This documentation is designed to serve as a user’s manual for SIGNAL and SIGALI. It explains how one can use SIGNAL and SIGALI from scratch, without any previous knowledge about the architecture of either of them. SIGNAL is the compiler of a synchronous data-flow language of the same name. This language is used for precise specification of real-time reactive discrete event systems. When used with one of its options, the SIGNAL compiler produces a Polynomial Dynamical System (PDS) model of the SIGNAL program in a code appropriate for SIGALI. SIGALI is a model-checking tool based on formal calculus which takes this PDS model as input and offers functionalities for verification of system properties and discrete controller synthesis. The SIGNAL compiler can also produce code in other formats like the Dc+ (declarative code) format (which is an equational level encoding of implicit automata) or sequential C code.

1 Modelling a system in SIGNAL

Figure 1: The specification stage.

To specify our model, we use the synchronous data flow language SIGNAL [7]. The aim of SIGNAL is to support the design of safety critical applications, especially those involving signal processing and process control. The synchronous approach guarantees the determinism of the specified systems, and supports techniques for the detection of causality cycles and logical incoherences. The design environment features a block-diagram graphical interface [8], a formal verification tool, SIGALI, and a compiler that establishes a hierarchy of inclusion of logical clocks (representing the temporal characteristics of discrete events), checks for the consistency of the inter-dependencies, and automatically generates optimized executable code ready to be embedded in environments for simulation, test, prototyping or the actual system. Further, the model read by SIGALI has to be in z3z format which is obtained by compiling the SIGNAL program using the -z3z option. Fig. 1 shows the specification stage.
1.1 The Signal language & Specification

For specification of a system, one can use the syntax of the language Signal V4 [3]. The Signal language [?] manipulates signals \(X \), which denote unbounded series of typed values, indexed by time. An associated clock determines the set of instants at which values are present. The constructs of the language can be used in an equational style to specify the relations between signals, i.e., between their values and between their clocks. Data flow applications are activities executed over a set of instants in time. At each instant, input data is acquired from the execution environment; output values are produced according to the system of equations considered as a network of operations.

The Signal language is defined by a small kernel of operators. The basic language constructs are summarized in Table (1). Each operator has formally defined semantics and is used to obtain a clock equation and the data dependencies of the participating signals. For a more detailed description of the language, its semantic, and applications, the reader is referred to [?].

<table>
<thead>
<tr>
<th>Language Construct</th>
<th>Signal syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stepwise extensions</td>
<td>(C := A \text{ op } B)</td>
<td>where (\text{ op }) : arithmetic/relational/boolean operator</td>
</tr>
<tr>
<td>delay</td>
<td>(Z X := X \text{ $ n})</td>
<td>memorization of the (n \text{ th}) past value of (X)</td>
</tr>
<tr>
<td>extraction</td>
<td>(C := A \text{ when } B)</td>
<td>(C) equal to (A) when (B) is present and true</td>
</tr>
<tr>
<td>priority merging</td>
<td>(C := A \text{ default } B)</td>
<td>if (A) is present (C := A) else if (B) present (C := B) else (C) absent</td>
</tr>
<tr>
<td>Process Composition</td>
<td>([P</td>
<td>Q])</td>
</tr>
<tr>
<td>useful extensions</td>
<td>(B \text{ when } B)</td>
<td>the clock of the true instants of (B)</td>
</tr>
<tr>
<td></td>
<td>(B \text{ even } B)</td>
<td>the presence instants of (B)</td>
</tr>
<tr>
<td></td>
<td>(A = B)</td>
<td>Clock of (A) equal with clock of (B)</td>
</tr>
</tbody>
</table>

Table 1: Basic SIGNAL language constructs

1.1.1 A 1 bit shift-register.

For example, the process \(m \) modelled by the following code represents a 1 bit memory:

```plaintext
process m = {boolean Minit}
    (* boolean Minit ! boolean Mout; *)
    (| Z,Mout := Min default Mout)
    | Mout := Z,Mout $ 1 init Minit
    |)

There is one Boolean input \( \text{Min} \), one Boolean output \( \text{Mout} \), and a constant initialization parameter \( \text{Minit} \). The output is defined as a combination of the input and the value in memory with delay of one clock cycle.

The program is compiled by the SIGNAL compiler which analyses the clocks and checks the constraints, but does not generate executable code because \( \text{Mout} \) is not completely determined by the input. It can be present between two successive occurrences of the input, arbitrarily often.

1.1.2 A flipflop.

The 1 bit memory defined above is used in the following process called flipflop. It has one Boolean output \( \text{B} \) denoting its two states: true and false, and one Boolean input \( \text{C} \). The flipflop changes its state when \( \text{C} \) is true (see Fig. 2):

```plaintext
process flipflop =
 (* boolean C ! boolean B; *)
 (% One Boolean memory %
 | B := m(false)(NewB)
 % New value is the negation of the current value %
 | NewB := not B when C
 % The memory is synchronized with the input %
 | B := C
 |)
where
(declaration of m)
end;
```
The program when compiled with the `-c` option, generates C code from which an executable can be obtained in the manner described in the next section. This executable can be simulated on an input file containing the values of the input and produces an output file containing the values of the output.

### 1.1.3 Boolean double memory.

In the process `double_m`, there are two inputs `C1, C2` and two outputs `B1, B2`. The two outputs encode four states. The inputs and outputs are synchronized meaning that they have the same clock. The process makes use of two Boolean memories:

```plaintext
process double_m =
 (? boolean C1, C2
 ! boolean B1, B2;

 (% Two Boolean memories %
 | B1 := m{false}(NewB1)
 | B2 := m{false}(NewB2)

 % The new value is the value of the input %
 | NewB1 := C1
 | NewB2 := C2

 % The memory is synchronized with the inputs %
 | B1 = B2 := C1 := C2
)
)
where
 (declaration of m)
end;
```

Thus, in the above model, the outputs take the values of the respective inputs with a delay of one clock cycle. So essentially the system memorizes two Boolean values (see Fig. 3).

### 1.2 Compilation

**Compilation into executable C code.** For this, the compilation is done with the `-c` option. For example, for the file `D.SIG`, the command is `sig -c D.SIG`. This produces the relevant `.c` and `.h` files which are used to build the executable.
Now the C files obtained can be compiled to get the executable:

```bash
prakashp @ yeti > double_m double_m_main.c double_m_body.c double_m_io.c
```

Fig. 4 summarizes the compilation stage.

In this case the executable is `double_m`. For execution, two files `RC1.dat` and `RC2.dat` are required which contain the Boolean values of the inputs `C1` and `C2` respectively. The execution of `./double_m` produces two files `WB1.dat` and `WB2.dat` which contain the Boolean values of the outputs `B1` and `B2` respectively (see Fig. 5). As an example, the input and output files obtained after a sample simulation are:

- **RC1.dat**: 1 0 0 1 1 1 0 1 0 0 0 1
- **WB1.dat**: 0 1 0 0 1 1 1 0 1 0 0 0

- **RC2.dat**: 0 0 0 1 1 0 1 1 0 1 0
- **WB2.dat**: 0 0 0 0 1 1 0 1 1 0 1 1

---

**Figure 3: Behavior of `double_m`**
Thus, the output values are same as their corresponding input values delayed by one clock cycle, which is the expected result.

**Compilation into the z3z format.** In order to analyze the system using SIGNAL, one has to compute a polynomial dynamical system. For this, the specification of the system written in SIGNAL is compiled with the -z3z option. Suppose the file in which the process `double_m` is specified is `D.SIG`. When `D.SIG` is compiled by the command `sig -z3z D.SIG`, a file called `double_m.z3z` is obtained as output:

```
prakashp @ yeti > sig -z3z D.SIG
```

we will come back to this point in the next section.
2 The model checker **Sigali**

The **Signal** environment also contains a verification and controller synthesis tool-box, named **Sigali**. This tool allows to prove the correctness of the dynamical behavior of the system. The equational nature of the **Signal** language leads naturally to the use of a method based on polynomial dynamical equation systems (PDS) over \(\mathbb{Z}/3\mathbb{Z}\) (i.e., integers modulo 3: \{-1,0,1\}) as a formal model of program behavior.

2.1 Basic facts about **Sigali**

The theory of Polynomial Dynamical Systems uses classical tools in algebraic geometry, such as ideals, varieties and morphisms \[\text{[?]}\]. The techniques consist in manipulating the system of equations instead of the sets of solutions, which avoids enumerating the state space.

2.1.1 The mathematical framework: an Overview

Let \(Z = \{Z_1, Z_2, ..., Z_p\}\) be a set of \(p\) variables and \(\mathbb{Z}/3\mathbb{Z}[Z]\) be the ring of polynomials with variables \(Z\). Thus \(\mathbb{Z}/3\mathbb{Z}[Z]\) is the set of all polynomials of \(p\) variables. Given an element of \(\mathbb{Z}/3\mathbb{Z}[Z]\), \(P(Z_1, Z_2, ..., Z_p)\) (shortly \(P(Z)\)), we associate its set of solutions \(\text{Sol}(P) \subseteq (\mathbb{Z}/3\mathbb{Z})^m\):

\[
\text{Sol}(P) \overset{\text{def}}{=} \{(z_1, ..., z_k) \in (\mathbb{Z}/3\mathbb{Z})^k \mid P(z_1, ..., z_k) = 0\}
\]  

It is worthwhile noting that in \(\mathbb{Z}/3\mathbb{Z}[Z]\), \(Z_1^3 - Z_1, ..., Z_p^3 - Z_p\) evaluate to zero. Then for any \(P(Z) \in \mathbb{Z}/3\mathbb{Z}[Z]\), one has \(\text{Sol}(P) = \text{Sol}(P + (Z_1^3 - Z_1))\). We then introduce the quotient ring of polynomial functions \(A[\mathbb{Z}] = \mathbb{Z}/3\mathbb{Z}[Z]/(Z_i^3 - Z_i)\), where all polynomials \(Z_i^3 - Z_i\) are identified to zero, written for short \(Z_i^3 = Z_i = 0\). \(A[\mathbb{Z}]\) can be regarded as the set of polynomial functions with coefficients in \(\mathbb{Z}/3\mathbb{Z}\), for which the degree in each variable is lower than 2. \[\text{[?]}\] showed how to define a representative of \(\text{Sol}(P)\) called the canonical generator. Our techniques will rely on the following: For all polynomials \(P_1, P_2, P \in \mathbb{Z}/3\mathbb{Z}[Z]\)

- \(\text{Sol}(P_1) \subseteq \text{Sol}(P_2)\) whenever \((1 - P_1) * P_2 \equiv 0\). (inclusion)
- \(\text{Sol}(P_1) \cap \text{Sol}(P_2) = \text{Sol}(P_1 \oplus P_2)\) (intersection), where
  \[
P_1 \oplus P_2 \overset{\text{def}}{=} (P_1^2 + P_2)^2
\]
- \(\text{Sol}(P_1) \cup \text{Sol}(P_2) = \text{Sol}(P_1 * P_2)\) (union) and \((\mathbb{Z}/3\mathbb{Z})^m \setminus \text{Sol}(P) = \text{Sol}(1 - P^2)\) (complementary).

2.1.2 Dynamical systems: Basics

A dynamical system can be mathematically modelled as a system of polynomial equations over \(\mathbb{Z}/3\mathbb{Z}\). \(\mathbb{Z}\) (the Galois field of integers modulo 3) of the form:

\[
\begin{align*}
\n0 &= Q(X,Y) \\
P(X,Y) &= X' \\
0 &= Q_0(X)
\end{align*}
\]  

where,

- \(X\) is the set of \(n\) state variables, represented by a vector in \((\mathbb{Z}/3\mathbb{Z})^n\);
- \(Y\) is the set of \(m\) event variables, represented by a vector in \((\mathbb{Z}/3\mathbb{Z})^m\);
- \(Q(X,Y) = 0\) is the constraint equation;
- \(X' = P(X,Y)\) is the evolution equation. It can be considered as a vectorial function from \((\mathbb{Z}/3\mathbb{Z})^m\) to \((\mathbb{Z}/3\mathbb{Z})^n\); and,
- \(Q_0(X) = 0\) is the initialization equation.

In order to prove its dynamical properties, every **Signal** process is translated into a system of polynomial equations over \(\mathbb{Z}/3\mathbb{Z} = \{-1,0,1\}\) having the above form. The principle is to encode the 3 possible values of a Boolean signal by:
For the non-boolean signals, we only code the fact that the signal is present or absent: \((\text{present} \rightarrow 1\) and \(\text{absent} \rightarrow 0\)). Note that the square of \(\text{present}\) is 1, whatever its value, when it is present. Hence, for a signal \(x\), its clock can be coded by \(x^2\). It follows that two synchronous signals \(x\) and \(y\) satisfy the constraint equation: \(x^2 = y^2\). This fact is used extensively in the following. **Primitive operators.**

Each of the primitive processes of SIGNAL can be encoded in a polynomial equation. For example \(c := A \text{ when } B\), which means "if \(b = 1\) then \(c = a\) else \(c = 0\)" can be rewritten in \(c = a(-b-b^2)\); the solutions of this are the set of behaviors of the primitive process when. The delay \(\delta\), which is a dynamic operator deserves some extra explanations. It requires memorizing the past value of the signal into a state variable. Translating \(\delta := A \& 1\), requires the introduction of two auxiliary equations: (1) \(x' = a + (1-a^2)x\), where \(x'\) denotes the next value of state variable \(x\), expresses the dynamics of the system. (2) \(b = a^2x\) delivers the value of the delayed signal according to the memorization in state variable \(x\). Table 2 shows how all the primitive operators are translated into polynomial equations. For the non-boolean expressions, we just translate the synchronization between the signals. By composing the equations representing the primitive processes, any SIGNAL specification can be translated into a set of equations called polynomial dynamical system (PDS) as one described in (3).

We now explain how one can use the model-checker SIGALI, in order to analyze the obtain polynomial dynamical system.

### 2.2 The SIGALI commands & Operations

#### 2.3 General Commands

**Starting and exiting** The SIGALI environment can be started by the sigali command. A prompt SIGALI: appears. To quit, one can use the SIGALI command quit():

```
SIGALI: quit();
```

*This works also fine.*

**Loading the file of a model** The .z3f file which contains the PDS model of the system (or any other SIGALI files, can be loaded by using the load or the read command. For example, in case of double.x, the command is:
Trace  By the `trace` command it is possible to save in a file all the commands executed and results obtained in the Sigali environment:

- `trace("filename")`; opens the file for trace.
- `fintrace();`; closes the current trace file.

All commands executed (and the corresponding responses) in between are saved in the trace file.

**Execution time**  SIGALI allows the measurement of the time taken for each computation. The command `chrono(true);` starts the clock. After each subsequent command, the time taken for the computation is displayed. The command `chrono(false);` stops the clock.

### 2.3.1 Symbols and declarations

A symbol or an identifier can be assigned to an expression in the following format:

```
symbol : <expression>;
```

For example:

```
p : a^2 * b + c^2;
```

assigns the identifier `p` to the expression `a^2b + c^2`.

Indeterminate symbols can be declared by the command: `declare` or `ldeclare`. For example:

```
declare(a,b,c,d);
```

takes one or more parameters.

```
ldeclare([a,b,c,d]);
```

takes only one parameter (as a list).

Once a symbol is declared, its not possible to modify its value. The command `indeter();` lists all the indeterminate symbols.

### 2.3.2 Polynomials and equations

A polynomial is an expression. An equation is of the form `p1 = p2` where `p1` and `p2` are two polynomial expressions. SIGALI can also manipulate lists of polynomials and equations. For example, `[a + b, a, b, 0, 1];` is a list of 5 polynomials and `[a^2 = b^2, c = a and b];` is a list of 2 equations. Of course a symbol can be assigned to a list as well. For example:

```
list : [a + b, a, b, 0, 1];
equations : [a^2 = b^2, c = a and b];
```

The command `eval` evaluates a polynomial:

```
eval(p,[a,b,c],[0,1,-1]);
```

evaluates the polynomial `p` after substituting 0, 1 and -1 for `a`, `b` and `c` respectively. Of course these variables must occur in `p`.

If `p` is a polynomial, `lp1` and `lp2` are two lists of polynomials, `lvar1` and `lvar2` are two lists of variables, and `lconst` is a list of constants (with values 0, 1 or -1), then:

```
rename(p, lvar1, lvar2);
```

replaces in `p`, the `i`th variable of `lvar1` by the `i`th variable of `lvar2`.

```
subst(p, lvar1, lp1);
```

replaces in `p`, the `i`th variable of `lvar1` by the `i`th polynomial of `lp1`.

In case of the functions:

```
l_eval(lp1, lvar1, lconst);
l_replace(lp1, lvar1, lvar2);
subst lp1, lvar1, lp2;
```

the first argument is a list of polynomials instead of one polynomial and they perform they same function as their counterparts for each polynomial of the list.

The command `equal` compares two polynomials:

```
Sigali: ldeclare([a,b]);

Sigali: equal(a,b); False

Sigali: equal(a = c + b, a = b + c); True

```
2.3.3 Representation of polynomials

A variable or polynomial can only take values belonging to $\mathcal{F}_3 = \{-1, 0, 1\}$. In Sigali, a polynomial is represented by means of a Ternary Decision Diagram (TDD) which is an extension of a Binary Decision Diagram (BDD). In a TDD, each non-leaf node represents a variable and each leaf node is a value of the polynomial. An arbitrary ordering of the variables must be done to facilitate the assignment of a node to a variable. Further, each non-leaf node has 3 edges emanating from it, labelled by the 3 possible values: \{-1 or 2\}, 0, 1\} that the corresponding variable may take. So, each path from the root to a leaf assigns a unique sequence of values to the variables and the value of the leaf gives the value of the polynomial for that particular assignment. For example, if $p$ is the polynomial $a^2 b + c^2$, and the ordering is $a < b < c$, then $p$ is represented by Sigali as follows (The TDD representation of $p$ is shown in Fig. 6):

```
Sigali : p : a^2 b + c^2;

P

Sigali : p;

a@0
b\#0
b\@1
b\@2

Sigali : p;

c@0
C\@1
C\@2

Sigali : p;

a@1
b\#1
b\@1
b\@2

Sigali : p;

C\@1
C\@2
C\@3
C\@4
C\@5
C\@6
C\@7
C\@8

Sigali : p;

C\@9
C\@10
C\@11
C\@12
C\@13
C\@14
C\@15
C\@16
C\@17
C\@18
C\@19
C\@20
C\@21
C\@22
C\@23
C\@24
C\@25
C\@26
C\@27
C\@28
C\@29
C\@30
C\@31

Note: The value 2 is equivalent to -1.
```
In order to avoid repetitions in listing, portions occurring more than once are labelled as $\texttt{#n#}$ ($n = 0, 1, 2, \ldots$). These repetitions tend to occur when two or more edges enter a non-leaf node in the TDD. While reading the TDD, the label $\texttt{subformula n}$, wherever it occurs, is to be replaced by the portion labelled $\texttt{#n#}$.

2.3.4 (System of) Polynomials manipulation

The canonical generator of a polynomial system given by a list of polynomials can be computed by the function $\texttt{gen}$. The command: $\texttt{gen(lpoly)}$ is where $\texttt{lpoly}$ is a list of polynomials. For example:

$\texttt{gen([a + b - c, a^2 - 1])}$; gives the canonical generator of the polynomial system given by the two polynomials $a + b - c$ and $a^2 - 1$. The previous command can also be given as:

$\texttt{gen([a + b = c, a^2 = 1])}$;

Complementation. Let $g$ be a polynomial and $V$ its set of solution, then the generator of the complement of $V$ is obtained by: $\texttt{complementary(g)}$;

Intersection. Let $p1$ and $p2$ be two polynomials and $V1$ and $V2$ be the corresponding set of solutions, then: $\texttt{intersection(p1,p2)}$ is the canonical generator of $V_1 \cap V_2$. The number of arguments can be greater than 2. For example one can write $\texttt{intersection(p1,p2,p3,p4)}$;

Union. Let $p1$ and $p2$ be two polynomials and $V1$ and $V2$ be the corresponding set of solutions, then: $\texttt{union(p1,p2)}$ is the canonical generator of $V_1 \cup V_2$. As in case of $\texttt{intersection}$, the number of arguments can be greater than 2.

Tests of inclusion. Let $p1$ and $p2$ be two polynomials and $V1$ and $V2$ be the corresponding set of solutions, then: $\texttt{inclus(g1,g2)}$ is True if and only if $V_1 \subseteq V_2$. For example:

```
> declare(a);
> g1 : gen([a^2 = 1]);
g1
> g2 : gen([a = 1]);
g2
> inclus(g1,g2); // True
> inclus(g2,g1); // False
```

An Example:

```
> declare(a, b);
> list : [a = 1, b = -1];
> poly : gen([a = 1, b = -1]);
poly
> A : gen([a = 1]);
A
> B : gen([b = -1]);
B
> Adj : intersection(A, B);
Adj
> Adj : union(A, B);
Adj
> equal(poly, Adj); // True
> equal(poly, Adj); // False
```

2.4 Systems and Processes

SIGALI distinguishes between two categories of dynamical systems: systems and processes.
### 2.4.1 Systems

*Systems* are general dynamical systems in which null transitions (basically self loops) are taken into account even when all the signals are absent. For example, in case of the process *doubleₚ*, a *system* can be constructed as follows:

```plaintext
sys_doubleₚ := systeme(conditions, etats, evolutions, initialisations, contraintes, controlables);
```

*conditions* is a list of variables encoding the event variables, whereas *etats* is a list of variables which encodes the states variables. *controlables* is a subset of *conditions* and corresponds to the controllable event variables. *evolutions* is a list of polynomials (one for each state variable) which corresponds to the evolution of each state variables. *initialisations* is a list of polynomials (the solutions of this polynomial systems correspond to the initial states of the system). *contraintes* is also a list of polynomial encoding the constraints part of the polynomial dynamical system (i.e. $Q(X, Y) = 0$).

### 2.4.2 Processes

In a *process*, null transitions are excluded i.e. no transition can take place in the absence all the signals. All dynamical systems originating from *Signal* programs fall under this category. In case of the process *doubleₚ*, a *process* can be constructed as follows:

```plaintext
proc_doubleₚ := processus(conditions, etats, evolutions, initialisations, contraintes, controlables);
```

### 2.4.3 Access to the components

If *syst* is a dynamical system constructed by the command *systeme* or *processus*, then the 6 components of *syst* can be accessed by:

- `event_var(syst);`
- `state_var(syst);`
- `evolution(syst);`
- `initial(syst);`
- `constraint(syst);`
- `controllable_var(syst);`

### 2.4.4 Some special sets

If *g* is the canonical generator of a set of states *E*, then: `pred(*syst*, *g*);` is the canonical generator of the set of predecessors of *E*. Similarly, `all_succ(*syst*, *g*);` is the canonical generator of the set of states *all* of whose successors belong to *E*. `evnt_adm(*syst*, *g*);` is the canonical generator of the set of events admissible in *E*. If *g* is the canonical generator of a set of events *F*, then: `etats_adm(*syst*, *g*);` is the canonical generator of the set of states compatible with at least one of the events in *F*.

### 3 Verification of systems using Sigali

*Sigali* provides certain functionalities for the verification of the properties of a dynamical system.

#### 3.1 Loading of the necessary libraries

The following files must be loaded:

```plaintext
load("Creat_SDP.pp");

load("Verif_Determ.bib");

load("Verif_Type.pm");

```
A more convenient way is to make a file called Bibli232 containing the read commands for the above files and then to load Bibli232 at the Sigali prompt.

3.2 Liveness

3.2.1 Rudiments

Definition: A dynamical system is alive iff \( \forall x, y \) such that \( Q(x, y) = 0 \), \( \exists y' \) such that \( Q(P(x, y), y') = 0 \).

In other words, a system is alive if it contains no sink states.

If syst is a system or a process, then:

vivace(syst);

is True if and only if syst is alive.

In case of the process proc_double_m for example:

vivace(proc_double_m);

vivace(proc_double_m);

false

vivace(proc_double_m);

true

3.2.2 An example of the difference between system and process

A flipflop with constraint on the input. One may use the 1 bit memory \( m \) to define the process flipflop_c:

```plaintext
process flipflop_c =
 (event E
 1 bidenom R; | % One Boolean memory |
 X := a (false) bool; | % Flipflop memory |
 X := not X; | % Memory no more frequent than input |
 E := Y := true; | % Input admissible when the memory value is true |
 true)
where
 (declaration of m)
end;
```

The clock constraint specifies that an input is accepted only when the value of the memory is true. It also specifies that the memory value is present only when the input is present. These together try to impose constraints on the external event from within the system. This prevents the generation of executable code in this case.

Also, once the memory value becomes false, it remains false since no further input is accepted. Thus the process is blocked and it is not alive. On the other hand, in case of the system, null transitions can still take place from the false state to itself and so the system is alive.

Relative liveness. The evaluation of liveness of the two representations (system and process) by SIGALI yields:

```plaintext
load("flipflop_c.exe");
```

```

sys_flipflop_c : system(conditions,states,transitions,initializations,constraints);

pro_flipflop_c : process(conditions,states,transitions,initializations,constraints);

```

vivace(proc_flipflop_c);

false

vivace(sys_flipflop_c);

true

As expected, the system is alive but the process is not.
3.3 Safety Properties

3.3.1 Invariance

Definition: A set of states $E$ is invariant for a dynamical system iff for every state $x$ in $E$ and every event $y$ admissible in $x$, the successor state $x' = P(x, y)$ is also in $E$.

If $\text{sys}$ is a dynamical system and $g$ is the canonical generator polynomial of a set of states $E$, $\text{invariant}(\text{sys}, g)$;

is True if and only if $E$ is invariant for $\text{sys}$.

For example, in case of the process double.m, one can specify a property $\text{pr\_sq} : [\text{stat\_1 = stat\_2}]$; The invariance of this property can then be tested by the command:

$\text{invariant}(\text{pf}, \text{gen}(\text{pr\_sq}))$;

where $\text{pf}$ is the process constructed by the command $\text{processus}$.

3.3.2 Greatest invariant subset

Given a set of states $E$, there exists a set $F$ which is the greatest invariant subset of $E$. If $\text{sys}$ is a dynamical system and $g$ is the canonical generator of $E$, then:

$\text{pg\_invariant}(\text{sys}, g)$;

gives the canonical generator of $F$. Abbreviation: $\text{gi}(\text{sys}, g)$;

3.3.3 Invariance under control

Definition: A set of states $E$ is control-invariant for a dynamical system iff for every state $x$ in $E$, there exists an event $y$ such that $Q(x, y) = 0$ and the successor state $x' = P(x, y)$ is also in $E$.

If $\text{sys}$ is a dynamical system and $g$ is the canonical generator polynomial of a set of states $E$, $\text{c\_invariant}(\text{sys}, g)$;

is True if and only if $E$ is control-invariant for $\text{sys}$.

3.3.4 Greatest control-invariant subset

Given a set of states $E$, there exists a set $F'$ which is the greatest control-invariant subset of $E$. If $\text{sys}$ is a dynamical system and $g$ is the canonical generator of $E$, then:

$\text{pg\_c\_invariant}(\text{sys}, g)$;

gives the canonical generator of $F'$. Abbreviation: $\text{gi}(\text{sys}, g)$;

3.4 Reachability Properties

3.4.1 Reachability

Definition: A set of states $E$ is reachable iff for every state $x \in E$ there exists a trajectory starting from the initial states that reaches $x$.

If $\text{sys}$ is a dynamical system and $g$ is the canonical generator polynomial of a set of states $E$, $\text{accessible}(\text{sys}, g)$;

is True if and only if $E$ is reachable from the initial states of $\text{sys}$.

Note: $\text{Reachable}(\text{sys}, g)$; works also fine

3.4.2 Attractivity

Definition: A set of states $F$ is attractive for a set of states $E$ iff every trajectory initialized on $E$ reaches $F$. If $\text{sys}$ is a dynamical system and $g$ is the canonical generator polynomial of a set of states $E$, $\text{Attractivity}(\text{sys}, g)$;

is True if and only if $E$ is Attractive from the initial states of $\text{sys}$.

Note: To avoid confusion between states and properties, it is essential to keep in mind that when a property is defined, SIGALI computes the set of states where the property holds. So for every property, there always corresponds a unique set of states. This set is empty if the property does not hold at any state of the system.
3.5 A demonstration

In order to demonstrate how one can use the Sigali commands given in this section, as well as interpret Sigali's response to these commands, a small example is given below. It is for the process `double.m` which is defined and explained in Section 2.1. It will be a good exercise to check for oneself the results produced by Sigali in order to get a clear picture of the issues involved.

```
> trace("double.m.log");
> load("double.m.dat");
> pf : processus(conditions, etats, evolutions, initialisation, contraintes);
pf > varestat(pf);
> varevent(pf);
> pr_eq : [etat_1 = etat_2];
> pr_sync : [etat_1^2 = etat_2^2];
> pr_val : [etat_1 = 1, etat_2 = 0];
> pr_par : [etat_2 = 1];
> pr_eq;
> prSYNC;
> pr_val;
> pr_par;
> etat_1 = 0
> etat_2 = 1
> etat_3 = 0
> etat_4 = 0
> etat_5 = 1
> etat_6 = 0
> etat_7 = 0
> etat_8 = 1
> etat_9 = 0
> etat_10 = 1
> etat_11 = 0
> etat_12 = 1
> etat_13 = 0
> etat_14 = 0
> etat_15 = 1
> etat_16 = 0
> etat_17 = 1
> etat_18 = 0
> etat_19 = 1
> etat_20 = 0
> etat_21 = 1
> etat_22 = 0
```

14
> invariant(p, gen(par_eq)); False
> invariant(p, gen(par_sync)); True
> invariant(p, gen(par_val)); False
> invariant(p, gen(par_par)); False
> accessible(p, gen(par_eq)); True
> accessible(p, gen(par_sync)); True
> accessible(p, gen(par_val)); True
> accessible(p, gen(par_par)); True
> c_invariant(p, gen(par_eq)); True
> c_invariant(p, gen(par_sync)); True
> c_invariant(p, gen(par_val)); True
> c_invariant(p, gen(par_par)); True
> pg_invariant(p, gen(par_eq)); False
> pg_invariant(p, gen(par_sync)); False
> pg_invariant(p, gen(par_val)); False
> pg_invariant(p, gen(par_par)); False

 STAT_1 = 0
 STAT_2 = 1
 STAT_3 = 2

> pg_invariant(p, gen(par_eq));
  STAT_1; STAT_2; STAT_3
> pg_invariant(p, gen(par_sync));
  STAT_1; STAT_2; STAT_3
> pg_invariant(p, gen(par_val));
  STAT_1; STAT_2; STAT_3
> pg_invariant(p, gen(par_par));
  STAT_1; STAT_2; STAT_3
3.6 Expression of system properties in SIGNAL+

It was already seen how system properties can be declared in SIGNAL by means of symbols, identifiers and indeterminates. The subsequent sections will explain how to verify these properties and synthesize the controller using SIGNAL. Using an extension of the SIGNAL language, called SIGNAL+, it is also possible to express the properties to be checked, as well as the control objectives to be synthesized, in the SIGNAL program. The syntax is:
The keyword SIGALI means that the subexpression has to be evaluated by SIGALI. The function $\text{B}_\phi$ will encode the "value" of the boolean $PROP$ defined in the SIGNAL program, that we want to analyse (it can be either $\text{B}_\text{True}$ or $\text{B}_\text{False}$, which means that we are interested in analyzing the set of states where the boolean $PROP$ is $\text{true}$ (resp. $\text{false}$) The function Objective can be a verification objective: it can be Always, $\text{C}_\text{Invariant}$, Reachable, Attractivity, etc, or a control objective to be synthesized. we will come back to this point in the next section.
References


