
POLYCHRONY Polychrony_SME_UserGuide Page 1/76

POLYCHRONY
A TOOLSET FOR SIGNAL

(SME Platform)

Polychrony SME User Guide

V1.0

Author(s) Checked by Approval

Name Members of the
Espresso Team

Loïc Besnard **

Thierry Gautier

Paul Le Guernic

Jean-Pierre Talpin

Company INRIA INRIA, **CNRS INRIA

Department Espresso Team Espresso Team Espresso Team

Date

Visa

Summary User Guide of the SME Platform, a front-end to the SIGNAL
TOOLBOX under Eclipse.

Attention: la responsabilité des entreprises et des organismes ayant participé à
l'élaboration de ce document ne peut en aucun cas être engagée en cas de dommages
ou de pertes résultant de l'utilisation ou de l'exploitation des informations qui y sont
contenues.

Disclaimer: Contractors participating to this report shall incur no liability whatsoever for
any damage or loss which may result from the use or exploitation of information and/or
Rights contained in this report.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 2/76

Table of Contents
1 Introduction...3
2 The Polychrony Toolset..3
3 The “TopCased Modeling” perspective..4
4 Creation of a new project..7
5 The reflexive editor plug-in...9

5.1 Creation of a new .sme model file...9
5.2 Parametrization of model objects..10
5.3 Keywords of the language ..44

6 The graphical modeler plug-in..45
6.1 Creation of a new SME diagram from a Template..45
6.2 Creation of a new SME diagram from an existing SME file model...........................47
6.3 Diagram Accessibility and Aspects...48

6.3.1 Interface Definition Diagram..49
6.3.2 Data flow Diagram..50
6.3.3 Clock Relations and Dependences Diagram...53
6.3.4 Library Diagram..54
6.3.5 Mode Automaton Diagram...55
6.3.6 Tuple Type Diagram...56

7 The compilation scenarios plug-in..57
7.1 Functionalities..57
7.2 Generators...58
7.3 Reflexive editor..59
7.4 SME Scenario View...60

8 The Signal text editor..62
9 The connection to the Polychrony services..63

9.1 How does the connection work ?..63
9.2 Compiler configuration...64
9.3 Applying Polychrony services..66
9.4 Simulation..69

9.4.1 C/C++...69
9.4.2 Java..70

10 The example plug-in...71
10.1 Counter..72
10.2 Watchdog..73
10.3 Simple Hierarchic Automaton..75

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 3/76

1 Introduction

This document is a user manual for the SME Platform inside the Eclipse environment. It
explains how to use the SME Platform Plug-in suite in order to produce SME graphical
models, verify them, and generate codes for simulations. These plug-ins are still under
development, so this document will be of course updated, but the already written parts can
be modified.

SME stands for Signal Meta-model under Eclipse. The SME Platform is
composed of several plug-ins which correspond to:

● the reflexive editor ,

● the graphical modeler ,

● the reflexive editor and an Eclipse view to create compilation scenarios ,

● the Signal text editor ,

● the connection to the Polychrony services

● some examples of Polychrony models ,

● the help of the other plug-ins.

Each of these plug-ins will be detailed in the following document. Currently, these plug-ins
work with TopCased 4.1.0 & 4.2.0 and Eclipse 3.5.2 (Galileo) & 3.6.2 (Helios) & 3.7.2
(Indigo).

For information about the TopCased project, consult its web site: http://www.topcased.org/

2 The Polychrony Toolset

The Polychrony toolset, based on Signal, is a development environment for critical
systems, from abstract specification until deployment on distributed systems. It relies on
the application of formal methods, allowed by the representation of a system, at the
different steps of its development, in the Signal polychronous semantic model. It provides
a formal framework:

● to validate a design at different levels,

● to refine descriptions in a top-down approach,

● to abstract properties needed for black-box composition,

● to assemble predefined components (bottom-up with COTS).

Signal is based on synchronized data-flow (flows + synchronization): a process is a
set of equations on elementary flows describing both data and control, the variables of the
system are signals. A signal is a sequence of values which has a clock associated with;
this clock specifies the instants at which the values are available.

The Signal formal model provides the capability to describe systems with several
clocks (polychronous systems) as relational specifications. Relations are useful as partial
specifications and as specifications of non-deterministic devices (for instance a non-

Jun 8, 2012

http://www.topcased.org/

POLYCHRONY Polychrony_SME_UserGuide Page 4/76

deterministic bus) or external processes (for instance an unsafe car driver).

Using Signal allows to specify an application, to design an architecture, to refine
detailed components down to RTOS or hardware description. The Signal model supports
a design methodology which goes from specification to implementation, from abstraction
to concretization, from synchrony to asynchrony.

The principal application areas for the Signal language are that of embedded, real-
time, critical systems. Typical domains include:

● Process control,

● Signal processing systems,

● Avionics,

● Automotive control,

● Vehicle control systems,

● Nuclear power control systems,

● Defense systems,

● Radar systems...

It constitutes a development environment for critical systems, from abstract specification
until deployment on distributed systems. It relies on the application of formal methods,
allowed by the representation of a system, at the different steps of its development, in the
Signal polychronous semantic model.

For more information concerning the INRIA Polychrony environment, consult the
ESPRESSO team website: http://www.irisa.fr/espresso/Polychrony.

3 The “TopCased Modeling” perspective
Modeling with Polychrony under Eclipse is easier by selecting the Topcased

Modeling perspective : a perspective is a particular configuration of Eclipse environment
that consists of customized views, shortcuts and popup menus.

To activate the Topcased Modeling perspective, select Window-> Open Perspective->
Other...

Jun 8, 2012

http://www.irisa.fr/espresso/Polychrony

POLYCHRONY Polychrony_SME_UserGuide Page 5/76

and select the Topcased Modeling perspective :

The Topcased Modeling perspective can be divided in 4 main part:

1. The Navigator view lists all projects located in the Eclipse workspace. It allows to
create new projects and new TopCased Diagrams.

2. The Outline view lists all model objects of the edited diagrams or of the edited
model file. If there are several diagrams in the edited diagram file, they are listed at
the end of the model object list.

3. The Editor view displays the main window for the edited Model File and edited
TopCased Diagram. For an edited TopCased Diagram, the left of this view is
dedicated to the palette of the graphical object that can be dragged/dropped into
the Diagram part. One can also drag an element from the Outline view to the
Diagram part, and if there is a graphical element which corresponds to this model
object for the displayed diagram, it will be added.

4. The Property view displays the lists of properties of the model object selected in
the Outline view and/or in the Diagram view. Some of the properties can be

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 6/76

modified and others are just read-only information.

Remark: when you delete a graphical element from a diagram, you have two different
methods:

● Delete From Diagram (Del): delete only the graphical element from the diagram,
not the model object. This means that the object still appears in the Outline view.

● Delete From Model (Shift+Del): delete the graphical and the model object
elements.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 7/76

4 Creation of a new project
If you have no project in your workspace, you will need to create a new one. Right-

click

on the navigator view and select New -> Project ...

Select then a General project, this will be sufficient to model, and click on Next > :

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 8/76

Give a name to the project and click on Finish

Thus, you will obtain a new project, which contains only a .project file.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 9/76

5 The reflexive editor plug-in
The reflexive editor is the plug-in generated from the SME meta-model by the

Eclipse Modeling Framework (EMF). It allows to specify a Polychrony model by creating
the equivalence of an Abstract Syntax Tree where the syntax is given by the meta-model
meta-classes.

5.1 Creation of a new .sme model file

To help the user during the creation of a new SME model file, the reflexive editor
has a wizard. The role of the wizard is to make more convivial the task of creation by
accompanying the user. The creation will proceed in a few stages.

To start the wizard, right-click on the project where you want to create your model,
and select New-> Other... and then select the following model file : Polychrony-> SME
Model.

Once you have selected the SME Model, the SME wizard is opened. Thus, you
have to choose the name of the diagram, select Next> and then select the kind of the root
for the model file. There are two kinds of root model element:

● Model Declaration: it corresponds to a SIGNAL component (i.e. process)

● Module: it corresponds to a library of components, types, and constants.

Once, you have chosen the root model, you have only to add new model objects.
To do so, right-click on the node on which you want to add a child, and select the New
Child menu. It displays the list of all possible model elements that can be added for the

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 10/76

current selected element. If this option does not exist for a node, it means that there is no
possible child for this node.

5.2 Parametrization of model objects

Here, we detail how to parametrize each model objects (meta-classes that are not
abstract) that can be added in a SME model file. To be able to customize model objects,
you have to display the Property View: right on a model element and select the Show
Property View action.

In the following, for each model object, we precise the children model objects that
can be added to it and each feature that can be modified by the user (not the read-only
one). They are listed in alphabetical order. For more information about the semantics of
each element, consult the Signal v4 reference manual for syntactic elements and for
mode automaton elements, consult Polychronous mode automata.

 And It corresponds to the logical And operator.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

And State It corresponds to the synchronous composition of different
sub-states.

Children

● The sub-states (And State, Automaton, and/or State) of the And State. It is
not really useful to add an And State to another one.

● History: connecting a transition to the history of an And State means that you
enter the previous state of all inner state of the And State.

● The shared Local signals.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the state. It has to be unique inside the Automaton in
which the state is contained.

Arithmetic Operator It corresponds to any arithmetic operator present in the
Signal language.

Jun 8, 2012

ftp://anonymous@ftp.irisa.fr/local/signal/publis/articles/emsoft06.pdf
http://www.irisa.fr/espresso/Polychrony/document/V4_def.pdf

POLYCHRONY Polychrony_SME_UserGuide Page 11/76

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Operator: this attribute is of enumerated type whose values are Addition,
Substraction, Multiplication, Division, Modulo, and Power. By default, the
value of this attribute is Addition.

Array Enumeration It corresponds to the Signal operator for defining an array
by the ordered list of its elements.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Array Product It corresponds to the Signal operator for a matrix product.
The operands must have a basic type which is a numeric type.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Array Recovery It corresponds to the Signal operator for defining a
recovery default value when accessing to an array out of
its bounds.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 12/76

Children:

● Two Input Ports already created. The first one takes an array expression and
the second one takes a recovery expression, which is used when the array
expression try to access out of the bounds of the array.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Array Restructuration It allows to define partially an array, by defining some
indices-defined coordinate points of this array. Non defined
values are any values of correct type.

Children:

● Two Input Ports already created. The first one takes an expression
corresponding to the index(es) of the array at which the expression indicated
by the second port is set.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Assertion It corresponds to a process with no output which specifies that a
Boolean expression must have the value true each time it is
present.

Children: none

Basic

● Expression: the boolean expression to check in a textual form. If a Condition
references this Assertion, the boolean expression at the source of this
Condition will be the expression to check.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Assertion Clock
Constraint Operator

It corresponds to the different kind of clock constraint
operator in a context of an assertion. To use this operator,
connect the different expressions to it with Clock Relation
model object.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 13/76

Children: none

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Operator: this attribute is of enumerated type whose values are
Synchronized (clocks are equal), Excluded (specifies the mutual exclusion of the
expression clocks), and Identity (specifies the equality of values and clocks of the
expressions). By default, the value of this attribute is Synchronized.

Assertion Clock Speed
Operator

It corresponds to a clock constraint operator which
constraints the speed of a Clocked Expression to be
greater (or smaller) than the speed of another Clock
Expression. This means that the first Clocked Expression
is more (or less) frequently present that the second one.
This operator is used in the context of an assertion.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Operator: this attribute is of enumerated type whose values are Smaller, and
Greater. By default, the value of this attribute is Smaller.

Automaton It corresponds to the definition of a mode automaton.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 14/76

Children:

● The sub states (And State, Automaton, and/or State) indicates the different
execution mode in which the Automaton can be. At each instant, the
Automaton can execute at most one mode.

● History: connecting a transition to the history of an Automaton means that
you re-execute the last mode of this Automaton.

● The shared Local signals.

● The transitions (Weak Transitions, or Strong Transitions) of the Automaton
define the means to go from one state to another one when their guard is
true.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● The Initial State indicates the initial state of this automaton. All possible
states are listed in the combo box.

● Name: the name of the Automaton which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

Basic Iterate It corresponds to a C- for loop: for(i=0; i <= N; i++). It is a
particular case of the Iterate block.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 15/76

Children

● Iteration Init: this model object already created is used to specify, if any, how
to initialize the iteration. When you try to delete this object, it is automatically
rebuilt, but it will be empty.

● Iterator: it is a constant expression that is used to iterate among all elements
contained in the Basic Iterate block. It corresponds to the i parameter in a C-
for loop for(i=0; i <= N; i++). The iterator is automatically added to the Basic
Iterate block. When you try to delete this object, it is automatically rebuilt with
unset attribute.

● Any of the children that can be in a process: it means all model objects
except the following list: And State, Input, Model Declaration, Output,
Parameter, Pragma, State, Strong Transition, and Weak Transition.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Iterator Name is used to get/set the name of the iterator used by the Basic
Iterate Block. This attribute is a shortcut. Obviously, one can change the
name of the iterator directly in the Iterator element.

● Name: the name of the Iterate which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Upper Bound represents the upper bounds of the iteration (the N parameter
of the C- for loop). It has to be an integer expression: integer value,
expression using signals...

Boolean Expression It corresponds to a complete boolean expression. It was
added to the meta-model to avoid a long description of a
complete boolean expression.

Children: none

Basic

● Expression: the boolean expression in a textual form.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Cartesian Product The Cartesian product is used mainly to define jointly indexes, to
be used in Iterate model object. Intuitively, the sequence of
iteration is represented by the first dimension of the indexes
(which are vectors).

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 16/76

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as you need (at least 2). The ports are ordered.

● Output Port: this operator has also as many Output Ports as Input Ports (at
least 2) and they are ordered too.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Case Connection It corresponds to a case for the switch operator.

Children: none

Basic

● Case Kind: this attribute is of enumerated type whose values are ElseCase,
Enumeration, ClosedInterval, LeftHalfOpenInterval, RightHalfOpenInterval,
and OpenInterval. By default, the value of this attribute is ElseCase.

● Enumeration: if the enumeration case kind is selected, this attribute is used
to enumerate the values for the current case.

● Lower Bound is used to specify the lower bound of an interval. If the Case
Kind is one of the interval kind, and if no value is specified for the lower
bound, the value is -∞ . Intervals are not fully implemented by the
compiler yet.

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

● Upper Bound is used to specify the upper bound of an interval. If the Case
Kind is one of the interval kind, and if no value is specified for the lower
bound, the value is +∞ . Intervals are not fully implemented by the
compiler yet.

● Source-Target

● Dst: any of the Sub Process or Iterate model object, which is at the same
hierarchical level.

● Src: any of the Switch operator, which is at the same hierarchical level.

Cell It corresponds to the memorization operator which allows
to memorize a given signal when the signal is present and
the boolean expression is true.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 17/76

Children

● One Input Port already created which has to be connected to the expression
to memorize. The boolean expression has to be specified through the use of
a Condition whose target is the Cell operator.

Basic

● The Initial Value is the value used to initialize the memory.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Clock Constraint
Operator

It corresponds to the different kind of clock constraint
operator. To use this operator, connect the different
expressions to it with Clock Relation model object.

Children: none

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Operator: this attribute is of enumerated type whose values are
Synchronized (clocks are equal), Excluded (specifies the mutual exclusion of the
expression clocks), and Identity (specifies the equality of values and clocks of the
expressions). By default, the value of this attribute is Synchronized.

Clock Relation It corresponds to a clock relation between two clocked
expressions. A Clocked Expression is either a signal
(Input, Output, Local, Signal Ref, Input Instance, Output
Instance), or a Sub Process, or an Iterate, or a Model
Instance, or an Automaton, or any clock operator (Clock
Constraint Operator, Clock Relation Operator, Clock
Speed Operator).

Basic

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

Source-Target

● Dst: the target of a Clock Relation is a Clocked Expression.

● Dst Field: if the target is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

● Src: the source of a Clock Relation is also a Clocked Expression.

● Src Field: if the source is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 18/76

Clock Relation
Operator

It corresponds to the set operators for clocked
expressions.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Operator: this attribute is of enumerated type whose values are Union,
Intersection, and Complementary. By default, the value of this attribute is
Union.

Clock Speed Operator It corresponds to a clock constraint operator which
constraints the speed of a Clocked Expression to be
greater (or smaller) than the speed of another Clock
Expression. This means that the first Clocked Expression
is more (or less) frequently present that the second one.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Operator: this attribute is of enumerated type whose values are Smaller, and
Greater. By default, the value of this attribute is Smaller.

Comparison Operator It corresponds to the Boolean relations of equality, difference,
and strict and non strict greater and lower relations. The value of
both expression must be comparable.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 19/76

Children

● Two Input Ports already created, which corresponds to the operands of the
selected comparison operator.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Operator: this attribute is of enumerated type whose values are Equal, Not Equal,
Greater, Greater Or Equal, Smaller, Smaller Or Equal, Equal Any, and Smaller Or
Equal Any. By default, the value of this attribute is Equal. The difference between
Equal and Equal Any, is that if the first one is applied on two vectors, the result is a
vector of Booleans, where as the second one returns a single Boolean value (same
distinction between Smaller Or Equal and Smaller Or Equal Any).

Complex Operator It corresponds to the operator for building complex
number.

Children

● Two Input Ports already created. The first one represents the real part of the
complex number and the second the imaginary part.

Basic

● Name: The name of the operator. It is used to identify it, so it is better if it has
a unique name.

Concatenation It corresponds to the concatenation operation, which allows
to concatenate arrays along to their first dimension.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered. On each Input Port, an array expression has
to be connected.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Condition It corresponds to the expression of a condition for some
specific Conditioned Expression: the Assertion, the Cell,
the Dependence Operator, the Extraction, or the If Then
Else.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 20/76

Children: none

Basic

● Condition Kind: this attribute is of enumerated type whose values are Present, True,
and False. By default, the value of this attribute is Present. Present check the
presence of a signal; True and False check the value of a Boolean Expression or a
Boolean signal.

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

● Source-Target

● Dst: the target of a Condition is a Conditioned Expression.

● Src: the source of a Condition is a Boolean Expression or a Signal. It can
also be a Merge, an Array Recovery, a Cell, a Delay, an Extraction, or an If
Then Else operator, but be sure, that the expression returns a boolean result.

● Src Field: if the source is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

Constant Affectation It corresponds to the initialization of a Constant Value or a
Parameter Instance by a constant expression. For the
Constant Value, you can also use the Value attribute.

Children: none

Basic

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

● Expert

● Array Recovery Expression defines the value of the expression for the values of
index outside the segment (used only for array expression).

● Source-Target

● Dst: the target of a Constant Affectation is a Constant Value or a Parameter
Instance.

● Src: the source is a Constant Expression, this means that it is an expression
built only with constant value.

● Src Field: if the source is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

Constant Ref It corresponds to the use of a Constant Value or a
Parameter at another hierarchical level than these where
the Constant Value or Parameter is declared.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 21/76

Children: none

Basic

● Constant: points to the referring Constant Value or the Parameter.

Constant Value It corresponds to the declaration of a constant.

Children: none

Basic

● Array Dimensions indicates the dimensions of the Constant Value, if it is an
array. If it is a multi-dimensional array, specify one dimension per line. A
dimension is a constant expression: Constant Value, Parameter, an integer
positive number...

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Constant Value which is used as its identifier. It has
to be unique inside its container. It is even better to name it uniquely inside
the file.

● Type: it corresponds to one of the Intrinsic Primitive Type or to one of the
type declared. To access to a type declared in the file, the Constant Value
has to be in the scope of this declaration.

● Value: indicates the value of the constant. If the constant is an array, specify
one value (of the first dimension) per line.

● Visibility: indicates the visibility (public or private) if the Constant Value is
declared inside a Module. If it is declared in a Model Declaration, this
information is useless.

Counter It allows the numbering of the occurrences of a signal.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 22/76

Children:

● Two Input Ports already created. The first one has to be connected to the
Signal Expression, which has to be numbered, and the second to a reseting
event (if Counter Kind is After or From) or to a constant integer expression (if
Counter Kind is Count).

Basic

● Counter Kind: this attribute is of enumerated type whose values are After, From, and
Count. By default, the value of this attribute is After. After means that it counts the
number of occurrences of the first Signal Expression since the last occurrence of the
reseting event. From works as After, but if the Signal Expression and the reseting
event are simultaneous, it is counted by From (not by After). Count means that it
counts the number of occurrences of the Signal Expression modulo the number of the
second expression.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Dataflow Connection It corresponds to the Signal definition (or partial definition).
It constitutes the main link between signal expressions.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 23/76

Children: none

Basic

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

● Expert

● Cast Type: it corresponds to the casting type for the source expression. The
type is one of the Intrinsic Primitive Type.

● Is Default Value: if the destination is a shared Local signal or a state variable,
this attribute indicates if the source expression constitutes the default value
of the partial definition.

● Use Last Iteration Value: indicates if the source expression used is those
computed during the last iteration (this attribute is only used inside an Iterate
model).

● Use Src Clock: indicates if the Dataflow Connection uses the clock of the
source or its value.

● Source-Target

● Dst: the target of a Dataflow Connection is a Signal (Input Instance, Local,
Output, Signal Ref) or an Input Port of an operator (except for Clock Relation
Operator).

● Dst Field: if the target is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

● Src: the source of a Dataflow Connection is a Signal Expression: operators
(except Clock Constraint Operator, Clock Relation Operator, Clock Speed
Operator, and Dependence Operator), Signals, or Output Port.

● Src Field: if the source is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

Delay It corresponds to the delay operator which returns the Nb
Instants-th previous value of a Signal Expression, except
for its first Nb Instants-th execution where it uses the initial
value.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 24/76

Children:

● One Input Port already created to connected the Signal Expression to delay.

Basic

● Initial Value initialize the value for the Nb Instants-th first execution of the
operators. This means that, if Nb Instants is greater than 1, the initial value
has to be an array whose size is Nb Instants.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Nb Instants: the size of the delay. You can specify an integer positive value
or the name of a constant value.

Dependence It corresponds to an explicit specification of dependences
between Identifiers (Signals, Model Instance, Sub Process,
or Iterate) model objects. When the source (or target) is a
Model Instance, a Sub Process, or an Iterate model object,
it means that all Signals defined in these structure enter in
the Dependence relation.

Children: none

Basic

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

● Source-Target

● Dst: the target of a Dependence is an Identifier model object.

● Dst Field: if the source is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

● Src: the source of a Dependence is an Identifier model object.

● Src Field: if the source is a Signal using a Tuple Type or an array type, this
attribute is the way to access to the signal field.

Dependence Operator It has been introduced to represent conditional
Dependences. Thus, one can connect the target of a
Condition to this operator, and the source or target of
several Dependences.

Children: none

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 25/76

Enumeration Type It corresponds to the type declaration of an enumeration.
To access to the value of an enumerated type, prefix the
value by a '#'.

Children: none

Basic

● Array Dimensions indicates the dimensions of the Enumeration Type, if it is
an array type. If it is a multi-dimensional array, specify one dimension per
line. A dimension is a constant expression: Constant Value, Parameter, an
integer positive number...

● Comment: the COMMENT pragma attached to this identifier.

● Enum Values indicates the values of the enumeration. Put one value per line.

● Name: the name of the Enumeration Type, which is used as its identifier. It
has to be unique inside its container. It is even better to name it uniquely
inside the file.

● Visibility indicates the visibility (public or private) if the Enumeration is
declared inside a Module. If it is declared in a Model Declaration, this
information is useless.

Enumeration Value It corresponds to an unnamed constant value whose type
is an enumerated type

Children: none

Basic

● Type Value indicates the name of the enumerated type if any. A list of
enumerated type containing in the scope is proposed.

● Value indicates the value used inside the enumerated type. No need to prefix
the value with a '#' character.

Extraction It corresponds to the extraction operator. A value is
returned each time the Condition is true and there is a
value on the Input Port.

Children

● One Input Port already created to connected the Signal Expression whose
value has to be extracted each time the Condition is true.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 26/76

History It corresponds to the History state of an Automaton or of
an And State. When a transition leads to such a state, it
means that the container state is not reinitialized and re-
executes its last state.

Children: none

If Then Else It corresponds to the synchronous condition. It is an expression
on signals of same clock.

Children:

● Two Input Ports already created. The first one has to be connected to the
then Signal Expression, and the second to the else Signal Expression. Both
expressions have to be of the same type.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Index It corresponds to the definition of an index. An index is a
vector of integers whose size is equal to (To – From) /
Step. It is used by Iterate model object.

Children: none

Basic

● Comment: the COMMENT pragma attached to this identifier.

● From: a Signal Expression which constitutes the starting value of the Index.

● Name: the name of the Index which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Step: an integer Constant Expression different from 0. If the value is omitted,
it is equal to 1.

● To: a Signal Expression which constitutes the ending limit of the Index.

Input It corresponds to the declaration of an input signal in a
Model Declaration. Because it represents an input of the
declaration of a Model, it cannot be the target of a
Dataflow Connection (only an Instance of the Input can be
the target of a Dataflow Connection).

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 27/76

Children: none

Basic

● Array Dimensions indicates the dimensions of the Input, if it is an array. If it is
a multi-dimensional array, specify one dimension per line. A dimension is a
constant expression: Constant Value, Parameter, an integer positive
number...

● Comment: the COMMENT pragma attached to this identifier.

● Initial Value initialize the value of the Input.

● Name: the name of the Input which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Type: it corresponds to one of the Intrinsic Primitive Type or to one of the
type declared. To access to a type declared in the file, the Input has to be in
the scope of this declaration.

Input Instance It corresponds to the instance of an Input. Inside a Model
Instance, it refers to one of the Input declared in the
instantiated Model Declaration. To obtain Input Instance
model object, refer to the Model Instance description.

Children: none

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Input Instance which is used as its identifier. It has to
be unique inside its container. It is even better to name it uniquely inside the
file.

Input Port It corresponds to a port of a Signal Operator. By default,
such port is not typed, but according to the operator
containing the port, it is typed. Each Input Port has to be
connected.

Children: none

Iterate It corresponds to an iteration of processes. It is mainly
used to apply the same behavior on arrays.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 28/76

Children

● Input Port: this operator is as a multiple inputs operator, this means that you
can add as many Input Ports as Indexes or integer array you need to
connect. The ports are ordered.

● Iteration Init: this model object already created is used to specify, if any, how
to initialize the iteration. When you try to delete this object, it is automatically
rebuilt, but it will be empty.

● Any of the children that can be in a process: it means all model objects
except the following list: And State, Input, Model Declaration, Output,
Parameter, Pragma, State, Strong Transition, and Weak Transition.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Iterate which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

Iteration Init It corresponds to the area in which the initialization of an
iteration of processes have to be made.

Children

● Any of the children that can be in a process: it means all model objects
except the following list: And State, Input, Model Declaration, Output,
Parameter, Pragma, State, Strong Transition, and Weak Transition.

Iterator It corresponds to the iterator index of a C-for loop. It has to
be used to refer the current number of loop of the Basic
Iterate block. An Iterator can be referenced by a Constant
Ref element.

Children: none

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Iterator index, which is used as its identifier. It has to
be unique inside its container. It is even better to name it uniquely inside the
file.

Literal It corresponds to an unnamed constant value.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 29/76

Children: none

Basic

● Value indicates the value of the literal. The literal can be either a boolean, or
an integer, or a real, or a string, or a character value. If the literal is a string,
do not forget to use double quote. If the literal is a character, use simple
quote.

Local It corresponds to the declaration of a local signal. This
signal can be used at its declaration level and in all sub-
levels.

Children: none

Basic

● Array Dimensions indicates the dimensions of the Local signal, if it is an
array. If it is a multi-dimensional array, specify one dimension per line. A
dimension is a constant expression: Constant Value, Parameter, an integer
positive number...

● Comment: the COMMENT pragma attached to this identifier.

● Initial Value initialize the value of the Local signal.

● Name: the name of the Local signal which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Type: it corresponds to one of the Intrinsic Primitive Type or to one of the
type declared. To access to a type declared in the file, the Local signal has to
be in the scope of this declaration.

● Status indicates if the signal is a normal signal, a shared signal, or a state
variable. A state variable is a typed sequence the elements of which are present as
frequently as necessary. It keeps its previous value as long as a new one is defined. A
shared signal is a signal whose value is partially defined at different place.

Merge It corresponds to the operator that merge different flows of
data. The flows are ordered according to the order of the
Input Port to which they are connected. If they is a value
on the first flow, it will be taken, else we check the second,
and so on among the different flows.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 30/76

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Model Declaration It corresponds to the declaration of a SIGNAL component
with its Input/Output Signals and its input constant
Parameter. It is only a declaration of a component. It has
to be instantiated (Model Instance) to be used and
connected to the rest of a system. It constitutes one of the
Root Model, but it can also be declared locally in another
Model Declaration or in a Module.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 31/76

Children

● Input, Output, and Parameter are added to specify the interface of this
component.

● Specifications (already added) is used to specify the clock relations and the
dependences between input and output signals.

● Any of the children that can be in a process: it means all model objects
except those concerning the mode automaton: And State, State, Strong
Transition, and Weak Transition.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Model Declaration which is used as its identifier. It
has to be unique inside its container. It is even better to name it uniquely
inside the file.

● Visibility indicates the visibility (public or private) if the Model Declaration is
declared inside a Module. If it is declared in a Model Declaration, this
information is useless.

Expert

● Model Type: this attribute is of enumerated type whose values are action, function,
node, and process. By default, the value of this attribute is process. For more
information, consult the Signal v4 reference manual.

● Process Class: this attribute is of enumerated type whose values are safe,
deterministic, and unsafe. By default, the value of this attribute is unsafe. For more
information, consult the Signal v4 reference manual.

● Type indicates the Model Type of the Model Declaration if it is typed. Typing
a Model Declaration by a Model Type is the means to reuse the same
interface (Input/Output Signals and constant Parameters) for several Model
Declarations. Thus, you have not to specify the interface of your Model
Declaration, it is automatically specified by the Model Type.

External Code

● CCode: It is specific to code generation. It is a “parameterized” string representing a
piece of C code. Each call of the model is translated by this string in the generated
code, after substitution of the encoded parameters by the corresponding signals in the
considered call. The following encoded parameters may be used in the string:

○ &pj (where j is a constant integer value) represents the jth parameter of the call;

○ &ij (where j is a constant integer value) represents the jth input signal of the call;

○ &oj (where j is a constant integer value) represents the jth output signal of the
call;

○ &t&xj (where x is either p, i or o, and j is a constant integer value) represents the
type of the jth parameter, or input signal, or output signal of the call;

○ &n represents the name of the model.
Jun 8, 2012

http://www.irisa.fr/espresso/Polychrony/document/V4_def.pdf
http://www.irisa.fr/espresso/Polychrony/document/V4_def.pdf

POLYCHRONY Polychrony_SME_UserGuide Page 32/76

Model Instance It corresponds to the instantiation of a SIGNAL
component. To use it, specify the Referred Interface
attribute, right-click on the Model Instance Node and select
« Load Model Instance Inputs/Outputs » action. This action
creates the Input Instances, Output Instances, and
Parameters Instances corresponding to those of the
Referred Interface.

Children

● Input, Output, and Parameter Instances are automatically added when the
Referred Interface is set and the « Load Model Instance Inputs/Outputs »
action is called.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Model Instance which is used as its identifier. It has
to be unique inside its container. It is even better to name it uniquely inside
the file.

Instantiation

● Referred Interface: refers to a Model Declaration or a Model Type to
instantiate.

● Referred Parameter: for generic purpose, a Model Declaration can be
passed as parameters. Thus, the Referred Interface has to be set with a
Model Type, and the Referred Parameter will indicate the instantiated Model
Declaration.

Model Ref It allows to refer to a Model Declaration declared at the
upper hierarchic level (only useful to connect a Model
Declaration to a Parameter Instance).

Children: none

Basic

● Model: points to the referring Model Declaration.

Model Type It corresponds to the declaration of a specific type allowing
to type a Model Declaration. As for a Model Declaration,
an interface (Input, Output, Parameter, and a Specification
area) has to be specified.

Jun 8, 2012

http://www.irisa.fr/espresso/Polychrony/document/V4_def.pdf

POLYCHRONY Polychrony_SME_UserGuide Page 33/76

Children

● Input, Output, and Parameter are added to specify the interface of this
component.

● Specifications (already added) is used to specify the clock relations and the
dependences between input and output signals.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Model Type which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Visibility indicates the visibility (public or private) if the Model Type is declared
inside a Module. If it is declared in a Model Declaration, this information is
useless.

Expert

● Model Type: this attribute is of enumerated type whose values are action, function,
node, and process. By default, the value of this attribute is process. For more
information, consult the Signal v4 reference manual.

● Process Class: this attribute is of enumerated type whose values are safe,
deterministic, and unsafe. By default, the value of this attribute is unsafe. For more
information, consult the Signal v4 reference manual.

● Type indicates the Model Type referenced by the current one.

Module It corresponds to a library of types, components, and
constant values.

Children

● Model Declarations: one can declared different Model Declarations. Some of
them can be private (only usable by the other Model Declarations of the
Module) or public (that can be imported by external Model Declarations that
specify this Module in the Use Module model object). If one (or several) of
the Model Declarations has its Is Main set to true, it becomes an entry
execution point for this Module.

● Type (Enumeration, Model Type, Substitution Type, or Tuple Type) can also
be declared public or private.

● Constant Values can also be declared public or private.

● Use Module: indicates the list of other Modules needed by this one.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Module which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

Jun 8, 2012

http://www.irisa.fr/espresso/Polychrony/document/V4_def.pdf
http://www.irisa.fr/espresso/Polychrony/document/V4_def.pdf

POLYCHRONY Polychrony_SME_UserGuide Page 34/76

Not It corresponds to the logical Not operator.

Children

● One Input Port (already created): used to connect a Boolean Expression.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Null Clock It corresponds to the empty clock, which corresponds to the
clock without any instant, to an event that never occurs.

Children: none

Numeric Expression It corresponds to a complete numeric expression. It was
added to the meta-model to avoid a long description of a
complete arithmetic expression.

Children: none

Basic

● Expression: the arithmetic expression in textual form.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Or It corresponds to the logical Or operator.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Output It corresponds to the declaration of an output signal in a
Model Declaration.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 35/76

Children: none

Basic

● Array Dimensions indicates the dimensions of the Output, if it is an array. If it
is a multi-dimensional array, specify one dimension per line. A dimension is a
constant expression: Constant Value, Parameter, an integer positive
number...

● Comment: the COMMENT pragma attached to this identifier.

● Initial Value initialize the value of the Output.

● Name: the name of the Output which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Type: it corresponds to one of the Intrinsic Primitive Type or to one of the
type declared. To access to a type declared in the file, the Output has to be
in the scope of this declaration.

Output Instance It corresponds to the instance of an Output. Inside a
Model Instance, it refers to one of the Output declared in
the instantiated Model Declaration. To obtain Output
Instance model object, refer to the Model Instance
description.

Children: none

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Output Instance which is used as its identifier. It has
to be unique inside its container. It is even better to name it uniquely inside
the file.

Output Port It corresponds to an output port of a Cartesian Product (it
is the only Signal Operator with Output Ports). Each
Output Port has to be connected to a Signal (Input
Instance, Local, Output), or to a Signal Reference.

Children: none

Parameter It corresponds to the declaration of a constant parameter
in a Model Declaration.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 36/76

Children: none

Basic

● Array Dimensions indicates the dimensions of the Parameter, if it is an array.
If it is a multi-dimensional array, specify one dimension per line. A dimension
is a constant expression: Constant Value, Parameter, an integer positive
number...

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Parameter which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Type: it corresponds to one of the Intrinsic Primitive Type, to one of the type
declared, or it can be of type type. To access to a type declared in the file,
the Parameter has to be in the scope of this declaration. A Parameter is, with
the Model Declaration or the Model Type, the only mode object that can be
typed with a Model Type.

Parameter Instance It corresponds to the instance of a Parameter. Inside a
Model Instance, it refers to one of the Parameter declared
in the instantiated Model Declaration. To obtain
Parameter Instance model object, refer to the Model
Instance description.

Children: none

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Parameter Instance which is used as its identifier. It
has to be unique inside its container. It is even better to name it uniquely
inside the file.

Pragma It corresponds to the definition of a pragma whose role is to
associate specific informations with the objects of a Model.
These informations may be used by a compiler or another tool.

Children: none

Basic

● Expression: a string representing the information to associate with the target
objects.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Pragma: a string which represents the kind of the pragma

● Target: a list of identifiers on which this pragma is applied.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 37/76

Repetition Operator It corresponds to the repetition operator, which is a simple form
of iterative enumeration, which allows the finite repetition of a
value. The result of this operator is an array with several times
the value connected to the first Input Port. The number of
repetitions is represented by the second Input Port

Children

● Two Input Ports already created. The first one takes an expression used to
fill the array and the second takes the number of repetitions, i.e. the size of
the built array. The expression connected to the second Input Port have to
represent a strictly positive integer value.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Sequential Definition It corresponds to the sequential definition operator, which is
used mainly for the redefinition of elements of arrays. For an
example with 2 Input Ports, the result will be an array which
takes the value of the expression connected to the second Input
Port at each point at which it is defined, and the value of the
expression connected to the first Input Port elsewhere. In the
general case, both expressions value are arrays with the same
number of dimensions.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Signal Ref It corresponds to the use of a Signal (Input, Output, Local,
Input Instance or Output Instance) at another hierarchical
level than these where the Signal is declared.

Children: none

Basic

● Signal: points to the referring Signal.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 38/76

Specifications It corresponds to the area to specify some properties. It uses a
process expression that can make reference (through Constant
Ref, or Signal Ref) to the Parameters and Input and Output
signals of the Model. Any other identifier used in this expression
is that of a local object (signal, process model, etc.), that must
have a declaration in this expression. This aera is used in Model
Declaration and Model Type model objects for this reason. It is
also used in the Tuple Type declaration to specify some
properties between different signals, if the Tuple Type is a
bundle.

Children

● Any of the children that can be in a process: it means all model objects
except the following list: And State, Input, Iteration Init, Model Declaration,
Output, Parameter, Pragma, Specifications, State, Strong Transition, and
Weak Transition.

State It corresponds to a leaf-state of an Automaton. It contains
directly the specification of the mode.

Children

● Any of the children that can be in a process: it means all model objects
except the following list: And State, Input, Iteration Init, Model Declaration,
Output, Parameter, Pragma, Specifications, State, Strong Transition, and
Weak Transition.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the state which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

Strong Transition It corresponds to a transition of an Automaton. A Strong
Transition is evaluated, for the current instant, before the
execution of its source state. If the guard is true, the
mode of the Automaton for the current instant will be the
target state. In a specific Automaton, only one Strong
Transition can be taken during an instant.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 39/76

Children: none

Basic

● Guard is a textual boolean expression to express when to go from the source
state to the target state.

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

● Priority is an integer value which indicates, for states with several out-going
Strong Transitions, the order of their evaluation.

● Source-Target

● Dst: the target of a Strong Transition is a sub-state (And State, Automaton, or
State) of the Automaton which belongs this transition, or the History of one
of them.

● Src: the source of a Strong Transition is a sub-state (And State, Automaton,
or State) of the Automaton which belongs this transition.

Sub Process It corresponds to a sub part of a component without any
specific Input/Output signals. It can also be used to
specify the different case of the Switch operator. One can
also specify some clock constraints/relations (or
dependences) with a Sub Process: this means that all
signals defined in the Sub Process will be related to these
constraints/relations.

Children

● Any of the children that can be in a process: it means all model objects
except the following list: And State, Input, Iteration Init, Model Declaration,
Output, Parameter, Pragma, Specifications, State, Strong Transition, and
Weak Transition.

Basic

● Comment: the COMMENT pragma attached to this identifier.

● Name: the name of the Sub Process which is used as its identifier. It has to
be unique inside its container. It is even better to name it uniquely inside the
file.

Substitution Type It corresponds to a generic type that can refer another
one.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 40/76

Children: none

Basic

● Array Dimensions indicates the dimensions of the Substitution Type, if it is an
array type. If it is a multi-dimensional array type, specify one dimension per
line. A dimension is a constant expression: Constant Value, Parameter, an
integer positive number...

● Comment: the COMMENT pragma attached to this identifier.

● Is External indicates if the referenced type is defined outside the context of
the Model (for example, in a C library).

● Name: the name of the Substitution Type which is used as its identifier. It has
to be unique inside its container. It is even better to name it uniquely inside
the file.

● Type: it corresponds to one of the Intrinsic Primitive Type or to one of the
type declared. To access to a type declared in the file, the Constant Value
has to be in the scope of this declaration.

● Visibility indicates the visibility (public or private) if the Substitution Type is
declared inside a Module. If it is declared in a Model Declaration, this
information is useless.

Switch It corresponds to a switch operator. A signal is tested, and
the different cases are expressed in Sub Processes linked
to the Switch by a Case Connection.

Children: none

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Signal: points to the tested Signal.

● Src Field: if the tested Signal uses a Tuple Type or an array type, this
attribute is the way to access to the signal field. Not implemented by the
compiler yet.

Transposition It corresponds to the matrix transposition operator.

Children

● One Input Port (already created) connected to the matrix expressions to
transpose.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 41/76

Tuple Operator It corresponds to the tuple operator, which allows to
create a tuple with unnamed fields (opposite to a Signal
declare with a Tuple Type).

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Tuple Type It corresponds to the declaration of structured types, called also
in a generic way tuple types with named fields. There are two
categories of tuple types: polychronous, and monochronous. An
object typed by a polychronous tuple is in fact a gathering of
objects. In this way, a polychronous tuple of signals is not a
signal (it has no clock). At the opposite, an object declared of
type monochronous tuple can be a signal: it has a clock (all its
named fields are synchronized). Only monochronous tuple can
be used as the the type of the elements of an array. A tuple type
is defined by a list of typed and named fields; in addition, clock
properties can be specified on the fields of a tuple.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 42/76

Children

● Local signals are used to represent the named fields inside the tuple types.

● The Specifications area is used to precise the clock properties between the
different fields when the Kind attribute is a polychronous tuple. For
monochronous tuple, the Specifications area must be empty.

Basic

● Array Dimensions indicates the dimensions of the Tuple Type, if it is an array
type. If it is a multi-dimensional array, specify one dimension per line. A
dimension is a constant expression: Constant Value, Parameter, an integer
positive number...

● Comment: the COMMENT pragma attached to this identifier.

● Kind: this attribute is of enumerated type whose values are bundle (polychronous
tuple), and struct (monochronous tuple). By default, the value of this attribute is
struct.

● Name: the name of the Tuple Type which is used as its identifier. It has to be
unique inside its container. It is even better to name it uniquely inside the file.

● Visibility indicates the visibility (public or private) if the Tuple Type is declared
inside a Module. If it is declared in a Model Declaration, this information is
useless.

Unary Minus It corresponds to the unary negation arithmetic operator.

Children

● One Input Port (already created) connected to a numerical expression.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Use Module It corresponds to the operator to import Modules.

Children: none

Basic

● Modules: the ordered list of imported Modules. To import a Module, you have
to add it manually (for the moment) to the Outline of your project, by right-
clicking on the root of the Outline and by selecting « Load Resource ». Select
then the SME file.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 43/76

Variable It corresponds to the variable operator, which allows to use a
signal at any clock defined by the context. The result of this
operator is a Signal whose value is the value of the Signal
Expression connected to the Input Port, when this expression is
present, or the last value of the expression otherwise. The initial
value is used when the Signal Expression has not been present
yet.

Children

● One Input Port (already created) connected to a Signal Expression.

Basic

● Initial Value initialize the value of the operator before it receives the first
value of the Signal Expression.

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

Weak Transition It corresponds to a transition of an Automaton. A Weak
Transition is evaluated, for the current instant, after the
execution of its source state. If the guard is true, the
mode of the Automaton for the next instant will be the
target state.

Children: none

Basic

● Guard is a textual boolean expression to express when to go from the source
state to the target state.

● Name: the name of the model object. It is used to identify it, so it is better if it
has a unique name.

● Priority is an integer value which indicates, for states with several out-going
Weak Transitions, the order of their evaluation.

● Source-Target

● Dst: the target of a Weak Transition is a sub-state (And State, Automaton, or
State) of the Automaton which belongs this transition, or the History of one
of them.

● Src: the source of a Weak Transition is a sub-state (And State, Automaton,
or State) of the Automaton which belongs this transition.

Window It corresponds to the sliding window operator, which
returns an array composed by the Window Size-th last
values of the expression connected to the Input Port.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 44/76

Children

● One Input Port already created to connected the Signal Expression.

Basic

● Initial Value initialize the value for the (Window Size-1)-th first execution of
the operators. This means that this attribute is an array whose size (the first
dimension of the array) is equal to (Window Size-1).

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

● Window Size is an integer constant expression whose value is greater than or equal
to 1. If it is equal to 1, the Initial Value is useless.

Xor It corresponds to the logical Xor operator.

Children:

● Input Port: this operator is a multiple inputs operator, this means that you can
add as many Input Ports as Signal Expressions you need (at least 2) to
connect. The ports are ordered.

Basic

● Name: the name of the operator. It is used to identify it, so it is better if it has
a unique name.

5.3 Keywords of the language

For all identifier names, you have to use a string which begins with a letter, and
which can be composed of alphanumeric characters and the underscore character (_).
The following strings are keywords reserved for the Signal language:

action / after / and / array / assert / boolean / bundle / case / cell / char / complex /
constant / count / dcomplex / default / defaultvalue / deterministic / dreal / else / end /
enum / event / external / false / from / function / if / in / init / integer / iterate / label /
long / module / modulo / next / node / not / of / operator / or / pragmas / private /
process / real / ref / safe / shared / short / spec / statevar / step / string / struct / then / to
/ tr / true / type / unsafe / use / var / when / where / window / with / xor

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 45/76

6 The graphical modeler plug-in
This plug-in provides a graphical layer to build graphically, to visualize, and to better

understand a SME Model. For this purpose, we defined six different kinds of diagrams:

● Interface Definition Diagram,

● Data flow Diagram,

● Clock Relations and Dependences Diagram,

● Library Diagram,

● Mode Automaton Diagram,

● Tuple Type Diagram.

Each of these diagrams represents a specific aspect in the modeling of a SME
Model and will be detailed in the following. Before this, we first explain how to create a
new project and a new diagram.

6.1 Creation of a new SME diagram from a Template

To help the user during the creation of a new SME Diagram, the modeling editor
has a wizard which allows to create a model from a template model file. The role of the
wizard is to make more convivial the task of creation by accompanying the user. The
creation will proceed in a few stages.

To start the wizard, right-click on the project where you want to create your model,
and select New-> Other... and then select the following diagram : Polychrony->SME
Diagram.

Remark : If you have successfully switched to the Topcased Modeling perspective, there is
a shortcut directly accessible from the pop-up menu (see the picture below)

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 46/76

Once you have selected the SME diagram, the SME wizard is opened (following
picture). Thus, you have to choose the name of the diagram and the kind of diagram you
want to display.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 47/76

Remark: In the SME wizard, you can only create four of the six kinds of diagrams:
the Mode Automaton Diagram and the Tuple Type Diagram can not be used as root of a
Signal specification, but can be used inside them.

6.2 Creation of a new SME diagram from an existing SME file model

It is also possible to create a diagram from an existing SME model file. For this
purpose, right-click on the SME model file and select New->SME Diagram.

When the SME Diagram wizard is opened, you have only to choose the kind of root
diagram (see next part for a description if each kind of diagrams). If the diagram must be
initialized directly, check the corresponding check box. You can also drag the different
elements from the Outline to position them more relevantly.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 48/76

6.3 Diagram Accessibility and Aspects

The diagram can be created for the root of a new SME file through the SME wizard,
but also for some specific model objects. Thus, we can have hierarchic diagrams.

Moreover, three kinds of diagram (Interface Definition, Data flow, and Clock
Relations and Dependences) are complementary: it means that for some model objects,
you may have to use two or all of these diagrams to build the specification of these model
objects. That's why, we refer to these three kinds of diagrams as “Aspect” of the modeling
for the corresponding model objects.

Here, we give, for each kind of diagram, the list of model objects that can be used
as root of the diagram:

● Interface Definition Diagram: Model Declaration, Model Type.

● Data flow Diagram: Model Declaration, Sub Process, Iterate, Specifications, State,
and Iteration Init.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 49/76

● Clock Relations and Dependences Diagram: Model Declaration, Sub Process,
Iterate, Specifications, and State.

● Library Diagram: only Module.

● Mode Automaton Diagram: only Mode Automaton.

● Tuple Type Diagram: only Tuple Type.

To create diagrams for these model objects, you just have to right-click on the
model element inside the Outline view, and by selecting Add Diagram and choosing the
diagram. You can also double-click on the graphical element, which represents the root
element of a diagram and it opens automatically the corresponding diagram.

For all elements, which can have several Aspects, it opens the Interface Definition
Diagram (if possible) or the Data flow Diagram, and then there are also some facilities to
go from one Aspect to another:

● by right-clicking on the graphical element, and by selecting the Goto Aspect and by
choosing the needed Aspect,

● by selecting the graphical element, and by clicking on the button (shown on the
following picture) in the tool bar.

Remark: For elements with multiple Aspects, when a diagram is created, all
children elements present in the others Aspects and that can appear in the created
diagram will be automatically added to it.

6.3.1 Interface Definition Diagram

This diagram is used to visualize/specify the interface of a Signal component
(basically a process) or those of the declaration of a type used to type a component. The
root of this diagram is a Model Declaration object, if you create it through the SME wizard,
and can be either a Model Declaration or a Model Type otherwise. This diagram is used to
specify the Input/Output signals and the constant Parameter of the interface of a
component, and also some pragmas.

Each model elements that can have an Interface Definition Diagram contains a
Specification model, whose role is to specify the clock relation between the input/output
signals. If you want to modify or display it, drag it from the Outline view. This model is
mainly used in component abstractions for separated compilation purposes.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 50/76

To parametrize each of these elements, right-click on any graphical object and
select the Property View. For more information, refers to the Parametrization of model
objects section (select the Advanced tab, to view the attribute and references of each
model object).

6.3.2 Data flow Diagram

This diagram is used to visualize/specify the data flows between the different
Input/Output/Local signals, the operations applied on these data, and all local declarations
of data, types, and processes.

The following pictures represents what can be added to the model in this diagram.
Obviously, the Input/Output signals and the constant Parameter declared in the Interface
Definition Diagram can be used in this diagram too. To use them, drag them from the
Outline view to the Editor view. The palette of this diagram is composed of 5 sections:

● Containers: this section is composed of all elements that can be the root of a
diagram and all elements in relation with them.

○ Basic Iteration is used to express an iteration as a C-for loop. To use it, give the
name of its iterator and the value of the upper bound. To specify the initialization
part of the Basic Iteration, right-click on the Basic Iteration and select the Show
the Iteration Init part action, which display the Data flow Diagram for it. Finally,
to specify the process on which the Iteration iterates, double-click on it to open a
Data flow Diagram.

○ Iteration is used to express iteration of processes. To use it, connect at least an
index to its Input Port. It is also possible to iterate on several indexes; for this
purpose, right-click on the Iteration, and select the Add a New Port action to
add a new Input Port to connect another index. For the initialization part and the
iterated process, it is the same as for the Basic Iteration Block.

○ A Mode Automaton can be added. For more information on it, consult the Mode
Automaton Diagram section.

○ Local Model Declarations (Action, Function, Node, and Process) can also be
declared inside this diagram, and Model reference can refer to the declaration of

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 51/76

a Model Declaration declared at another level.

○ To instantiate a Model Declaration, use a Model Instance object. To use it,
specify the Referred Interface attribute, right-click on the Model Instance, and
select « Load Model Instance Inputs/Outputs » action. This action creates the
Input Instances, Output Instances, and Parameters Instances corresponding to
those of the Referred Interface.

○ A Sub Process is a sub part of the current process. It can also be used to
specify the cases of the switch operator.

○ This diagram contains also the declaration of types: Enumeration, Model Type,
Substitution Type, and Tuple Type.

● Identifiers: this section contains the declaration for Constant Values, Indexes, and
Local signals. It provides also elements to refer to constants (Constant Value,
Parameter, Literal, or Enumeration Value) or to signals (Input, Local, or Output) that
are declared at a higher level. A Constant Ref or a Signal Ref will automatically
take the figure of the referenced elements.

● Operators: this section contains all operators offered by the SIGNAL language:
Arithmetic Operator (Addition, Substraction, ...), Boolean Operator (Equal, And, ...),
array operators (Cartesian Product, Matrix transposition, ...), and SIGNAL specific
operators (Delay, Memorization, ...). Some of these operators have only one Input
Port to connect, some other only two, and all the other are multiple inputs
operators. It means that we can add as many Input Port (to connect expressions)

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 52/76

as needed. To add one, right-click on the operator, and select the Add a New Port
action. For the Cartesian Product, it has also Output Port, and it has to have the
same number of Input Ports and Output Ports. When an Input Port is added, it
adds automatically an Output Port.

● Links: this section all kinds of connections that can be used in this diagram.

○ A Case connector is used to connect a switch operator to a Sub Process (or an
Iteration).

○ A Condition connector is used to connect a Boolean Expression or a Signal to a
conditioned expression, which can be either an Extraction operator, or an If-
Then-Else operator, or a Memorization operator, or an Assertion.

○ A Constant affectation is used to connect a constant expression to a Parameter
Instance contained by a Model Instance.

○ Finally a Dataflow Connector is used to connect any Signal expression that
returns a result to a signal (or to the Input Port of an other operator). It
corresponds to the definition (or partial definition) operator of the SIGNAL
language.

● Miscellaneous: this section contains the way to specify Assertion and to import
Modules. An assertion can be defined by specifying its expression attribute (right-
click on the Assertion, and select the Edit Composite expression action) or by
connecting a Condition link to it. To import a Module, right-click in the Outline view,
select the Load Resource action, and then select the sme file containing the
Module. Finally, you have to add this Module in the list of Modules attribute of the
Use Module model object.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 53/76

To parametrize each of these elements, right-click on any graphical object and
select the Property View. For more information, refers to the Parametrization of model
objects section (select the Advanced tab, to view the attribute and references of each
model object).

6.3.3 Clock Relations and Dependences Diagram

This diagram is dedicated to specify explicitly clock constraints, clock relations, and
dependences between the different clocked identifiers declared in an Interface Definition
Diagram and in a Data flow Diagram.

The list of clock identifiers are any kind of Signal (Input, Output, Local, Input
Instance, Output Instance), a Signal Ref, a Model Instance, a Sub Process, Iterate, and
Automaton model objects. If such an identifier is contained by the root element of a Clock
Relation Diagram, drag it from the Outline view to the diagram.

As in the Data flow Diagram, you can declare Locals signals or refer to signal
declared at a higher level. The difference with the previous diagram is on the manipulated
operators. In a Clock Relations and Dependences Diagram, there are only clock
operators:

● Clock Constraint Operator: Clock Synchronization, Clock Exclusion, and Clock
Identity.

● Clock Relation Operator: Clock Union, Clock Intersection, and Clock
Complementary.

● Clock Speed Operator: Clock Slower, and Clock Faster.

Since version 0.15.0, the Clock Constraint Operators and the Clock Speed
Operators has been extended to be available in assertion block. They are represented

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 54/76

here as special Clock Constraint Assertion and Clock Speed Assertion and can be used
respectively as Clock Constraint Operators and Clock Speed Operators.

Among these operators, the Clock Relation Operators and the Clock Speed
Operators have Input Ports. It can have as many Input Ports as needed. To add new Input
Port, right-click on the graphical representation of the operator, and select the Add a New
Port action.

The Clock Relation link is used to connect the identifiers to the operators. A Clock
Constraint Operator cannot be the source of such a connection and it can receive as
many connection as needed as target. A Clock Relation operator can only be the source
of such connection and its Input Ports the target of such connection (one per Input Port).
A Clock Speed Operator can be either the source or the target of such connection.

Remark:

● A Clock Relation link can be used between two clocked identifiers correspond to a
synchronization of the clock of both identifiers.

● The Null Clock is used as a constant to express some clock relations.

Dependences are the means to express the scheduling of different part of the
component. Using a Dependence relation between two clock identifiers means that the
one at the source of the relation has to be computed before the one at the target. The
Dependence operator is the way to express multiple sources and multiple targets in one
relation. It is also possible with the Dependence Operator to express conditioned
scheduling. For this purpose, use a Condition link from a boolean signal to the
Dependence Operator.

To parametrize each of these elements, right-click on any graphical object, and select the
Property View. For more information, refers to the Parametrization of model objects section
(select the Advanced tab, to view the attribute and references of each model object).

6.3.4 Library Diagram

This diagram is dedicated to the graphical definition of SIGNAL library (Module). A
library can contain Model Declarations (Action Function, Node, or Process), Constant
Value declarations, or Type declarations (Enumeration, Model Type, Substitution Type, or
Tuple Type). Each of these elements can be declared private (visible only by the other
elements in the library) or public (visible from all elements that imports the library) by
setting their Visibility attribute. Some pragmas can also be defined and applied to the

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 55/76

declared elements.

 Finally, it is possible to import other Modules to use their public Constant Values,
Types, or Model Declarations. To import a Module, you have to load the file containing it.
To load a .sme file, right-click in the Outline view, select the Load Resource action, and
then select the sme file containing the Module. Finally, you have to add this Module in the
list of Modules attribute of the Use Module model object.

To parametrize each of these elements, right-click on any graphical object and select the
Property View. For more information, refers to the Parametrization of model objects section
(select the Advanced tab, to view the attribute and references of each model object).

6.3.5 Mode Automaton Diagram

This diagram is used to specify graphically a mode automaton (Automaton). An
Automaton is composed of several modes (or sub-states) and transitions to go from one
mode to another one. A sub-state can be either other another Automaton, or an And
State, or a Final State (or leaf state). There are two kinds of transitions:

● Weak Transition: the guard of such kind of transition is evaluated, for the current
instant, after the execution of its source state. If the guard is true, the mode of the
Automaton for the next instant will be the target state of this transition.

● Strong Transition: the guard of such kind of transition is evaluated, for the current
instant, before the execution of its source state. If the guard is true, the mode of the
Automaton for the current instant will be the target state. Only one Strong
Transition can be taken during an instant.

An And State allows to compose synchronously several states (at least 2). A Final
State is used to express the behavior of a state using a Data flow Diagram and/or a Clock
Relations and Dependences Diagram. An Automaton has at least one sub-state. To
define the initial state of an Automaton, right click on the wanted initial state and select the
Set the Initial State action.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 56/76

An History can be added to an Automaton or to an And State. If the target of a
transition is an Automaton (or an And State), it means that the Automaton (resp. all sub-
states of the And State)will be reinitialized before their execution (start its execution at the
initial state). To restart from the last state of the Automaton (resp. all sub-states of an And
State), the target of the transition must be the History of the Automaton (resp. And State).

Local signals can be declared in an Automaton (or And State). These signals are
shared by all sub-states of the Automaton (resp. And State). When Local signals declared
in an Automaton are defined in several sub-states of the Automaton, do not forget to use
partial definition links to define them. A partial definition is a Dataflow Connection with the
Use Partial Definition set to true.

To parametrize each of these elements, right-click on any graphical object and select the
Property View. For more information, refers to the Parametrization of model objects section
(select the Advanced tab, to view the attribute and references of each model object).

6.3.6 Tuple Type Diagram

This diagram is only used to specify graphically a Tuple Type by adding them Fields
(represented by Local signal declaration), and a Specification area (only if the Tuple Kind
is bundle) to precise the clock relations between the different fields.

To parametrize each of these elements, right-click on any graphical object and select the
Property View. For more information, refers to the Parametrization of model objects section
(select the Advanced tab, to view the attribute and references of each model object).

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 57/76

7 The compilation scenarios plug-in
The goal of this plug-in is to allow the creation of compilation scenarios for

Polychrony model. A compilation scenario is composed of different kinds of functionalities
and of generators. A functionality modifies the internal representation of the program
whereas a generator translates this representation into a specific external format. The
meta-model of this plug-in is shown on the next picture.

7.1 Functionalities

% This part must be generated from the Signal ToolBox functionalities %

*** to be updated***

For the moment, there are 9 different functionalities, which are those used in the
current Polychrony graphical tool:

● Retiming: It performs a shift register transformation. It rewrites synchronous
function f such that Y := f(X1 $ m1 init V1,...,Xn $ mn init Vm) into Y := y' $ j init
f(V1',...,Vm') and y' := f(X1 $ m1' init V1",...., Xm $ mn' init Vm").

● Booleans to events: It rewrites boolean expressions of under-sampling for logical
and relational operators. the goal is to prove synchronization constraints of the
system.

○ the rewriting of the booleans expressions referenced in an extraction (when E)
when E is not a "free" condition and not declared as an assumption. For

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 58/76

example, the expression when (A and B) is equal to the clock intersection of
when (A) and when (B).
So, "classical boolean rules" completed with some specific rules induced by the
extraction and merging Signal operators are applied to the system.

○ the rewriting of the boolean expressions referenced in the extraction (when E)
when E is assumed to be an assertion: the expression assert(E) specifies that E
is always true when it is available. So it induces that when E is equivalent to the
clock of E.

● Signal unifications: this operation consists in the merge of nodes into one node
when their definition expression are equal (syntactically).

● Clock calculus: it performs the resolution of the clock systems using a
triangularization technique. A BDD-based data structure is used. Here, only the
study of static properties is performed. They allow to characterized the set of states
in which the automaton associated to a program can evolve, independently of initial
values, and the set of the transitions between these states. The result is a forest of
clock trees.

● Events to booleans : it performs the inter-format DC+ (that constrains event objects,
forest of trees of clocks) to bDC+ (without event objects, a tree of boolean clock)
translation.

● Abstraction: it computes the abstraction of the program (I/O data dependences, I/O
clock relations, the "black Box" or the "grey Box" abstraction representation). This
abstraction is useful for separated compiling.

● Sequential clustering: it performs the following partitioning (called input train). Two
nodes are in the same set if and only if they depends on the same subset of inputs
signals of the graph. The graph is modified. The nodes are clustered into sub-
graphs. The internal representation must be in bDC+ sub-format.

● Sequentializing : it performs the inter-format bDC+ (a tree of boolean clocks) to
sbDC+ («sequentialized boolean dc+») translation. The internal representation
must be in bDC+ sub-format. The nodes of the internal representation are ordered.
The assert nodes are visible for code generation (code will be generated for
verifying assumptions at run time).

● Flattening (STS): it performs the inter-format bDC+ (a tree of boolean clocks) to
STS (a tree of boolean clocks reduces to one level) translation. The internal
representation must be in bDC+ sub-format.

7.2 Generators

% This part must be generated from the Signal ToolBox functionalities %

*** to be updated***

There are 12 kinds of generators:

● Signal Textual (SIG): it translates the internal representation of the specification
into a textual Signal file (.sig file).

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 59/76

● Signal Textual (LIS): it translates the internal representation of the specification into
a textual Signal file (.sig file), after the graph creation. The errors will be written on
the file.

● Signal Textual (TRA): it translates the internal representation of the specification
into a textual Signal file (.sig file), after the clock calculus phase.

● Signal Model (Sme): it translates the internal representation of the specification into
a XMI Model Signal file (.sme file). This model file is conformed to the SME meta-
model.

● Signal Abstraction: it translates the abstraction of the internal representation into a
textual Signal file (.sig file).

● Sigali: it translates the internal representation of the specification into a textual
Sigali file (.z3z file). This file is then used by Sigali to prove dynamical properties.

● C ANSI: it translates the internal representation of the specification into a textual C
ANSI files (.c and .h files). These files are used to simulate the Signal specification.
It is applied to a graph which must be a sbDC+ one. The graph is with or without
clusters.

● C++: it translates the internal representation of the specification into a textual C++
files (.cpp and .h files). These files are used to simulate the Signal specification. It
is applied to a graph which must be a sbDC+ one. The graph is with or without
clusters.

● Java: it translates the internal representation of the specification into a textual Java
files (.java files). These files are used to simulate the Signal specification. It is
applied to a graph which must be a sbDC+ one. The graph is with or without
clusters.

● Profiling: it produces the morphism of the internal representation according to the
definitions assigned of the Signal operators given in the "ht" table into a textual
Signal file (.sig file).

● Lustre: it translates the internal representation of the specification into a textual
Lustre file (.lus file).

● Syndex: it translates the internal representation of the specification into a textual
SynDEx file (.sdx file) for code distribution.

7.3 Reflexive editor

The reflexive editor has been automatically generated from the compilation
scenario meta-model. To create a new compilation scenario file (.ssc), right-click on your
project and select New->Other... and then select the following model : Polychrony->SME
Compilation Model.

However, there are some constraints to create a compilation scenario, because
some functionalities/generators can only be applied after others, so an interactive view
(described in next part) has been created to help user to create such scenario.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 60/76

7.4 SME Scenario View

The SME Scenario View (see following picture) constitutes a way to describe a
compilation scenario with some assistance. Each functionality and generator is
represented by a button and, according to the functionality or generator you activate,
others become available or are disabled. Since version 0.5.0, a check box to
enable/disable the display of all warnings has been added.

To access to this view, select Window-> Show View-> Other..., and then select
Polychrony->SME Scenario.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 61/76

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 62/76

8 The Signal text editor
Since v0.18.0, the SME environment integrates a simple text editor to manipulate

Signal Text files inside Eclipse. The current version provides only syntax highlighting for
Signal keywords, for comments, and for constant value using primitive types (string,
character, or numerical value).

To use this editor, you have only to double-click on the file with extension .SIG.
Maybe the Signal Text editor is not selected by default, so, you have to right-click on the
file and select Open With->Signal Text Editor.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 63/76

9 The connection to the Polychrony services
To access to Polychrony services inside Eclipse, the compiler has been deeply

connected to the reflexive editor and the graphical environment. The main goal for this
connection is to obtain a traceability between the SME models and the results returned by
the compiler. Thus, it becomes possible to indicate directly on the source model the
compilation errors.

9.1 How does the connection work ?

The connection between the SME Eclipse editors and the POLYCHRONY compiler
consists of a Java/C interface to communicate with the compiler through native libraries
(for Linux and Windows). The principle of the communication (represented on previous
figure) is the following:

1. First, the SME model is transformed into the abstract syntax tree (AST)
representation inside the compiler. A SME model parser that makes this translation
has been developed. At this step, the parser can report all errors concerning the
well-formedness of the model and the parsing errors (for attributes that contain
SIGNAL syntax).

2. Then, this AST representation is transformed into an internal graph structure. This
step consists in resolving all references specified inside the AST, checking the type
errors, and making explicit all implicit clock constraints and clock relations. This
means that new signals, which do not exist in the source model, are created. The
traceability consists in linking each new signal to the corresponding original AST

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 64/76

object.

3. The third step consists in applying to this graph the different POLYCHRONY services
specified in the compilation scenario (clock resolution, code generation...). These
operations also modify the graph obtained at the previous step.

4. Finally, by analyzing the graph obtained after these transformations, some errors
can be reported in the graphical part. At this time, only type errors can be seen on
the diagram. As we can see in the following picture, a little red symbol is written on
the operator to let the user know that there is an error.

A Hashmap between the Polychrony native AST and the SME instances has been
built, in order to associate the node of the native AST where the error message is
written and the corresponding instance. For example, here, the “disagreement
between types of operands” error is linked with the Addition operator.

9.2 Compiler configuration

The Signal compiler can be parameterized to specify the memory size used for its
operations. To access to these parameters, select the Polychrony section in the
Preferences Window as shown in the following picture.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 65/76

There are four parameters:

● The Polychrony library path. Here, you add all paths in which there are .LIB or
.SIG file that contain the Signal module needed for the compilation. A lib directory
that contains all libraries provided with the classical Polychrony environment is
available in a plug-in directory named:

● fr.irisa.espresso.sme.polychrony.win32.win32.x86_<version> for Windows.

● fr.irisa.espresso.sme.polychrony.gtk.linux.x86_<version> for Linux.

● fr.irisa.espresso.sme.polychrony.cocoa.macosx.x86_<version> for MacOS
X/Intel.

By default, this parameter only contains the root of this lib directory. For example, if
you want to use the apex-arinc library, add to the parameter the path <lib-
directory>/apex_arinc653/lib.

● Maximum number of types. This parameter represents the maximum number of
types that can be loaded during a compilation. By default, this value is 4096.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 66/76

● Memory size for the internal structure. This parameter represents the memory
size reserved for the allocation of the internal tree structure used during a
compilation. By default, this value is 60000000 bytes.

● Memory size for the string structure. This parameter represents the memory size
reserved for the allocation of strings. By default, this value is 1 Mb.

If you change one of these values, validate these changes by clicking on the apply
button. For restoring the initial values, click on the Restore Defaults button.

9.3 Applying Polychrony services

To call Polychrony services, right-click on the SME file on which you want to apply
the service(s), and select Polychrony.

You can choose to use a predefined scenario : in this case, select the Execute
Predefined Scenarios option.

Seven actions are proposed:
● Generate C files from the selected SME model

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 67/76

● Generate C++ files from the selected SME model
● Generate Java files from the selected SME model
● Generate SIG file from the selected SME model
● Generate SIG (LIS) file from the selected SME model
● Generate SIG (TRA) file from the selected SME model
● Execute a compilation scenario on the model

The three first actions generate the executable code files respectively in C, C++,
Java language from the SME model specifications. The next three actions generate a
Signal textual file : a normal SIG file, a pretty printing of the tree internal structure or a
Signal file generated during the transformation to the internal graph structure. The last
option applies a compilation scenario on the SME model (see previous part). All these files
are generated only in a directory named as the SME model file. They are only generated if
all previous compilation steps are all successful.

It is also possible to call Polychrony services on SIG file. In the same manner as for
the SME file, right click on the SIG file, and select Polychrony to obtain all actions
proposed for the SME file and one action to generate a SME file from the SIG file in a
directory named as the SIG file.

There are two new options that appeared in the 0.20.0 version of the plugin : the
interactive compilation and the general compilation. Let's see the interactive compilation
first : to be able to use it, choose the General Compilation menu in the Polychrony
menu, and then click on Interactive Compilation.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 68/76

A new window will pop up, with all the options available in the scenario editor.

Each time you click on an option, the corresponding operation is realized in real-
time. When you have finished, you can close this window by clicking on the Quit button.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 69/76

To use the general compilation GUI, choose the General Compilation menu in the
Polychrony menu, and then click on General Compilation.

A GUI with tabs will pop up :

Each time you're clicking or unclicking an option, the option manager of the
SIGNAL compiler is called and the corresponding options are activated or unactivated.
The compilation starts when you push the “Compile” button.

9.4 Simulation

The Polychrony services provides several kinds of generators which needs external
tools to be used or executed: SynDEx tools for sdx files, Sigali (distributed with the
classical Polychrony distribution) for z3z files... The C, C++ or Java code generation is
dedicated to simulations.

By default, the code (C, C++, or Java) generated by Polychrony will read input
values from a files called R<input name>.dat (or RC_<input name>.dat if the input signal
is of type event) and will write output values into a file called W<output name>.dat. These
input files has to be created and filled by the user (one value per line, and for event signal,
0 for absence and 1 for presence).

9.4.1 C/C++

For C and C++, you will need to use an external C/C++ compiler. The Polychrony
libraries are provided and can be found in the Eclipse plugins directory and specifically in:

●the fr.irisa.espresso.sme.polychrony.win32.win32.x86/lib/ directory under
Windows,
●the fr.irisa.espresso.sme.polychrony.gtk.linux.x86/lib/ directory under Linux,
●the fr.irisa.espresso.sme.polychrony.cocoa.macosx.x86/lib/ directory under
MacOs X.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 70/76

Currently, there is not automatic generation of makefile to compile C/C++ file. This
will be done in a later release.

9.4.2 Java

For the Java generation code, we take benefit of Eclipse which is originally a Java
environment which provides several facilities to manage Java project. The call of the Java
generation code creates (if all previous operations are executed without errors) a Java
project containing the Polychrony Java libraries (SignalJavaStd.jar, and
SignalGraphicalJavaStd.jar) and the Java source classes are generated in the src
directory of the project. There may be some errors in the Java code if your SME model
has constant parameters. The correction of these errors consists in replacing the
UNDEF() calls by the value of the constant parameter.

To execute the simulation, you have only to right-click on the project (or on the Java
class corresponding to the main) and select Run As->Java Application.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 71/76

10 The example plug-in
This plug-in offers some examples of modeling with SME. To access to these

examples, right-click on the navigator view and select Example... (as shown on the following
picture). Then in the window, select Examples-> Polychrony Examples-> Polychrony Examples
or, if you use the TopCased Modeling Perspective, select Polychrony Examples-> Polychrony
Examples.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 72/76

The wizard creates, in your navigator view, a new project called
“fr.irisa.espresso.sme.examples”, which contains five model (and graphical) examples and
the Intrinsic Process library. There are three simples examples (Counter, Simple
Hierarchic Automaton, and Watchdog) that we will detail in the following. A more complex
example (Modem) is also provided, it is a library containing the modulator and
demodulator part of a modem.

10.1 Counter

The Counter process constitutes a first simple example to see how to design a
component with the Graphical SME editor. This process counts the number of times it is
called since the last reset events.

To build this process, the first thing to do is to create an Interface Definition
Diagram, and to add to it the declarations of the Input signal reset typed as an event, and
the Output signal val typed as an integer.

Then, you have to create the Data flow Diagram (for example, by pressing the
Dataflow Button in the tool bar). Automatically (if the Data flow Diagram does not already
exist), the reset Input and the val Output signals appear in the diagram. Now, you have
only to drag and drop the operators from the palette.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 73/76

The previous picture can be read as following:

● a Local integer signal (called counter) is declared. It is defined by the previous
value of the Output val. To build such relation, drag the delay operator from the
palette and customize its attribute (Nb Instants to 1, Initial Value to 0), then connect
its Input Port with a Dataflow Connection, whose source is the val Output signal.
Finally connect the delay operator to the counter Local signal with a Dataflow
Connection.

● the val Output signal is defined as 0 when the reset event is present and as
counter + 1 otherwise. To build the first case, drag an Extraction operator from the
palette and connect its Input Port to a Literal (whose value is 0) with a Dataflow
Connection and connect a Condition link from the reset event to the Extraction
operator and set its Condition Kind attribute is Present. To build the second case,
drag an Addition operator from the palette (it is an Arithmetic operator with its
Operator attribute set to Addition). Connect its Input Port to counter and to a literal
whose value is 1 (in any order here, because the Addition operator is a
commutative one). Finally, connect the result of these two cases (the Extraction
operator and the Addition one) to a Merging operator (dragged from palette), and
connect its Input Port (here in the relevant order) to both cases, and the Merging
operator to the val Output signal with Dataflow Connections.

Remark:

● In this example, the use of the Local signal counter is not necessary, we could
connect directly the delay operator to the Input Port of the Addition operator.

● We do not need any Clock Relations and Dependences Diagram here, because the
clocks of each signal is set implicitly. Here val and counter have the same clock
(linked through a delay operator), and the clock of reset is a subset of those of val.

10.2 Watchdog

The second example is the specification of a Watchdog process. This example is not more
complicated as the previous one, but it shows the use of a Clock Relations and Dependences
Diagram and some specific actions on some operators.

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 74/76

Specification: a process emits an order, to be executed within some delay. When finished, a
finish signal is made available. The Watchdog is designed to control this delay. It receives a copy of
order and finish signals. It must emit an alarm whenever a job is not finished in time. If a new
order occurs when previous one is not finished, the time counting restarts from zero. A finish signal
out of delay, or not related to an order, will be ignored.

An order is supposed to be coded by an integer. The process receives also as other input the
finish signal, which is an event. In order to count the time, synchronous languages do not use
language-defined devices, like seconds, whose accuracy is not sufficient. The source of time is also
an input signal called tick, of type event. The amount of time between two such time events is
defined by the environment. The parameter DELAY is expressed as a number of tick. As output, the
process produces an alarm when the DELAY between order and finish is exceeded. This alarm is an
integer corresponding to the hour (the number of tick since the beginning of execution) at which the
alarm is sent.

The following pictures are screen shots of the Data flow Diagram of the Watchdog and of
the Clock Relations and Dependences Diagram.

The main differences between this Data flow Diagram and these of the Counter
example concerning the use of the graphical editor are:

● The Merging operator has 4 Input Ports. As other operators, the Merging is a n-ary
operators, so it is possible to add as many Input Port as needed. For this purpose,
you have only to right-click on the Merging graphical element and to select the Add
new port action.

● The Condition link has boolean expressions (and not a Signal) as source and true
as Condition Kind (not present).

● In the diagram, there are different graphical element with the same name. In fact,
there are two Constant Value declarations (ZERO, and ONE), and two Constant
Refs, which point to these declarations.

● Some signals, as hour and cnt (or zcnt), has a free clock, thus they have to be
defined explicitly in a Clock Relations and Dependences Diagram (as shown on the

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 75/76

following picture).
○ In the textual specification, hour is defined as being the number of tick since the

beginning of the execution, so hour and tick have to be synchronized (at each
tick, hour must be incremented). To build such relation, drag the “Clock
Synchronization” operator from palette and connect Clock Relation link from
hour, and tick to this operator.

○ According to the specification, the Local signal cnt is updated when an order or
a finish signal is emitted, or is decremented at each tick. So, the clock of cnt is
the union of the clocks of order, finish, and tick. To build such relation, drag a
“Clock Union” operator (in fact Clock Relation operator with the Operator
attribute set to Union) from the palette, and add it a new Input Port (as with the
Merging operator). Finally, connect order, finish, and tick to each Input Port of
the “Clock Union” operator and the operator to cnt with Clock Relation links.

10.3 Simple Hierarchic Automaton

This third example presents how to define a mode automaton with the SME
graphical editor. An Automaton cannot be the root of an sme (or smedi) file, so you have
first to create a Data flow Diagram (with an Interface Definition Diagram to specify the
Input/Output signal of the process) as shown in the previous examples. The parent of this
Automaton is a Model Declaration with three Input events called i, j, and tick. This
Automaton is added inside a Data flow Diagram, and its master clock is specified inside a
Clock Relations and Dependences Diagram (we specify that the master clock of the
Automaton is the union of the clock of the three Input events as in the previous example).

Jun 8, 2012

POLYCHRONY Polychrony_SME_UserGuide Page 76/76

Now, we have to define the Mode Automaton itself, so double click on the
Automaton to display the Mode Automaton Diagram (shown on the previous picture). The
Automaton has two sub-states: an And-State A, which is also the initial state, and a leaf-
state DecrX (which decrements X at each execution). A leaf-state is as a Sub Process.
This means that you can use a Data flow Diagram and a Clock Relations and
Dependences Diagram to specify the behavior of the State.

To indicate the initial state of an Automaton, right-click on the wanted initial state
and select the Set the Initial State action. Two Local integer signals X and Z are also
declared in the Automaton and are shared (so, their status has to be shared) among the
different sub-states.

Remark: when Local signals declared in an Automaton are defined in several sub-
states of the Automaton, do not forget to use partial definition links to define them. A
partial definition is a Dataflow Connection with the Use Partial Definition set to true.

The A And-State is composed of three sub-states: one leaf-state IncrX (which
increments X at each execution), and two automata YEvolution and ZEvolution (which
makes evolve Y and Z). A Local integer signal Y is declared inside the And-State (Z is
declared outside the And-state because it is used by the guard of the transition between A
and DecrX); this means that Y is shared among the sub-states of A (so its status has to be
shared).

Remark: on the previous picture, all states have a specific symbol (a green arrow).
In general case, all elements with this symbol has one or several sub-diagram(s) whose
root is the element itself.

Finally, there is one Weak Transition from A to DecrX, and one in the opposite
direction. The guard of these transitions are a textual boolean expression. The priority
attribute is useless here because each state has only one out-going transition.

Remark:

● If a state has several out-going transitions, do not forget to set different value for
the Priority attribute of each one. The smallest value has the highest priority.

● The guard of a Strong Transition must not refer to signals whose value are
computed inside a sub-state.

Jun 8, 2012

	1 Introduction
	2 The Polychrony Toolset
	3 The “TopCased Modeling” perspective
	4 Creation of a new project
	5 The reflexive editor plug-in
	5.1 Creation of a new .sme model file
	5.2 Parametrization of model objects
	5.3 Keywords of the language

	6 The graphical modeler plug-in
	6.1 Creation of a new SME diagram from a Template
	6.2 Creation of a new SME diagram from an existing SME file model
	6.3 Diagram Accessibility and Aspects
	6.3.1 Interface Definition Diagram
	6.3.2 Data flow Diagram
	6.3.3 Clock Relations and Dependences Diagram
	6.3.4 Library Diagram
	6.3.5 Mode Automaton Diagram
	6.3.6 Tuple Type Diagram

	7 The compilation scenarios plug-in
	7.1 Functionalities
	7.2 Generators
	7.3 Reflexive editor
	7.4 SME Scenario View

	8 The Signal text editor
	9 The connection to the Polychrony services
	9.1 How does the connection work ?
	9.2 Compiler configuration
	9.3 Applying Polychrony services
	9.4 Simulation
	9.4.1 C/C++
	9.4.2 Java

	10 The example plug-in
	10.1 Counter
	10.2 Watchdog
	10.3 Simple Hierarchic Automaton

