
S
N

 0
24

9-
63

99

 IS

R
N

 IN
R

IA
/R

R
--

46
89

--
F

R
+

E
N

G

appor t
de r echerche

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Synchronous Modeling of Modular Avionics
Architectures using the SIGNAL Language

Abdoulaye GAMATIÉ — Thierry GAUTIER

N° 4678

December 2002

Unité de recherche INRIA Rennes

Synchronous Modeling of Modular Avionics

Architectures using the SIGNAL Language

Abdoulaye GAMATIÉ, Thierry GAUTIER

Thème 1 � Réseaux et systèmes
Projet Espresso

Rapport de recherche n° 4678 � December 2002 �127 pages

Abstract: This document presents a study on the modeling of architecture components for
avionics applications. We consider the avionics standard ARINC 653 speci�cations as basis,
as well as the synchronous language Signal to describe the modeling. A library of APEX
object models (partition, process, communication and synchronization services, etc.) has
been implemented. This should allow to describe distributed real-time applications using
Polychrony, so as to access formal tools and techniques for architecture evaluation.

Key-words: Signal, ARINC, avionics architectures, real-time system modeling.

This work has been supported by the european project IST Safeair (Advanced Design Tools for
Aircraft Systems and Airborne Software) [GMGW01] (http://www.safeair.org/).

Modélisation Synchrone d'Architectures Avioniques

Modulaires à l'aide du langage SIGNAL

Résumé : Ce document présente une étude sur la modélisation de composants d'architecture
pour des applications avioniques. Nous considérons les spéci�cations de la norme avionique
ARINC 653 comme base, ainsi que le langage synchrone Signal pour décrire la modélisation.
Une bibliothèque de modèles d'objets APEX (partition, processus, services de communica-
tion et synchronisation, etc.) a été mise en ÷uvre. Ceci devrait permettre de décrire des
applications distribuées temps-réel en utilisant Polychrony, de manière à accéder aux
outils et techniques formels pour l'évaluation d'architectures.

Mots-clés : Signal, ARINC, architectures avioniques, modélisation de système temps-
réel.

Synchronous Modeling of Avionics Architectures using Signal 3

Contents

I Modeling of Avionics Architectures using Signal 5

1 Introduction 5

2 Avionics architectures 6

3 The synchronous language Signal 9
3.1 Main characteristics of Signal . 10
3.2 Modularity: an important feature of the Signal programming 11

4 Component modeling 12
4.1 APEX services . 13
4.2 ARINC process . 21
4.3 Partition level OS . 26
4.4 An example . 31

5 Discussion 39
5.1 Related work . 40
5.2 Tool support for real-time embedded systems modeling 41

6 Conclusion 42

II Annexes 44

7 Annex A: detailed Signal program of the read_blackboard service 44

8 Annex B: Speci�cation of the services 46
8.1 Common types . 46
8.2 Processes . 46

8.2.1 Main features of a process . 46
8.2.2 Types . 48
8.2.3 Process descriptor . 49
8.2.4 Process waiting queues . 61
8.2.5 Process management . 67

8.3 Intra-partition communication and synchronization mechanisms 75
8.3.1 Types . 75
8.3.2 Intra-partition communication and synchronization mechanisms manager 76
8.3.3 Communication and synchronization services 86

8.4 Inter-partition communication mechanisms 103
8.4.1 Types . 103

RR n° 4678

4 A. GAMATIÉ & T. GAUTIER

8.4.2 Inter-partition communication mechanisms manager 104
8.4.3 Inter-partition communication services 110

8.5 Time management . 120

9 Annex C: The implementation architecture of the library 124

INRIA

Synchronous Modeling of Avionics Architectures using Signal 5

Part I

Modeling of Avionics Architectures using

Signal

1 Introduction

The design of complex systems usually involves multiple formalisms (among others, natural
language, programming languages) and various tools (e.g. provers, simulators), each at a
speci�c phase of conception (speci�cation, coding or testing). The main drawback of such
an approach is that the design and checking tasks are inherently long and hard. As a matter
of fact, transitions between design phases are di�cult and error prone. Furthermore, for any
detected error at a given phase, one must be able to update the whole design chain.
In the particular case of distributed real-time systems, there are additional di�culties: on the
one hand, such systems have to be separated e�ciently into components, and communication
mechanisms between these components must be provided; on the other hand, the validation
of the whole is required.

Therefore, a key challenge in embedded real-time system design [Sif01] [Lee00] is to pro-
vide practitioners with reliable and a�ordable tools, and enabling technology to overcome
the obstacles above.
Modeling is essential to the design activity. It allows more �exibility concerning decisions,
it is unnecessary to have the actual system to make experiments. Among the advantages
emphasized by [Sif01], we can mention the enhanced adaptability of models and their pa-
rameters; more general descriptions by using genericity, abstraction, behavioral non deter-
minism; the possibility of applying formal methods for analysis and predictability.
Many formalisms for real-time systems modeling have been proposed. Among them, we
mention timed models (e.g. timed extension of Petri nets [Sif77], timed transition systems
[HMP91] or timed automata [AD94]), Architecture Description Languages (ADLs) [Cle96]
(e.g. MetaH [Ves97]), or the Uni�ed Modeling Language (Uml) modeling concepts as in
[SR98]. Related tools like Kronos [Yov97] for timed automata enable veri�cation of prop-
erties on models.

Over these past years, the synchronous technology [Hal93] has emerged as one of the
most promising ways for guaranteeing a safe design of embedded systems. It o�ers practical
design assistance tools with a formal basis. This includes possibilities of high level speci-
�cations, using synchronous languages [BB91]; modular veri�cation of properties on these
speci�cations; automatic code generation through formal transformations, and validation
of the generated code against speci�cations. As a result, earlier architectural choices and
behavioral simulation are enabled, and design ambiguities and errors can be signi�cantly
reduced.
The programming environment of the synchronous language Signal [LGLL91], called Poly-

RR n° 4678

6 A. GAMATIÉ & T. GAUTIER

chrony, which is developed by INRIA1 (http://www.irisa.fr/espresso), incorporates
all these functionalities.

This report presents an approach to the modeling of real-time architectures in general,
and modular avionics architectures in particular. We use the Signal language to specify
models. A previous paper [GG02] already introduced this work. Here, we give in a more
detailed way, an improved version of the approach.
The remainder of the paper is organized as follows: Section 2 discusses design approaches for
architectures in avionics. A short introduction to ARINC (Aeronautical Radio, Inc.) speci-
�cation 653 [Com97b] is also given. Section 3 presents the main features of the synchronous
language Signal, while Section 4 focuses on our approach to modeling ARINC speci�ca-
tions in Signal. Then, in section 5 we relate our approach to the literature. The conclusion
and perspectives are given in section 6. Finally, an annex provides the speci�cation of the
modeled services.

2 Avionics architectures

Traditionally, avionics functions are implemented in such a way that each function has
its dedicated fault-tolerant computer system. This architecture where systems are loosely
coupled from each other is called federated. Fig. 1 gives a view of such an architecture.
A great advantage is that fault containment is inherent to this approach. Unfortunately,
there is a potential risk of massive use of resources: each function requires its own computer
system, which is most of the time replicated for fault tolerance. Of course, overall costs
are easily a�ected. For instance, installation and maintenance tasks are harder, weight and
space become critical on board, etc.

...

computer system n

function_nfunction_1

computer system 1

Figure 1: Federated architecture: each function has its dedicated fault-tolerant computer system.

1There is also an industrial version, Sildex, implemented and commercialized by TNI-Valiosys
(http://www.tni-valiosys.com).

INRIA

http://www.irisa.fr/espresso
http://www.tni-valiosys.com

Synchronous Modeling of Avionics Architectures using Signal 7

New architectural concepts have emerged in order to solve this problem, Integrated
Modular Avionics (IMA) [Com97a] is one of them. In this philosophy, several avionics
functions can be hosted on a single, shared computer system as shown on Fig. 2. A criti-
cal aspect for IMA is ensuring that shared computer resources are safely allocated so that
there exists no fault propagation from one hosted function to another. This is addressed
by the partitioning mechanism. It consists in a functional decomposition of the avionics
applications, with respect to available time and memory resources. A partition [Com97b]
is an allocation unit resulting from this decomposition. Partitioning promotes veri�cation,
validation and certi�cation.

...

Partitioning

computer system 1 computer system k (k < n)

function_n

function_n-1

function_3

function_1

function_2

Figure 2: IMA architecture: several functions can be hosted on a single, shared computer system.

The core module encompasses partitions possibly belonging to applications of di�erent
critical levels. Mechanisms are provided in order to prevent a partition from having �abnor-
mal� access to the memory area of another partition. This ensures a safe execution of appli-
cations. The processor is allocated to each partition for a �xed time window within a major
time frame maintained by the core module level OS. A partition cannot be distributed over
multiple processors either in the same core module or in di�erent core modules. For instance,
in Fig. 3, Partition_2 and Partition_3 are allocated to processor_2, Partition_1 runs
alone on the other processor. Partitions communicate asynchronously via logical ports and
channels. There are two transfer modes in which channels may be con�gured: sampling
mode and queuing mode. In the former, no message queuing is allowed. A message remains
in the source port until it is transmitted by the channel or it is overwritten by a new oc-
currence of the message. During transmissions, channels ensure that messages leave source
ports and reach destination ports in the same order. A received message remains in the

RR n° 4678

8 A. GAMATIÉ & T. GAUTIER

processor_2processor_1

semaphore

bu�er

Process_1

Process_1

Process_2

ports

channel

Process_1

Process_2

Process_3

Partition_3

Partition_2

Partition_1

blackboard

Figure 3: Example of three partitions running on 2-processors architecture.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 9

destination port2, until it is also overwritten. In the queuing mode, ports are allowed to
store messages from a source partition in queues3, until they are received by the destination
partition. The message queuing discipline is First-In First-Out (FIFO). A set of services is
provided to the application software for message exchange between partitions. In the sequel,
these are referred to as inter-partition communication services.

Partitions are composed of processes which represent the elementary execution entities4

(see Fig. 3). Processes run concurrently to achieve functions associated with the partition
they are contained in. Each process is uniquely characterized by a set of information such
as period, priority or deadline time, used by a partition level OS. Processes are scheduled
through a priority preemptive policy: the process in �ready� state with the current highest
priority executes whenever the partition is active. The communications between processes
are achieved by three basic mechanisms. The bounded bu�er is used to send and receive
messages. It allows storing messages in FIFO queues. The event permits the application to
notify an occurrence of a condition to processes which may wait for it. The blackboard is used
to display and read messages; no message queues are allowed, and any message written in a
blackboard remains there until the message is either cleared or overwritten by a new instance
of the message. Synchronizations are achieved by a semaphore, which provides controlled
access to partition resources. Each mechanism is accessed via its associated service, e.g.
SEND_BUFFER, SET_EVENT, DISPLAY_BLACKBOARD, WAIT_SEMAPHORE. In
the sequel, we call them intra-partition communication and synchronization services.

The ARINC speci�cation 653 [Com97b] relies on IMA. It de�nes the interface between
the application software and the core software (OS, system speci�c functions), called APEX
(APplication EXecutive). It is depicted in Fig. 4.

3 The synchronous language Signal

The underlying theory of the synchronous approach [Hal93] is that of discrete event sys-
tems and automata theory. Time is logical: it is handled according to partial order and
simultaneity of events. Durations of execution are viewed as constraints to be veri�ed at
the implementation level. Typical examples of synchronous languages [BB91] are: Es-

terel [BG92], Lustre [HCRP91], Signal [GLM94] [LGLL91]. They mainly di�er from
each other in their programming style. The �rst one adopts an imperative style whereas the
two others are data-�ow oriented (Lustre is functional and Signal is relational). However,
there had been joint e�orts to provide a common format DC+ [BGMR97], which allows the
interoperability of tools.

2A refresh period attribute applies to ports. When reading a sampling port, a validity parameter indicates
whether the age of the read message is consistent with the required refresh period attribute of the port.

3A new instance of a message may carry uniquely di�erent data. So, it should not be allowed to overwrite
previous ones during the transfer.

4In fact, an analogy can be made between ARINC partitions and UNIX processes on the one hand, and
ARINC processes and UNIX tasks on the other hand.

RR n° 4678

10 A. GAMATIÉ & T. GAUTIER

������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������

Application_1 Application_n

Specific

Functions
System

Hardware

...Application

Software

APEX
Interface

Core
Software

OS

Figure 4: The APEX interface within the core module Software (from ARINC 653).

3.1 Main characteristics of Signal

The Signal language [GLM94] [LGLL91] handles unbound series of typed values (xt)t2N,
denoted as x in the language, implicitly indexed by discrete time (denoted by t in the
semantic notation): they are called signals. At a given instant, a signal may be present,
then it holds a value; or absent, then it is denoted by the special symbol ? in the semantic
notation. There is a particular type of signals called event. A signal of this type is always
true when it is present (otherwise, it is ?). The set of instants where a signal x is present
is called its clock. It is noted as ^x (which is of type event) in the language. Signals that
have a same clock are said to be synchronous. A Signal program, also called process, is a
system of equations over signals.
The kernel language. Signal relies on a handful of primitive constructs which are
combined using a composition operator. These are:

� Functions. y:= f(x1,...,xn), where yt 6=?, x1t 6=?, ::: , xnt 6=?, and 8t:
yt = f(x1t; :::; xnt).

� Delay. y:= x $ 1 init y0, where xt 6=?, yt 6=?; 8t > 0: yt = xt�1; y0 = y0.

� 2-arguments down-sampling. y:= x when b, where yt = xt if bt = true, else
yt =?.

� Deterministic merging. z:= x default y, where zt = xt if xt 6=?, else zt = yt.

� Hiding. P/x denotes that the signal x is local to the process P.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 11

� Synchronous parallel composition of P and Q, encoded by (| P | Q |). It corre-
sponds to the union of systems of equations represented by P and Q.

Extension. The above core constructs are of su�cient expressive power to derive other
constructs for comfort and structuring. We can mention the following ones:

� 1-argument down-sampling. y:= when b, where yt = true if bt = true, else yt =?.

� Synchronizer. x1 ^= ... ^= xn, where x1t 6=?, ::: , xnt 6=? (i.e. x1; :::; xn are
synchronous).

� Memorizing: we note two useful operators,

� y:= x cell b init y0, de�ned as:
(| y:= x default (y$1 init y0) | y ^= ^x default (when b) |)

(y is equal to x when x is present. Otherwise, when b is true, y takes the latest
value carried by x. One can notice that the clock of y depends on the ones of x
and b)

� y := var x init y0,
Here also y always carries the latest value of x. The main di�erence from the
above operator is that the clock of y is the one de�ned by the context in which
it is used.

Another important characteristic of the Signal language is the possibility of importing
external objects (e.g. C++ functions). Thus, put together, all these features favor modu-
larity and reusability. A complete and detailed description of all Signal features will be
found in [BGG02]. In the next sections, the use of the above operators is illustrated.

About the veri�cation of Signal programs, we can distinguish two kinds of properties:
invariant properties (e.g. a program exhibits no contradiction between clocks of involved
signals) on the one hand, and dynamical properties (e.g. reachability, liveness) on the other
hand. The Signal compiler itself addresses only the �rst one. For a given Signal program,
it checks the consistency of constraints between clocks of signals, and statically proves prop-
erties (e.g. the so-called endochrony property guaranteeing determinism). A major part
of the compiler task is referred to as the clock calculus (see [LGLL91] for more details).
Dynamical properties are addressed using other connected tools like Sigali [MBLL00], a
model checker.

3.2 Modularity: an important feature of the Signal programming

Modularity is one major feature of Signal-based speci�cations. Any process can be ab-
stracted by an interface which speci�es properties on its input-output signals. These prop-
erties essentially concern clock relations and dependencies between signals. Two kinds of
abstraction are distinguished for a Signal process: black box and grey box abstractions. In

RR n° 4678

12 A. GAMATIÉ & T. GAUTIER

the former, only properties on input-output signals are speci�ed: it is shown on the left hand
box of Fig. 5, the only visible information is how the outputs of a process P are related to
the inputs.

PP

inputs

outputs

inputs

outputs

Figure 5: Black box (left) and grey box (right) abstractions of a process P.

The latter, represented by the right hand box, is a re�nement of the former. In addition to
the informations on the input-output signals of the process, it describes the possible internal
interactions between sub-components which are black box abstractions in which inputs pre-
cede outputs (such that the outputs can be computed as soon as the inputs are available).
The Signal language provides a process frame which enables the de�nition of sub-processes.
Sub-processes which are only speci�ed by an interface without internal behavior (like the
sub-components in the grey box abstraction) are considered as external (separately compiled
processes or physical components). This is an essential feature in our approach.

In the sequel, we present how partitions are modeled in Polychrony, and we also give
an example for illustration.

4 Component modeling

To model a partition, we consider three basic elements:

1. the executive units which are ARINC processes;

2. the interactions (communication and synchronization) between these processes, which
are achieved via the so-called APEX services;

3. the partition level OS, which is in charge of the correct concurrent execution of pro-
cesses within the partition.

The executive model of a partition is mainly obtained by a combination of these elements
as depicted in Fig. 6. In this section, we focus on the modeling of each of them: in sub-
section 4.1, we show how APEX services are described in Signal; then a model of ARINC
processes is proposed in sub-section 4.2; and �nally, sub-section 4.3 discusses the modeling
of the partition level OS.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 13

Partition
OS

Process_3

Process_1

Process_2

semaphore

bu�er

Figure 6: Signal executive model of a partition.

4.1 APEX services

Here, we consider the following APEX services:

� Communication and synchronization services which describe how ARINC pro-
cesses access mechanisms like bu�ers, events, blackboards, ports and semaphores. E.g.
SEND_BUFFER, WAIT_EVENT.

� Process management services. E.g. START, RESUME, STOP.

� Time management services. E.g. TIMED_WAIT, PERIODIC_WAIT.

The design approach will be illustrated by considering one APEX service. We show how the
corresponding Signal model is obtained from informal speci�cations like those encountered
in [Com97b].

Modeling of an APEX service. Let us consider the so-called READ_BLACKBOARD
service, de�ned in [Com97b]. This service is used to read a message in a blackboard. The in-
put parameters are the blackboard identi�er, and a time-out duration for waiting whenever
the blackboard is empty. The outputs are a message (de�ned by its address5 and size), and
a return code for the diagnostics of the service request. An informal speci�cation is as follows:

if inputs are invalid (that means the blackboard identi�er is unknown or the time-out value is �out
of range�) then

return INVALID_PARAM;
else if some message is currently displayed on the speci�ed blackboard then

send this message and return NO_ERROR;
else if the time-out value is zero then

return NOT_AVAILABLE;
else if preemption is disabled or the current process is error handler then

5Also referred to as area.

RR n° 4678

14 A. GAMATIÉ & T. GAUTIER

return INVALID_MODE;
else

set the process state to waiting;
if the time-out value is not in�nite then

initiate a time counter with duration time-out;
end if

ask for process scheduling (the process is blocked and will return to a �ready� state by a display
service request on that blackboard from another process or time-out expiration);
if expiration of time-out then

return TIMED_OUT;
else

the output message is the last available message of the blackboard and return NO_ERROR;
end if

end if

We have to derive a synchronous model which corresponds to the above informal speci�-
cation. To see how this can be done, let us consider a concurrent execution of two processes
P1 and P2 within a partition. P1 is assumed to have a higher priority than P2. They com-
municate via a blackboard which is currently empty. Two possible scenarios are illustrated
in Fig. 7.
In both scenarios, P1 tries to read the blackboard before P2, and gets suspended since no
message is displayed yet. As a result, a re-scheduling is performed to switch and make P2
active. The process P1 must wait for either a noti�cation that an initiated time counter
becomes zero6 (referred to as situation A on the �gure), or the availability of some message
(displayed by P2) in the blackboard (situation B). Now, if we check the timeline in both
situations, we see that the time-lag corresponding to the READ_BLACKBOARD service
is [t2, t3]. It partially includes both executions of P1 and P2. We remind that within a
partition, only one process executes at any instant. In a synchronous view, it means that
only statements associated with one process at most are executed within any step. Clearly,
we have to split the speci�cation of the service into subsets of actions since the whole service
cannot be entirely executed within a single synchronous step. Therefore, we distinguish two
subsets: on the one hand, actions executed when P1 is running (e.g. checking the validity of
input parameters, initiating a time counter...), we call them local actions ; and on the other
hand, actions performed during its suspension (e.g. in situation A, these actions consist of
the control of the time counter: decrease it and notify when it becomes zero), referred to as
global actions.
In fact, global actions are under the control of the so-called partition level OS, which is re-
sponsible for the management of all the processes, and common resources and mechanisms
(blackboard, semaphore, time counters...) within the partition. That means each process
blocked on a service request with a time-out will receive a TIMED_OUT signal from the

6In the informal speci�cation, it corresponds to the emission of TIMED_OUT as return code value.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 15

(1) process P1 executes; (2) then gets

another process P2 executes; (3) finally,

waiting expires.

blocked on waiting for a message, and

Situation B:

re−executes after P2 makes the

P1 re−executes after the time−out for

process P2 executes; (3) finally, P1
blocked on waiting for a message, and

message available.

(1) process P1 executes; (2) then gets

Situation A:

execution order

t1 t2 t3 t4
time

time counter

(1) (2) (3) (4)

t5

read_blackboard call

display_blackboard call

P1

P1

P2

P2 P2

P2

P1

P1

Figure 7: Concurrent execution of two processes P1 and P2 on one processor.

RR n° 4678

16 A. GAMATIÉ & T. GAUTIER

partition level OS model. The subsection 4.3 addresses the modeling of the partition level
OS.

So, the modeling of a service consists in a temporal split of its associated actions
into subsets in such a way that one can select which subsets have to be executed within a
given synchronous step. This is a basic principle for the modeling of services.

Now, we show how the local actions of the READ_BLACKBOARD service are modeled
using Signal. For that, we consider the situation B of Fig. 7 where P1 resumes after P2 has
displayed a message on the blackboard. Local actions (executed by P1) take place exactly at
t2 (e.g. check the validity of input parameters, initiate a time counter for waiting...) and t3

(e.g. retrieve the last available message). Let L and L' denote the respective subsets of local
actions that occur at these instants. They are grouped into the same Signal process which
represents a partial model of the READ_BLACKBOARD service. On the other hand, since
they are not achieved at the same point in time, we have to de�ne the conditions which
select the right subset of local actions to be executed whenever the whole Signal model is
activated. This is easily described using an internal state variable that indicates which one
among L and L' should be computed. Typically, it is encoded by a boolean signal blocked
(that initially carries the value false) as depicted in Fig. 8.
In this model, L is executed when the caller was not previously blocked on the service call
(denoted by the condition when (not blocked $ 1) on the �gure). The boolean blocked

is set to true as soon as the resource is not available (empty blackboard). This is represented
by the arrow from L to blocked in the �gure. When the state variable previously carried
the value true (i.e. the caller was previously blocked), the subset L' is executed and the
boolean blocked becomes false.

when (not blocked $1)

when (blocked $1)

inputs outputsblocked

L

L’

Figure 8: Rough model of local actions associated with a blocking service.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 17

Remark 1 The model on Fig. 8 is a general view, it can be simpli�ed for some services.
This is the case for the READ_BLACKBOARD service where L and L' denote the same
actions. As a matter of fact, the calling process has to read again the blackboard in order
to get the last displayed message. This is di�erent from what is done when calling the RE-
CEIVE_BUFFER service (see the annex B). The message retrieved by the resumed process
is not necessarily the last available one in the bu�er. It is the message whose arrival induced
the release of the process. So, in such a case, the actions achieved in L' in order to get the
message are not the same as those associated with L.

In the following, we mainly concentrate on the speci�cation of a subset of actions (like L
or L'). We bring out the capabilities of Signal to allow modular speci�cations.

The Signal process shown in Fig. 9 models local actions executed on a READ_BLACK-
BOARD service7 request (i.e. L [L'). There are four main sub-processes. This descrip-
tion follows the 2nd Design Principle8 as de�ned in the Signal programming methodology
[GLM94].
The sub-processes CHECK_BOARD_ID and CHECK_TIMEOUT verify the validity of input param-
eters board_ID and timeout. If they are valid, PERFORM_READ tries to read the speci�ed
blackboard. Afterwards, it sends the latest message displayed on the blackboard (its area
and size are respectively speci�ed by message and length), and transmits all the necessary
information to GET_RETURN_CODE which de�nes the �nal diagnostic message of the service
request. For example, when signals empty and preemp_enabled respectively carry the values
true and false, GET_RETURN_CODE sends INVALID_MODE as return_code (that means the
service caller must wait for a message in the blackboard, and no other process can execute
during the wait because the current operating mode does not allow preemption). In the case
of invalid inputs (e.g. board_ID is an unknown identi�er within the partition, or timeout
is �out of range�), informations are still sent to GET_RETURN_CODE by CHECK_BOARD_ID and
CHECK_TIMEOUT in order to determine the return code. The sub-processes are often de�ned
by following the same design principle (e.g. PERFORM_READ).

In the abstraction, the keyword spec introduces the speci�cation of properties on the
input and output signals. For instance, the property (s.2) means that the return code is
present only when a local boolean C_return_code is true (This boolean carries the value
false when a time counter is initiated on a read request to wait for the availability of a
message in the blackboard, and no return code occurs yet. Otherwise, it holds the value
true. Since this boolean is de�ned internally, it simply appears in the abstraction as a local
signal whose de�nition is not given: it may be interpreted as �there exists C_return_code
such that the properties expressed in the abstraction hold�). In (s.1), it is stated that
this local signal is synchronous with the inputs of the service (i.e. whenever there is a read
request, C_return_code indicates whether or not a return code must be sent). The lines
(d.1) and (d.2) specify dependencies between the inputs and outputs. For example, the

7The complete Signal code of this model is given in the annex A. Note that we call it
READ_BLACKBOARD even though it only describes the local actions.

8�Decompose a process into functionally-coherent components�.

RR n° 4678

18 A. GAMATIÉ & T. GAUTIER

board_ID

timeout

message

length

return_co

present

board

CHECK_BOARD_ID{}

outofrange

available

CHECK_TIMEOUT{}

timeout

message

length

is_err_handler

empty

preemp_enabled

PERFORM_READ{}
GET_RETURN_CODE{}

process READ_BLACKBOARD =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type board_ID;

SystemTime_type timeout;

! MessageArea_type message;

MessageSize_type length;

ReturnCode_type return_code;

)

spec (| (| {{board_ID, timeout} �> return_code} when C_return_code (d.1)

| {{board_ID, timeout} �> {message, length}}

when (return_code = #NO_ERROR) (d.2)

|)

| (| board_ID ^= timeout ^= C_return_code (s.1)

| return_code ^= when C_return_code (s.2)

| message ^= length ^= when (return_code = #NO_ERROR) (s.3)

|)

|)

where boolean Cond_return_code;

;

Figure 9: Signal model of the READ_BLACKBOARD service, and its corresponding abstraction.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 19

property (d.2) states that the signals timeout and board_ID precede the output signals
message and length when the diagnostic of the request is NO_ERROR.
The modeling of the other APEX services follows the same approach. We will see later
that the decomposition of the informal speci�cations into local and global actions suits the
computation model adopted for the ARINC process model (see the subsection 4.2).

Remark 2 In the interface of the READ_BLACKBOARD service on Fig. 9, the param-
eter process_ID has been added. It does not exist in the original speci�cations [Com97b].
Here, it identi�es the requesting process, and it is used when the process must be blocked
and put in the waiting queue associated with the asked resource. The modeling of the other
services with similar actions follows the same scheme.

Data structures for component management. The management of components (e.g.
communication mechanisms, ARINC processes...) is done via global data structures in
which component attributes are collected. We call them component managers. They are
consulted to verify whether or not a component speci�ed in a user application actually
exists; and modi�ed in order to update the status of a component (e.g. the time capacity
or the deadline time of an ARINC process may be changed by a user application request).
The implementation of such data structures on which we often make side e�ects is slightly
complicated in Signal. We rather abstract them because side e�ect mechanisms do not
exist at all in the Signal language. So, they are �rst implemented as C++ classes (e.g.
class BlackboardManager for the manager of blackboards). Then, the Signal models
associated with the methods of these classes can be de�ned. For instance, the service
CHECK_BOARD_ID models the method that checks the presence of a blackboard identi�er
in the associated manager. To de�ne it, we use pragmas which allow to associate speci�c
information with the objects of a Signal program (inputs, outputs and parameters). The
information may be used further by the compiler or another tool. The example below
illustrates the use of pragmas in the speci�cation of the service CHECK_BOARD_ID.

Example 1 The Signal process on Fig. 10 describes the service that checks whether or
not the blackboard identi�ed by the input board_ID has been recorded in the associated man-
ager. Such a service de�nition is also called external process. The output present is TRUE
if the blackboard is present in the manager, then the other output board_OUT is the identi�ed
blackboard. Otherwise, present is FALSE.
In the spec section, the constraint (s.1) states that whenever the process is activated (that
means the signal board_ID is received), there is an answer (the signal present is sent);
the property (s.2) says that the signal board_OUT is present only when present is TRUE.
Input/output dependencies are expressed by statements (d.1) and (d.2).
Pragmas are introduced by the keyword pragmas. Here, they are used for the purpose of code
generation. The name CPP_CODE indicates that this pragma is interpreted when the imple-
mentation language is C++. The notations &i1, &o1 and &o2 encode respectively the �rst
input, the �rst and second outputs. Finally, the whole statement in inverted commas (invoca-
tion of the method BlackboardCheckID applied to the object GLOBAL_BLACKBOARD_MANAGER)

RR n° 4678

20 A. GAMATIÉ & T. GAUTIER

represents the piece of code to be considered in the generated code, after the substitution of
encoded parameters.

process CHECK_BOARD_ID =

(? blackboardID_type board_ID;

! boolean present;

APEX_Blackboard_type board_OUT;

)

spec (| (| board_ID �> present (d.1)

| { board_ID �> board_OUT } when present (d.2)

|)

| (| board_ID ^= present (s.1)

| board_OUT ^= when present (s.2)

|)

|)

pragmas

CPP_CODE "&o1 = GLOBAL_BLACKBOARD_MANAGER->BlackboardCheckID(&i1, &o2)"

end pragmas

Figure 10: Model of service de�ned using an abstraction.

Remark 3 One must take care when using pragmas in a service description. As a matter
of fact, the statements in such a service are seen as a black box by the Signal compiler.
It means that these statements will not be concerned by the veri�cations performed by the
compiler. For instance, in the CHECK_BOARD_ID service, only the constraints on the in-
put/output signals will be relevant to the compiler. All what is done in the external method
BlackboardCheckID() is transparent. So, the user must be sure that this piece of code is
trustworthy. As a result, this may become penalizing since one does not take the maximum
advantage of facilities o�ered by the Signal programming. We remind that a major objec-
tive of modeling services in Signal is to access to the formal techniques and tools available
in Polychrony for veri�cation and validation.
Therefore, we have restricted as much as possible the use of external processes in our ap-
proach. Only services that concern the management of the global data structures are de�ned
as external.

All the modeled services are described in the annex B. For each service, we give on
the one hand, an informal speci�cation which roughly explains how it works; and on the
other hand, a corresponding formal speci�cation in the form of a Signal abstraction which
expresses properties on the input-output signals. So, in the annex B, we �rst introduce
the allowable return codes used in the service descriptions (subsection 8.1). Then, the
subsection 8.2 provides the description of the services dedicated to the management of pro-
cesses. Intra-partition communication and synchronization services are given in subsection

INRIA

Synchronous Modeling of Avionics Architectures using Signal 21

8.3. They mainly concern the management and requests of mechanisms (bu�er, event,
blackboard, semaphore). Similarly, the services associated with the inter-partition commu-
nication mechanisms (sampling and queuing ports) are presented in subsection 8.4. Finally,
subsection 8.5 discusses time management services.

4.2 ARINC process

Processes represent the executive units for an application. They share common resources
(e.g. communication mechanisms like blackboard...), and execute concurrently within a
partition. We describe their main features in the annex B (subsection 8.2). Here, we �rst
de�ne the associated Signal model. Then, we show how this model is used to describe a
concurrent execution like the one shown on Fig. 7. The de�nition of such a model takes
into account two essential aspects: on the one hand, the execution �ow control (i.e. how the
actions are computed), and the description of computed actions (i.e. what the actions consist
of) on the other hand. This is in agreement with the 3rd Design Principle9 of [GLM94].

....

....

....

.....
Inputs

End_Processing

timedout

Active_process_ID

CONTROL

COMPUTE

Block

Block

Block

Block

Outputs

Figure 11: ARINC process model.

That is what we have depicted in Fig. 11. Two sub-components are clearly distinguished
within the model: CONTROL and COMPUTE. This picture shows the ARINC process as
a reactive component, where actions are performed whenever an execution order is received.
The input signal Active_process_ID identi�es the active process within the partition. It is
sent to all the processes which must check it to see if they can execute. The signal timedout
noti�es the expiration of time counters to processes that may be blocked on a service request
with time-out. Finally, the output End_Processing is emitted by a process after completion.
In addition to these signals which always appear in the interface of the model, there can be
other input (resp. output) signals needed for (resp. produced by) the process computations.
The CONTROL and COMPUTE sub-components cooperate to achieve the right actions for
every activation.

9�Split a process into computation and control parts�.

RR n° 4678

22 A. GAMATIÉ & T. GAUTIER

The CONTROL sub-component. It speci�es the execution �ow of the ARINC pro-
cess. Basically, it is a transition system that indicates which statements should be executed
whenever the process is active. Automata are very easy to specify in Signal.
A generic interface of the Signal process that speci�es the CONTROL sub-components is
given on Fig. 12.

process CONTROL =

{ ProcessID_type PID... }

(? ProcessID_type Active_process_ID;

[NB_PROC]boolean timedout;

info_type control_info_1 ... control_info_n;

! event end_processing;

integer Active_block;

)

spec (| (| { { Active_process_ID, timedout,

control_info_1 ... control_info_n } �>

Active_block } when (Active_process_ID = PID)

| { { Active_process_ID, timedout,

control_info_1 ... control_info_n } �>

end_processing } when C_end_processing

|)

| (| Active_process_ID ^= timedout ^= C_end_processing

| control_info_1 ^< Active_process_ID

| ...

| control_info_n ^< Active_process_ID

| end_processing ^= when C_end_processing

| Active_block ^= when (Active_process_ID = PID)

|)

|)

where boolean C_end_processing;

;

Figure 12: Generic interface of the CONTROL sub-component.

In this model, the parameter PID denotes the process identi�er (the worst case execution time
can be another parameter as well...). Thus, whenever Active_process_ID is the same as
PID, the identi�ed ARINC process executes. The input timedout is represented by an array
of booleans such that timedout[i] = TRUE when the time-out counter associated with the
ith process comes to expire; otherwise, timedout[i]= FALSE. The outputs end_processing
and Active_block specify respectively the completion of the process and the Block of ac-
tions to be executed. The input signals control_info_1 ... control_info_n are part of the

INRIA

Synchronous Modeling of Avionics Architectures using Signal 23

dialog between the CONTROL sub-component and the COMPUTE sub-component. They
denote informations that are received from COMPUTE in order to take a �local control�
decision (i.e. they represent labels in the automaton of the CONTROL sub-component).

The COMPUTE sub-component. It describes the actions computed by the process.
It is composed of so-called Blocks. They represent elementary pieces of code to be executed
without interruption like Filaments [EAL93], or clusters10 [GL99]. All the statements within
a Block are executed instantaneously in the synchronous model. This means that one must
take care of what kinds of statements can be put together in a same Block. In our case, two
sorts of statements can be distinguished.

� First, those which may cause an interruption of the running process. For instance,
a communication service request like READ_BLACKBOARD, or a synchronization
service request like WAIT_SEMAPHORE (used for accessing shared resources exclu-
sively with a semaphore). We call them system calls (in reference to the fact that they
involve the partition level OS).

� The others are statements that never interrupt the running process. Typically, data
computation functions. They are referred to as functions. A function a�ects only
the local control of the process. For instance, depending on the result of a function
executed in a Block Bi and sent to the CONTROL sub-component, a decision is taken
to choose either a Block Bj or Bk as the next statement to be executed.

Fig. 13 depicts a generic interface of the Signal process associated with the COMPUTE
sub-component.
The input signal Active_block indicates the current Block to be executed. The signals
control_info_1 ... control_info_n3 are sent to the CONTROL sub-component, and
INPUT_1 ... INPUT_n1 (resp. OUTPUT_1 ... OUTPUT_n2) are additional inputs (resp. outputs)
required (resp. produced) by actions speci�ed in the Blocks.

Execution of processes. A process executes whenever it gets designated by the partition
level OS. For that, CONTROL checks that the input Active_process_ID is the same as
PID. Then, depending on the current state of the transition system representing the execu-
tion �ow of the process, a Block is selected to be executed instantaneously. Afterwards, the
process waits for a new execution order from the partition level OS, and so on. So, Blocks
represent the execution units within processes.
We observe that this computation model is consistent with the decomposition for APEX
services into local and global parts. Let us consider again the two processes of Fig. 7.
The process model associated with P1 has a Block Br which contains the service request
READ_BLACKBOARD. This Block is surrounded with other Blocks, which contain on
the one hand the statements executed before the service request (in the portion (1) on

10Clusters are pieces of code associated with the black boxes representing the sub-components that result
from a grey box abstraction of a Signal process.

RR n° 4678

24 A. GAMATIÉ & T. GAUTIER

process COMPUTE =

(? ProcessID_type Active_block;

Input_type INPUT_1 ... INPUT_n1;

! Output_type OUTPUT_1 ... OUTPUT_n2;

info_type control_info_1 ... control_info_n3;

)

spec (| (| { { Active_block, INPUT_1, ..., INPUT_n1 }

�> OUTPUT_1 } when C_OUTPUT_1

| ...

| { { Active_block, INPUT_1, ..., INPUT_n1 }

�> OUTPUT_n2 } when C_OUTPUT_n2

| { { Active_block, INPUT_1, ..., INPUT_n1 }

�> control_info_1 } when C_control_info_1

| ...

| { { Active_block, INPUT_1, ..., INPUT_n1 }

�> control_info_n3 } when C_control_info_n3

|)

| (| Active_block ^= C_OUTPUT_1 ^= ... ^= C_OUTPUT_n2

^= C_control_info_1 ^= ... ^= C_control_info_n3

| OUTPUT_1 ^= when C_OUTPUT_1

| ...

| OUTPUT_n2 ^= when C_OUTPUT_n2

| control_info_1 ^= when C_control_info_1

| ...

| control_info_n3 ^= when C_control_info_n3

|)

|)

where boolean C_OUTPUT_1, ..., C_OUTPUT_n2,

C_control_info_1, ..., C_control_info_n3;

;

Figure 13: Generic interface of the COMPUTE sub-component.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 25

Fig. 7); and on the other hand, those executed after (i.e. in the portion (3)). Similarly,
the model corresponding to P2 has a Block Bd which contains the service request DIS-
PLAY_BLACKBOARD (used to display messages on a blackboard).
On Fig. 14, we show an execution trace following our process model. It is another view
of the scenario depicted in Fig. 7, for the situation B. The boxes represent Blocks. The

...

t2 t3t1 t4 t5 time

Br Bd

(1) (2) (3) (4)

Figure 14: Trace resulting from a simulation of P1 and P2 models on one processor.

darkest ones belong to P1, and the others correspond to Blocks in P2. We have superim-
posed the execution paths for P1 and P2 to show how they interleave. We remind that each
execution of a Block results from the receipt of an order of the partition level OS. We focus
on the following sub-part of the trace: P1 executes �rst until t2; then, Br is computed, and
the new active process becomes P2 until the computation of Bd. It illustrates the fact that
the block Br represents only the local part of the READ_BLACKBOARD service. The
global part is computed outside of Br, during the execution of the process P2 in the portion
(2). Finally, when P1 resumes, the other Blocks in its COMPUTE sub-component can be
executed.

Remark 4 (Block design precaution) From the above execution scheme, some design
rules can be �xed about the statements that can be associated with a Block.
Rule 1: Only one system call at most can be associated with a Block, and no other state-
ment can follow this system call within the Block. The reason is obvious; a Block is executed
instantaneously, so what happens if the system call interrupts the running process? All the
other statements within the Block are executed in spite of the interruption, and this would
not be correct. Moreover, when the process gets resumed, one does not need necessarily to
re-execute the whole Block (e.g. only statements that follow the service call need to be exe-
cuted). This will not be possible since any execution of the Block includes all the statements
associated with this Block.
Rule 2: The other rule concerns timing issues. The statements associated with a Block
must complete within a bounded amount of time. This guarantees a real-time behavior.

RR n° 4678

26 A. GAMATIÉ & T. GAUTIER

Physical time. To deal with the physical time, we make an important assumption: the
duration of a Block execution is one time quantum (which represents the minimum amount
of time during which a running process cannot be interrupted). It also corresponds to the
number of physical time units that a simulation step takes. Thus, the time capacity allocated
to an active process within a partition is decremented by one time quantum every simulation
step. Also, the positive time-out counter values are decremented by this quantity of time.

Preemption. The process model we have proposed allows to interrupt an executing pro-
cess and switch immediately to a higher-priority process whenever required. The active
process can always change between two simulation steps (two Block executions). The choice
of the active process depends entirely on the decision of the partition level OS which must
support a priority preemptive scheduling policy.

As a general observation, the process execution model is locally static (the execution �ow
of an ARINC process is pre-determined, and described in its CONTROL component) on the
one hand, and globally dynamic (the behavior within a partition depends on the evolution of
the partition status, particularly the resource availability and processes status) on the other
hand. Furthermore, the process model we have presented is �generic�. It could be used as a
model for another kind of execution support like threads in real-time Java for instance.

4.3 Partition level OS

The phase 1 of APEX [Com97b] does not assume dynamic process creation. So, all the
processes associated with a partition must be created at an initialization phase (this is also
the case for resources like communication mechanisms, etc.). Thereon, the partition can
execute. Among the advantages of such an assumption, one can notice the higher degree
of determinism of the system (e.g. processes can be guaranteed to have enough required
resources).
The creation of processes is done within the partition level OS model using the APEX
service CREATE_PROCESS (see the annex B for the description). Any created process
needs to be started in order to be active. So, at least one process in the partition is started
shortly after creation. This is achieved by using another APEX process management service,
START. In a same way, the other process management services can be used in the partition
level OS model to stop, suspend or resume a process, etc.
Another task of the partition level OS is to ensure the correct concurrent execution of
processes within the partition (each process must have an exclusive control on the processor).
We remind that the scheduling policy is priority preemptive. So, the OS has to manage the
execution environment in such a way that processes are dispatched and preempted based
on their respective priority and current status. Whenever a rescheduling is performed, the

INRIA

Synchronous Modeling of Avionics Architectures using Signal 27

process with the highest priority in the ready state is designated as the active one within
the partition. In our library, this is achieved via two special services11:

� The service PROCESS_SCHEDULINGREQUEST which has the following abstraction:

process PROCESS_SCHEDULINGREQUEST =

(? event sched_req;

! boolean diagnostic;

)

spec (| (| sched_req �> diagnostic |)

| (| sched_req ^= diagnostic |)

|)

;

On receiving the input sched_req (an event resulting from either a direct request
from an ARINC process or any partition internal event), a rescheduling is tried to be
performed. The output diagnostic is set to true when the rescheduling has been
actually performed. Otherwise, it is false (this happens when the partition prevents
the process rescheduling operations of the OS).
We can observe that only this service requires some modi�cations whenever a new
scheduling policy has to be taken into account (e.g. Earliest Deadline First, Rate
Monotonic Algorithm...). The original APEX services models are not a�ected at all,
and their genericity is preserved.

� The other service PROCESS_GETACTIVESTATUS is de�ned as follows:

process PROCESS_GETACTIVESTATUS =

(! ProcessID_type process_ID;

ProcessStatus_type status;

)

spec (| process_ID ^= status |)

;

This service is invoked after each rescheduling request to get the current active process
within the partition. Its outputs process_ID and status respectively denote the
identi�er and status of this process.

On the other hand, the partition level OS model is in charge of the management of the
time counters associated with processes in the partition. Each initiated time counter must
be updated during the execution of processes. It is decremented until its value becomes zero,
then a decision is taken about the process that initiated it. This is part of global actions
resulting from an APEX service request like the READ_BLACKBOARD one when the

11They are not part of original APEX services.

RR n° 4678

28 A. GAMATIÉ & T. GAUTIER

calling ARINC process is interrupted. This is done via the special service UPDATE_COUNTERS
de�ned as follows:

process UPDATE_COUNTERS =

(! [MAX_NUMBER_OF_PROCESSES]boolean timedout;

)

;

Every positive time counter value is decremented. When it becomes zero, timedout[i] is
set to true, where i identi�es the associated process. Otherwise, it is set to false.
An example of a rough partition level OS model is shown in Fig. 15.

process PARTITION_LEVEL_OS =

{ PartitionID_type Partition_ID; }

(? PartitionID_type Active_partition_ID;

event initialize;

event end_processing;

! ProcessID_type Active_process_ID;

[n]boolean timedout;

)

(| (pid1,ret_c1) := CREATE_PROCESS{}(att1 when initialize)

| (pid2,ret_c2) := CREATE_PROCESS{}(att2 when initialize)

| (pid3,ret_c3) := CREATE_PROCESS{}(att3 when initialize)

| ret_s1 := START{}(pid1) | ... | ret_s3 := START{}(pid3)

| partition_is_running := (Active_partition_ID = Partition_ID)

| diagnostic := PROCESS_SCHEDULINGREQUEST{}(

when partition_is_running)

| (Active_process_ID,status) := PROCESS_GETACTIVESTATUS{}()

| timedout := UPDATE_COUNTERS{}()

| Active_process_ID ^= timedout ^= when partition_is_running

| ...

|)

where

ProcessAttributes_type att1, att2, att3;

boolean partition_is_running, diagnostic;

ProcessStatus_type status;

ReturnCode_type ret_c1, ret_c2, ret_c3, ret_s1, ret_s2, ret_s3;

ProcessID_type pid1, pid2, pid3;

[3]boolean timedout;

...

end;

Figure 15: An example of partition level OS model.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 29

Fig. 16 depicts the relationship between the OS and processes within a partition. In
this Signal model, the presence of the input signal initialize corresponds to the initial-
ization phase of the partition. Here, three ARINC processes identi�ed by pid1, pid2 and
pid3 are �rst created, and started just after (they correspond to the process models called
ARINC_process1, ARINC_process2 and ARINC_process3 in Fig. 16).

end_processing1

ARINC_process1{1}

end_processing2

ARINC_process2{2}

end_processing3

ARINC_process3{3}

Active_partition_ID

initialize

Active_process_ID

timedout

(| PARTITION_LEVEL_OS{1}
 | end_processing :=
 end_processing1
 ^+
 end_processing2
 ^+
 end_processing3
 |)

Figure 16: Interactions between the partition level OS and processes.

The input Active_partition_ID represents the identi�er of the running partition se-
lected by the module level OS12, and it denotes an execution order when it identi�es the
current partition (this is expressed in the de�nition of the boolean partition_is_running).
Process rescheduling is performed whenever the partition is activated. This is done in
the PROCESS_SCHEDULINGREQUEST service call. As one can see in Fig. 16, the inputs
Active_partition_ID and initialize are both external to the partition.

The input end_processing is received from any process of the partition which runs to
completion. In Fig. 16, this signal is de�ned as the clock union of the signals

12As for the process model, an activation of each partition depends on the input Active_partition_ID,
which identi�es the current active partition. This signal is produced by the module level OS which is in
charge of the management of the partitions in a module. The modeling of the module level OS is not
addressed in this report.

RR n° 4678

30 A. GAMATIÉ & T. GAUTIER

end_processing1, end_processing2 and end_processing3, received from the three AR-
INC processes of the partition. On an occurrence of this signal, a decision can be taken
by the OS model about the next process to execute. Contrary to the other inputs of the
partition level OS model, end_processing is an internal signal of the partition.

The output Active_process_ID identi�es the active process whenever the partition is
active. It is designated by the OS with respect to the considered scheduling policy. This
signal is sent to all the processes within the partition.

Finally, time counters are updated through the UPDATE_COUNTERS service call whenever
the partition executes. The output timedout is sent to processes to notify them the expira-
tion of their associated time counters.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 31

4.4 An example

To illustrate the use of the models, we consider a partition called ON_FLIGHT, depicted by
Fig. 17. This small example takes its inspiration from a real world avionics application
which is currently being modeled. The aim is to show how one can proceed to give the
corresponding Signal model using the approach presented before.
Roughly speaking, ON_FLIGHT is in charge of gathering informations concerning the current
position and the fuel level of an aircraft during its �ight. A report message is produced in
the following format:

[date of the report : height : latitude : longitude : fuel level]

buff2

buff1

board

s_port

sema

evt

Global_params

FUEL_INDICATOR

POSITION_INDICATOR

PARAMETER_REFRESHER

Figure 17: The partition ON_FLIGHT.

The partition is composed of the following objects.

� Communication and synchronization mechanisms: a blackboard board, two bu�ers
buff1 and buff2, an event evt, a semaphore sema, and a sampling port s_port.

� A resource Global_paramswhich contains all the parameters needed by the associated
avionics functions.

� Three processes de�ned below.

RR n° 4678

32 A. GAMATIÉ & T. GAUTIER

1. The process POSITION_INDICATOR produces a report message which is updated
with the current position information (height, latitude and longitude). It works
as follows:

elaborate the report message and set the current date;
send a request to the process PARAMETER_REFRESHER for global parameter re-
freshment, via bu�2 (in order to be able to update the report message with position
informations);
wait for noti�cation of end of refreshment, using evt;
read the refreshed position values displayed on the blackboard;
update the report message with height, latitude and longitude informations;
send the report message to the process FUEL_INDICATOR, via bu�1;

2. The main task of the process FUEL_INDICATOR is to update the report message
with the current fuel level.

if a message is contained in the bu�er bu�1 then

retrieve this message;
end if

update the report message with the fuel level information from Global_params, via a
protected access (using sema);
send the �nal report message via the sampling port s_port;
re-initialize evt;

3. Finally, the process PARAMETER_REFRESHER refreshes all the global parameters
used by the other processes in the partition.

if a refresh request arrives in the bu�er bu�2 then

retrieve this message
end if

refresh all the global parameters in Global_params, using a protected access;
display refreshed position values on board;
notify the end of the refreshment, using evt;

Since the modeling approach is the same for all three processes, we only give the detailed
model of the process POSITION_INDICATOR, depicted by Fig. 18.

On Fig. 19, we have represented the COMPUTE sub-component of POSITION_INDICATOR.
There are six Blocks. Each speci�es a �one quantum� action. For instance, the second Block
(from top to bottom) denotes a request for parameter refreshment, via buff2; and the third
expresses the wait for a noti�cation of the end of refreshment using evt.

Remark 5 We mention that there is no obligation to have only one level of diagram for a
COMPUTE component. Doing this could lead to crowded boxes on the one hand, and space
limitation on the other hand. The Signal graphical editor allows to de�ne a hierarchy of
Block containers, which solves this problem.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 33

active_ID

timedout

end_processing

board

buff1

buff2

evt

active_ID

timedout

end_processing
active_block

(end_processing,active_block
) := CONTROL{PID,NB_BLOCK}(
 active_ID,
 timedout)

active_block

board

buff1

buff2

evt

(| COMPUTE{}(active_block,buff2,
 evt,board,buff1) |)

Figure 18: Signal model of the process POSITION_INDICATOR.

RR n° 4678

34 A. GAMATIÉ & T. GAUTIER

active_block

buff2

evt

board

buff1

rep1

(| trigger0 := when (active_block=0)
 | rep1 := SET_DATE{}(when trigger0)
 |)

(| trigger1 := when (active_block=1)
 | ret1 := SEND_BUFFER{1}((var buff2) when trigger1,99999.0,2,10.0)
 |)

(| trigger2 := when (active_block=2)
 | ret2 := WAIT_EVENT{1}((var evt) when trigger2,20.0)
 |)

diag_area

diag_size

(| trigger3 := when (active_block=3)
 | (diag_area,diag_size,ret3) := READ_BLACKBOARD{1}((var board) when trigger3,2.0)
 |)

(| trigger5 := when (active_block=5)
 | ret5 := SEND_BUFFER{1}((var buff1) when trigger5,(var rep2.Message_Area) when trigger5,(
 var rep2.Message_Size) when trigger5,10.0)
 |)

rep2

(| trigger4 := when (active_block=4)
 | rep2 := COMPUTE_POS{}((var rep1) when trigger4,(var diag_area) when trigger4,(var
 diag_size) when trigger4)
 |)

Figure 19: COMPUTE sub-component of the process POSITION_INDICATOR.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 35

The CONTROL sub-component consists of the automaton depicted in Fig. 20. Blocks are
executed sequentially (from top to bottom as shown in Fig. 19) whenever the process is
active. We notice that the fourth Block, Block3 (which contains a READ_BLACKBOARD
service call) could be executed more than once successively (denoted by the transition t2
on Fig. 20). This situation occurs when the process must retrieve a message from the
blackboard after being blocked on waiting for this message.

Block0

Block1

Block2

Block3

Block4

Block5

t1

t1

t1

t2

t1

t1

t1

t1

t1:

in a read_blackboard service call).

this transition is �red whenever the process was not previously

t2: this transition is �red whenever the process was previously

waiting for some message (which can be the case in

waiting to retrieve some message.

Figure 20: Automaton associated with the CONTROL sub-component of the process POSI-

TION_INDICATOR.

The corresponding Signal model is given on Fig. 21. The signal active_block denotes the
current state of the automaton. Its de�nition describes how transitions are �red. The end
of the processing (denoted by the signal end_processing) is noti�ed when the last Block is
executed (state labelled Block5 on the automaton).

RR n° 4678

36 A. GAMATIÉ & T. GAUTIER

Finally, Fig. 22 gives an approximate global view of the partition ON_FLIGHT. It includes
the processes (POSITION_INDICATOR, FUEL_INDICATOR, and PARAMETER_REFRESHER); a sub-
process CREATE_RESOURCES, which de�nes all communication and synchronization mecha-
nisms used by processes; and the PARTITION_LEVEL_OS component. The whole model works
as follows:

active_ID

timedout

end_process

active_block

(| trigger := active_ID=PID
 | z_active_block := active_block$1 init (−1)
 | z_active_ID := active_ID$1 init PID
 | active_block := (z_active_block when (z_active_block=3) when (not (z_active_ID=PID))) default (0 when (
 z_active_block=(NB_BLOCK−1))) default (z_active_block+1)
 | active_block ^= when trigger
 | end_processing := when (active_block=(NB_BLOCK−1))
 |)

Figure 21: Signal model of the CONTROL sub-component of the process POSI-

TION_INDICATOR.

� When the input initialize is received, all the partition resources (processes, commu-
nication mechanisms, etc.) and the data structures are created. Then, the partition
is set in the NORMAL operating mode13. This should be done at the beginning of any
simulation.

13There are four operating modes [Com97b]: in the IDLE mode, the partition is not executing any
process within its allocated windows; in the COLD_START mode, the partition is executing a cold start
initialization; in the WARM_START mode, the partition is executing a warm start initialization; and in

INRIA

Synchronous Modeling of Avionics Architectures using Signal 37

� The input active_partition coming from the module level OS, speci�es the active
partitions. Within each running partition, the OS designates a process to execute.
Finally, the CONTROL sub-component associated with this process selects the right
Block to be computed. And so on.

active_partition

initialize

global_param

end_processing1

POSITION_INDICATOR{1,6}

end_processing2

FUEL_INDICATOR{2,6}

active_ID

end_processing3

PARAMETER_REFRESHER{3,6}

board

buff2

buff3

s_port

evt

sema

CREATE_RESOURCES{}

initialize

active_ID

timedout

(| (active_ID,timedout)
 := PARTITION_LEVEL_OS{
 ...}(...,...,...)
 | end_processing :=
 end_processing1 ^+
 end_processing2 ^+
 end_processing3
 |)

Figure 22: Signal model of the partition ON_FLIGHT.

In Fig. 23, we show an execution trace of the partition ON_FLIGHT. The process POSI-
TION_INDICATOR has the highest priority, and PARAMETER_REFRESHER has the
lowest one.

the NORMAL mode, the scheduler is activated, and all the required resources in the partition must have
been created before.

RR n° 4678

38 A. GAMATIÉ & T. GAUTIER

Figure 23: A simulation of the partition ON_FLIGHT.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 39

5 Discussion

We have presented an approach to the modeling of avionics systems using the synchronous
language Signal. This approach embraces a component based philosophy. A major bene�t
of this kind of approach in system design is the reusability of models. For a particular sys-
tem, architectural choices can be assessed earlier using existing models. This considerably
decreases the overall development costs and time. Furthermore, the de�ned services could
be easily adapted to the description of other applications based on other real-time standards
(e.g. RealTimeJava).
Finally, the models are not platform-speci�c. So, there is not any risk of in�uencing non-
functional properties of described applications. Components can be annotated with execu-
tion information (e.g. Worst Case Execution Times (WCET)) for a speci�c platform.

We can observe through the approach that the Signal language acts as an Architec-
ture Description Language (ADL) [Cle96]. The designer's perspective is shifted from small-
grained features (such as lines of code) to large-grained features (such as process, partition...)
with the suitable interaction mechanisms. Therefore, the question of Signal as candidate
to be an ADL may rise here.

One crucial question about safety critical systems, like in avionics, is how to be convinced
of the correctness of the design. This is addressed by the validation process. The use of
a formalism with a well-de�ned formal semantics for descriptions eases an answer to the
question. This is another advantage of using the Signal language. In essence, the family of
synchronous languages which Signal belongs to, relies on solid mathematical foundations.
For other modeling languages such as Uml, which su�er of the lack of a clear formal seman-
tics, validation is merely di�cult.
Simulation is widely used for validating real-time systems. In our case, simulation is possible
by generating a target code (e.g. in C, Java...) from high level speci�cations through formal
transformations. Then, the sequences of stimuli and responses of our reactive models can
be checked to see whether or not the requirements are met.
However, simulation is not always su�cient to guarantee the correctness of designs. As a
matter of fact, the set of design states actually explored is less than the set of all possible
states. Therefore, simulation can miss some pertinent behavior.
Furthermore, some desired properties like safety cannot be checked using only simulation.
We need more sophisticated techniques (e.g. abstractions) and tools (e.g. model checker)
for that purpose. In Polychrony, the compiler uses abstractions to check static properties
(e.g. consistency of speci�cations), and tools like Sigali (a model checker) helps for the
veri�cation of other kinds of properties (e.g. safety, liveness).

Finally, the use of a single semantical model (the Signal's one) allows to describe a given
application at di�erent stages of the design (from the speci�cation of properties to the imple-
mentation on a multi-processor architecture). The transition between two representations

RR n° 4678

40 A. GAMATIÉ & T. GAUTIER

from di�erent stages is validated by transformations de�ned on the model. Some of these
transformations are o�ered in the form of functionalities available within Polychrony.

5.1 Related work

There are many approaches to modeling real-time embedded systems. Here, we discuss those
which can be closely related to our work.

We �rst mention the Taxys approach [CPP+01], de�ned for the design and validation of
real-time embedded applications. The speci�cation of such applications uses the synchronous
language Esterel [BG92] and the C language to describe respectively the control and the
functional parts. The whole is compiled with the Esterel compiler Saxo-Rt [WBC+00] to
produce a model of a given application analyzable by the model checker Kronos [Yov97],
for timing analysis.
Conceptually, the modeling of a system in Taxys is seen as the composition of three au-
tomata describing: the application itself, the environment which is responsible of the acti-
vation of the application, and an external event-handler (which ensures correct interactions
between the application and the environment). The Esterel program of the application is
instrumented with execution time (associated with the functional part) and deadline con-
straints. These real-time annotations are used further by Kronos for timing analysis for
validation.
Similarly to our approach, Taxys aims at taking advantage of facilities of the synchronous
technology using the Esterel language. Moreover, the translation of the Esterel spec-
i�cations into timed automata allows timing analysis. However, while our approach is
component-based, in the Taxys approach there are no pre-de�ned models for the descrip-
tion of applications.

Other approaches de�ne speci�c language for the design. This is the case for the
Giotto language [HHK01], which is dedicated to embedded control systems. It provides
an abstract model of such systems; and its compiler automates the implementation of the
systems (computation and communication schedules) on a particular platform, and a run-
time library which can be targeted toward various platforms. So, as in our case, Giotto's
speci�cations are not platform-dependent.
It has a time-triggered semantics. This facilitates the time predictability for system analysis,
but the expressiveness of the language is limited since tasks are essentially periodic. The
models we propose include both periodic and aperiodic processes.

The most popular Architecture Description Language for the design of real-time, dis-
tributed avionics applications is MetaH [Ves97]. It provides a set of tools for the design of
real-time high assurance, distributed avionics software. A user speci�es how software and
hardware pieces are combined to give the global system. The language toolset generates for-
mal models and executive, and performs analysis for schedulability, safety/reliabity, correct
partitioning. Both periodic and aperiodic processes are supported and the scheduling policy

INRIA

Synchronous Modeling of Avionics Architectures using Signal 41

is preemptive �xed priority.
In the case of ARINC models presented here, the scheduling paradigm is the same. How-
ever, as we discussed earlier, it can be replaced by another one since process models are not
bounded to the scheduling policy. Thus, unlike in MetaH, implementation constraints can
be easily avoided.
In MetaH, inter-task communications occur at special points during computations: a send-
ing task writes a data in a port only after completion, and a receiving task reads a data
from a port only at the release time. This exchange scheme avoids certain situations like
message loss due to overload for instance. But, it limits the richness of the description
of possible inter-task interactions. Our models of APEX communication mechanisms (e.g.
bu�er, blackboard...) allow any active process to read or write data at any instant, as long
as the resource is available. So, more inter-process interactions can be described.

The last approach we mention is Ptolemy [La01]. It is dedicated to the support of mod-
eling, simulation, and design of concurrent systems. It particularly addresses embedded sys-
tems [Lee00], and integrates a number of models of computation (e.g. synchronous/reactive
systems, communicating sequential processes (CSP), continuous time, �nite state machines)
which deal with concurrency and time. Like our approach, Ptolemy also adopts a compo-
nent based design. Our approach could be seen as a particular case of the Ptolemy's one
since Signal adopts only a synchronous/reactive computation model. However, the clock
calculus allows the desynchronization of programs for a safe deployment on asynchronous
architectures.
In Ptolemy, component interaction semantics is dictated by models of computation. It
mainly focuses on the choice of suitable models to get the needed behavior in the whole
system. Our approach puts emphasis on both behavioral and structural aspects of a system
model. The system architecture components (OS, processes, calls) are clearly identi�ed.
Finally, while Ptolemy proceeds by simulation to evaluate the performances of systems,
Polychrony includes another technique for performance evaluation in addition to simu-
lation. This technique relies on a morphism of Signal programs [KL96] which yields a
temporal interpretation of a given program. Thus, it can be used to estimate the worst case
execution time.

5.2 Tool support for real-time embedded systems modeling

Numerous tools exist for the modeling and analysis of real-time embedded systems. We can
mention Modelbuild14 which has been developed in the Safeair project [BDL+02]. It
is built on the top of the industrial product Sildex. Modelbuild promotes component-
based designs by providing wide libraries of basic components for the description of complex
systems. Some of them are: the so-called GALS library which is used for GALS (Globally
Asynchronous, Locally Synchronous) systems [BCL00]; the RTOS palette where some of the
models are based on the concepts de�ned in [KRP+93]. Modelbuild supports RMA (Rate

14It has been developed by TNI-Valiosys (http://www.tni-valiosys.com).

RR n° 4678

http://www.tni-valiosys.com

42 A. GAMATIÉ & T. GAUTIER

Monotonic Analysis) for timing analysis. The default formalism ofModelbuild is Signal,
therefore the integration of our models is facilitated.

Another tool is Timewiz [Corb], which is a product of the TimeSys company15. Timewiz
is dedicated to the modeling, analysis, and simulation of the execution of real-time sys-
tems. Models are based upon the notions of resources, events, and actions as described
in [KRP+93]. They are built graphically using resource palettes, or by importing log �les
generated from visualization tools. Worst-case performance analysis using the techniques of
rate monotonic analysis [KRP+93] can be achieved on the modeled system. Also, the aver-
age performance of the system can be understood by running discrete event simulations.
Finally, we mention Rational Rose Rt [Cora] which is based on the industry standard
UML, Rhapsody from iLogix16 which also uses UML, Scade from Esterel Technologies17,
etc.

6 Conclusion

We have proposed a component-based approach to the modeling of real-time architectures
for avionics systems. A library of components has been de�ned. It mainly contains mod-
els of so-called APEX (APplication EXecutive) services described by the avionics standard
ARINC 653. The synchronous language Signal has been used for the speci�cation of the
models. This allows to accede to the facilities o�ered by the language itself and its pro-
gramming environment, Polychrony. Among these, we mention high level speci�cations
relying on solid formal semantics, tools for e�cient code generation, property veri�cation,
and performance evaluation. Therefore, such a context must favor the validation activity
which is a major goal of our study.
The library mainly includes components required for the description of a real-time execution
platform: communication and synchronization mechanisms (e.g. bu�er, port, semaphore),
executive units (ARINC process), services used for the management of executive units (start,
suspend, stop, resume...). Some of these component models do not especially depend on the
ARINC standard. For instance, the model we have proposed for ARINC processes can be
used to describe other kinds of executive units like real-time Java threads. So, their reusabil-
ity in other contexts is facilitated. The library has still to be completed with models of the
APEX services that we did not mention in this report (e.g. health monitoring services like
the RAISE_APPLICATION_ERROR service, used to invoke an error handler process for
a speci�c error code; partition management services).
There are two ongoing applications which should allow us to make the approach e�ective.
The �rst concerns the modeling of a real-world avionics application in collaboration with
Airbus, which was one of our partners in the Safeair project.
In the other application, we propose a translation of real-time Java programs into Sig-

nal models. The aim of this work is also to access the formal techniques and tools available

15http://www.timesys.com
16http://www.ilogix.com
17http://www.esterel-technologies.com/v2

INRIA

Synchronous Modeling of Avionics Architectures using Signal 43

within Polychrony. The translation uses the existing component models. It also shows
the suitability of our approach for the description of architectures based on other real-time
standards, particularly the real-time Java API. These are all opportunities to make signi�-
cant experiments in order to evaluate the approach.

This approach contributes to improve the design methodology for distributed applica-
tions, previously proposed for Signal in [GG99]. It consists of formal transformations of
an initial program describing an application. These transformations preserve the original
program semantics, and yield a �nal program that re�ects the target architecture which
is composed of a set of possibly heterogeneous execution components (processors, micro-
controllers...). Further degrees of re�nement of the description may be required for a better
architecture-adaptation: for example, concerning communications or the type and nature of
the links (that could be implemented using shared variables, synchronous or asynchronous
communications...). If the target architecture features an OS, the needed model consists
basically in the pro�le of the corresponding functions. For instance, according to the de-
gree of use of the OS, we need models of synchronization gates, communications (possibly
including routing between processors) or tasking functions (in the case of un-interruptible
tasks: start and stop; in the case of interruptible tasks: suspend and resume, assignment and
management of priority levels). In this context, the APEX objects (process, communication
and synchronization mechanisms...) presented here can be used in the description.

The use of this approach also allows performance evaluation following the program mor-
phism technique [KL96] implemented within Polychrony. So, from the Signal description
of a partition (such as ON_FLIGHT in section 4.4) that models a real-time executive, we
can derive another Signal program which represents the corresponding temporal interpre-
tation. Then, it can be simulated in order to estimate the worst case execution time of the
whole application.

Finally, another ongoing work concerns the de�nition of a way to associate timed models
with our descriptions. This is common practice and often useful coping with schedulability
problems. For instance, the Taxys approach uses timed automata for that; whereas in
MetaH, hybrid automata are used. In both cases, there are e�cient tools to achieve analysis.
We have chosen timed automata for our models, so we can take advantage of the availability
of powerful tool (Kronos) and theories (e.g. scheduler synthesis methods [AGS02]).

RR n° 4678

44 A. GAMATIÉ & T. GAUTIER

Part II

Annexes

This annex is organized as follows: annex A presents the complete Signal speci�cation of the

read_blackboard service. Then, in annex B, we give the informal speci�cations of the available

services. Moreover, the corresponding formal speci�cations are provided in the form of Signal ab-

stractions. These services include the original APEX services that we have modeled in Signal, they

are denoted with a star symbol in exponent (e.g. READ_BLACKBOARD?). They also include the

other services that we have added to complete the library. Finally, the implementation architecture

is described in annex C.

7 Annex A: detailed Signal program of the

read_blackboard service

The following textual Signal model corresponds to the APEX read_blackboard service that we
have described in sub-section 4.1 to illustrate the modeling of APEX services.

process READ_BLACKBOARD =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type blackboard_ID;

SystemTime_type timeout;

! MessageArea_type message;

MessageSize_type length;

ReturnCode_type return_code;

)

(| (present,blackboard_in) := BLACKBOARD_CHECKID{}(blackboard_ID)

| (| outofrange := timeout>MAX_TIMEOUT_VALUE

| available := timeout>0.0

|)

| (| (| empty := blackboard_in.Empty_Indicator when (not outofrange)

| err_handler := PROCESS_CHECKERRORHANDLER{}(process_ID when empty when available)

| enabled := PROCESS_CHECKPREEMPTION{}(when (not err_handler))

|)

| (| PROCESS_SETSTATE{}(process_ID when enabled,#WAITING)

| INSERT_BLACKBOARDQUEUE{}(process_ID when enabled,blackboard_in when enabled)

| START_COUNTER{}(process_ID when enabled when (not (timeout=INFINITE_TIME_VALUE)),

timeout when enabled when (not (timeout=INFINITE_TIME_VALUE)))

| diagnostic := PROCESS_SCHEDULINGREQUEST{}(when enabled)

| mess := blackboard_in.Message when (not empty)

|)

|)

| (| message := mess.Message_Area

| length := mess.Message_Size

| return_code := (#INVALID_PARAM when ((not present) or outofrange)) default

(#NOT_AVAILABLE when empty when (not available)) default

(#INVALID_MODE when ((not enabled) default err_handler)) default

#NO_ERROR when (not empty)

INRIA

Synchronous Modeling of Avionics Architectures using Signal 45

| blackboard_ID ^= timeout

|)

|)

where

APEX_Blackboard_type blackboard_out, blackboard_in;

event blocked;

boolean diagnostic, present, outofrange, available, enabled, empty, err_handler;

Message_type mess;

end;

RR n° 4678

46 A. GAMATIÉ & T. GAUTIER

8 Annex B: Speci�cation of the services

This section is organized as follows: sub-section 8.1 presents the possible return code values of a

service request. Then, sub-section 8.2 describes the main features of an ARINC process (attributes,

states). It also provides the services related to process management (usable in the partition level

OS model). Intra-partition communication and synchronization services are given in sub-section

8.3. They concern on the one hand, the management of the mechanisms (bu�er, event, blackboard,

semaphore); and on the other hand, how these mechanisms are acceded by processes. In sub-

section 8.4, we present the services associated with the inter-partition communication mechanisms

(sampling and queuing ports). Finally, sub-section 8.5 discusses time management services.

8.1 Common types

There is a common type shared by all the modules (process management services, communication

mechanism services...): the return code type denoted by ReturnCode_type. The allowable codes

and their descriptions are given in the following table:

Value Description
NO_ERROR valid request and performed operation
NO_ACTION system's operational status una�ected by request
NOT_AVAILABLE the request cannot be performed immediately
INVALID_PARAM parameter speci�ed in request invalid
INVALID_CONFIG parameter speci�ed in request incompatible

with current con�guration (as speci�ed by the system integrator)
INVALID_MODE request incompatible with current mode of operation
TIMED_OUT time-out associated with request has expired

8.2 Processes

For each process, there is a corresponding descriptor which contains all the information about

its current status (attributes, current priority, current state, ...). The scheduler (implemented in

the OS model) embodies a list of descriptors that are useful for the management of processes

within a partition. In the sequel, we �rst precise the main features of ARINC processes. Then,

the associated services are presented. They concern the process descriptor access and process

management services.

8.2.1 Main features of a process

Each process is associated with two kinds of attributes: �xed and variable attributes.

1. Fixed attributes are:

� Name: identi�es uniquely each process within a partition.

� Entry point: starting address of the process.

� Stack size: overall size for runtime stack of the process.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 47

� Base priority: capability of the process to manipulate other processes.

� Period: period of activation for a periodic process. A distinct and unique value
should be speci�ed to designate the process as aperiodic.

� Time capacity: elapsed time within which the process should complete its execution.

� Deadline: "hard" or "soft".

2. Variable attributes are:

� Current priority: de�nes the priority with which the process may access and receive
resources. It is set to basic priority initially and is dynamic at runtime.

� Deadline time: indicates whether the process is satisfactorily completing its process-
ing within the allocated time.

� Process state: current scheduling state (dormant, ready, running, waiting) of the
process.

Moreover, each process is characterized by a state, which indicates its current status. Four
states are distinguished:

(a) Dormant: ineligible to receive processor resources. Before being started and after being
terminated (or stopped).

(b) Ready: eligible for scheduling. When it is able to be executed.

(c) Running: currently executing on the processor. Only one process can be executing at
any time.

(d) Waiting: not allowed to receive resources until a particular event occurs. This happens
in the following situations:

� waiting on a delay,

� or waiting on a semaphore,

� or waiting on a period,

� or waiting on an event,

� or waiting on a message,

� and / or suspended (waiting for a resume).

The transitions between states as depicted in Fig. 24 are the following:

Transition (1): the process is started by another process within the partition.
Transition (2): the process is stopped by another process within the partition.
Transition (3): the process is selected for execution.

RR n° 4678

48 A. GAMATIÉ & T. GAUTIER

READY

RUNNING

DORMANT

WAITING

(2)

(6)

(3)

(8)

(5)

(10)

(1)

(4)

(7)

(9)

Figure 24: ARINC process state diagram

Transition (4): the process is suspended by another process within the partition.
Transition (5): the process stops itself.
Transition (6): the process waits on a TIMED_DELAY of zero or is preempted by another
process within the partition.
Transition (7): the process suspends itself, or the process attempts to access a resource
(delay, semaphore, period, event, message) which is not currently available and the process
accepts to wait.
Transition (8): the process is resumed, or the resource the process was waiting for becomes
available or the time-out expires.
Transition (9): the process is stopped by another process within the partition.
Transition (10): a process already waiting to access a resource (delay, semaphore, period,
event, message) is suspended, or a process which is both waiting to access a resource and is
suspended, is either resumed, or the resource becomes available, or the time-out expires.

8.2.2 Types

The following types are particular to the process management services:

INRIA

Synchronous Modeling of Avionics Architectures using Signal 49

Types Nature
ProcessID_type numeric
ProcessName_type string
Priority_type numeric
StackSize_type numeric
Locklevel_type numeric
SystemAddress_type implementation dependant
ProcessState_type (DORMANT, READY, RUNNING, WAITING)
Deadline_type (SOFT, HARD)
SystemTime_type implementation dependant
ProcessAttributes_type struct (ProcessName_type Name;

SystemAddress_type EntryPt;
StackSize_type StackSize;
Priority_type BasePriority;
SystemTime_type Period;
SystemTime_type TimeCapacity;
Deadline_type Deadline;)

ProcessStatus_type struct (ProcessAttributes_type ProcessAttributes;
Priority_type CurrentPriority;
Deadline_typeDeadlineTime;
ProcessState_type ProcessState;)

8.2.3 Process descriptor

This section contains process descriptor access services.

� process PROCESS_CHECKID
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
present output boolean presence indicator
status output ProcessStatus_type process status

Processing:

When there is a process identi�ed by process_ID in the partition, the presence indicator is

TRUE and status contains the corresponding process status informations. Otherwise, present

is FALSE.

process PROCESS_CHECKID =

(? ProcessID_type process_ID;

! boolean present;

ProcessStatus_type status;

)

spec (| (| process_ID �> present

| { process_ID �> status } when present

|)

| (| process_ID ^= present

| status ^= when present

|)

|)

;

RR n° 4678

50 A. GAMATIÉ & T. GAUTIER

� process PROCESS_CHECKAPERIODIC
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
aperiodic output boolean periodicity indicator

Processing:

When process_ID identi�es some aperiodic process in the partition, aperiodic is TRUE.

Otherwise, aperiodic is FALSE.

process PROCESS_CHECKAPERIODIC =

(? ProcessID_type process_ID;

! boolean aperiodic;

)

spec (| (| process_ID �> aperiodic |)

| (| process_ID ^= aperiodic |)

|)

;

� process PROCESS_CHECKERRORHANDLER
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
err_handler output boolean true if error handler,

else false

Processing:

When process_ID identi�es the error handler process in the partition, err_handler is TRUE.

Otherwise, err_handler is FALSE.

process PROCESS_CHECKERRORHANDLER =

(? ProcessID_type process_ID;

! boolean err_handler;

)

spec (| (| process_ID �> err_handler |)

| (| process_ID ^= err_handler |)

|)

;

� process PROCESS_SETCREATED
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

INRIA

Synchronous Modeling of Avionics Architectures using Signal 51

Processing:

The creation attribute associated with the process identi�ed by process_ID is set to TRUE.

process PROCESS_SETCREATED =

(? ProcessID_type process_ID;

)

� process PROCESS_CHECKCREATED
Interface:
Label Nature Type Comments

process_name input ProcessName_type process name
created output boolean creation indicator

Processing:

When the process named process_name is already created, the output created is TRUE.

Otherwise, created is FALSE.

process PROCESS_CHECKCREATED =

(? ProcessName_type process_name;

! boolean created;

)

spec (| (| process_name �> created |)

| (| process_name ^= created |)

|)

;

� process PROCESS_GETPERIOD
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
period output SystemTime_type process period

Processing:

The output period is the period associated with the process identi�ed by process_ID.

process PROCESS_GETPERIOD =

(? ProcessID_type process_ID;

! SystemTime_type period;

)

spec (| (| process_ID �> period |)

| (| process_ID ^= period |)

|)

;

RR n° 4678

52 A. GAMATIÉ & T. GAUTIER

� process PROCESS_RESETSTACK
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

Processing:

This service resets the stack of the process identi�ed by process_ID.

process PROCESS_RESETSTACK =

(? ProcessID_type process_ID;

)

;

� process PROCESS_REMOVEWAITINGQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

Processing:

This service removes the process identi�ed by process_ID from any waiting queue where

it may be listed.

process PROCESS_REMOVEWAITINGQUEUE =

(? ProcessID_type process_ID;

)

;

� process PROCESS_PREVIOUSPREEMPTED
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
preempted output boolean answer to the request

Processing:

When process_ID identi�es the previous preempted process, the output preempted is TRUE.

Otherwise, preempted is FALSE.

process PROCESS_PREVIOUSPREEMPTED =

(? ProcessID_type process_ID;

! boolean preempted;

)

spec (| (| process_ID �> preempted |)

| (| process_ID ^= preempted |)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 53

� process PROCESS_CHECKOPERATINGMODE
Interface:
Label Nature Type Comments

op_mode output OperatingMode_type operating mode

Processing:

The output op_mode indicates the current operating mode of the partition.

process PROCESS_CHECKOPERATINGMODE =

(! OperatingMode_type op_mode;

)

;

� process PROCESS_CHECKPREEMPTION
Interface:
Label Nature Type Comments

req input event service request
enabled output boolean preemption status

Processing:

On a request of this service (req is present); when the partition enables preemption, the

output enabled is TRUE. Otherwise, enabled is FALSE.

process PROCESS_CHECKPREEMPTION =

(? event req;

! boolean enabled;

)

spec (| (| req �> enabled |)

| (| req ^= enabled |)

|)

;

� process PROCESS_CHECKWAITINDICATOR
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
wait_ind output boolean waiting indicator

Processing:

When the process identi�ed by process_ID is waiting for some resource (semaphore,

bu�er...), the output wait_ind is TRUE. Otherwise, wait_ind is FALSE.

process PROCESS_CHECKWAITINDICATOR =

(? ProcessID_type process_ID;

! boolean wait_ind;

RR n° 4678

54 A. GAMATIÉ & T. GAUTIER

)

spec (| (| process_ID �> wait_ind |)

| (| process_ID ^= wait_ind |)

|)

;

� process PROCESS_GETSTATE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
state output ProcessState_type process state

Processing:

The output state is the current state of the process identi�ed by process_ID.

process PROCESS_GETSTATE =

(? ProcessID_type process_ID;

! ProcessState_type state;

)

spec (| (| process_ID �> state |)

| (| process_ID ^= state |)

|)

;

� process PROCESS_GETACTIVESTATUS
Interface:
Label Nature Type Comments

process_ID output ProcessID_type process identi�er
status output ProcessStatus_type process status

Processing:

The output process_ID identi�es the current active process in the partition, and status is

its associated status informations.

process PROCESS_GETACTIVESTATUS =

(! ProcessID_type process_ID;

ProcessStatus_type status;

)

spec (| process_ID ^= status |)

;

� process PROCESS_GETBASICPRIORITY
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
basic_priority output Priority_type process basic priority

INRIA

Synchronous Modeling of Avionics Architectures using Signal 55

Processing:

The output basic_priority is the basic priority of the process identi�ed by process_ID.

process PROCESS_GETBASICPRIORITY =

(? ProcessID_type process_ID;

! Priority_type basic_priority;

)

spec (| (| process_ID �> basic_priority |)

| (| process_ID ^= basic_priority |)

|)

;

� process PROCESS_GETTIMECAPACITY
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
time_capacity output SystemTime_type process time capacity

Processing:

The output time_capacity is the time capacity of the process identi�ed by process_ID.

process PROCESS_GETTIMECAPACITY =

(? ProcessID_type process_ID;

! SystemTime_type time_capacity;

)

spec (| (| process_ID �> time_capacity |)

| (| process_ID ^= time_capacity |)

|)

;

� process PROCESS_RECORD
Interface:
Label Nature Type Comments

name input ProcessName_type process name
entry_point input SystemAddress_type entry point
stack_size input StackSize_type stack size
base_priority input Priority_type basic priority
period input SystemTime_type period
time_capacity input SystemTime_type time capacity
deadline input Deadline_type deadline indicator
process_ID output ProcessID_type process identi�er

Processing:

This service allocates a new process descriptor if there is enough space in the process

descriptor manager, and initializes the descriptor with the input parameters. The output

process_ID is the returned process identi�er.

RR n° 4678

56 A. GAMATIÉ & T. GAUTIER

process PROCESS_RECORD =

(? ProcessName_type name;

SystemAddress_type entry_point;

StackSize_type stack_size;

Priority_type base_priority;

SystemTime_type period;

SystemTime_type time_capacity;

Deadline_type deadline;

! ProcessID_type process_ID;

)

spec (| (| { { name, entry_point, stack_size, base_priority,

period, time_capacity, deadline } �> process_ID }

when C_enough_space

|)

| (| name ^= entry_point ^= stack_size ^= base_priority

^= period ^= time_capacity ^= deadline ^= C_enough_space

| process_ID ^= when C_enough_space

|)

where boolean C_enough_space;

;

� process PROCESS_RELEASERESOURCES
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

Processing:

This service releases all the resources detained by the process identi�ed by process_ID.

process PROCESS_RELEASERESOURCES =

(? ProcessID_type process_ID;

)

;

� process PROCESS_RESETCONTEXT
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

Processing:

This service resets the context of the process identi�ed by process_ID.

process PROCESS_RESETCONTEXT =

(? ProcessID_type process_ID;

)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 57

� process PROCESS_RESETERRORSTATUS
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

Processing:

This service resets the error status of the process identi�ed by process_ID.

process PROCESS_RESETERRORSTATUS =

(? event reset_req;

)

;

� process PROCESS_RESETLOCKLEVEL
Interface:
Label Nature Type Comments

reset_req input event service request

Processing:

A request of this service (reset_req is present) resets the lock level of the partition.

process PROCESS_RESETLOCKLEVEL =

(? event reset_req;

)

;

� process PROCESS_SCHEDULINGREQUEST
Interface:
Label Nature Type Comments

sched_req input event rescheduling request
diagnostic output boolean diagnostic of the re-

quest

Processing:

On a request of this service (sched_req is present), a process rescheduling is tried to be

performed. When the lock level of the partition indicates �unlocked�, the output diagnostic

is TRUE. Otherwise, diagnostic is FALSE.

process PROCESS_SCHEDULINGREQUEST =

(? event sched_req;

! boolean diagnostic;

)

spec (| (| sched_req �> diagnostic |)

| (| sched_req ^= diagnostic |)

|)

;

RR n° 4678

58 A. GAMATIÉ & T. GAUTIER

� process PROCESS_SETALLSTATE
Interface:
Label Nature Type Comments

range input array of Process_type set of processes
state input ProcessState_type state value

Processing:

For each process whose identi�er appears in range, its state is set to input state value.

process PROCESS_SETALLSTATE =

(? [MAX_NUMBER_OF_PROCESSES]ProcessID_type range;

ProcessState_type state;

)

spec (| range ^= state |)

;

� process PROCESS_SETATTRIBUTES
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
attributes input ProcessAttributes_type process attributes

Processing:

The attributes of the process identi�ed by process_ID are set to attributes value.

process PROCESS_SETATTRIBUTES =

(? ProcessID_type process_ID;

ProcessAttributes_type attributes;

)

spec (| process_ID ^= attributes |)

;

� process PROCESS_SETDEADLINETIME
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
deadline input SystemTime_type deadline time

Processing:

The deadline time attribute of the process identi�ed by process_ID is set to deadline value.

process PROCESS_SETDEADLINETIME =

(? ProcessID_type process_ID;

SystemTime_type deadline;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 59

)

spec (| process_ID ^= deadline |)

;

� process PROCESS_SETSTATE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
state input ProcessState_type state value

Processing:

The state attribute of the process identi�ed by process_ID is set to state value.

process PROCESS_SETSTATE =

(? ProcessID_type process_ID;

ProcessState_type state;

)

spec (| process_ID ^= state |)

;

� process PROCESS_CREATEMANAGER
Interface:
Label Nature Type Comments

manager_size input integer maximum size of the
manager

Processing:

This service creates a process descriptor manager which can contain at most manager_size

descriptors.

process PROCESS_MANAGERCREATE =

(? integer manager_size;

)

� process PROCESS_COPYMESSAGE
Interface:
Label Nature Type Comments

message input Message_type message identi�er
process_ID input ProcessID_type process identi�er

Processing:

This service copies the message denoted by message in a special location associated with

the process identi�ed by process_ID, which has been blocked on a receive message request,

and now released.

RR n° 4678

60 A. GAMATIÉ & T. GAUTIER

process PROCESS_COPYMESSAGE =

(? Message_type message;

ProcessID_type process_ID;

)

spec (| message ^= process_ID |)

;

� process PROCESS_RETRIEVEMESSAGE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
message_OUT output Message_type message
Processing:

This service allows a process (identi�ed by process_ID) blocked on a receive message

request to retrieve a message as soon as it becomes available. The output message_OUT

is the retrieved message.

process PROCESS_RETRIEVEMESSAGE =

(? ProcessID_type process_ID;

! Message_type message_OUT;

)

spec (| (| message_OUT �> process_ID |)

| (| message_OUT ^= process_ID |)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 61

8.2.4 Process waiting queues

Here, we present process queuing services (e.g. insert (resp. remove) a process in (resp.
from) a queue). They allow to put a process in a waiting queue associated with a resource
when this resource is not available.

� process INSERT_BLACKBOARDQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
blackboard_IN input APEX_Blackboard_type blackboard

Processing:

This service inserts the process identi�ed by process_ID in the process waiting queue

associated with the blackboard blackboard_IN.

process INSERT_BLACKBOARDQUEUE =

(? ProcessID_type process_ID;

APEX_Blackboard_type blackboard_IN;

)

spec (| process_ID ^= blackboard_IN |)

;

� process INSERT_BUFFERRECEIVEQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
bu�er_IN input APEX_Bu�er_type bu�er

Processing:
This service inserts the process identi�ed by process_ID in the process waiting queue, as-
sociated with processes that are waiting for receiving a message from the bu�er bu�er_IN.

process INSERT_BUFFERRECEIVEQUEUE =

(? ProcessID_type process_ID;

APEX_Buffer_type buffer_IN;

)

spec (| process_ID ^= buffer_IN |)

;

� process INSERT_BUFFERSENDQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
message input Message_type message
bu�er_IN input APEX_Bu�er_type bu�er

RR n° 4678

62 A. GAMATIÉ & T. GAUTIER

Processing:

This service inserts the couple (process_ID, message) in the process waiting queue, as-

sociated with processes that are waiting for sending a message in the bu�er bu�er_IN.

process INSERT_BUFFERSENDQUEUE =

(? ProcessID_type process_ID;

Message_type message;

APEX_Buffer_type buffer_IN;

)

spec (| process_ID ^= message ^= buffer_IN |)

� process INSERT_EVENTQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
event_IN input APEX_Event_type event

Processing:

This service inserts the process identi�ed by process_ID in the process waiting queue

associated with the event event_IN.

process INSERT_EVENTQUEUE =

(? ProcessID_type process_ID;

APEX_Event_type event_IN;

)

spec (| process_ID ^= event_IN |)

;

� process INSERT_SEMAPHOREQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
semaphore_IN input APEX_Semaphore_type semaphore

Processing:

This service inserts the process identi�ed by process_ID in the process waiting queue

associated with the semaphore semaphore_IN.

process INSERT_SEMAPHOREQUEUE =

(? ProcessID_type process_ID;

APEX_Semaphore_type semaphore_IN;

)

spec (| process_ID ^= semaphore_IN |)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 63

� process INSERT_QUEUINGPORTRECEIVEQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
queuingPort_IN input APEX_QueuingPort_type queuing port

Processing:
This service inserts the process identi�ed by process_ID in the process waiting queue,
associated with processes that are waiting for receiving a message from the queuing port
queuingPort_IN.

process INSERT_QUEUINGPORTRECEIVEQUEUE =

(? ProcessID_type process_ID;

APEX_QueuingPort_type queuingPort_IN;

)

spec (| process_ID ^= queuingPort_IN |)

� process INSERT_QUEUINGPORTSENDQUEUE
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
message input Message_type message
queuingPort_IN input APEX_QueuingPort_type queuing port

Processing:
This service inserts the couple (process_ID, message) in the process waiting queue, asso-
ciated with processes that are waiting for sending a message in the queuing port queuing-
Port_IN.

process INSERT_QUEUINGPORTSENDQUEUE =

(? ProcessID_type process_ID;

Message_type message;

APEX_QueuingPort_type queuingPort_IN;

)

spec (| process_ID ^= message ^= queuingPort_IN |)

;

� process REMOVE_BUFFERRECEIVEQUEUE
Interface:
Label Nature Type Comments

bu�er_IN input APEX_Bu�er_type bu�er
process_ID output ProcessID_type process identi�er

Processing:

This service removes a process identi�ed by process_ID from the process waiting queue,

associated with processes that are waiting for receiving a message from bu�er_IN.

RR n° 4678

64 A. GAMATIÉ & T. GAUTIER

process REMOVE_BUFFERRECEIVEQUEUE =

(? APEX_Buffer_type buffer_IN;

! ProcessID_type process_ID;

)

spec (| (| buffer_IN �> process_ID |)

| (| process_ID ^= buffer_IN |)

|)

;

� process REMOVE_BUFFERSENDQUEUE
Interface:
Label Nature Type Comments

bu�er_IN input APEX_Bu�er_type bu�er
process_ID output ProcessID_type process identi�er
message output Message_type message

Processing:

This service removes the couple (process_ID, message) from the process waiting queue,

associated with processes that are waiting for sending a message in bu�er_IN.

process REMOVE_BUFFERSENDQUEUE =

(? APEX_Buffer_type buffer_IN;

! ProcessID_type process_ID;

Message_type message;

)

spec (| (| buffer_IN �> { process_ID, message } |)

| (| process_ID ^= message ^= buffer_IN |)

|)

;

� process REMOVE_SEMAPHOREQUEUE
Interface:
Label Nature Type Comments

semaphore_IN input APEX_Semaphore_type semaphore
process_ID output ProcessID_type process identi�er

Processing:

This service removes a process identi�ed by process_ID from the process waiting queue

associated with the semaphore semaphore_IN.

process REMOVE_SEMAPHOREQUEUE =

(? APEX_Semaphore_type semaphore_IN;

! ProcessID_type process_ID;

)

spec (| (| semaphore_IN �> process_ID |)

| (| process_ID ^= semaphore_IN |)

INRIA

Synchronous Modeling of Avionics Architectures using Signal 65

|)

;

� process REMOVALL_BLACKBOARDQUEUE
Interface:
Label Nature Type Comments

blackboard_IN input APEX_Blackboard_type blackboard
process_range output ProcessID_type process range

Processing:

This service removes all the processes present in the process waiting queue associated with

the blackboard blackboard_IN. The output process_range contains these process identi�ers.

process REMOVALL_BLACKBOARDQUEUE =

(? APEX_Blackboard_type blackboard_IN;

! [MAX_NUMBER_OF_PROCESSES]ProcessID_type process_range;

)

spec (| (| blackboard_IN �> process_range |)

| (| process_range ^= blackboard_IN |)

|)

;

� process REMOVALL_EVENTQUEUE
Interface:
Label Nature Type Comments

event_IN input APEX_Event_type event
process_range output ProcessID_type process range

Processing:
This service removes all the processes present in the process waiting queue asso-
ciated with the event event_IN. The output process_range contains these process
identi�ers.

process REMOVALL_EVENTQUEUE =

(? APEX_Event_type event_IN;

! [MAX_NUMBER_OF_PROCESSES]ProcessID_type process_range;

)

spec (| (| event_IN �> process_range |)

| (| process_range ^= event_IN |)

|)

;

RR n° 4678

66 A. GAMATIÉ & T. GAUTIER

� process REMOVE_QUEUINGPORTRECEIVEQUEUE
Interface:
Label Nature Type Comments

queuingPort_IN input APEX_QueuingPort_type queuing port
process_ID output ProcessID_type process identi�er

Processing:
This service removes the process identi�ed by process_ID from the process waiting queue,
associated with processes that are waiting for receiving a message from queuingPort_IN.

process REMOVE_QUEUINGPORTRECEIVEQUEUE =

(? APEX_QueuingPort_type queuingPort_IN;

! ProcessID_type process_ID;

)

spec (| (| queuingPort_IN �> process_ID |)

| (| process_ID ^= queuingPort_IN |)

|)

;

� process REMOVE_QUEUINGPORTSENDQUEUE
Interface:
Label Nature Type Comments

queuingPort_IN input APEX_QueuingPort_type queuing port
process_ID output ProcessID_type process identi�er
message output Message_type message

Processing:

This service removes the couple (process_ID, message) from the process waiting queue,

associated with processes that are waiting for sending a message in queuingPort_IN.

process REMOVE_QUEUINGPORTSENDQUEUE =

(? APEX_QueuingPort_type queuingPort_IN;

! ProcessID_type process_ID;

Message_type message;

)

spec (| (| queuingPort_IN �> { process_ID, message } |)

| (| process_ID ^= message ^= queuingPort_IN |)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 67

8.2.5 Process management

Now, we give information about the interface and the functionnalitiy of the process man-
agement services.

� process GET_PROCESS_ID?

Interface:
Label Nature Type Comments

process_name input ProcessName_type process name
process_ID output ProcessID_type its identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service allows a process to obtain a process identi�er by specifying the process name.
The return code indicates that the request has been issued.

1. The return code value is:

� INVALID_CONFIG when no process is named process_name in the current parti-
tion;

� NO_ERROR otherwise.

2. In the case of successful completion, process_ID denotes the identi�er of the process
named process_name.

process GET_PROCESS_ID =

(? ProcessName_type process_name;

! ProcessID_type process_ID;

ReturnCode_type return_code;

)

spec (| (| process_name �> return_code

| { process_name �> process_ID } when (return_code = #NO_ERROR)

|)

| (| process_name ^= return_code

| process_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process GET_PROCESS_STATUS?

Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
process_status output ProcStatus_type its current status
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the current status of the speci�ed process. Here also, the return
code indicates that the request has been issued.

RR n° 4678

68 A. GAMATIÉ & T. GAUTIER

1. The return code value is:

� INVALID_PARAM when no process is identi�ed by process_ID in the current par-
tition;

� NO_ERROR otherwise.

2. In the case of successful completion, process_status denotes the current status of the
speci�ed process.

process GET_PROCESS_STATUS =

(? ProcessID_type process_ID;

! ProcessStatus_type process_status;

ReturnCode_type return_code;

)

spec (| (| process_ID �> return_code

| { process_ID �> process_status } when (return_code = #NO_ERROR)

|)

| (| process_ID ^= return_code

| process_status ^= when (return_code = #NO_ERROR)

|)

|)

;

� process CREATE_PROCESS?

Interface:
Label Nature Type Comments

attributes input ProcessAttributes_type process attributes
process_ID output ProcessID_type process identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to create a process and returns an identi�er that denotes the created
process. Creation does not imply dynamic memory allocation, it only creates a link between
the given name and a statically allocated process with a suitable stack area having the same
name.

1. The return code value is:

� INVALID_CONFIG when there is no process named attributes.Name in the parti-
tion, or at least one of attributes.entry_point, attributes.stack_size,
attributes.base_priority, attributes.period and attributes.time_capacity is out of
range.

� NO_ACTION when a process with the same name is already created;

� INVALID_MODE when the operating mode is NORMAL;

� NO_ERROR otherwise.

2. In the case of successful completion, the process attributes are set to attributes. The
process state is DORMANT. The context and stack are reset. Finally, the output pro-
cess_ID denotes the identi�er of the created process.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 69

process CREATE_PROCESS =

(? ProcessAttributes_type attributes;

! ProcessID_type process_ID;

ReturnCode_type return_code;

)

spec(| (| attributes �> return_code

| { attributes �> process_ID } when (return_code = #NO_ERROR)

|)

| (| return_code ^= attributes

| process_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process SET_PRIORITY?

Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
priority input Priority_type its priority
return_code output ReturnCode_type diagnostic

Processing:
This service is used to change the process current priority.

1. The return code value is:

� INVALID_PARAM when there is no process identi�ed by process_ID, or priority is
out of range;

� INVALID_MODE when the speci�ed process state is DORMANT;

� NO_ERROR otherwise.

2. The speci�ed process priority is set to priority. Process scheduling is performed if
preemption is enabled.

process SET_PRIORITY =

(? ProcessID_type process_ID;

Priority_type priority;

! ReturnCode_type return_code;

)

spec (| (| { process_ID, priority } �> return_code |)

| (| return_code ^= process_ID ^= priority |)

|)

;

� process SUSPEND_SELF?

Interface:
Label Nature Type Comments

timeout input SystemTime_type delay of suspension
return_code output ReturnCode_type diagnostic

RR n° 4678

70 A. GAMATIÉ & T. GAUTIER

Processing:
This service is used to suspend the execution of the current process if aperiodic, until the
RESUME service request is issued or the speci�ed time-out value expires.

1. The return code value is:

� INVALID_PARAM when timeout is out of range;

� INVALID_MODE when preemption is disabled or the process is an error handler, or
the process is periodic;

� NO_ERROR otherwise.

2. In the case of successful completion,

� when timeout is zero, no other action is performed;

� otherwise, the current process state is set to WAITING. If timeout is not in�nite, a
time counter is initiated with duration timeout. Process scheduling is performed.

process SUSPEND_SELF =

(? SystemTime_type timeout;

! ReturnCode_type return_code;

)

spec (| (| timeout �> return_code |)

| (| timeout ^= return_code |)

|)

;

� process SUSPEND?

Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service allows the current process to suspend any aperiodic process, identi�ed by
process_ID except itself.

1. The return code value is:

� INVALID_PARAM when process_ID does not identify any process or identi�es itself;

� INVALID_MODE when the state of the speci�ed process is DORMANT, or speci�ed
process is periodic;

� NO_ERROR otherwise.

2. In the case of successful completion, the state of the speci�ed process is set to WAITING.

process SUSPEND =

(? ProcessID_type process_ID;

! ReturnCode_type return_code;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 71

)

spec (| (| process_ID �> return_code |)

| (| process_ID ^= return_code |)

|)

;

� process RESUME?

Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to resume a process previously suspended.

1. The return code value is:

� INVALID_PARAM when process_ID does not identify any process or identi�es itself;

� INVALID_MODE when the state of the speci�ed process is DORMANT;

� NO_ERROR otherwise.

2. In the case of successful completion, if the speci�ed process is suspended with a time-
out, the a�ected time counter is stopped. If the speci�ed process is not waiting on
a resource, its state is set to READY. Process scheduling is performed if preemption is
enabled.

process RESUME =

(? ProcessID_type process_ID;

! ReturnCode_type return_code;

)

spec (| (| process_ID �> return_code |)

| (| process_ID ^= return_code |)

|)

;

� process STOP_SELF?

Interface:
No input and output. Processing:

This service is used to stop the current process. If the current process is not the error
handler process, the partition is placed in the unlocked condition.

1. All the resources used by the current process are released.

2. If process is not an error handler, the lock level counter is reset.

3. The process state is set to DORMANT.

RR n° 4678

72 A. GAMATIÉ & T. GAUTIER

4. When the current process is an error handler and preemption is disabled, return to
the previous process (reset the locklevel and ask for rescheduling), otherwise ask only
process scheduling.

process STOP_SELF =

()

;

� process STOP?

Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to abort the execution of any process except the executing one.

1. The return code value is:

� INVALID_PARAM when process_ID does not identify any process or identi�es itself;

� NO_ACTION when the state of the speci�ed process is DORMANT;

� NO_ERROR otherwise.

2. In the case of successful completion, the speci�ed process state is set to DORMANT.
All the resources used by this process are released. If the current process is an error
handler, and the speci�ed process is preempted by an error handler, the lock level
counter is reset. If the speci�ed process is pending in a queue, it will be removed.

process STOP =

(? ProcessID_type process_ID;

! ReturnCode_type return_code;

)

spec (| (| process_ID �> return_code |)

| (| process_ID ^= return_code |)

|)

;

� process START?

Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to start the execution of a process.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 73

1. The return code value is:

� INVALID_PARAM when process_ID does not identify any process;

� NO_ACTION when the state of the speci�ed process is not DORMANT;

� NO_ERROR otherwise.

2. In the case of successful completion, the current priority of the speci�ed process is
set to its base priority. Context and stack are reset. The speci�ed process state is set
to READY.

� If operating mode is NORMAL, a new deadline time value is set for the speci�ed
process, error status is reset, and process scheduling is performed if preemption
is enabled.

� Else the start of the process will be e�ective, and its deadline time value will
be calculated at the end of the initialization phase (when the partition mode
becomes NORMAL).

process START =

(? ProcessID_type process_ID;

! ReturnCode_type return_code;

)

spec (| (| process_ID �> return_code |)

| (| process_ID ^= return_code |)

|)

;

� process LOCK_PREEMPTION?

Interface:
Label Nature Type Comments

lock_level input LockLevel_type lock level
return_code output ReturnCode_type diagnostic

Processing:
This service is used to increment the lock level of the partition and disable process reschedul-
ing for a partition.

1. The return code value is:

� INVALID_CONFIG when lock_level is greater than the maximum value of the lock
level;

� NO_ERROR otherwise.

2. In the case of successful completion, the lock level is incremented by one.

process LOCK_PREEMPTION =

(? LockLevel_type lock_level;

! ReturnCode_type return_code;

)

RR n° 4678

74 A. GAMATIÉ & T. GAUTIER

spec (| (| lock_level �> return_code |)

| (| lock_level ^= return_code |)

|)

;

� process UNLOCK_PREEMPTION?

Interface:
Label Nature Type Comments

lock_level input LockLevel_type lock level
return_code output ReturnCode_type diagnostic

Processing:
This service is used to decrement the lock level of the partition.

1. The return code value is:

� NO_ACTION when the lock level indicates unlocked;

� NO_ERROR otherwise.

2. In the case of successful completion, the lock level is decremented by one. If it becomes
zero, process scheduling is performed.

process UNLOCK_PREEMPTION =

(? LockLevel_type lock_level;

! ReturnCode_type return_code;

)

spec (| (| lock_level �> return_code |)

| (| lock_level ^= return_code |)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 75

8.3 Intra-partition communication and synchronization mechanisms

We �rst remind the main intra-partition communication and synchronization mechanisms. Then,
we explain about the associated services.

1. Blackboard is used to display and read messages. No message queues are allowed. Any
message displayed on a blackboard remains there until the message is either cleared or over-
written by a new instance of the message. This allows sending processes to display messages
at any time, and receiving processes to access the latest message at any time. A process can
read a message from a blackboard, display a message on a blackboard or clear a blackboard.
Rescheduling of processes will occur when a process attempts to read a message from an
empty blackboard.

2. Bu�er is used to send and receive messages. Bu�er is allowed to store multiple messages
in message queues. A message sent by the sending process is stored in the message queue
in FIFO order. No message should be lost in this queuing mode. The number of messages
that can be stored in a bu�er is determined by the size of the bu�er, and is speci�ed at
creation time. A process can send a message to a bu�er or receive a message from a bu�er.
Rescheduling of processes will occur when a process attempts either to receive a message from
an empty bu�er or to send a message to a full bu�er.

3. Event is a communication mechanism which permits noti�cation of an occurrence of a con-
dition to processes which may wait for it. An event is composed of a bi-valued state variable
(states called "up" and "down") and a set of waiting processes (initially empty). A pro-
cess can set and reset events and also wait on events that are created in the same partition.
Rescheduling of processes will occur when a process attempts to wait on an event which is
"down" (reset before by another process or during initialization), and when a process sets an
event "up".

4. Semaphore is used for synchronization. The semaphore de�ned here is a counting one
and is commonly used to provide controlled access to partition resources. A process waits
for a semaphore to gain access to the resource, and then signals the semaphore after it
releases the resource. A semaphore's value indicates the number of currently available re-
sources. Rescheduling of processes will occur when a process attempts to wait on a zero value
semaphore, and when a semaphore is signaled that has processes queued on it.

8.3.1 Types

Here also, we give information about the types used by the services.

The following types are related to process queuing on a service request when the speci�ed resource

is not available.

Label Nature
QueuingDiscipline_type enum (FIFO, PRIORITY)
QueueAddress_type external

The next types de�ne the communication and synchronization mechanisms.

RR n° 4678

76 A. GAMATIÉ & T. GAUTIER

Label Nature
MessageSize_type numeric
MessageArea_type implementation dependant
Message_type struct (MessageArea_type Message_Area;

MessageSize_type Message_Size;)
Comm_ComponentID_type numeric
Comm_ComponentName_type string
APEX_Blackboard_type struct (ComponentName_type Blackboard_Name;

MessageID_type Message_ID;
boolean Empty_Indicator;
integer Waiting_Processes;
QueueAddress_type Waiting_Queue;)

BlackboardStatus_type struct (boolean Empty_Indicator;
integer Waiting_Processes;)

APEX_Bu�er_type struct (ComponentName_type Bu�er_Name;
[MAX_SIZE]MessageID_type Message_Range;
integer Nb_Message;
integer Max_Message;
integer WaitingOnSend_Processes;
integer WaitingOnReceive_Processes;
QueuingDiscipline_type Queuing_Discipline;
QueueAddress_type WaitingOnSend_Queue;
QueueAddress_type WaitingOnReceive_Queue;)

Bu�erStatus_type struct (integer Nb_Message;
integer Max_Message;
integer Waiting_Processes;)

APEX_Event_type struct (ComponentName_type Event_Name;
boolean Event_State;
integer Waiting_Processes;
QueueAddress_type Waiting_Queue;)

EventStatus_type struct (boolean Event_State;
integer Waiting_Processes;)

APEX_Semaphore_type struct (ComponentName_type Semaphore_Name;
integer Current_Value;
integer Maximum_Value;
integer Waiting_Processes;
QueuingDiscipline_type Queuing_Discipline;
QueueAddress_type Waiting_Queue;)

SemaphoreStatus_type struct (integer Current_Value;
integer Maximum_Value;
integer Waiting_Processes;)

8.3.2 Intra-partition communication and synchronization mechanisms
manager

Every communication and synchronization mechanism is uniquely identi�ed within the partition.

The identi�er is used to refer to the mechanisms in their corresponding managers. This section

presents the mechanisms management services.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 77

� process BLACKBOARD_CHECKID
Interface:
Label Nature Type Comments

blackboard_ID input Comm_ComponentID_type blackboard identi�er
present output boolean presence indicator
blackboard_OUT output APEX_Blackboard_type blackboard

Processing:

When there is a blackboard identi�ed by blackboard_ID, the presence indicator is TRUE and

blackboard_OUT is this blackboard. Otherwise, present is FALSE.

process BLACKBOARD_CHECKID =

(? Comm_ComponentID_type blackboard_ID;

! boolean present;

APEX_Blackboard_type blackboard_OUT;

)

spec (| (| blackboard_ID �> present

| { blackboard_ID �> blackboard_OUT } when present

|)

| (| blackboard_ID ^= present

| blackboard_OUT ^= when present

|)

|)

;

� process BLACKBOARD_CHECKNAME
Interface:
Label Nature Type Comments

blackboard_name input Comm_ComponentName_type blackboard name
present output boolean presence indicator
blackboard_ID output Comm_ComponentID_type blackboard identi�er

Processing:

When there is a blackboard named blackboard_name, the presence indicator is TRUE and

blackboard_ID is the corresponding identi�er. Otherwise, present is FALSE.

process BLACKBOARD_CHECKNAME =

(? Comm_ComponentName_type blackboard_name;

! boolean present;

Comm_ComponentID_type blackboard_ID;

)

spec (| (| blackboard_name �> present

| { blackboard_name �> blackboard_ID } when present

|)

| (| blackboard_name ^= present

| blackboard_ID ^= when present

|)

|)

;

RR n° 4678

78 A. GAMATIÉ & T. GAUTIER

� process BLACKBOARD_RECORD
Interface:
Label Nature Type Comments

blackboard_name input Comm_ComponentName_type blackboard name
message_size input integer message size
blackboard_ID output Comm_ComponentID_type blackboard identi�er
recorded output boolean record indicator

Processing:

This service records the blackboard named blackboard_name. The size of the messages

displayed on this blackboard is message_size. The output blackboard_ID is the identi�er

associated with the blackboard. The record indicator indicates whether or not the black-

board has been actually recorded (that means there was enough space in the manager to

de�ne a new blackboard). So, it carries the value TRUE when the blackboard is recorded;

otherwise, recorded is FALSE.

process BLACKBOARD_RECORD =

(? Comm_ComponentName_type blackboard_name;

MessageSize_type message_size;

! Comm_ComponentID_type blackboard_ID;

boolean recorded;

)

spec (| (| { blackboard_name,message_size } �> recorded

| { { blackboard_name,message_size } �>

blackboard_ID } when recorded

|)

| (| blackboard_name ^= message_size ^= recorded

| blackboard_ID ^= when recorded

|)

|)

;

� process BLACKBOARD_UPDATE
Interface:
Label Nature Type Comments

blackboard_IN input APEX_Blackboard_type blackboard

Processing:

This service updates the blackboard named blackboard_IN.Name in the manager with the

status of blackboard_IN.

process BLACKBOARD_UPDATE =

(? APEX_Blackboard_type blackboard_IN;

)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 79

� process BUFFER_CHECKID
Interface:
Label Nature Type Comments

bu�er_ID input Comm_ComponentID_type bu�er identi�er
present output boolean presence indicator
bu�er_OUT output APEX_Bu�er_type bu�er

Processing:

When there is a bu�er identi�ed by bu�er_ID, the presence indicator is TRUE and bu�er_OUT

is the corresponding bu�er. Otherwise, present is FALSE.

process BUFFER_CHECKID =

(? Comm_ComponentID_type buffer_ID;

! boolean present;

APEX_Buffer_type buffer_OUT;

)

spec (| (| buffer_ID �> present

| { buffer_ID �> buffer_OUT } when present

|)

| (| buffer_ID ^= present

| buffer_OUT ^= when present

|)

|)

;

� process BUFFER_CHECKNAME
Interface:
Label Nature Type Comments

bu�er_name input Comm_ComponentName_type bu�er name
present output boolean presence indicator
bu�er_ID output Comm_ComponentID_type bu�er identi�er

Processing:

When there is a bu�er named bu�er_name, the presence indicator is TRUE and bu�er_ID

is the corresponding identi�er. Otherwise present is FALSE.

process BUFFER_CHECKNAME =

(? Comm_ComponentName_type buffer_name;

! boolean present;

Comm_ComponentID_type buffer_ID;

)

spec (| (| buffer_name �> present

| { buffer_name �> buffer_ID } when present

|)

| (| buffer_name ^= present

| buffer_ID ^= when present

|)

|)

;

RR n° 4678

80 A. GAMATIÉ & T. GAUTIER

� process BUFFER_RECORD
Interface:
Label Nature Type Comments

bu�er_name input Comm_ComponentName_type bu�er name
bu�er_size input integer bu�er size limit
message_size input integer message size
queuing_discipline input QueuingDiscipline_type queuing discipline
bu�er_ID output Comm_ComponentID_type blackboard identi�er
recorded output boolean record indicator

Processing:

This service records the bu�er named bu�er_name. Its size limit is bu�er_size. The size

of the messages stored in this bu�er is message_size. The queuing discipline of the process

waiting queue associated with the bu�er is speci�ed by the input queuing_discipline. The

bu�er identi�er is given by the output bu�er_ID. The record indicator carries the value

TRUE when the bu�er is actually recorded; otherwise, it is FALSE.

process BUFFER_RECORD =

(? Comm_ComponentName_type buffer_name;

BufferSize_type buffer_size;

MessageSize_type message_size;

QueuingDiscipline_type queuing_discipline;

! Comm_ComponentID_type buffer_ID;

boolean recorded;

)

spec (| (| { buffer_name,buffer_size,message_size,

queuing_discipline } �> recorded

| { { buffer_name,buffer_size,message_size,

queuing_discipline } �> buffer_ID } when recorded

|)

| (| buffer_name ^= buffer_size ^= message_size ^=

queuing_discipline ^= recorded

| buffer_ID ^= when recorded

|)

|)

;

� process BUFFER_UPDATE
Interface:
Label Nature Type Comments

bu�er_IN input APEX_Bu�er_type bu�er

Processing:

This service updates the bu�er named bu�er_IN.Name in the manager with the status of

the bu�er bu�er_IN.

process BUFFER_UPDATE =

INRIA

Synchronous Modeling of Avionics Architectures using Signal 81

(? APEX_Buffer_type buffer_IN;

)

;

� process EVENT_CHECKID
Interface:
Label Nature Type Comments

event_ID input Comm_ComponentID_type event identi�er
present output boolean presence indicator
event_OUT output APEX_Event_type event

Processing:

When there is an event identi�ed by event_ID, the presence indicator is TRUE and event_OUT

is the corresponding event. Otherwise, present is FALSE.

process EVENT_CHECKID =

(? Comm_ComponentID_type event_ID;

! boolean present;

APEX_Event_type event_OUT;

)

spec (| (| event_ID �> present

| { event_ID �> event_OUT } when present

|)

| (| event_ID ^= present

| event_OUT ^= when present

|)

|)

;

� process EVENT_CHECKNAME
Interface:
Label Nature Type Comments

event_name input Comm_ComponentName_type event name
present output boolean presence indicator
event_ID output Comm_ComponentID_type event identi�er

Processing:

When there is an event named event_name, the presence indicator is TRUE and event_ID

is the corresponding identi�er. Otherwise, present is FALSE.

process EVENT_CHECKNAME =

(? Comm_ComponentName_type event_name;

! boolean present;

Comm_ComponentID_type event_ID;

)

spec (| (| event_name �> present

RR n° 4678

82 A. GAMATIÉ & T. GAUTIER

| { event_name �> event_ID } when present

|)

| (| event_name ^= present

| event_ID ^= when present

|)

|)

;

� process EVENT_RECORD
Interface:
Label Nature Type Comments

event_name input Comm_ComponentName_type event name
event_ID output Comm_ComponentID_type event identi�er
recorded output boolean record indicator

Processing:

This service records the event named event_name. The associated identi�er is event_ID.

The record indicator carries the value TRUE when the event is actually recorded; otherwise,

it is FALSE.

process EVENT_RECORD =

(? Comm_ComponentName_type event_name;

! Comm_ComponentID_type event_ID;

boolean recorded;

)

spec (| (| event_name �> recorded

| { event_name �> event_ID } when recorded

|)

| (| event_name ^= recorded

| event_ID ^= when recorded

|)

|)

;

� process EVENT_UPDATE
Interface:
Label Nature Type Comments

event_IN input APEX_Event_type event

Processing:

This service updates the event named event_IN.Name in the manager with the status of

the event event_IN.

process EVENT_UPDATE =

(? APEX_Event_type event_IN;

)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 83

� process SEMAPHORE_CHECKID
Interface:
Label Nature Type Comments

semaphore_ID input Comm_ComponentID_type semaphore identi�er
present output boolean presence indicator
semaphore_OUT output APEX_Semaphore_type semaphore

Processing:

When there is a semaphore identi�ed by semaphore_ID, the presence indicator is TRUE and

semaphore_OUT is the corresponding semaphore. Otherwise, present is FALSE.

process SEMAPHORE_CHECKID =

(? Comm_ComponentID_type semaphore_ID;

! boolean present;

APEX_Semaphore_type semaphore_OUT;

)

spec (| (| semaphore_ID �> present

| { semaphore_ID �> semaphore_OUT } when present

|)

| (| semaphore_ID ^= present

| semaphore_OUT ^= when present

|)

|)

;

� process SEMAPHORE_CHECKNAME
Interface:
Label Nature Type Comments

semaphore_name input Comm_ComponentName_type semaphore name
present output boolean presence indicator
semaphore_ID output Comm_ComponentID_type semaphore identi�er

Processing:

When there is a semaphore named semaphore_name, the presence indicator is TRUE and

semaphore_ID is the corresponding identi�er. Otherwise, present is FALSE.

process SEMAPHORE_CHECKNAME =

(? Comm_ComponentName_type semaphore_name;

! boolean present;

Comm_ComponentID_type semaphore_ID;

)

spec (| (| semaphore_name �> present

| { semaphore_name �> semaphore_ID } when present

|)

| (| semaphore_name ^= present

| semaphore_ID ^= when present

|)

|)

;

RR n° 4678

84 A. GAMATIÉ & T. GAUTIER

� process SEMAPHORE_RECORD
Interface:
Label Nature Type Comments

semaphore_name input Comm_ComponentName_type semaphore name
current_value input integer current value
maximum_value input integer maximum value
queuing_discipline input QueuingDiscipline_type queuing discipline
semaphore_ID output Comm_ComponentID_type semaphore identi�er
recorded output boolean record indicator

Processing:

This service records a semaphore named semaphore_name. Its initial and maximum values

are respectively current_value and maximum_value. The queuing discipline of the process

waiting queue associated with the semaphore is speci�ed by the input queuing_discipline.

The record indicator carries the value TRUE when the semaphore is actually recorded;

otherwise, it is FALSE.

process SEMAPHORE_RECORD =

(? Comm_ComponentName_type semaphore_name;

SemaphoreValue_type current_value;

SemaphoreValue_type maximum_value;

QueuingDiscipline_type queuing_discipline;

! Comm_ComponentID_type semaphore_ID;

boolean recorded;

)

spec (| (| { semaphore_name,current_value,maximum_value,

queuing_discipline } �> recorded

| { { semaphore_name,current_value,maximum_value,

queuing_discipline } �> semaphore_ID } when recorded

|)

| (| semaphore_name ^= recorded ^= current_value ^=

maximum_value ^= queuing_discipline

| semaphore_ID ^= when recorded

|)

|)

;

� process SEMAPHORE_UPDATE
Interface:
Label Nature Type Comments

semaphore_IN input APEX_Semaphore_type semaphore

Processing:

This service updates the semaphore named semaphore_IN.Name in the manager with the

status of the semaphore semaphore_IN.

process SEMAPHORE_UPDATE =

INRIA

Synchronous Modeling of Avionics Architectures using Signal 85

(? APEX_Semaphore_type semaphore_IN;

)

;

� process BLACKBOARD_CHECKCAPACITY
Interface:
Label Nature Type Comments

full output boolean board manager status

Processing:

This service checks whether or not the blackboard manager is full.

process BLACKBOARD_CHECKCAPACITY =

(! boolean full;

)

;

� process BUFFER_CHECKCAPACITY
Interface:
Label Nature Type Comments

full output boolean bu�er manager status

Processing:

This service checks whether or not the bu�er manager is full.

process BUFFER_CHECKCAPACITY =

(! boolean full;

)

;

� process EVENT_CHECKCAPACITY
Interface:
Label Nature Type Comments

full output boolean event manager status

Processing:

This service checks whether or not the event manager is full.

process EVENT_CHECKCAPACITY =

(! boolean full;

)

;

RR n° 4678

86 A. GAMATIÉ & T. GAUTIER

� process SEMAPHORE_CHECKCAPACITY
Interface:
Label Nature Type Comments

full output boolean sema manager status

Processing:

This service checks whether or not the semaphore manager is full.

process SEMAPHORE_CHECKCAPACITY =

(! boolean full;

)

;

8.3.3 Communication and synchronization services

For each mechanism (blackboard, bu�er, event and semaphore), we present the associated
services.

1. BLACKBOARD services

� process CREATE_BLACKBOARD?

Interface:
Label Nature Type Comments

blackboard_name input Comm_ComponentName_type blackboard name
message_size input MessageSize_type message size
blackboard_ID output Comm_ComponentID_type blackboard ident
return_code output ReturnCode_type diagnostic

Processing:
This service is used to create a blackboard named blackboard_name. If the request
satis�es all the creation conditions, a blackboard identi�er (blackboard_ID) is re-
turned. The output return_code indicates the diagnostic of the request.

(a) The return code value is:

� INVALID_CONFIG when there is not enough space for creating a new black-
board;

� NO_ACTION when a blackboard with the same name has been already created;

� INVALID_PARAM when the input message_size is out of range;

� INVALID_MODE when the operating mode is NORMAL;

� NO_ERROR otherwise.

(b) In the case of successful completion, blackboard_ID denotes the identi�er of an
unallocated blackboard control block. The empty indicator is set to TRUE.

process CREATE_BLACKBOARD =

(? Comm_ComponentName_type blackboard_name;

MessageSize_type message_size;

! Comm_ComponentID_type blackboard_ID;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 87

ReturnCode_type return_code;

)

spec (| (| { blackboard_name, message_size } �> return_code

| { { blackboard_name, message_size } �> blackboard_ID }

when (return_code = #NO_ERROR)

|)

| (| return_code ^= message_size ^= blackboard_name

| blackboard_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process DISPLAY_BLACKBOARD?

Interface:
Label Nature Type Comments

blackboard_ID input Comm_ComponentID_type blackboard ident
message input MessageArea_type message address
length input MessageSize_type message size
return_code output ReturnCode_type diagnostic

Processing:
This service is used to display a message (de�ned by inputs message and length) in
the blackboard speci�ed by blackboard_ID.

(a) The return code value is:

� INVALID_PARAM when the input blackboard_ID does not identify any black-
board, or the message is too long;

� NO_ERROR otherwise.

(b) In the case of successful completion, the empty indicator is set to FALSE. The
contents of the speci�ed blackboard is overwritten. If there are processes blocked
on an empty blackboard, for each of them, the state is set to READY (except if
another process suspended it). If some of the blocked processes are waiting with
a time-out, the a�ected time counters are stopped. Finally, process scheduling
is performed if preemption is enabled.

process DISPLAY_BLACKBOARD =

(? Comm_ComponentID_type blackboard_ID;

MessageArea_type message;

MessageSize_type length;

! ReturnCode_type return_code;

)

spec (| (| { blackboard_ID, message, length }

�> return_code |)

| (| return_code ^= blackboard_ID ^= message

^= length |)

|)

;

RR n° 4678

88 A. GAMATIÉ & T. GAUTIER

� process READ_BLACKBOARD?

Interface
Label Nature Type Comments

process_ID parameter ProcessID_type caller ident
blackboard_ID input Comm_ComponentID_type blackboard ident
timeout input SystemTime_type waiting duration
message output MessageArea_type message address
length output MessageSize_type message size
return_code output ReturnCode_type diagnostic

Processing:
This service is used to read a message (de�ned by outputs message and length) from
the blackboard speci�ed by blackboard_ID. If the blackboard is empty, the calling
process (process_ID) goes into a waiting state.

(a) The return code value is:

� INVALID_PARAM when the input blackboard_ID does not identify any black-
board, or timeout is out of range;

� NOT_AVAILABLE when the input timeout value is zero;

� INVALID_MODE when preemption is disabled, or the parameter process_ID
identi�es an error handler process;

� NO_ERROR otherwise.

(b) In the case of successful completion,

� if the blackboard is not empty, the output message is the one currently
displayed in the blackboard.

� Otherwise, the calling process goes into waiting state. A time counter with
duration timeout is initiated if timeout is not in�nite. Process scheduling is
performed if preemption is enabled. Finally, the last available message of
the blackboard is sent.

process READ_BLACKBOARD =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type blackboard_ID;

SystemTime_type timeout;

! MessageArea_type message;

MessageSize_type length;

ReturnCode_type return_code;

)

spec (| (| { { blackboard_ID, timeout } �>

return_code } when C_return_code

| { { blackboard_ID, timeout } �>

{ message, length } }

when (return_code = #NO_ERROR)

|)

| (| blackboard_ID ^= timeout ^= C_return_code

| return_code ^= when C_return_code

| message ^= length ^= when (return_code = #NO_ERROR)

|)

|)

INRIA

Synchronous Modeling of Avionics Architectures using Signal 89

where boolean C_return_code;

end;

� process CLEAR_BLACKBOARD?

Interface:
Label Nature Type Comments

blackboard_ID input Comm_ComponentID_type blackboard ident
return_code output ReturnCode_type diagnostic

Processing:
This service is used to clear the blackboard speci�ed by blackboard_ID.

(a) The return code value is:

� INVALID_PARAM when the input blackboard_ID does not identify any black-
board in the current partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, the empty indicator is set to TRUE.

process CLEAR_BLACKBOARD =

(? Comm_ComponentID_type blackboard_ID;

! ReturnCode_type return_code;

)

spec (| (| blackboard_ID �> return_code |)

| (| blackboard_ID ^= return_code |)

|)

;

� process GET_BLACKBOARD_ID?

Interface:
Label Nature Type Comments

blackboard_name input Comm_ComponentName_type blackboard name
blackboard_ID output Comm_ComponentID_type blackboard ident
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the identi�er (blackboard_ID) of the blackboard named
blackboard_name.

(a) The return code value is:

� INVALID_CONFIG when no blackboard is named blackboard_name in the cur-
rent partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, blackboard_ID denotes the identi�er of the
blackboard named blackboard_name.

process GET_BLACKBOARD_ID =

(? Comm_ComponentName_type blackboard_name;

RR n° 4678

90 A. GAMATIÉ & T. GAUTIER

! Comm_ComponentID_type blackboard_ID;

ReturnCode_type return_code;

)

spec (| (| blackboard_name �> return_code

| { blackboard_name �> blackboard_ID }

when (return_code = #NO_ERROR)

|)

| (| blackboard_name ^= return_code

| blackboard_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process GET_BLACKBOARD_STATUS?

Interface:
Label Nature Type Comments

blackboard_ID input Comm_ComponentID_type blackboard ident
blackboard_status output BlackboardStatus_type its current status
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the status (blackboard_status) of the blackboard identi�ed
by blackboard_ID.

(a) The return code value is:

� INVALID_PARAM when no blackboard is identi�ed by blackboard_ID in the
current partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, blackboard_status denotes the current sta-
tus of the blackboard identi�ed by blackboard_ID.

process GET_BLACKBOARD_STATUS =

(? Comm_ComponentID_type blackboard_ID;

! BlackboardStatus_type blackboard_status;

ReturnCode_type return_code;

)

spec (| (| blackboard_ID �> return_code

| { blackboard_ID �> blackboard_status }

when (return_code = #NO_ERROR)

|)

| (| blackboard_ID ^= return_code

| blackboard_status ^= when (return_code = #NO_ERROR)

|)

|)

;

2. BUFFER services

INRIA

Synchronous Modeling of Avionics Architectures using Signal 91

� process CREATE_BUFFER?

Interface:
Label Nature Type Comments

bu�er_name input Comm_ComponentName_type bu�er name
bu�er_size input Bu�erSize_type size limit
message_size input MessageSize_type size of messages
queuing_discipline input QueuingDiscipline_type queuing rule
bu�er_ID output Comm_ComponentID_type bu�er identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to create a message bu�er (named bu�er_name). If the request
satis�es all the creation conditions, a bu�er identi�er (bu�er_ID) is returned. The
size limit of this bu�er is bu�er_size. The input queuing_discipline speci�es the
queuing discipline of waiting processes on the bu�er.

(a) The return code value is:

� INVALID_CONFIG when there is not enough place for creating a new bu�er;

� NO_ACTION when a bu�er with the same name has been already created;

� INVALID_PARAM when at least one of the inputs bu�er_size andmessage_size
is out of range, or queuing_discipline is invalid;

� INVALID_MODE when the operating mode is NORMAL;

� NO_ERROR otherwise.

(b) In the case of successful completion, bu�er_ID denotes an identi�er of an un-
allocated bu�er control block. The process bu�er queuing rule is set to queu-
ing_discipline.

process CREATE_BUFFER =

(? Comm_ComponentName_type buffer_name;

BufferSize_type buffer_size;

MessageSize_type message_size;

QueuingDiscipline_type queuing_discipline;

! Comm_ComponentID_type buffer_ID;

ReturnCode_type return_code;

)

spec (| (| { buffer_size, message_size, queuing_discipline,

buffer_name } �> return_code

| { { buffer_size, message_size, queuing_discipline,

buffer_name } �> buffer_ID }

when (return_code = #NO_ERROR)

|)

| (| return_code ^= buffer_size ^= message_size

^= queuing_discipline ^= buffer_name

| buffer_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

RR n° 4678

92 A. GAMATIÉ & T. GAUTIER

� process SEND_BUFFER?

Interface:
Label Nature Type Comments

process_ID parameter ProcessID_type caller identi�er
bu�er_ID input Comm_ComponentID_type bu�er identi�er
message input MessageArea_type message address
length input MessageSize_type message size
timeout input SystemTime_type waiting duration
return_code output ReturnCode_type diagnostic

Processing:
This service is used to send a message in a bu�er identi�ed by bu�er_ID.

(a) The return code value is:

� INVALID_PARAM when the input bu�er_ID does not identify any bu�er, or
message is too long, or timeout is out of range;

� NOT_AVAILABLE when the input timeout value is zero;

� INVALID_MODE when preemption is disabled, or the parameter process_ID
identi�es an error handler process;

� NO_ERROR otherwise.

(b) In the case of successful completion,

� when the bu�er is not full,

� if no process is waiting on an empty bu�er, the message is stored in the
bu�er.

� else the �rst process is removed from the process queue. It retrieves the
current message. If this process is waiting with a time-out, the a�ected
time counter is stopped. Its state becomes READY (except if another pro-
cess suspended it).

� Otherwise, the calling process goes into waiting state. It is inserted in the
process waiting queue associated with the bu�er, at the position speci�ed
by the queuing rule. A time counter with duration timeout is initiated if
timeout is not in�nite.

Finally, process scheduling is performed if preemption is enabled.

process SEND_BUFFER =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type buffer_ID;

MessageArea_type message;

MessageSize_type length;

SystemTime_type timeout;

! ReturnCode_type return_code;

)

spec (| (| { { buffer_ID, timeout, message, length }

�> return_code } when C_return_code |)

| (| buffer_ID ^= timeout ^= message

^= length ^= C_return_code

| return_code ^= when C_return_code

INRIA

Synchronous Modeling of Avionics Architectures using Signal 93

|)

|)

where boolean C_return_code;

end;

� process RECEIVE_BUFFER?

Interface:
Label Nature Type Comments

process_ID parameter ProcessID_type caller identi�er
bu�er_ID input Comm_ComponentID_type bu�er identi�er
timeout input SystemTime_type waiting maximum
message output MessageArea_type message address
length output MessageSize_type message size
return_code output ReturnCode_type diagnostic

Processing:
This service is used to receive a message from the bu�er identi�ed by bu�er_ID.

(a) The return code value is:

� INVALID_PARAM when the input bu�er_ID does not identify any bu�er, or
timeout is out of range;

� NOT_AVAILABLE when the input timeout value is zero;

� INVALID_MODE when preemption is disabled, or the parameter process_ID
identi�es an error handler process;

� NO_ERROR otherwise.

(b) In the case of successful completion,

� when the bu�er is not empty, the message is the �rst message of the speci�ed
bu�er message queue. If there are processes waiting on a full bu�er, the
�rst process is removed from the process queue. The message sent by this
process is put in the message queue. If the process is waiting with a time-
out, the a�ected time counter is stopped. Its state becomes READY (except
if another process suspended it).

� Otherwise, the calling process goes into a waiting state. It is inserted in the
process waiting queue associated with the bu�er, at the position speci�ed
by the queuing rule parameter. A time counter with duration timeout is
initiated if timeout is not in�nite.

Finally, process scheduling is performed if preemption is enabled.

process RECEIVE_BUFFER =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type buffer_ID;

SystemTime_type timeout;

! MessageArea_type message;

MessageSize_type length;

ReturnCode_type return_code;

)

RR n° 4678

94 A. GAMATIÉ & T. GAUTIER

spec (| (| { { buffer_ID, timeout } �> return_code }

when C_return_code

| { { buffer_ID, timeout } �> { message, length }

when (return_code = #NO_ERROR)

|)

| (| buffer_ID ^= timeout ^= C_return_code

| return_code ^= when C_return_code

| message ^= length ^= when (return_code = #NO_ERROR)

|)

|)

where boolean C_return_code;

end;

� process GET_BUFFER_ID?

Interface:
Label Nature Type Comments

bu�er_name input Comm_ComponentName_type bu�er name
bu�er_ID output Comm_ComponentID_type bu�er identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the identi�er (bu�er_ID) of the bu�er named bu�er_name.

(a) The return code value is:

� INVALID_CONFIG when no bu�er is named bu�er_name in the current par-
tition;

� NO_ERROR otherwise.

(b) In the case of successful completion, bu�er_ID denotes the identi�er of the
bu�er named bu�er_name.

process GET_BUFFER_ID =

(? Comm_ComponentName_type buffer_name;

! Comm_ComponentID_type buffer_ID;

ReturnCode_type return_code;

)

spec (| (| buffer_name �> return_code

| { buffer_name �> buffer_ID }

when (return_code = #NO_ERROR)

|)

| (| buffer_name ^= return_code

| buffer_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 95

� process GET_BUFFER_STATUS?

Interface:
Label Nature Type Comments

bu�er_ID input Comm_ComponentID_type bu�er identi�er
bu�er_status output Bu�erStatus_type current status
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the status (bu�er_status) of the bu�er identi�ed by
bu�er_ID.

(a) The return code value is:

� INVALID_PARAM when no bu�er is identi�ed by bu�er_ID in the current
partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, bu�er_status denotes the current status of
the bu�er identi�ed by bu�er_ID.

process GET_BUFFER_STATUS =

(? Comm_ComponentID_type buffer_ID;

! BufferStatus_type buffer_status;

ReturnCode_type return_code;

)

spec (| (| buffer_ID �> return_code

| { buffer_ID �> buffer_status }

when (return_code = #NO_ERROR)

|)

| (| return_code ^= buffer_ID

| buffer_status ^= when (return_code = #NO_ERROR)

|)

|)

;

3. EVENT services

� process CREATE_EVENT?

Interface:
Label Nature Type Comments

event_name input Comm_ComponentName_type event name
event_ID output ComponentID_type event identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to create an event called event_name. If the request satis�es all
the creation conditions, an event identi�er (event_ID) is returned.

(a) The return code value is:

� INVALID_CONFIG when there is not enough place for creating a new event;

� NO_ACTION when an event with the same name had already been created;

� INVALID_MODE when the operating mode is NORMAL;

RR n° 4678

96 A. GAMATIÉ & T. GAUTIER

� NO_ERROR otherwise.

(b) In the case of successful completion, event_ID denotes an identi�er of unallo-
cated event. The event state is set to DOWN.

process CREATE_EVENT =

(? Comm_ComponentName_type event_name;

! Comm_ComponentID_type event_ID;

ReturnCode_type return_code;

)

spec (| (| event_name �> return_code

| { event_name �> event_ID } when (return_code = #NO_ERROR)

|)

| (| event_name ^= return_code

| event_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process SET_EVENT?

Interface:
Label Nature Type Comments

event_ID input Comm_ComponentID_type event identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to set the speci�ed event state to "up". A

(a) The return code value is:

� INVALID_PARAM when the input event_ID does not identify any event;

� NO_ERROR otherwise.

(b) In the case of successful completion, the event state is set to UP. If there are
processes waiting for that event, their state is set to READY (except if another
process suspended them previously). If some of the blocked processes are wait-
ing with a time-out, the a�ected time counters are stopped. Finally, process
scheduling is performed if preemption is enabled.

process SET_EVENT =

(? Comm_ComponentID_type event_ID;

! ReturnCode_type return_code;

)

spec (| (| event_ID �> return_code |)

| (| event_ID ^= return_code |)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 97

� process RESET_EVENT?

Interface:
Label Nature Type Comments

event_ID input Comm_ComponentID_type event identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to set the speci�ed event state to "down".

(a) The return code value is:

� INVALID_PARAM when the input event_ID does not identify any event;

� NO_ERROR otherwise.

(b) In the case of successful completion, the event state is set to DOWN.

process RESET_EVENT =

(? Comm_ComponentID_type event_ID;

! ReturnCode_type return_code;

)

spec (| (| event_ID �> return_code |)

| (| event_ID ^= return_code |)

|)

;

� process WAIT_EVENT?

Interface:
Label Nature Type Comments

process_ID parameter ProcessID_type caller identi�er
event_ID input Comm_ComponentID_type event identi�er
timeout input SystemTime_type waiting duration
return_code output ReturnCode_type diagnostic

Processing:
This service is used to move the calling process from running state to waiting state
if the speci�ed event state is �down� and if the speci�ed time-out is not zero. It goes
on executing if the state is �up�.

(a) The return code value is:

� INVALID_PARAM when the input event_ID does not identify any event, or
timeout is out of range;

� NOT_AVAILABLE when the input timeout value is zero;

� INVALID_MODE when preemption is disabled, or the parameter process_ID
identi�es an error handler process;

� NO_ERROR otherwise.

(b) In the case of successful completion, if the state of the speci�ed event is �down�,
the calling process goes into waiting state. A time counter with duration timeout
is initiated if timeout is not in�nite. Finally, process scheduling is performed if
preemption is enabled.

RR n° 4678

98 A. GAMATIÉ & T. GAUTIER

process WAIT_EVENT =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type event_ID;

SystemTime_type timeout;

! ReturnCode_type return_code;

)

spec (| (| { { event_ID, timeout } �> when C_return_code |)

| (| event_ID ^= timeout ^= C_return_code

| return_code ^= when C_return_code

|)

|)

where boolean C_return_code;

end;

� process GET_EVENT_ID?

Interface:
Label Nature Type Comments

event_name input Comm_ComponentName_type event name
event_ID output Comm_ComponentID_type event identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the identi�er (event_ID) of the event named event_name.

(a) The return code value is:

� INVALID_CONFIG when no event is named event_name in the current parti-
tion;

� NO_ERROR otherwise.

(b) In the case of successful completion, event_ID denotes the identi�er of the event
named event_name.

process GET_EVENT_ID =

(? Comm_ComponentName_type event_name;

! Comm_ComponentID_type event_ID;

ReturnCode_type return_code;

)

spec (| (| event_name �> return_code

| { event_name �> event_ID }

when (return_code = #NO_ERROR)

|)

| (| event_name ^= return_code

| event_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 99

� process GET_EVENT_STATUS?

Interface:
Label Nature Type Comments

event_ID input Comm_ComponentID_type event identi�er
event_status output EventStatus_type current status
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the status (event_status) of the event identi�ed by event_ID .

(a) The return code value is:

� INVALID_PARAM when no event is identi�ed by event_ID in the current par-
tition;

� NO_ERROR otherwise.

(b) In the case of successful completion, event_status denotes the current status of
the event identi�ed by event_ID.

process GET_EVENT_STATUS =

(? Comm_ComponentID_type event_ID;

! EventStatus_type event_status;

ReturnCode_type return_code;

)

spec (| (| event_ID �> return_code

| { event_ID �> event_status }

when (return_code = #NO_ERROR)

|)

| (| event_ID ^= return_code

| event_status ^= when (return_code = #NO_ERROR)

|)

|)

;

4. SEMAPHORE services

� process CREATE_SEMAPHORE?

Interface:
Label Nature Type Comments

semaphore_name input Comm_ComponentName_type semaphore name
current_value input integer its current value
maximum_value input integer its max value
queuing_discipline input QueuingDiscipline_type queuing rule
semaphore_ID output Comm_ComponentID_type semaphore ident
return_code output ReturnCode_type diagnostic

Processing:
This service is used to create a semaphore named semaphore_name. If the request
satis�es all the creation conditions, a semaphore identi�er (semaphore_ID) is re-
turned. The input queuing_discipline speci�es the queuing discipline of waiting
processes on the semaphore.

RR n° 4678

100 A. GAMATIÉ & T. GAUTIER

(a) The return code value is:

� INVALID_CONFIG when there is not enough place for creating a new semaphore;

� NO_ACTION when a semaphore with the same name has been already created;

� INVALID_PARAM when at least one of the inputs current_value and maxi-
mum_value is out of range, or queuing_discipline is invalid;

� INVALID_MODE when the operating mode is NORMAL;

� NO_ERROR otherwise.

(b) In the case of successful completion, semaphore_ID denotes an identi�er of
unallocated semaphore control block. The process semaphore queuing discipline
is set to queuing_discipline. Furthermore, the semaphore is initialized with
current_value and maximum_value.

process CREATE_SEMAPHORE =

(? Comm_ComponentName_type semaphore_name;

SemaphoreValue_type current_value;

SemaphoreValue_type maximum_value;

QueuingDiscipline_type queuing_discipline;

! Comm_ComponentID_type semaphore_ID;

ReturnCode_type return_code;

)

spec (| (| { semaphore_name, current_value, maximum_value,

queuing_discipline } �> return_code

| { { semaphore_name, current_value, maximum_value,

queuing_discipline } �> semaphore_ID }

when (return_code = #NO_ERROR)

|)

| (| return_code ^= semaphore_name ^= current_value

^= maximum_value ^= queuing_discipline

| semaphore_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process WAIT_SEMAPHORE?

Interface:
Label Nature Type Comments

process_ID parameter ProcessID_type caller identi�er
semaphore_ID input Comm_ComponentID_type semaphore ident
timeout input SystemTime_type waiting duration
return_code output ReturnCode_type diagnostic

Processing:
This service is used to move the calling process from running state to waiting state
if the speci�ed semaphore value is zero and if the speci�ed time-out is not zero. It
goes on executing if the value is greater than zero.

(a) The return code value is:

INRIA

Synchronous Modeling of Avionics Architectures using Signal 101

� INVALID_PARAM when the input event_ID does not identify any event, or
timeout is out of range;

� NOT_AVAILABLE when the input timeout value is zero;

� INVALID_MODE when preemption is disabled, or the parameter process_ID
identi�es an error handler process;

� NO_ERROR otherwise.

(b) In the case of successful completion,

� if the current value is greater than zero, it is decremented by one;

� otherwise, the calling process goes into waiting state. It is inserted in the
semaphore process queue at the position speci�ed by the queuing rule. A
time counter with duration timeout is initiated if timeout is not in�nite.
Finally, process scheduling is performed if preemption is enabled.

process WAIT_SEMAPHORE =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type semaphore_ID;

SystemTime_type timeout;

! ReturnCode_type return_code;

)

spec (| (| { { semaphore_ID, timeout }

�> return_code } when C_return_code

|)

| (| semaphore_ID ^= timeout ^= C_return_code

| return_code ^= when C_return_code

|)

|)

where boolean C_return_code;

end;

� process SIGNAL_SEMAPHORE?

Interface:
Label Nature Type Comments

semaphore_ID input Comm_ComponentID_type semaphore ident
return_code output ReturnCode_type diagnostic

Processing:
This service is used to increment the current value of the speci�ed semaphore.

(a) The return code value is:

� INVALID_PARAM when the input semaphore_ID does not identify any black-
board;

� NO_ACTION when the maximum value has been already reached;

� NO_ERROR otherwise.

(b) In the case of successful completion, the current value of the speci�ed semaphore
is incremented. If there are processes waiting on that semaphore, the �rst is
removed from the semaphore queue. Its state is set to READY (except if another
process suspended itpreviously). If it is waiting with a time-out, the a�ected

RR n° 4678

102 A. GAMATIÉ & T. GAUTIER

time counter is stopped. Finally, process scheduling is performed if preemption
is enabled.

process SIGNAL_SEMAPHORE =

(? Comm_ComponentID_type semaphore_ID;

! ReturnCode_type return_code;

)

spec (| (| semaphore_ID �> return_code |)

| (| semaphore_ID ^= return_code |)

|)

;

� process GET_SEMAPHORE_STATUS?

Interface:
Label Nature Type Comments

semaphore_ID input Comm_ComponentID_type semaphore ident
semaphore_status output SemaphoreStatus_type current status
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the status (semaphore_status) of the semaphore identi�ed
by semaphore_ID.

(a) The return code value is:

� INVALID_PARAM when no semaphore is identi�ed by semaphore_ID in the
current partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, semaphore_status denotes the current sta-
tus of the semaphore identi�ed by semaphore_ID.

process GET_SEMAPHORE_STATUS =

(? Comm_ComponentID_type semaphore_ID;

! SemaphoreStatus_type semaphore_status;

ReturnCode_type return_code;

)

spec (| (| semaphore_ID �> return_code

| { semaphore_ID �> semaphore_status }

when (return_code = #NO_ERROR)

|)

| (| semaphore_ID ^= return_code

| semaphore_status ^= when (return_code = #NO_ERROR)

|)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 103

� process GET_SEMAPHORE_ID?

Interface:
Label Nature Type Comments

semaphore_name input Comm_ComponentName_type semaphore name
semaphore_ID output Comm_ComponentID_type semaphore ident
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the identi�er (semaphore_ID) of the semaphore named
semaphore_name.

(a) The return code value is:

� INVALID_CONFIG when no semaphore is named semaphore_name in the cur-
rent partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, semaphore_ID denotes the identi�er of the
semaphore named semaphore_name.

process GET_SEMAPHORE_ID =

(? Comm_ComponentName_type semaphore_name;

! Comm_ComponentID_type semaphore_ID;

ReturnCode_type return_code;

)

spec (| (| semaphore_name �> return_code

| { semaphore_name �> semaphore_ID }

when (return_code = #NO_ERROR)

|)

| (| semaphore_name ^= return_code

| semaphore_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

8.4 Inter-partition communication mechanisms

We �rst remind the main intra-partition communication and synchronization mechanisms.
Then, we give the associated services.

1. Sampling port is a communication object used by partitions. Each new occurrence
of a message overwrites the previous. Messages have a �xed length. A refresh period
attribute applies to ports. A validity output parameter indicates whether the age of
the read message is consistent with the required refresh period attribute of the port.

2. Queuing port: it is also a communication object. Messages are stored in FIFO order,
and they have a variable length.

8.4.1 Types

Here also, we give information about the types used by the services.

RR n° 4678

104 A. GAMATIÉ & T. GAUTIER

Types Nature
PortDirection_type (SOURCE, DESTINATION);
SamplingPortSize_type integer;

Label Nature
SamplingPortStatus_type struct (SamplingPortSize_type SamplingPort_Size;

PortDirection_type Port_Direction;
SystemTime_type Refresh_Period;
boolean Validity;)

APEX_SamplingPort_type struct (Comm_ComponentName_type SamplingPort_Name;
SamplingPortSize_type Sampling
-Port_Size;
PortDirection_type Port_Direction;
SystemTime_type Refresh_Period;
boolean Validity;
boolean Empty;
SystemTime_type Message_Age;
Message_type Message;)

QueuingPortStatus_type struct (QueuingPortSize_type QueuingPort_Size;
PortDirection_type Port_Direction;
MessageRange_type Nb_Message;
WaitingRange_type Waiting_Processes;)

APEX_QueuingPort_type struct (Comm_ComponentName_type QueuingPort_Name;
QueuingPortSize_type QueuingPort_Size;
PortDirection_type Port_Direction;
MessageSize_type Message_Size;
MessageRange_type Nb_Message;
[MAX_QUEUING_PORT_SIZE] Message_type
Message_Range;

QueuingDiscipline_type Queuing_Discipline;
WaitingRange_type WaitingOnSend_Processes;
WaitingRange_type WaitingOnReceive_Processes;
QueueAddress_type WaitingOnSend_Queue;
QueueAddress_type WaitingOnReceive_Queue;)

8.4.2 Inter-partition communication mechanisms manager

Here also, the mechanisms are uniquely identi�ed in their corresponding managers. The
management services are given bellow.

� process QUEUINGPORT_CHECKID
Interface:
Label Nature Type Comments

queuingPort_ID input Comm_ComponentID_type queuing port ident.
present output boolean presence indicator
queuingPort_OUT output APEX_QueuingPort_type queuing port

Processing:

When there is a queuing port identi�ed by queuingPort_ID, the presence indicator is TRUE

and queuingPort_OUT is the corresponding queuing port. Otherwise, present is FALSE.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 105

process QUEUINGPORT_CHECKID =

(? Comm_ComponentID_type queuingPort_ID;

! boolean present;

APEX_QueuingPort_type queuingPort_OUT;

)

spec (| (| queuingPort_ID �> present

| { queuingPort_ID �> queuingPort_OUT } when present

|)

| (| queuingPort_ID ^= present

| queuingPort_OUT ^= when present

|)

|)

;

� process QUEUINGPORT_CHECKNAME
Interface:
Label Nature Type Comments

queuingPort_name input Comm_ComponentName_type queuing port name
present output boolean presence indicator
queuingPort_ID output Comm_ComponentID_type queuing port ident.

Processing:

When there is a queuing port named queuingPort_name, the presence indicator is TRUE

and queuingPort_ID is the corresponding identi�er. Otherwise, present is FALSE.

process QUEUINGPORT_CHECKNAME =

(? Comm_ComponentName_type queuingPort_name;

! boolean present;

Comm_ComponentID_type queuingPort_ID;

)

spec (| (| queuingPort_name �> present

| { queuingPort_name �> queuingPort_ID } when present

|)

| (| queuingPort_name ^= present

| queuingPort_ID ^= when present

|)

|)

;

RR n° 4678

106 A. GAMATIÉ & T. GAUTIER

� process QUEUINGPORT_RECORD
Interface:
Label Nature Type Comments

queuingPort_name input Comm_ComponentName_type queuing port name
queuingPort_Size input QueuingPortSize_type queuing port size
port_direction input PortDirection_type source or dest.
message_size input MessageSize_type message size
queuing_discipline input QueuingDiscipline_type �fo or priority
queuingPort_ID output Comm_ComponentID_type queuing port ident.
recorded output boolean record indicator

Processing:

This service records the queuing port named queuingPort_name, and initializes it with the

other inputs. The associated identi�er is queuingPort_ID. The record indicator carries the

value TRUE when the queuing port is actually recorded; otherwise, it is FALSE.

process QUEUINGPORT_RECORD =

(? Comm_ComponentName_type queuingPort_name;

QueuingPortSize_type queuingPort_size;

PortDirection_type port_direction;

MessageSize_type message_size;

QueuingDiscipline_type queuing_discipline;

! Comm_ComponentID_type queuingPort_ID;

boolean recorded;

)

spec (| (| { queuingPort_name,queuingPort_size,port_direction,

message_size, queuing_discipline } �> recorded

| { { queuingPort_name,queuingPort_size,port_direction,

message_size, queuing_discipline } �>

queuingPort_ID } when recorded

|)

| (| queuingPort_name ^= queuingPort_size ^= port_direction ^=

message_size ^= queuing_discipline ^=

recorded

| queuingPort_ID ^= when recorded

|)

|)

;

� process QUEUINGPORT_UPDATE
Interface:
Label Nature Type Comments

queuingPort_IN input APEX_QueuingPort_type queuing port

Processing:

This service updates the queuing port named queuingPort_IN.Name in the manager with

the status of the queuing port queuingPort_IN.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 107

process QUEUINGPORT_UPDATE =

(? APEX_QueuingPort_type queuingPort_IN;

)

� process QUEUINGPORT_CHECKCAPACITY
Interface:
Label Nature Type Comments

full output boolean manager status

Processing:

This service checks whether or not the queuing port manager is full.

process QUEUINGPORT_CHECKCAPACITY =

(! boolean full;

)

;

� process QUEUINGPORT_CHECKCREATED
Interface:
Label Nature Type Comments

queuingPort_ID input Comm_ComponentID_type queuing port ident.
created output boolean answer

Processing:

This service checks whether or not the queuing port identi�ed by queuingPort_ID has

been already created.

process QUEUINGPORT_CHECKCREATED =

(? Comm_ComponentName_type queuingPort_name;

! boolean created;

)

spec (| (| queuingPort_name �> created |)

| (| queuingPort_name ^= created |)

|)

;

� process SAMPLINGPORT_CHECKID
Interface:
Label Nature Type Comments

samplingPort_ID input Comm_ComponentID_type sampling port ident.
present output boolean presence indicator
samplingPort_OUT output APEX_SamplingPort_type sampling port

Processing:

When there is a sampling port identi�ed by samplingPort_ID, the presence indicator is

RR n° 4678

108 A. GAMATIÉ & T. GAUTIER

TRUE and samplingPort_OUT is the corresponding sampling port. Otherwise, present is

FALSE.

process SAMPLINGPORT_CHECKID =

(? Comm_ComponentID_type samplingPort_ID;

! boolean present;

APEX_SamplingPort_type samplingPort_OUT;

)

spec (| (| samplingPort_ID �> present

| { samplingPort_ID �> samplingPort_OUT } when present

|)

| (| samplingPort_ID ^= present

| samplingPort_OUT ^= when present

|)

|)

;

� process SAMPLINGPORT_CHECKNAME
Interface:
Label Nature Type Comments

samplingPort_name input Comm_ComponentName_type sampling port name
present output boolean presence indicator
samplingPort_ID output Comm_ComponentID_type sampling port ident.

Processing:

When there is a sampling port named samplingPort_name, the presence indicator is TRUE

and samplingPort_ID is the corresponding identi�er. Otherwise, present is FALSE.

process SAMPLINGPORT_CHECKNAME =

(? Comm_ComponentName_type samplingPort_name;

! boolean present;

Comm_ComponentID_type samplingPort_ID;

)

spec (| (| samplingPort_name �> present

| { samplingPort_name �> samplingPort_ID } when present

|)

| (| samplingPort_name ^= present

| samplingPort_ID ^= when present

|)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 109

� process SAMPLINGPORT_RECORD
Interface:
Label Nature Type Comments

samplingPort_name input Comm_ComponentName_type sampling port name
samplingPort_Size input SamplingPortSize_type sampling port size
port_direction input PortDirection_type source or dest.
refresh_period input SystemTime_type mess. refresh period
samplingPort_ID output Comm_ComponentID_type sampling port ident.
recorded output boolean record indicator

Processing:

This service records a sampling port named samplingPort_name, and initializes with the

other inputs. The associated identi�er is samplingPort_ID. The record indicator carries

the value TRUE when the sampling port is actually recorded; otherwise, it is FALSE.

process SAMPLINGPORT_RECORD =

(? Comm_ComponentName_type samplingPort_name;

SamplingPortSize_type samplingPort_size;

PortDirection_type port_direction;

SystemTime_type refresh_period;

! Comm_ComponentID_type samplingPort_ID;

boolean recorded;

)

spec (| (| { samplingPort_name,samplingPort_size,port_direction,

refresh_period } �> recorded

| { { samplingPort_name,samplingPort_size,port_direction,

refresh_period } �> samplingPort_ID } when recorded

|)

| (| samplingPort_name ^= samplingPort_size ^= port_direction ^=

refresh_period ^= recorded

| samplingPort_ID ^= when recorded

|)

|)

;

� process SAMPLINGPORT_UPDATE
Interface:
Label Nature Type Comments

samplingPort_IN input APEX_SamplingPort_type sampling port

Processing:

This service updates the sampling port named samplingPort_IN.Name in the manager

with the status of the sampling port samplingPort_IN.

process SAMPLINGPORT_UPDATE =

(? APEX_SamplingPort_type samplingPort_IN;

)

;

RR n° 4678

110 A. GAMATIÉ & T. GAUTIER

� process SAMPLINGPORT_CHECKCAPACITY
Interface:
Label Nature Type Comments

full output boolean manager status

Processing:

This service checks whether or not the sampling port manager is full.

process SAMPLINGPORT_CHECKCAPACITY =

(! boolean full;

)

;

� process SAMPLINGPORT_CHECKCREATED
Interface:
Label Nature Type Comments

samplingPort_ID input Comm_ComponentID_type sampling port ident.
created output boolean answer

Processing:

This service checks whether or not the sampling port identi�ed by samplingPort_ID has

been already created.

process SAMPLINGPORT_CHECKCREATED =

(? Comm_ComponentName_type samplingPort_name;

! boolean created;

)

spec (| (| samplingPort_name �> created |)

| (| samplingPort_name ^= created |)

|)

;

8.4.3 Inter-partition communication services

1. APEX Queuing Port

� process CREATE_QUEUING_PORT?

Interface:
Label Nature Type Comments

queuingPort_name input Comm_ComponentName_type port name
queuingPort_size input QueuingPortSize_type port size
port_direction input PortDirection_type source or dest
queuing_discipline input QueuingDiscipline_type queuing rule
queuingPort_ID output Comm_ComponentID_type port ident.
return_code output ReturnCode_type diagnostic

INRIA

Synchronous Modeling of Avionics Architectures using Signal 111

Processing:
This service is used to create a queuing port (named queuingPort_name). If the re-
quest satis�es all the creation conditions, a queuing port identi�er (queuingPort_ID)
is returned.

(a) The return code value is:

� INVALID_CONFIG when there is either not enough space for creating a new
queuing port, or no queuing port of the partition is named
queuingPort_name, or queuingPort_size is out of range or not compatible
with the con�guration, or port_direction is invalid or not compatible with
the con�guration, or queuing_discipline is invalid;

� NO_ACTION when a queuing port with the same name has been already cre-
ated;

� INVALID_MODE when the operating mode is NORMAL;

� NO_ERROR otherwise.

(b) In the case of successful completion, queuingPort_ID denotes an identi�er as-
signed by the OS to the queuing port named queuingPort_name.

process CREATE_QUEUING_PORT =

(? Comm_ComponentName_type queuingPort_name;

QueuingPortSize_type queuingPort_size;

PortDirection_type port_direction;

QueuingDiscipline_type queuing_discipline;

! Comm_ComponentID_type queuingPort_ID;

ReturnCode_type return_code;

)

spec (| (| { queuingPort_name, queuingPort_size, port_direction,

queuing_discipline } �> return_code

| { { queuingPort_name, queuingPort_size, port_direction,

queuing_discipline } �> queuingPort_ID }

when (return_code = #NO_ERROR)

|)

(| return_code ^= queuingPort_name

^= queuingPort_size ^= port_direction

^= queuing_discipline

| queuingPort_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

RR n° 4678

112 A. GAMATIÉ & T. GAUTIER

� process SEND_QUEUING_PORT?

Interface:
Label Nature Type Comments

process_ID parameter ProcessID_type caller identi�er
queuingPort_ID input Comm_ComponentID_type port identi�er
message input MessageArea_type message address
length input MessageSize_type message size
timeout input SystemTime_type time-out value
return_code output ReturnCode_type diagnostic

Processing:
This service is used to send a message to a queuing port identi�ed by queuing-
Port_ID.

(a) The return code value is:

� INVALID_PARAM when the input queuingPort_ID does not identify any queu-
ing port, or timeout is out of range;

� INVALID_CONFIG when length is not compatible with the con�guration of
the speci�ed port;

� INVALID_MODE when the speci�ed port is not con�gured to operate as source
port, or preemption is disabled, or the parameter process_ID identi�es an
error handler process;

� NOT_AVAILABLE when the input timeout value is zero;

� NO_ERROR otherwise.

(b) In the case of successful completion,

� when there is enough space in the port's message queue to insert the new
message and no other process is waiting to send a message to that port,

� if no process is waiting on an empty message queue, the message is stored
in the message queue.

� else the �rst process is removed from the receiving process queue.

* If the length of the current message does not exceed the maximum
length speci�ed by the waiting process, it is retrieved by this process.
On the other hand, the current message is not stored in the port's
message queue;

* else only output parameter length of the waiting process is initialized
with the current message length. The current message is discarded.

If this process is waiting with a time-out, the a�ected time counter is
stopped. Its state becomes READY (except if another process suspended
it previously).

� Otherwise, the calling process goes into a waiting state. It is inserted in the
sending process queue at the position speci�ed by the queuing rule. A time
counter with duration timeout is initiated if timeout is not in�nite.

Finally, process scheduling is performed if preemption is enabled.

process SEND_QUEUING_PORT =

INRIA

Synchronous Modeling of Avionics Architectures using Signal 113

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type queuingPort_ID;

MessageArea_type message;

MessageSize_type length;

SystemTime_type timeout;

! ReturnCode_type return_code;

)

spec (| (| { { queuingPort_ID, timeout, message, length }

�> return_code } when C_return_code

|)

| (| queuingPort_ID ^= timeout ^= message

^= length ^= C_return_code

| return_code ^= when C_return_code

|)

|)

where boolean C_return_code;

end;

� process RECEIVE_QUEUING_PORT?

Interface:
Label Nature Type Comments

process_ID parameter ProcessID_type caller identi�er
queuingPort_ID input Comm_ComponentID_type port identi�er
timeout input SystemTime_type time-out value
maximum_length input MessageSize_type max mess size
message output MessageArea_type message address
length output MessageSize_type message size
return_code output ReturnCode_type diagnostic

Processing:
This service is used to receive a message from the queuing port identi�ed by queu-
ingPort_ID. A return code indicates the issue of the request.

(a) The return code value is:

� INVALID_PARAM when the input queuing port_ID does not identify any queu-
ing port, or timeout is out of range;

� INVALID_CONFIG when maximum_length is not compatible with the con�g-
uration of the speci�ed port;

� NOT_AVAILABLE when the input timeout value is zero;

� INVALID_MODE when the speci�ed port is not con�gured to operate as desti-
nation port, or preemption is disabled, or the parameter process_ID iden-
ti�es an error handler process;

� NO_ERROR otherwise.

(b) In the case of successful completion,

� when the queuing port is not empty,

� if the length of the �rst message in the port's message queue does not ex-
ceed maximum_length, that message is removed from the message queue

RR n° 4678

114 A. GAMATIÉ & T. GAUTIER

and sent (the output signals message and length are initialized with the
removed message �elds);

� else, only the output length is initialized with the length of �rst message.
This message is discarded from the message queue.

If there are processes blocked on a full queuing port and if there is su�cient
space in the message queue, the �rst process is removed from the process
queue. The message sent by this process is put in the message queue. If the
process is waiting with a time-out, the a�ected time counter is stopped. Its
state becomes READY (except if another process suspended it).

� Otherwise, the calling process goes into waiting state. It is inserted in the
receiving process queue at the position speci�ed by the queuing discipline.
A time counter with duration timeout is initiated if timeout is not in�nite.

Finally, process scheduling is performed if preemption is enabled.

process RECEIVE_QUEUING_PORT =

{ ProcessID_type process_ID; }

(? Comm_ComponentID_type queuingPort_ID;

SystemTime_type timeout;

MessageSize_type maximum_length;

! MessageArea_type message;

integer length;

ReturnCode_type return_code;

)

spec (| (| { { queuingPort_ID, timeout, maximum_length }

�> return_code } when C_return_code

| { { queuingPort_ID, timeout, maximum_length }

�> { length, message } }

when (return_code = #NO_ERROR)

|)

| (| queuingPort_ID ^= timeout ^= maximum_length

^= C_return_code

| return_code ^= when C_return_code

| length ^= message ^= when (return_code = #NO_ERROR)

|)

|)

where boolean C_return_code;

end;

� process GET_QUEUING_PORT_ID?

Interface:
Label Nature Type Comments

queuingPort_name input Comm_ComponentName_type port name
queuingPort_ID output Comm_ComponentID_type port identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the identi�er (queuingPort_ID) of the queuing port named
queuingPort_name.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 115

(a) The return code value is:

� INVALID_CONFIG when no queuing port is named queuingPort_name;

� NO_ERROR otherwise.

(b) In the case of successful completion, queuingPort_ID denotes the identi�er of
the queuing port named queuingPort_name.

process GET_QUEUING_PORT_ID =

(? Comm_ComponentName_type queuingPort_name;

! Comm_ComponentID_type queuingPort_ID;

ReturnCode_type return_code;

)

spec (| (| queuingPort_name �> return_code

| { queuingPort_name �> queuingPort_ID }

when (return_code = #NO_ERROR)

|)

| (| queuingPort_name ^= return_code

| queuingPort_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process GET_QUEUING_PORT_STATUS?

Interface:
Label Nature Type Comments

queuingPort_ID input Comm_ComponentID_type port identi�er
status input QueuingPortStatus_type current status
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the status of the queuing port identi�ed by queuing-
Port_ID.

(a) The return code value is:

� INVALID_PARAM when no queuing port is identi�ed by queuingPort_ID in
the current partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, status denotes the current status of the
queuing port identi�ed by queuingPort_ID.

process GET_QUEUING_PORT_STATUS =

(? Comm_ComponentID_type queuingPort_ID;

! QueuingPortStatus_type status;

ReturnCode_type return_code;

)

spec (| (| queuingPort_ID �> return_code

| { queuingPort_ID �> status }

when (return_code = #NO_ERROR)

|)

RR n° 4678

116 A. GAMATIÉ & T. GAUTIER

| (| return_code ^= queuingPort_ID

| status ^= when (return_code = #NO_ERROR)

|)

|)

;

2. APEX Sampling Port

� process CREATE_SAMPLING_PORT?

Interface:
Label Nature Type Comments

samplingPort_name input Comm_ComponentName_type port name
samplingPort_size input SamplingPortSize_type size of the port
port_direction input PortDirection_type source or dest.
refresh_period input SystemTime_type refresh period
samplingPort_ID input Comm_ComponentID_type port identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service is used to create a sampling port (named samplingPort_name). If the
request satis�es all the creation conditions, a sampling port identi�er (sampling-
Port_ID) is returned.

(a) The return code value is:

� INVALID_CONFIG when there is not enough space for creating a new sampling
port, or no sampling port of the partition is named samplingPort_name, or
samplingPort_size is out of range or not compatible with the con�guration,
or port_direction is invalid or not compatible with the con�guration, or
refresh_period is out of range or not compatible with the con�guration;

� NO_ACTION when a sampling port with the same name has been already
created;

� INVALID_MODE when the operating mode is NORMAL;

� NO_ERROR otherwise.

(b) In the case of successful completion, samplingPort_ID denotes an identi�er
assigned by the OS to the sampling port named samplingPort_name.

process CREATE_SAMPLING_PORT =

(? Comm_ComponentName_type samplingPort_name;

SamplingPortSize_type samplingPort_size;

PortDirection_type port_direction;

SystemTime_type refresh_period;

! Comm_ComponentID_type samplingPort_ID;

ReturnCode_type return_code;

)

spec (| (| { return_code, samplingPort_name, samplingPort_size,

port_direction } �> return_code

| { { return_code, samplingPort_name, samplingPort_size,

port_direction } �> samplingPort_ID }

when (return_code = #NO_ERROR)

INRIA

Synchronous Modeling of Avionics Architectures using Signal 117

|)

| (| return_code ^= samplingPort_name

^= samplingPort_size ^= port_direction

^= refresh_period

| samplingPort_ID ^= when (return_code = #NO_ERROR)

|)

;

� process WRITE_SAMPLING_PORT?

Interface:
Label Nature Type Comments

samplingPort_ID input Comm_ComponentID_type port identi�er
message input MessageArea_type message address
length input MessageSize_type message size
return_code output ReturnCode_type diagnostic

Processing:
This service is used to write a message to a sampling port.

(a) The return code value is:

� INVALID_PARAM when the input samplingPort_ID does not identify any sam-
pling port, or the message is too long;

� INVALID_CONFIG when length is not compatible with the con�guration of
the speci�ed port;

� INVALID_MODE when the speci�ed port is not con�gured to operate as a
source;

� NO_ERROR otherwise.

(b) In the case of successful completion, the message is written into the speci�ed
port.

process WRITE_SAMPLING_PORT =

(? Comm_ComponentID_type samplingPort_ID;

MessageArea_type message;

MessageSize_type length;

! ReturnCode_type return_code;

)

spec (| (| { samplingPort_ID, length, message }

�> return_code } |)

| (| return_code ^= samplingPort_ID ^= length

^= message |)

|)

;

RR n° 4678

118 A. GAMATIÉ & T. GAUTIER

� process READ_SAMPLING_PORT?

Interface:
Label Nature Type Comments

samplingPort_ID input Comm_ComponentID_type port identi�er
message output MessageArea_type message address
length output MessageSize_type message size
validity output boolean validity indicator
return_code output ReturnCode_type diagnostic

Processing:
This service is used to read a message from the speci�ed sampling port. The output
validity indicates whether or not the age of the read message is consistent with the
required refresh rate attribute of the port.

(a) The return code value is:

� INVALID_PARAM when the input samplingPort_ID does not identify any sam-
pling port;

� INVALID_MODE when the speci�ed port is not con�gured to operate as a
destination;

� NO_ERROR otherwise.

(b) In the case of successful completion,

� if the sampling port is empty, validity is set to FALSE.

� Otherwise, the last correct message arrived in the port is sent. If its age is
consistent with the required refresh period attribute of the port, validity is
set to TRUE, else it is set to FALSE.

process READ_SAMPLING_PORT =

(? Comm_ComponentID_type samplingPort_ID;

! MessageArea_type message;

MessageSize_type length;

boolean validity;

ReturnCode_type return_code;

)

spec (| (| samplingPort_ID �> return_code

| { samplingPort_ID �> validity }

when (return_code = #NO_ERROR)

| { samplingPort_ID �> { message, length } }

when C_return_code

|)

| (| return_code ^= samplingPort_ID ^= C_return_code

| validity ^= when (return_code = #NO_ERROR)

| message ^= length

| message ^= when C_return_code

|)

|)

where boolean C_return_code;

end;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 119

� process GET_SAMPLING_PORT_ID?

Interface:
Label Nature Type Comments

samplingPort_name input Comm_ComponentName_type port name
samplingPort_ID output Comm_ComponentID_type its identi�er
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the identi�er (samplingPort_ID) of the sampling port
named samplingPort_name.

(a) The return code value is:

� INVALID_CONFIG when no sampling port is named samplingPort_name;

� NO_ERROR otherwise.

(b) In the case of successful completion, samplingPort_ID denotes the identi�er of
the sampling port named samplingPort_name.

process GET_SAMPLING_PORT_ID =

(? Comm_ComponentName_type samplingPort_name;

! Comm_ComponentID_type samplingPort_ID;

ReturnCode_type return_code;

)

spec (| (| samplingPort_name �> return_code

| { samplingPort_name �> samplingPort_ID }

when (return_code = #NO_ERROR)

|)

| (| samplingPort_Name ^= return_code

| samplingPort_ID ^= when (return_code = #NO_ERROR)

|)

|)

;

� process GET_SAMPLING_PORT_STATUS?

Interface:
Label Nature Type Comments

samplingPort_ID input Comm_ComponentID_type sampl port ident
status output SamplingPortStatus_type its current status
return_code output ReturnCode_type diagnostic

Processing:
This service allows to get the status of the sampling port identi�ed by sampling-
Port_ID.

(a) The return code value is:

� INVALID_PARAM when no sampling port is identi�ed by samplingPort_ID in
the current partition;

� NO_ERROR otherwise.

(b) In the case of successful completion, status denotes the current status of the
sampling port identi�ed by samplingPort_ID.

RR n° 4678

120 A. GAMATIÉ & T. GAUTIER

process GET_SAMPLING_PORT_STATUS =

(? Comm_ComponentID_type samplingPort_ID;

! SamplingPortStatus_type status;

ReturnCode_type return_code;

)

spec (| (| samplingPort_ID �> return_code

| { samplingPort_ID �> status }

when (return_code = #NO_ERROR)

|)

| (| return_code ^= samplingPort_ID

| status ^= when (return_code = #NO_ERROR)

|)

|)

;

8.5 Time management

� process TIMED_WAIT?

Interface:
Label Nature Type Comments

delay_time input SystemTime_type waiting duration
return_code output ReturnCode_type diagnostic

Processing:
This service allows the suspension of the current executing process for a minimum amount
of elapsed time.

1. The return code value is:

� INVALID_MODE when preemption is disabled or process is error handler;

� INVALID_PARAM when delay_time is out of range, or in�nite;

� NO_ERROR otherwise.

2. In the case of successful completion,

� if delay_time is zero, the process state is set to READY;

� else the state is set to WAITING. A time counter is initiated with duration de-
lay_time.

Process scheduling is performed.

process TIMED_WAIT =

(? SystemTime_type delay_time;

! ReturnCode_type return_code;

)

spec (| (| delay_time �> return_code |)

| (| return_code ^= delay_time |)

|)

;

INRIA

Synchronous Modeling of Avionics Architectures using Signal 121

� process PERIODIC_WAIT?

Interface:
Label Nature Type Comments

return_code output ReturnCode_type diagnostic

Processing:
This service allows the suspension of the current executing process until the next release
point in the processor time line that corresponds to the period of the process.

1. The return code value is:

� INVALID_MODE when preemption is disabled or the process is an error handler, or
the requesting process is not periodic;

� NO_ERROR otherwise.

2. In the case of successful completion, the process state is set to WAITING. Its deadline
time becomes the sum of the time of the next release point and its time capacity.
Process scheduling is performed.

process PERIODIC_WAIT =

(! ReturnCode_type return_code;

)

;

� process GET_TIME?

Interface:
Label Nature Type Comments

system_time output SystemTime_type current system time
return_code output ReturnCode_type diagnostic

Processing:

This service allows to get the value of the system clock (common to all processors in the

module). The return code value is NO_ERROR. system_time is the current system clock.

process GET_TIME =

(! SystemTime_type system_time;

ReturnCode_type return_code;

)

spec (| return_code ^= system_time |)

;

� process REPLENISH?

Interface:
Label Nature Type Comments

return_code output ReturnCode_type diagnostic

RR n° 4678

122 A. GAMATIÉ & T. GAUTIER

Processing:

This service allows to update the deadline of the requesting process with its time capacity.

The return code value is NO_ERROR. A new deadline time value (sum of the current system

clock and time capacity value) is set for the current process.

process REPLENISH =

(! ReturnCode_type return_code;

)

;

� process START_COUNTER
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er
delay input SystemTime_type initialization value

Processing:

This service allows to initiate the time counter associated with the process identi�ed by

process_ID. The initial value of the counter is delay.

process START_COUNTER =

(? ProcessID_type process_ID;

SystemTime_type delay;

)

spec (| process_ID ^= delay |)

;

� process STOP_COUNTER
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

Processing:

This service allows to stop the time counter associated with the process identi�ed by

process_ID.

process STOP_COUNTER =

(? ProcessID_type process_ID;

)

;

� process RESET_RUNTIME
Interface:
Label Nature Type Comments

process_ID input ProcessID_type process identi�er

INRIA

Synchronous Modeling of Avionics Architectures using Signal 123

Processing:

This service allows to reset the run-time for the process identi�ed by process_ID.

process RESET_RUNTIME =

(? ProcessID_type process_ID;

)

;

� process STOPALL_COUNTER
Interface:
Label Nature Type Comments

process_range input array of ProcessID_type set of process ident

Processing:

This service allows to stop all the time counters associated with processes speci�ed in

process_range.

process STOPALL_COUNTER =

(? [MAX_NUMBER_OF_PROCESSES]ProcessID_type process_range;

)

;

� process UPDATE_COUNTERS
Interface:
Label Nature Type Comments

timedout output array of boolean timedout[i] = true
if the process iden-
ti�ed by i should
be noti�ed with a
�timed out� signal,
else timedout[i] =

false

Processing:

This service updates the time counters within the partition. So, it decrements all the

time counters with positive value. If the value of the counter associated with the process

identi�ed by i becomes zero, timedout[i] is set to TRUE ; else timedout[i] is set to FALSE.

process UPDATE_COUNTERS =

(! [MAX_NUMBER_OF_PROCESSES]boolean timedout;

)

;

RR n° 4678

124 A. GAMATIÉ & T. GAUTIER

9 Annex C: The implementation architecture of the li-

brary

The library is organized as shown in Fig. 25. The �les in the elliptic boxes contain original APEX

services [Com97b]. The other �les in the rectangular boxes, describe additional services that we

have de�ned (e.g. services used for component management). Finally, the �le Types_and_Constants

contains both types and constants de�ned in [Com97b] in addition to special types required by the

added services.

PRIORITY_Queues

FIFO_Queues

Types_and_Constants

APEX_Time_Management

APEX_Queuing_Port
APEX_Sampling_Port

APEX_Event,
APEX_Semaphore

APEX_Buffer,
APEX_Blackboard,

APEX_process_Management

APEX_IntraCommunications_Manager

APEX_InterCommunications_Manager

A B A uses B

APEX_process_Descriptor

Figure 25: Implementation architecture of the library.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 125

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. In Theoretical Computer Science,
volume 126, pages 183�235, 1994.

[AGS02] K. Altisen, G. Goessler, and J. Sifakis. Scheduler modeling based on the controller syn-
thesis paradigm. In Journal of Real-Time Systems, special issue on Control Approaches
to Real-Time Computing, volume 23, pages 55�84, 2002.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems. In Proceeding of the IEEE, vol. 79, No. 9, pages 1270�1282, April 1991.

[BCL00] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in data�ow syn-
chronous languages: speci�cation and distributed code generation. In Information and
Computation, vol. 163, pages 125�171, 2000.

[BDL+02] P. Baufreton, F. Dupont, R. Leviathan, M. Segelken, and K. Winkelmann. Safeair:
Constructing correct systems in the Safeair project. In Proceedings of RCS'02 - Inter-
national workshop on Re�nement of Critical Systems: Methods, Tools and Experience,
Grenoble, France, January 2002.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language : design,
semantics, implementation. In Science of Computer Programming, vol. 19(2), pages
87�152, November 1992.

[BGG02] L. Besnard, T. Gautier, and P. Le Guernic. Signal v4 - inria version: Reference
manual. December 2002.

[BGMR97] P. Baufreton, H. Granier, X. Méhaut, and E. Rutten. The Sacresapproach to em-
bedded systems applied to aircraft engine controllers. In Proceedings of the 22nd
IFAC/IFIP Workshop on RT Programming, Lyon, France, September 1997.

[Cle96] Paul C. Clements. A survey of architecture description languages. In 8th Int'l Workshop
on Software Speci�cations and Design, Paderborn, Germany, March, 1996.

[Com97a] Airlines Electronic Engineering Committee. Arinc report 651-1: Design guidance for
integrated modular avionics. In Aeronautical radio, Inc., Annapolis, Maryland, Novem-
ber 1997.

[Com97b] Airlines Electronic Engineering Committee. Arinc speci�cation 653: Avionics appli-
cation software standard interface. In Aeronautical radio, Inc., Annapolis, Maryland,
January 1997.

[Cora] Rational Corporation. See http://www.rational.com/products/rosert/index.jsp.

[Corb] Timesys Corporation. See http://www.timesys.com/prodserv/windows/

windows_prod_oview.cfm.

[CPP+01] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine. Taxys: a
tool for the development and veri�cation of real-time embedded systems. In Proceedings
of Computer Aided Veri�cation, CAV'01. Paris, France. Lecture Notes in Computer
Science 2102, Springer-Verlag, July 2001.

[EAL93] D. Engler, D. Andrews, and D. Lowenthal. E�cient support for �ne-grain parallelism.
In Technical report, University of Arizona, 1993.

RR n° 4678

126 A. GAMATIÉ & T. GAUTIER

[GG99] T. Gautier and P. Le Guernic. Code generation in the sacres project. In Towards Sys-
tem Safety, Proceedings of the Safety-critical Systems Symposium, SSS'99, Springer,
Huntingdon, UK, February 1999.

[GG02] A. Gamatié and T. Gautier. Modeling of modular avionics architectures using the
synchronous language Signal. In Proceedings of the Work In Progress session, 14th
Euromicro Conference on Real Time Systems, ECRTS'02, pages 25�28. Vienna, Aus-
tria, June 2002.

[GL99] T. Gautier and P. Le Guernic. Code generation in the sacres project. In Proceedings of
the Safety-critical Systems Symposium, SSS'99, Springer. Huntingdon, UK, February
1999.

[GLM94] T. Gautier, P. Le Guernic, and O. Ma�eïs. For a new real-time methodology. In
Technical Report, INRIA (http://www.irisa.fr/ep-atr/Publis/Annee/1994.html),
October 1994.

[GMGW01] D. Goshen-Meskin, V. Gafni, and M. Winokur. Safeair: An integrated development
environment and methodology. In INCOSE 2001, Melbourne, July 2001.

[Hal93] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic Pub-
lications, 1993.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data�ow
programming language Lustre. In Proceedings of the IEEE, vol.79(9), pages 1305�
1320, September 1991.

[HHK01] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Embedded
control systems development with giotto. In Proceedings of LCTES. ACM SIGPLAN
Notices, 2001.

[HMP91] T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time
systems. In Proceedings of the 18th Annual Symposium on Principles of Programming
Languages. ACM Press, pages 353�366, 1991.

[KL96] A. Kountouris and P. Le Guernic. Pro�ling of Signal programs and its application
in the timing evaluation of design implementations. In Proceedings of the IEE Colloq.
on HW-SW Cosynthesis for Recon�gurable Systems, IEE, pages 6/1�6/9. HP Labs,
Bristol, UK, February 1996.

[KRP+93] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. A practitioner's
handbook for real-time analysis: Guide to rate monotonic analysis for real-time sys-
tems. In Kluwer Academic Publishers, 1993.

[La01] Edward A. Lee and al. Overview of the ptolemy project. In Technical Report UBC/ERL
M01/11, University of California at Berkeley, March 2001.

[Lee00] Edward A. Lee. What's ahead for embedded software? In IEEE Computer, pages
18�26, September 2000.

[LGLL91] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time ap-
plications with signal. In Proceedings of the IEEE, 79(9), pages 1321�1336, September
1991.

[MBLL00] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-
event controllers based on the signal environment. In Discrete Event Dynamic System:
Theory and Applications, 10(4), pages 325�346, October 2000.

INRIA

Synchronous Modeling of Avionics Architectures using Signal 127

[Sif77] J. Sifakis. Use of petri nets for performance evaluation. In Proceedings of the 3rd
International Symposium on Modeling and Evaluation. IFIP, North Holland, pages
75�93, 1977.

[Sif01] J. Sifakis. Modeling real-time systems - challenges and work directions. In EM-
SOFT'01, Tahoe City. Lecture Notes in Computer Science 2211, October 2001.

[SR98] Bran Selic and James Rumbaugh. Using Uml for modeling complex real-time systems.
In ObjecTime Limited (available at http://www.objectime.com), March 1998.

[Ves97] S. Vestal. Metah support for real-time multi-processor avionics. In IEEE Workshop
on Parallel and Distributed Real-Time Systems, April 1997.

[WBC+00] D. Weil, V. Bertin, E. Closse, M. Poize, P. Venier, and J. Pulou. E�cient compilation
of Esterel for real-time embedded systems. In Proceedings of CASES'2000, San Jose,
pages 2�8, November 2000.

[Yov97] S. Yovine. Kronos: A veri�cation tool for real-time systems. In Software Tools for
Technology Transfer, 1(1+2), pages 123�133, December 1997.

RR n° 4678

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

