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Abstract 
State-of-the-art graphic processing units (GPUs) provide very high 
memory bandwidth, but the performance of many general-purpose 
GPU (GPGPU) workloads is still bounded by memory bandwidth. 
Although compression techniques have been adopted by commer-
cial GPUs, they are only used for compressing texture and color 
data, not data for GPGPU workloads. Furthermore, the 
microarchitectural details of GPU compression are proprietary and 
its performance benefits have not been previously published. In this 
paper, we first investigate required microarchitectural changes to 
support lossless compression techniques for data transferred be-
tween the GPU and its off-chip memory to provide higher effective 
bandwidth. Second, by exploiting some characteristics of floating-
point numbers in many GPGPU workloads, we propose to apply 
lossless compression to floating-point numbers after truncating 
their least-significant bits (i.e., lossy compression). This can reduce 
the bandwidth usage even further with very little impact on overall 
computational accuracy. Finally, we demonstrate that a GPU with 
our lossless and lossy compression techniques can improve the 
performance of memory-bound GPGPU workloads by 26% and 
41% on average. 

Categories and Subject Descriptors 
C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]: 
Single-instruction-stream, multiple-data-stream processors (SIMD) 

General Terms 
Performance, Design 

Keywords 
Graphics processing units, lossless and lossy data compression. 

1. Introduction 
To reduce the performance impact of long latency off-chip memory 
accesses, GPUs rely on many threads in flight to hide memory 
latency.  A GPU’s hardware scheduler simply switches to a differ-
ent thread group when the current group is waiting for data to re-
turn from its off-chip memory. Since these context switches are 
lightweight and involve practically no overhead for GPUs, the 
memory access latency can be effectively hidden for workloads 
with many threads. However, as the ratio of memory instructions to 
compute instructions increases, this technique becomes less effec-
tive. Workloads exhibiting such a behavior can be classified as 
memory-bound workloads.  

Clearly, one way to improve the performance of these work-
loads is to improve the memory bandwidth by integrating more 
memory channels (i.e., memory controllers (MCs) and their mem-
ory I/O links (i.e., I/O circuits and pins, and interconnects)) and/or 
increasing their frequencies. The technical challenges, however, 
include limits in off-chip memory speeds and the number of I/O 
pins, neither of which scale well with technology scaling for a 
given chip package. Moreover, individual memory channels consti-
tute a notable fraction of the power consumption in computing 
platforms (e.g., 25W for four DDR3 memory channels for a 4GB 
total capacity [1]), which can limit bandwidth and frequency in-
creases under a given platform power constraint.  

Considering such challenges, we can improve the memory 
bandwidth by utilizing the available memory channels more effi-
ciently. As an effective alternative, in this paper, we propose a GPU 
architecture supporting lossless and lossy compression techniques 
for data transferred through the memory I/O links. Although com-
pression techniques have been adopted by commercial GPUs [2], 
they are customized for compressing texture and color data. Fur-
thermore, the microarchitectural details for GPU data compression 
are proprietary and its performance benefits have not been previ-
ously published.  

The key contributions of this paper are as follows. First, we 
demonstrate the potential of a hardware-based lossless compression 
technique to improve the performance of GPUs by showing the 
compressibility of the data stored in GPU’s off-chip memory (Sec-
tion 2). Second, we propose necessary microarchitectural enhance-
ment to support lossless and lossy compression for data transferred 
through the GPU memory I/O links (Section 3). The compression 
technique and implementation for GPUs are different than those for 
CPUs [3,4,5,6] because they exploit (i) a programming model and 
platform architecture unique to GPUs, which allows the compres-
sion to be transparent to existing workloads and compilation tools, 
and (ii) the impact of compression latency on performance is not as 
critical for GPUs as it is for CPUs. Furthermore, our lossy com-
pression technique exploits the observation that reducing the preci-
sion of floating-point (FP) numbers incurs very little accuracy loss 
for many GPGPU workloads [7,8]; we apply lossless compression 
after truncating some least-significant bits (LSBs) of FP data to 
reduce the bandwidth usage even further while producing accepta-
ble results for many GPGPU workloads in recognition, mining, 
synthesis (RMS) and physics simulation domains. Finally, we 
demonstrate the performance improvements of the GPU supporting 
lossless and lossy compression techniques, respectively (Section 4).  

2. The Case for GPU Memory I/O Link  
Compression 

GPUs typically provide much higher off-chip memory bandwidth 
and shorter latency than CPUs by using more memory channels and 
faster memory (e.g., GDDR); each channel is controlled by a MC. 
For example, 4-8 MCs are integrated in NVIDIA GPUs. However, 
many GPU workloads can still benefit from more memory channels 
(i.e., higher bandwidth). Figure 1 shows the performance speedup 
of 16 GPU workloads when the number of MCs (i.e., memory 
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Figure 1: Speedup when varying the number of MCs, relative to a baseline GPU with 8 MCs.

channels) is increased from 8 to 10, 12, 16, and 32. While compute-
bound workloads (i.e., AES, MRI, PF, SAD, SHA, and STO) show 
little or no performance improvement, memory-bound workloads 
(i.e., BKP, FFT, HOT, JPG, LPS, NN,  RAY, SPM, and STN) sig-
nificantly benefit from higher memory bandwidth provided by 
more meory channels; GMM and GMA denote the geometric mean 
speedup of memory-bound and all workloads, respectively. Dou-
bling the number of memory channels increases the geometric 
mean of the performance of memory-bound workloads by 81%. 
See Section 4.1 for the benchmark descriptions, properties, and 
simulation methodology.   

 Figure 2 shows pseudo code for (a) an NVIDIA CUDA appli-
cation, and (b) the corresponding data flow between a CPU (i.e., 
host) and a GPU (i.e., device). The CPU initializes the data for the 
GPU, stores them in the CPU DRAM (i.e., CPU main memory), 
and initiates a memory copy transaction by invoking the 
“CUDAMemCpy” function. Once the GPU acknowledges the 
transaction, the GPU’s DMA controller begins to copy the data, 
which go through the GPU’s on-chip interconnect and MCs to the 
GPU DRAM; see the dotted arrow lines in the “HostToDevice” 
direction.  

After the DMA controller finishes the copy transaction, the 
CPU launches a GPU kernel and the GPU begins computations. 
During the kernel execution, streaming multiprocessors (SMs), 
each of which is comprised of 8-32 CUDA cores, read/write data 
from/to the GPU DRAM through the on-chip interconnect and 
MCs; see the solid arrow lines in the “MemRdWr” direction. After 
the GPU finishes the kernel execution, it invokes another 
“CUDAMemCpy,” requesting the DMA controller to copy the 
computed results back to the CPU DRAM; see the dotted arrow 
lines in the “DeviceToHost” direction. During the memory copy 

transactions from the CPU DRAM to the GPU DRAM, the data can 
be compressed on the fly if the compressors, which are integrated 
with the GPU MCs, provide sufficiently high bandwidth.  

When an SM requests a memory read (i.e., a 128-byte block 
per request ), an MC begins to fetch 16-byte compressed data 
chunks from the GPU DRAM in burst mode (i.e., 4 bytes per trans-
fer). Since the number of transferred 16-byte chunks for the com-
pressed 128-byte block is fewer than for the uncompressed block, 
the effective bandwidth and latency between the GPU and its off-
chip memory are improved; the compressors and decompressors 
should support higher throughput than the memory channels. Then, 
the compressed block can be decompressed in the MC using the 
decompressors, and the decompressed 128-byte block is sent back 
to the SM; the gray-shaded region in Figure 2-(b) represents the 
region where the data resides in compressed form. 

Figure 3 plots the average compression ratio of data copied 
from the CPU DRAM to the GPU DRAM; a single block is consid-
ered as a single independent unit for compression, and the size of a 
single block is denoted by block size. We applied a compression 
algorithm presented by Chen et al. [9] to every block transferred to 
the GPU DRAM. On average, the volume of the data can be com-
pressed to approximately a half of the uncompressed size for 128-
byte blocks. In turn, this can improve the effective (or perceived) 
bandwidth by a factor of two.  

Finally, integrating the CPU and GPU on the same chip can 
enable them to share the same memory and may not require data 
transfers between them. However, high-end GPUs will still contin-
ue to be discrete devices (i.e., they are not likely to be integrated 
with CPUs in the same chip) because of power and thermal con-
straints.  

Figure 2: (a) Pseudo code using CUDA. (b) The data transfer flows between a host CPU and a GPU device; some
GPUs have on-chip L2 caches. 

//main routine that executes on the CPU   
int main(void){   
   . 
   . 
   // initializes data 
   . 
   . 
   // initiates the data transfer to the GPU 
   cudaMemcpy(..., MemcpyHostToDevice);   
 
   // invokes the kernel   
   foo <<<n_blocks, block_size>>> (...);   
 
   // initiates the data transfer to the CPU
   cudaMemcpy(...,MemcpyDeviceToHost); 
   . 
   . 

 (a)                                                                                                            (b) 
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3. Microarchitectural Enhancement for Mem-
ory I/O Link Compression 

There are two important observations for supporting hardware-
based memory I/O link compression to mitigate the memory band-
width and latency issues for GPUs. First, the data values for some 
GPU workloads are likely to be highly correlated, resulting in high 
compression ratios as shown in Section 2. This can potentially im-
prove the perceived bandwidth and latency. Second, threads run-
ning on an SM are executed as a group (i.e., warp) in a single in-
struction multiple thread (SIMT) fashion. Consequently, each warp, 
which is comprised of 32 threads, generates 128-byte memory ac-
cesses. Thus, GPUs allow a larger block size for compression than 
CPUs, potentially leading to a higher compression ratio.  

3.1 General Requirements  
In this paper, we make the compressed data residing in the GPU’s 
DRAM transparent to the GPU’s SMs by compressing and decom-
pressing data with dedicated hardware in the GPU’s MCs. Moreo-
ver, the host CPU is also completely isolated from the compres-
sions and decompressions. Thus, this architectural change places no 
need for modifications to the rest of the system. The objective of 
the proposed compression technique for GPUs is not to increase the 
effective capacity of the GPU DRAM, but to improve the effective 

bandwidth and/or latency. Thus, our design still allocates 128 bytes 
per block in the GPU’s DRAM, even though compressing a 128-
byte block results in fewer than 128 bytes, as illustrated in Figure 
4(a); the space saved due to compression is left unused to eliminate 
the complications often associated with space compaction and writ-
ing to compressed data.  

3.2 Impact on Memory Bandwidth and Latency 
In Figure 4(a), for the purpose of illustration, we assume that (i) 
GDDR3 has a burst length of four with a 4-byte bus width (16 bytes 
per burst) [10], and (ii) the throughput of our decompressor is 16 
bytes per cycle with a 1-cycle latency [9]. Although the frequency of 
the decompressor can be 1.2GHz in a 65nm technology [9] and the 
frequency of GDDR3 and the MCs is 800MHz, we assume that the 
decompressor is operating at 800MHz. For example, when a 128-
byte block is compressed to two 16-byte chunks (i.e., compression 
ratio = 0.25), a compressed 16-byte chunk from each burst read 
yields 64 uncompressed bytes on average. In this case, the bandwidth 
usage and latency are reduced to 1/4 and 2/3 of fetching a 128-byte 
block. While a compressed data block from a context is being de-
compressed, a memory access by another context can be interleaved 
to maximize the usage of the memory I/O links (and thus the band-
width). Since these two data blocks are independent, they can also be 
decompressed in parallel with an additional decompressor. 

(a)                                                                                                   (b) 

Figure 4: (a) Data flow for compression and the corresponding DRAM read and decompression transaction for 128
bytes compressed to two 16-byte blocks. In the figure, GDDR3 has a burst length of 4 with a 4-byte bus width (16
bytes per burst) [10]; and the throughput of our compressor and decompressor is 4 bytes/cycle and 16 bytes/cycle,
respectively with a 1-cycle latency [9]. (b) Interaction between DRAM, DRAM controller, metadata LUT, and
decompressor, where N is the number of compressed 16-byte chunks to fetch, instead of the full 8 16-byte chunks.
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3.3 Metadata Cache 
Need for compression metadata: There are two important reasons 
to maintain metadata information for every original 128-byte block 
stored in the GPU’s DRAM. First, we need to store 1 bit per origi-
nal 128-byte block to indicate whether or not the block is com-
pressed; it is not always possible to compress every original 128-
byte block to a block with fewer than 128 bytes. Second, we need 
to fetch only the compressed 16-byte chunks from the correspond-
ing 128-byte block space. Although fetching the empty unused 
chunks in a full 128-byte block space is not harmful, it will nullify 
the bandwidth and latency benefit that we are seeking to maximize. 
Since the number of 16-byte compressed chunks per 128-byte 
block can vary from 1 to 8, we use three more bits per 128-byte 
block to indicate the number of 16-byte chunks in each block.  

The need for metadata raises the question of how and where 
the metadata can be allocated, stored, and accessed. When the data 
blocks are being copied for the first time from the CPU’s DRAM to 
the GPU’s DRAM by the GPU’s DMA controller, look-up-table 
(LUT) entries that contain metadata information for all the trans-
ferred 128-byte blocks, are populated on the fly during the com-
pression process. The entries will be updated later if writes change 
the number of 16-byte compressed chunks. We also need to ensure 
that each MC only holds metadata information for the blocks be-
longing to that particular MC’s address space; the consecutive LUT 
entries within a MC correspond to consecutive original 128-byte 
blocks belonging to the MC’s address space. 

Naïve implementation of metadata LUT: For the naïve imple-
mentation of the LUT, we assume the presence of a perfect cache to 
store all the metadata information. In Figure 4(b), for all read re-
quests, the LUT returns the number of compressed 16-byte chunks 
(N) for a given block address (blk_addr). Then, the DRAM control-
ler fetches N 16-byte chunks instead of 8 16-byte chunks. No mat-
ter what the value of N is, N 16-byte chunks are always decom-
pressed into 8 16-byte chunks (i.e., the original 128-byte block). 
However, the GPU’s DRAM can be up to 4GB for 32-bit address-
ing. Thus, we need 16MB (= 4GB / 128B × 4b) for LUT storage 
considering 4 bits of metadata information per original 128-byte 
block. Although the LUT size is just 0.4% of the total GPU 
memory space, it is very large for an on-chip memory, and thus not 
practical. On the other hand, if the LUT is located in the GPU’s 
DRAM, the effective latency of memory accesses will increase 
considerably since each read or write requires two memory access-
es, first for the metadata and then for the actual data.  

Metadata cache: In this paper, we devise a microarchitectural 
technique to allocate the metadata information in the GPU DRAM, 
but cache the most-recently-used metadata information on the chip. 
This reduces the on-chip memory usage and the latency penalty of 
accessing metadata stored in the GPU’s off-chip memory. Since we 
adopt a static one-to-one mapping of metadata information based 
on the data block’s address, we reserve 16MB (this is sufficient for 
32-bit addressing) of the GPU’s DRAM from a known base address 
during the GPU initialization. When a particular data request ad-
dress is provided to the MC, the metadata information correspond-
ing to the block always maps to a location in the reserved 16MB 
space. 

MSHR for metadata cache: Caching metadata utilizes a dedicated 
small two-way set-associative cache and a miss status handling 
register (MSHR) tables per MC. The metadata requests are placed 
by the MCs on behalf of the compressors or decompressors to the 
GPU’s DRAM. Returning metadata responses from the GPU’s 
DRAM are used to update the metadata caches and are not for-
warded to any of the SMs. The hardware overhead of adding such a 
cache and a MSHR table per MC is negligible compared to storing 

all the metadata on chip; we provide a detailed analysis showing 
the cycle time, area and power consumption of a metadata cache 
and a MSHR table later in Section 4.1. Whenever a request for 
metadata misses, an MSHR entry, which is used to prevent duplica-
tion of metadata requests in flight, is allocated (if it has not already 
been allocated previously) and the request is sent to the GPU’s 
DRAM. 

Technically, the original 128-byte block request associated 
with the missed metadata must stall until the metadata returns and 
is parsed by the request size modifier that converts 8 16-byte ac-
cesses to N 16-byte access. This is to ascertain whether or not a 
block is compressed, and if so, how many 16-byte chunks need to 
be fetched from the GPU’s DRAM. However, stalling memory 
requests for a metadata cache miss wastes precious memory band-
width. Thus, the read request instead proceeds as a request for a full 
128-byte block. This conservative sizing of data requests on a 
metadata cache miss ensures that memory bandwidth is never wast-
ed due to stalling behind metadata requests. However, we note that 
the received 128-byte block has to stall at the decompressor until 
the metadata returns to verify whether or not the data block was 
compressed. Since metadata requests are always given priority over 
read/write requests, this stall period should be short. We also note 
that metadata responses returning from the GPU’s DRAM require a 
separate virtual network to ensure that they never get blocked be-
hind stalled data responses that are waiting for their corresponding 
metadata responses, as this would lead to a deadlock scenario. 

3.4 Lossy Compression Technique 
The impact of reducing the precision of FP data on computing ac-
curacy has been widely studied for media, RMS, and physics simu-
lation domain workloads [7,8]; truncating some LSBs of FP data 
before computing with them results in very little loss in overall 
accuracy while reducing a considerable amount of chip area and/or 
power consumption of FP units (FPUs). Furthermore, GPUs al-
ready support two different FP computation modes: IEEE compli-
ant and non-compliant FP computations where the latter is much 
faster than the former at the cost of a small accuracy loss [11]. 
Since the LSBs in the data transferred from the GPU’s off-chip 
memory are going to be truncated before computations in such a 
computing method, we observe that the GPU does not need to bring 
in the LSBs of the FP data. We hypothesize that this can also reduce 
the memory bandwidth usage significantly with a negligible loss in 
accuracy.  

The main challenge, however, is that many GPGPU workloads 
use a mix of both integer (INT) and FP data and truncating INT 
data, unlike FP data, may have detrimental effects on  accuracy 
(and sometimes may lead to erroneous execution states). Therefore, 
we propose to apply lossy compression only to FP data. Consider-
ing the CUDA programming style, which often transfers a set of 
data with the same data type from/to the GPU’s off-chip memory 
using the CUDAMemCpy function as shown in Figure 5(a), we can 
selectively apply lossy compression only to FP data. For a pro-
grammer to specify the number of LSBs to be truncated for a set of 
FP data, we modify the CUDAMemCpy function interface; in Fig-
ure 5(a) we truncate the 8 LSBs of array “bd” copied to the GPU 
off-chip memory.  

Figure 5(b) illustrates the hardware support for lossy compres-
sion. For example, if we truncate 8 out of 24 mantissa bits in every 
32-bit single precision FP datum in a 128B block, effectively we 
shrink it to 96B, reducing the bandwidth usage by 25%; two extra 
bits in each MD LUT entry record the number of truncated LSBs, 
which is needed for decompression later. In addition to the trunca-
tion, we apply the lossless compression technique to the remaining 
96B. This results in a 32B compressed block in this example. Note 
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that some applications require greater accuracy and use double-
precision FP arithmetic. In this case, the proposed lossy compres-
sion can be an optional feature that programmers can turn on (e.g., 
to accelerate initial solution searches for large problem spaces).  

3.5 MC Microarchitecture 
Figure 6 illustrates the microarchitectural changes required for each 
MC to support a hardware-based memory-link compression tech-
nique. The GPU’s DRAM (using NVIDIA’s architectural conven-
tion) is partitioned into four different address spaces depending on 
the properties and caching patterns of the underlying data. The 
global address space stores the data arrays used for computation 
and can be both read from and written into. The read-only texture 
address space stores graphics textures and read only data struc-

tures. The read-only constant address space stores constants re-
quired during computation while a local address space is used to 
manage register spills (register data sent back from the SMs to the 
GPU’s DRAM). Our proposed architecture only supports compres-
sion of the global and texture spaces, which represent the bulk of 
the memory traffic. Therefore, only requests prefixed with a “g” 
(global or texture space) in Figure 6 need to pass through the com-
pressor and decompressor. 

The requests prefixed “l” represent traffic to local and constant 
address spaces and safely bypass the compression scheme. The 
abbreviations “rd,” “wr,” “req,” and “resp” refer to read, write, 
request, and response. For example, “g_wr” refers to a global write 
initiated by an SM. If a write is to a full 128-byte block, it passes 
through the compressor before getting written to the GPU’s 

Figure 6: MC microarchitecture to support compression and decompression. The gray-color blocks are 
components added to an existing MC. The numbers in the parentheses represent the number of 16-byte chunks. 
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Figure 5: (a) cudaMemcpy example code and (b) hardware support for lossy compression. 

  int   *a = new int[N*N]; 
  float *b = new float[N*N]; 
 
  for(int i = 0; i < M*M; ++i) 
      a[i] = i; b[i] = 1.0f; 
 
  int *ad; float   *bd; 
  const int intsize = N*N*sizeof(int); 
  const int fpsize = N*N*sizeof(float); 
 
  cudaMalloc((void**)&ad, intsize); 
  cudaMalloc((void**)&bd, fpsize); 
 
  //existing cudaMemcpy code 
  //cudaMemcpy(ad, a, intsize, HostToDevice); 
  //cudaMemcpy(bd, b,  fpsize, HostToDevice); 
 
  //new cudamMemcpy to support lossy compression  
  cudaMemcpy(ad, a, intsize, 0, HostToDevice); 

cudaMemcpy(bd, b,  fpsize, 8, HostToDevice); 

(a)                                                                                                   (b) 
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Table 2: Simulation parameters (see [12]  for details). 

# of SMs 42~60 # of Memory Channels 8 

SM Freq 1.30GHz Memory Freqquency 800MHz (GDDR3) 

On-chip Interconnect Freq 0.65GHz Memory Bandwidth  102.4 GB/s 

Warp Size 32 Bus Width per Channel 4 (Bytes/Cycle) 

SIMD Width 8 Memory Controller FR-FCFS 

Max # of Threads per SM 1024 Branch Divergence Immediate post dominator 

Max # of CTAs per SM 8 Warp Scheduling Round Robin 

# of Registers per SM 16384 Const. Cache Size per SM 8 KB 

L1$ Memory per SM 32KB Texture Cache Size per SM 8 KB 

Metadata cache 32 entries (128 bytes/entry) Metadata MSHR 10 entries 

pre _compQ 32 entries (8 bytes/entry) pre/post_decompQ/ *_resQ 32 entries (16 bytes/entry) 

Table 1: Description of abbreviations used in Figure 6. 

g_rd/wr (l_rd/wr)  global (local) read/write request by SM 

g_rdpaired global read request by either SM or MC as part of read-modify-write operation 

md_rd/wr MD line read/write request by MD MSHR in response to MD cache miss/dirty line eviction 

g_rd_resp (l_rd_resp) global data (local data) from DRAM in response to g_rd (l_rd) or g_rdpaired  

g_rdpaired_resp global data after decompression in response to g_rdpaired 

md_resp MD line from DRAM in response to md_rd 

rd/wr_reqQ A physical queue staging all read/write requests to the DRAM controller 

pre/post_compQ A logical queue staging g_wr(16) and g_wr(N)  data  before/after compression 

pre _decompQ A physical queue staging g_rd  or g_rdpaired response data before decompression 

g_rd/rdpaired_respQ A physical queue staging g_rd/g_rdpaired  response data  after decompression 

rd_respQ A physical queue staging all read  response data  returning to SMs from MC 

DRAM. However, a partial write, which is smaller than 128 bytes, 
needs to be converted to a read request (marked “g_rdpaired”) 
followed by an update and write back with decompression and 
compression operations in between. Such an operation can be cost-
ly and is the main reason for potential performance degradations 
with a larger block size than the L1 cache line size (i.e., 128 bytes). 
The compressor also needs to update the corresponding metadata 
entry in the LUT after compression for the write. The request size 
modifier (“reqsize mod” in Figure 6) block is used to modify the 
read request size by reading the metadata cache to ascertain the 
number of compressed 16-byte chunks that need to be fetched from 
the GPU’s off-chip memory, and thus plays an important role in the 
memory traffic reduction. Table 1 describes the abbreviations used 
in Figure 6. 

4. Evaluation 
4.1 Methodology 
GPU architecture simulation: In this study, we analyze the per-
formance of a GPU using GPGPU-Sim, which was validated 
against NVIDIA’s Quadro FX 5800 and showed more than 90% 
performance correlation [12]. Our baseline GPU is configured to 
simulate NVIDIA’s Quadro FX 5800 [13] with an enhanced num-
ber of streaming multiprocessors (SMs) and MCs to model recent 
high-end GPUs like the GTX580; see Table 2 for detailed simula-
tion parameters. We modify GPGPU-sim to model a GPU architec-
ture supporting our compression technique. Note that NVIDIA’s 
GTX580 has 16 SMs operating while our baseline GPUs have 42 to 
60 SMs, but GTX580 has 32 CUDA cores per SM while Quadro 
FX5800 has 8 CUDA cores per SM. That is, GTX580 has 512 
CUDA cores, while our GPUs have 336 to 480 CUDA cores. We 
use 16 benchmarks from the GPGPU-Sim [12], Rodinia [14], Par-

boil2 [15] and ERCBench [16] benchmark suites. Their characteris-
tics are summarized in Table 3. 

Compressor/decompressor throughput, power, and area mod-
els: We assume that the architecture uses the compressor and 
decompressor hardware design proposed in [9], and our proposed 
microarchitectural enhancements described in Section 3. Table 4 
summarizes the frequencies, throughputs per cycle, power con-
sumption, and area of a compressor and a decompressor designed 
with a 65nm technology. The compressor is pipelined with a 3-
cycle initial latency and it can compress 64 bits per cycle. The 
decompressor is not pipelined and it can decompress 128 bits per 
cycle. The combined power consumption of 8 decompressor and 
compressor pairs (one pair per MC) is 0.24% of the maximum 
power consumption of a Quadro FX 5800 that typically consumes 
187W. Similarly, the area overhead is negligible (the Quadro FX 
5800 die area is close to 500mm2). 

Metadata cache and its MSHR timing, power, and area models: 
We use CACTI 6.5 with the 65nm technology itrs-hp option to 
evaluate the cycle time, power, and area overhead of metadata 
caches and their MSHR tables. The area per 32-entry metadata 
cache with 128-byte line size is less than 0.05mm2. The maximum 
cycle time is less than 800ps and the total power consumption is 
roughly 10mW at 800MHz. 

4.2 Results 
Performance improvement with compression /decompression 
using perfect LUT: Figure 7 shows the performance speedup trend 
as the throughput per cycle of decompressors is varied from 4 to 32 
bytes per cycle; the maximum throughput per cycle of 
decompressors from [9] is 16 bytes per cycle at 1.2GHz while the 
MCs operates at 800MHz. Assuming a perfect metadata LUT and 
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Compressor Decompressor 

Maximum frequency 1.25GHz Maximum frequency 1.2GHz 

Throughput/cycle 64 bits Throughput/cycle 128 bits (16 bytes) 

Power consumption 32.63mW Power consumption 24.14mW 

Area 0.043mm2 Area 0.043mm2 

Table 4: Hardware parameters for compressor/decompressor designed with a 65nm technology [9]. 

16 bytes per cycle for the throughput of decompressors, the pro-
posed technique improves the geometric mean of performance for 
memory-bound workloads by 26%. FFT and STN show good initial 
compression ratios (i.e., the compression ratio achieved during the 
initial data transfer from the CPU’s DRAM to the GPU’s DRAM) 
in Section 2, but their compression ratios become close to 1 as the 
workload progresses, which means little or no compression is 
achieved, as the execution of workloads progresses. This results in 
little or no improvement in performance for such workloads. The 
proposed compression technique does not improve the performance 
of compute-bound workloads notably, but it does not negatively 
impact their performance either; PF was categorized as a compute-
bound workload in Section 2 where the bandwidth was increased to 
identify compute- and memory-bound workloads, but the compres-
sion technique improves its performance. This is because the com-
pression technique also reduces DRAM access latency; we observe 
that PF performance increases when the frequency of MC is in-
creased. 

Impact of metadata cache size on performance: To analyze the 
impact of metadata cache size on the performance of GPUs, we 
vary the number of entries from 4 to 32. The miss rates are high if 
the number of metadata cache entries is either 4 or 8. However, the 
geometric mean of the miss rates become less than 2% if the num-
ber of metadata cache entries is 16. When the performance of a 
GPU using perfect on-chip metadata LUTs is compared to that of a 
GPU using metadata caches, we observe that the 16-entry metadata 
data caches result in a geometric mean performance degradation of 
roughly 1%. Note that most compute-bound workloads have rela-
tively high miss rates. This is because their memory accesses are 
not frequent enough to exercise metadata caches, resulting in high 
miss rates caused by compulsory misses. Furthermore, 32-entry 

metadata caches have a negligible impact on performance relative 
to perfect on-chip metadata LUTs. This is because (i) data accesses 
by SMs show very high spatial locality, (ii) the metadata cache 
retrieves 128 bytes of metadata information per metadata cache 
miss, and (iii) a 32-entry metadata cache per MC exceeds the entire 
data caching capacity of our baseline GPU. Since we need only 
four-bit metadata for each 128B data block and the number of 128B 
data blocks covered by one metadata cache line is 128 × 8 bits / 4 
bits = 256, each 128-byte metadata cache line contains the metadata 
for 256 × 128-byte data blocks (i.e., 32KB worth of data blocks). 
Thus, a 32-entry metadata cache in each MC can contain the meta-
data for 32 × 256 × 128-byte data blocks (i.e., 1MB worth of data 
blocks). Since each MC has one 32-entry metadata cache and our 
baseline GPU has total eight MCs, eight 32-entry metadata caches 
contain the metadata for 8MB worth of data blocks. Note that the 
total L1 capacity in our baseline GPU is at most 1.875MB for L1 
caches (i.e., 32KB × 60 SMs) (and another baseline GPU support-
ing L2 caches has 2MB for L2 caches (i.e., 256KB × 8 MCs)). 
Thus, a 32-entry metadata cache per MC exceeds the entire data 
caching capacity of our baseline GPU. 

Impact of the number of decompressors per MC on perfor-
mance: An MC can access multiple DRAM banks.  In such a case, 
multiple decompressors may reduce the latency of decompression. 
Otherwise, the 16-byte chunks from the second bank must wait 
until the decompression of all the 16-byte chunks from the first 
bank is completed. However, our experiments using decompressors 
with 16 bytes per cycle throughput show that the performance of a 
GPU with two decompressors per MC shows only marginal per-
formance increase (~1%) compared to a GPU with one 
decompressor per MC across all the workloads we examine. This is 
because the throughput (i.e., bandwidth) of a single decompressor 

Table 3: Benchmark summary. 

Benchmark Acronym Property Working Set Size Working Set Data Composition 

Back Propagation BKP 

memory-bound 

55MB single-precision FP 

Fast Fourier Transform FFT 165MB single-precision FP 

HotSpot HOT 13MB single-precision FP 

JPEG encoder/decoder JPG 7MB single-precision FP 

Leukocyte LKT 20MB single-precision FP / INT 

3D Laplace solver LPS 33MB single-precision FP 

Neural Network NN 11MB single-precision FP 

Ray Tracing RAY 76MB single-precision FP / INT 

Sparse Matrix Vector Multiplication SPM 40MB single-precision FP / INT 

3D Stencil Operation STN 328MB single-precision FP 

AES encryption/decryption AES 

compute-bound 

4MB INT 

Magnetic Resonance Imaging Q MRI 3MB FP 

Particle Filter PF 116MB double-precision FP 

Sum of Absolute Difference SAD 18MB INT 

SHA 1 encryption SHA 7MB INT 

StoreGPU STO 1MB INT 
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Figure 8.  Performance speedup when varying the number of SMs to analyze the effectiveness of the compression
technique for different bandwidth-compute ratio values. 

is already twice as high as the memory bandwidth. In situations 
where the throughput of the decompressor is close to or less than 
the memory bandwidth, having multiple decompressors may be 
useful. 

Impact of the peak bandwidth to peak compute ratio on per-
formance: The peak bandwidth to peak compute ratio is a key 
measure to check whether or not the memory bandwidth is bal-
anced with the compute capability. A GTX580 has 512 cores (16 
SMs × 32 cores per SM) operating at 1.55GHz and it has a band-
width over compute ratio (BCR) of 0.24, while our baseline GPUs 
have 336 to 480 cores (42 to 60 SMs × 8 cores per SM) operating at 
1.3GHz and BCR ranging from 0.26~0.16.  

Figure 8 shows performance speedup with the compression 
technique when varying the number of SMs in a GPU when we fix 
the memory bandwidth to the value shown Table 2; the speedup of 
42-, 48-, 54-, and 60-SM GPUs with compression is relative to the 
performance of 42-, 48-, 54-, and 60-SM GPUs without compres-
sion, respectively. The overall relative improvement with 42 SMs is 
slightly lower than with 60 SMs, which demonstrates that the com-
pression technique can still be effective for a GPU with higher 
BCR since most memory-bound workloads congest the MCs even 
with much fewer SMs. These memory-bound workloads can easily 
congest the MCs even with 48 SMs; Lee et al. [17] show  that just 
32 SMs could generate enough memory accesses to congest the 
MCs. The geometric mean of speedup for all the memory-bound 
workloads for 42, 48, 54, and 60 SMs is 22%, 24%, 27%, and 26 
%, respectively. Note that the speedup trends of some workloads 
such as FFT, JPG, and RAY have slight ups and downs as the num-
ber of SMs increases. This is because the performance of the base-
line 42-, 48-, 54-, and 60-SM GPUs, which do not support com-
pression, does not increase linearly with more SMs. Finally, the 
BCR is lower for our baseline GPU with 60 SMs than the GTX580, 
but we expect that future GPUs will have lower BCRs. 

Performance improvement with L2 caches + compres-
sion/decompression: Figure 9 plots the speedup when varying L2 
cache size. We measure the performance speedup of a GPU sup-
porting the proposed compression technique (32-entry MD caches 
and 16 bytes per cycle decompressor throughput) with 32KB, 
64KB, 96KB, and 256KB L2 caches per MC (total 256KB, 512KB, 
768KB, and 2MB L2 caches); the NVIDIA Fermi architecture sup-
ports a 768KB total L2 cache capacity [11]. Then, we plot the per-
formance speedup of the GPU relative to our baseline GPU that 
neither has L2 caches nor supports the compression technique. The 
geometric mean performance speedup of the memory-bound work-
loads is about 88% when a GPU with a 768KB L2 cache supports 
the compression technique. For roughly half of workloads we ex-
amined (i.e., JPG, NN, BKP, HOT, LPS, and SPM), the perfor-
mance of a GPU supporting the compression technique with 
768KB L2 caches is higher than or comparable to that of a GPU 
with 2MB L2 caches only. To isolate the performance increase 
contributed by the compression technique, we stack the speedup 
numbers shown in Figure 9 on top of the speedup numbers obtained 
with a GPU that has the same size L2 caches but does not support 
the compression technique. JPEG, RAY, BKP, HOT, LPS, and SPM 
show notable improvements over using L2 caches only. The com-
pression technique increases the geometric mean of performance of 
a GPU with a 768KB L2 cache by 37% for memory-bound work-
loads. 

Note that the compression technique without L2 caches im-
proves the performance by only 26% while the improvement with 
the compression technique and L2 caches is nearly 37%. This can 
be explained by the following observations we made based on sim-
ulation statistics. First, the L2 miss rates of some workloads are 
reduced with the compression technique, because highly com-
pressed blocks arrive earlier than their uncompressed counterparts, 
and the subsequent memory accesses for the blocks do not experi-
ence misses. Second, L2 caches filter some or many accesses to the 
DRAM, reducing the contentions for accessing the memory chan-
nels. This allows the MCs and the compression technique to work 

Figure 7. Performance speedup when varying throughput/cycle of decompressors. A perfect metadata LUT and 60
SMs are assumed. 
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more efficiently for servicing the same number of accesses. On the 
other hand, if the MCs are flooded with too many concurrent re-
quests, their service efficiency goes down substantially and the 
compression technique shows less benefit. Finally, the compression 
technique improves the effective memory bandwidth and latency. 
This leads to less memory contention and allows L2 caches to han-
dle misses more efficiently, leading to a synergistic effect of more 
efficient services for memory requests. 

Impact of lossy compression on performance and overall com-
puting accuracy: Figure 10(a) shows the performance speedup as 
the number of truncated LSBs increases for the memory-bound 
workloads. The GPU with more LSBs truncated provides higher 
performance improvement for most workloads except for RAY; the 
performance of RAY is limited by many simultaneous memory 
accesses rather than high memory bandwidth usage and the trunca-
tion does not improve the performance since the LSBs of the data 
are already zero. The compression after truncating 8~16 LSBs im-
proves the geometric mean performance by 41%~61%, which is 
15%~41% higher than the lossless compression alone. Meanwhile, 
as demonstrated in Figure 10(b), the impact on overall computing 
accuracy (i.e., the geometric mean of normalized root-mean-square 
error (NRMSE)) is 10-5 to10-3 for truncated single-precision data; 
we obtain the NRMSE values for all the final data transferred back 
to the CPU at the end of the kernel executions using double preci-
sion arithmetic. Note that RAY shows no error even after the lower 
16-bits are truncated since the original input data applied to the FP 
units have zeros in their 16 LSBs. This is because RAY only utiliz-
es the upper 8 bits of the mantissa for its input data. Thus, RAY is 
excluded when calculating the geometric mean of the NRMSE 
values.  

5. Related Work 
Hardware-based memory data compression techniques have been 
primarily employed either to increase the effective memory size by 
memory compaction, or to increase the effective cache size. Chen 

et al. used a variant of the Lempel-Ziv (LZ) compression algorithm 
to propose a scheme that dynamically partitions the cache into sec-
tions of different compressibility [3]. Alameldeen et al. showed that 
an adaptive dynamic scheme that chooses between holding com-
pressed or uncompressed data in the L2 can improve the perfor-
mance of memory-intensive workloads while constraining the per-
formance degradation of other workloads to an acceptable level [4]. 
Zhang et al. show that supplementing a direct mapped cache with a 
small frequent value cache can greatly reduce the cache miss rate 
[18]. The frequent value cache is basically a smaller direct-mapped 
cache dedicated to holding frequent benchmark values. IBM’s 
XMT technology employs a hardware parallelized derivative of the 
LZ sequential algorithm to achieve on the fly content compression 
[5]. The input data is divided into 1KB blocks before applying par-
allelized compression. However, their primary goal was not to im-
prove the memory bandwidth but to increase the main memory 
capacity due to data compaction.  

Some researchers have also employed hardware-based com-
pression to reduce communication bandwidth between general 
purpose processors and off-chip DRAM. Benini et al. proposed a 
data compression scheme to reduce memory traffic in general pur-
pose processor systems [19]. Data is stored in a compressed form in 
the main memory but uncompressed in the cache. They use a dif-
ferential compression scheme to achieve on-the-fly compression 
(decompression) of data from (to) the cache to (from) the DRAM. 
Finally, Thuresson et al. quantified what type of value locality is 
exploited by each compression scheme and demonstrated that a 
new compression scheme exploiting value locality can free up a 
considerable percentage of the memory bandwidth [6]. Montrym 
and Moreton described the architecture of the GeForce 6800 [2]. 
Although they mentioned that compression techniques are used for 
texture depth and color data, but they neither disclose any 
microachitecture details for supporting the compression techniques 
nor provide a performance analysis.   

Figure 9.  Performance speedup when varying L2 cache size combined with the compression/decompression
technique. The results are normalized to a GPU without L2 caches or the compression/decompression technique.

Figure 10:  (a) Speedup when varying the number of LSBs truncated and (b) normalized root mean square error
(NRMSE) of all the final data transferred back to the CPU at the end of kernel executions. 

(a)                                                                                                   (b) 
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6. Conclusion 
Although GPUs support very high memory bandwidth and hide 
long memory access latency using many in-flight threads, the per-
formance of many GPU workloads is still memory-bound. Fur-
thermore, improving the bandwidth and latency is often limited by 
package, interconnect, and power constraints. Facing such chal-
lenges, in this paper, we propose a GPU architecture supporting 
hardware-based memory I/O link compression techniques for the 
data residing in the GPU’s DRAM. First, we demonstrate that many 
GPU workloads are memory-bound but their data exhibit high 
compression ratios. Second, we show that GPUs assisted by high-
throughput and low-latency compressors and decompressors inte-
grated with metadata caches can improve the performance of many 
memory-bound workloads by 26% on average for GPUs with L1 
caches but without L2 caches. We also show that the power and 
area of the proposed compression techniques are negligible com-
pared to those of a GPU. Third, we evaluate compression support 
for GPUs with integrated L2 caches. Due to the synergistic effects 
between L2 caches and the compression technique, the perfor-
mance of a GPU adopting 768KB L2 caches and the proposed 
compression technique is (i) an average of 37% higher than that of 
a GPU with the same size L2 caches but without the compression 
technique, and (ii) comparable to that of a GPU with 2MB L2 
caches and no compression in many memory-bound workloads that 
we examined. Fourth, we investigate how a lossy compression 
technique can be applied to GPGPU workloads and evaluate its 
effectiveness. This technique leverages the observation that the 
reduced precision of FP data in GPGPU workloads does not nota-
bly impact the overall computing accuracy; truncating the 8 LSBs 
before the compression improves the performance by 41% while 
the RMSE for the final results is less than 10-3. Finally, although 
compression techniques have been adopted by commercial GPUs, 
they are only used for compressing texture and color data, not data 
for GPGPU applications; the microarchitectural details for those 
GPU compression techniques are proprietary and their performance 
benefits have not been previously published. 
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