
tions of different compressibility [3]. Alameldeen et al. showed that
an adaptive dynamic scheme that chooses between holding com-
pressed or uncompressed data in the L2 can improve the perfor-
mance of memory-intensive workloads while constraining the per-
formance degradation of other workloads to an acceptable level [4].
Zhang et al. show that supplementing a direct mapped cache with a
small frequent value cache can greatly reduce the cache miss rate
[18]. The frequent value cache is basically a smaller direct-mapped
cache dedicated to holding frequent benchmark values. IBM’s
XMT technology employs a hardware parallelized derivative of the
LZ sequential algorithm to achieve on the fly content compression
[5]. The input data is divided into 1KB blocks before applying par-
allelized compression. However, their primary goal was not to im-
prove the memory bandwidth but to increase the main memory
capacity due to data compaction.

Some researchers have also employed hardware-based com-
pression to reduce communication bandwidth between general
purpose processors and off-chip DRAM. Benini et al. proposed a
data compression scheme to reduce memory traffic in general pur-
pose processor systems [19]. Data is stored in a compressed form in
the main memory but uncompressed in the cache. They use a dif-
ferential compression scheme to achieve on-the-fly compression
(decompression) of data from (to) the cache to (from) the DRAM.
Finally, Thuresson et al. quantified what type of value locality is
exploited by each compression scheme and demonstrated that a
new compression scheme exploiting value locality can free up a
considerable percentage of the memory bandwidth [6]. Montrym
and Moreton described the architecture of the GeForce 6800 [2].
Although they mentioned that compression techniques are used for
texture depth and color data, but they neither disclose any
microachitecture details for supporting the compression techniques
nor provide a performance analysis.

Figure 9. Performance speedup when varying L2 cache size combined with the compression/decompression
technique. The results are normalized to a GPU without L2 caches or the compression/decompression technique.

Figure 10: (a) Speedup when varying the number of LSBs truncated and (b) normalized root mean square error
(NRMSE) of all the final data transferred back to the CPU at the end of kernel executions.

(a) (b)

333

6. Conclusion
Although GPUs support very high memory bandwidth and hide
long memory access latency using many in-flight threads, the per-
formance of many GPU workloads is still memory-bound. Fur-
thermore, improving the bandwidth and latency is often limited by
package, interconnect, and power constraints. Facing such chal-
lenges, in this paper, we propose a GPU architecture supporting
hardware-based memory I/O link compression techniques for the
data residing in the GPU’s DRAM. First, we demonstrate that many
GPU workloads are memory-bound but their data exhibit high
compression ratios. Second, we show that GPUs assisted by high-
throughput and low-latency compressors and decompressors inte-
grated with metadata caches can improve the performance of many
memory-bound workloads by 26% on average for GPUs with L1
caches but without L2 caches. We also show that the power and
area of the proposed compression techniques are negligible com-
pared to those of a GPU. Third, we evaluate compression support
for GPUs with integrated L2 caches. Due to the synergistic effects
between L2 caches and the compression technique, the perfor-
mance of a GPU adopting 768KB L2 caches and the proposed
compression technique is (i) an average of 37% higher than that of
a GPU with the same size L2 caches but without the compression
technique, and (ii) comparable to that of a GPU with 2MB L2
caches and no compression in many memory-bound workloads that
we examined. Fourth, we investigate how a lossy compression
technique can be applied to GPGPU workloads and evaluate its
effectiveness. This technique leverages the observation that the
reduced precision of FP data in GPGPU workloads does not nota-
bly impact the overall computing accuracy; truncating the 8 LSBs
before the compression improves the performance by 41% while
the RMSE for the final results is less than 10-3. Finally, although
compression techniques have been adopted by commercial GPUs,
they are only used for compressing texture and color data, not data
for GPGPU applications; the microarchitectural details for those
GPU compression techniques are proprietary and their performance
benefits have not been previously published.

Acknowledgement
We would like to thank Prof. David Wood (the University of Wis-
consin-Madison), Mike O'Connor (AMD), and Jay Owen (AMD)
for their valuable comments and supports. We also would like to
thank Prof. Robert Dick and Xi Chen who assisted us to evaluate
his compression hardware for this study. This work is supported in
part by an SRC grant (Task ID: 2080.001), NSF grants (CCF-
095360, CCF-1016262, CNS-1217102), Hiran Mayukh Award,
IBM Faculty Award, and generous gift grants from AMD.

References
[1] Rambus, “Challenges and Solutions for Future Main

Memory,” 2009.

[2] J. Montrym and H. Moreton, “The GeForce 6800,” IEEE
Micro, vol. 25, no. 2, pp. 41-51, Mar-Apr 2005.

[3] D. Chen, E. Peserico, and L. Rudolph, “A Dynamically
Partitionable Compressed Cache," in Singapore-MIT Alliance
Symp., 2003.

[4] A.R. Alameldeen and D.A. Wood, “Adaptive Cache
Compression for High Performance Processors,” in
IEEE/ACM Int. Symp. on Comp. Arch. (ISCA), 2004, pp. 212-
223.

[5] B. Abali et al., “Memory Expansion Technology (MXT):
Software Support and Performance,” IBM J. Research and
Development, vol. 45, no. 2, pp. 287-301, Mar 2001.

[6] M. Thuresson, L. Spracklen, and P. Stenstrom, “Memory-Link
Compression Schemes: A Value Locality Perspective,” IEEE
T. on Computers, vol. 57, no. 7, pp. 916-927, Jul 2007.

[7] T. Yeh, G. Reinman, S. Patel, and P. Faloutsos, “Fool me
twice: Exploring and exploiting error tolerance in physics-
based animation,” ACM Trans. Graph., vol. 29, no. 1, p.
Article 5, Dec 2009.

[8] J. Tong, D. Nagle, and R. Rutenbar, “Reducing Power by
Optimizing the Necessary Precision/Range of Floating-Point
Arithmetic,” IEEE T. on Very Large Scale Integr. (VLSI) Syst.,
vol. 8, no. 3, pp. 273-285, Jun 2000.

[9] Xi Chen, Yang L., R.P. Dick, Li Shang, and H. Lekatsas, “C-
Pack: A High-Performance Microprocessor Cache
Compression Algorithm,” IEEE T. on Very Large Scale
Integration (VLSI) Systems, vol. 18, no. 8, pp. 196-1208, Aug
2010.

[10] GDDR3 Specific SGRAM Functions. [Online].
http://www.jedec.org/standards-documents/docs/sdram-
3110507

[11] C.M. Wittenbrink, E. Kilgariff, and A Prabhu, “Fermi GF100
GPU Architecture,” IEEE Micro, vol. 31, no. 2, pp. 50--59,
Mar 2011.

[12] A. Bakhoda, G. Yuan, W W.L. Fung, H. Wong, and T.M.
Aamodt,” Analyzing CUDA Workloads using a Detailed GPU
Simulator," in IEEE Int. Symp. Perf. Analysis of Syst. and
Software (ISPASS), 2009, pp. 163-174.

[13] Specification for Nvidia Quadro FX 5800. [Online].
http://www.nvidia.com/object/product_quadro_fx_5800_us.ht
ml

[14] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in IEEE Int. Symp. on Workload
Characterization (IISWC), 2009, pp. 44-54.

[15] Parboil Benchmark Suite. [Online].
http://impact.crhc.illinois.edu/parboil.php.

[16] D.W. Chang et al., “ERCBench: An Open-Source Benchmark
Suite for Embedded and Reconfigurable Computing,” in IEEE
Int. Conf. on Field Programmable Logic and App. (FPL),
2010, pp. 408 -413.

[17] J. Lee, P. Ajgaonkar, and N.S. Kim, “Analyzing throughput of
GPGPUs exploiting within-die core-to-core frequency
variation,” in IEEE Int. Symp. on Performance Analysis of
Syst. and Software (ISPASS), 2011, pp. 237-246.

[18] Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality
and Value-centric Data Cache Design,” in ACM Int. Conf.
Arch. Support for Programming Lang. and Operating Syst.
(ASPLOS), 2009, pp. 150-159.

[19] L. Benini, D. Bruni, B. Ricco, A. Macii, and E. Macii, “An
Adaptive Data Compression Scheme for Memory Traffic
Minimization in Processor-Based Systems,” in IEEE Int. Conf.
on Circuits and Syst (ICCAS), May 2002, pp. 866-869.

334

