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Abstract

This documentation is designed to serve as a user’s manual for SIGNAL and SIGALIL It explains how one
can use SIGNAL and SIGALI from scratch, without any previous knowledge about the architecture of either
of them. SIGNAL is the compiler of a synchronous data-flow language of the same name. This language
is used for precise specification of real-time reactive discrete event systems. When used with one of
its options, the SIGNAL compiler produces a Polynomial Dynamical System(PDS) model of the SIGNAL
program in a code appropriate for SIGALI. SIGALI is a model-checking tool based on formal calculus
which takes this PDS model as input and offers functionalities for verification of system properties and
discrete controller synthesis. The SIGNAL compiler can also produce code in other formats like the Dc+
(declarative code) format (which is an equational level encoding of implicit automata) or sequential C
code.

1 Modelling a system in SIGNAL
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Figure 1: The specification stage.

To specify our model, we use the synchronous data flow language SIGNAL [?]. The aim of SIGNAL is to
support the design of safety critical applications, especially those involving signal processing and process
control. The synchronous approach guarantees the determinism of the specified systems, and supports
techniques for the detection of causality cycles and logical incoherences. The design environment features
a block-diagram graphical interface [?], a formal verification tool, SIGALI, and a compiler that establishes
a hierarchy of inclusion of logical clocks (representing the temporal characteristics of discrete events),
checks for the consistency of the inter-dependencies, and automatically generates optimized executable
code ready to be embedded in environments for simulation, test, prototyping or the actual system.
Further, the model read by SIGALI has to be in z3z format which is obtained by compiling the SIGNAL
program using the -z3z option. Fig. 1 shows the specification stage.



1.1 The SIGNAL language & Specification

For specification of a system, one can use the syntax of the language SiGNAL V4 [3]. The SIGNAL
language [?] manipulates signals X, which denote unbounded series of typed values, indexed by
time. An associated clock determines the set of instants at which values are present. The constructs
of the language can be used in an equational style to specify the relations between signals, i.e.,
between their values and between their clocks. Data flow applications are activities executed over
a set of instants in time. At each instant, input data is acquired from the execution environmen-
t; output values are produced according to the system of equations considered as a network of operations.

The SiGNAL language is defined by a small kernel of operators. The basic language constructs are
summarized in Table (1). Each operator has formally defined semantics and is used to obtain a clock
equation and the data dependencies of the participating signals. For a more detailed description of the
language, its semantic, and applications, the reader is referred to [?].

Language Construct Signal syntax Description
stepwise extensions C:=AopB where op : arithmetic/relational/boolean operator
delay ZX:=X$%n memorization of the n*? past value of X
extraction C := A when B C equal to A when B is present and true
priority merging C := A default B | if A is present C:=A else if B present C:= B else C absent
Process Composition | (|P|Q]) processes are composed, common names correspond to shared signals
useful extensions
when B the clock of the true instants of B
event B the presence instants of B
A"=B Clock of A equal with clock of B

Table 1: Basic SIGNAL language constructs

1.1.1 A 1 bit shift-register.

For example, the process m modelled by the following code represents a 1 bit memory:

process m = {boolean Minit}
(? boolean Min ! boolean Mout; )
(| Z_Mout := Min default Mout)
| Mout := Z_Mout $ 1 init Minit
1)/ Z_Mout

There is one Boolean input Min, one Boolean output Mout, and a constant initialization parameter
Minit. The output is defined as a combination of the input and the value in memory with delay of one

clock cycle.
The program is compiled by the SIGNAL compiler which analyses the clocks and checks the constraints,

but does not generate executable code because Mout is not completely determined by the input. It can
be present between two successive occurences of the input, arbitrarily often.

1.1.2 A flipflop.

The 1 bit memory defined above is used in the following process called flipflop. It has one Boolean
output B denoting its two states: true and false, and one Boolean input C. The flipflop changes its state
when C is true(see Fig. 2):

process flipflop =
(7 boolean C ! boolean B; )
( % One Boolean memory %
| B := m{false}(NewB)
% New value is the negation of the current value %
| NewB := not B when C
% The memory is synchronized with the input %
| B~"=C
D)

where

(declaration of m)
end;
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Figure 2: Behavior of f1ipflop.

The program when compiled with the -c option, generates C code from which an executable can be
obtained in the manner described in the next section. This executable can be simulated on an input file
containing the values of the input and produces an output file containing the values of the output.

1.1.3 Boolean double memory.

In the process double_m, there are two inputs C1, C2 and two outputs B1, B2. The two outputs encode
four states. The inputs and outputs are synchronized meaning that they have the same clock. The
process makes use of two Boolean memories:

process double_m =
(? boolean C1, C2
! boolean Bi, B2; )

( % Two Boolean memories %
| Bl := m{false}(NewB1)
| B2 := m{false}(NewB2)

% The new value is the value of the input %
| NewB1 := Ci
| NewB2 := C2

% The memory is synchronized with the inputs %
| B1 "= B2 "= C1 "= C2
D)

where

(declaration of m)
end;

Thus, in the above model, the outputs take the values of the respective inputs with a delay of one
clock cycle. So essentially the system memorizes two Boolean values(see Fig. 3).

1.2 Compilation

Compilation into executable C code. For this, the compilation is done with the -c option. For
example, for the file D.SIG, the command is sig -c D.SIG. This produces the relevant .c and .h files
which are used to build the executable:
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Figure 3: Behavior of double m.

prakashp @ yeti >sig -c D.SIG

SIGNAL/DC+ Compiler version V4.13.10 (Jan 2001) / linux
INRIA - All rights reserved
You are entitled to use this software only
if your organization has signed an agreement with INRIA
This software uses a Binary Decision Diagram Package -- Copyright (c) 1988, 1989
Regents of the University of California. All rights reserved.

Program analysis

Reduction to the kernmel language
Graph generation

Clock calculus (Process: double_m)

———————————— DC+2bDC .... BEGIN --------------
....BEGIN for node : double_m
....DONE....

———————————— DC+2bDC il END mmmmmmmmmmmmeo
Graph processing(Process : double_m)

bDC+2sbDC+

bDC+2sbDC+
===> C generation (Process :
* Externals Declarations : double_m_externals.h
* Types Declarations : double_m_types.h
* Main Program : double_m_main.c
* Instant Execution : double_m_body.c
* Header file (body) : double_m_body.h

* Input/Output procedures : double_m_io.c
prakashp @ yeti >

Now the C files obtained can be compiled to get the executable:

prakashp @ yeti >cc -o double_m double_m_main.c double_m_body.c double_m_io.c
double_m_body.c:

double_m_io
double_m_main.c:
prakashp @ yeti >

Fig. 4 summarizes the compilation stage.

In this case the executable is double m. For execution, two files RC1.dat and RC2.dat are required
which contain the Boolean values of the inputs C1 and C2 respectively. The execution of ./double_m
produces two files WB1.dat and WB2.dat which contain the Boolean values of the outputs B1 and B2
respectively(see Fig. 5). As an example, the input and output files obtained after a sample simulation
are:

RCl.dat: 100111010001
WBl.dat: 010011101000
RC2.dat: 000110111010
WB2.dat: 000011011101
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Figure 4: The compilation stage.
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Figure 5: Simulation by an executable and input-output files.

Thus, the output values are same as their corresponding input values delayed by one clock cycle
which is the expected result.

Compilation into the z3z format. In order to analyze the system using SiGALI, one has to
compute a polynomial dynamical system. For this ;the specification of the system written in SIGNAL is
compiled with the -z3z option. Suppose the file in which the process double m is specified is D.SIG

When D.SIG is compiled by the command sig -z3z D.SIG, a file called double m.z3z is obtained as
output:

prakashp @ yeti >sig -z3z D.SIG

SIGNAL/DC+ Compiler version V4.13.10 (Jan 2001) / linux
INRIA - All rights reserved

You are entitled to use this software only

if your organxz

signed an agreement with INRIA

This software uses a Binary Decision Diagram Package —- Copyright (c) 1988
Regents of the University of California.

, 1989
All rights reserved.

===> Program analysis
Reduction to the kernel language
Graph generation

===> Clock calculus (Process: double_m)

# Equations over Z/3Z generation: double_m.z3z
prakashp @ yeti >

we will come back to this point in the next section.



2 The model checker SIGALI

The SIGNAL environment also contains a verification and controller synthesis tool-box, named SIGALI.
This tool allows to prove the correctness of the dynamical behavior of the system. The equational nature
of the SIGNAL language leads naturally to the use of a method based on polynomial dynamical equation
systems (PDS) over Z /37, (i.e., integers modulo 3: {-1,0,1}) as a formal model of program behavior.

2.1 Basic facts about SIGALI

The theory of Polynomial Dynamical Systems uses classical tools in algebraic geometry, such as ideals,
varieties and comorphisms [?]. The techniques consist in manipulating the system of equations instead
of the sets of solutions, which avoids enumerating the state space.

2.1.1 The mathematical framework : an Overview

Let Z = {Z1, Z2, ..., Zp} be a set of p variables and Z /37 [Z] be the ring of polynomials with variables Z.
Thus Z/37,[Z] is the set of all polynomials of p variables. Given an element of Z/37,[Z], P(Z1, Z, ..., Zp)
(shortly P(Z)), we associate its set of solutions Sol(P) C (Z/37,)™:

Sol(P) dzef{(zl, -2k) €(Z/37, )k|P(z1, o 2k) =0} (1)

It is worthwhile noting that in Z /37 [Z], Z¥ — Z1, ..., ZE — Zj evaluate to zero. Then for any P(Z) €
Z/37,[Z], one has Sol(P) = Sol(P + (Z¥ — Z;)). We then introduce the quotient ring of polynomial
functions A[Z] = Z/37,[Z]/<z»—z>, where all polynomials Z? — Z; are identified to zero, written for
short Z? — Z = 0. A[Z] can be regarded as the set of polynomial functions with coefficients in Z /37
for which the degree in each variable is lower than 2. [?] showed how to define a representative of
Sol(P) called the canonical generator. Our techniques will rely on the following: For all polynomials
P,P,PeZ/37Z]

e Sol(P1) C Sol(P,) whenever (1 — P?) x Py = 0. (inclusion)
e Sol(P1) N Sol(P;) = Sol(P, @ P») (intersection), where

PP % (P2 4 P2y 2)

o Sol(P1) U Sol(Py) = Sol(P1 % P) (union) and (Z/37,)™ \ Sol(P) = Sol(1 — P?) (complementary).

2.1.2 Dynamical systems: Basics

A dynamical system can be mathematically modelled as a system of polynomial equations over Z/3Z
Z (the Galois field of integers modulo 3) of the form:

Q(Xz Y) = 0
X' = P(X,)Y) 3)
Qo(X) = 0
where,
e X is the set of n state variables, represented by a vector in (Z/3Z )";
e Y is the set of m event variables, represented by a vector in (Z/3Z)™;
e Q(X,Y) =0 is the constraint equation;
e X' = P(X,Y) is the evolution equation. It can be considered as a vectorial function from

(Z/3Z)"*™ to (Z/3Z)™; and,
e (Qo(X) = 0 is the initialization equation.

In order to prove its dynamical properties, every SIGNAL process is translated into a system of
polynomial equations over Z/3Z = {—1,0,1} having the above form. The principle is to encode the 3
possible values of a Boolean signal by:



present Atrue < +1
present A false <— -1
absent ~— 0

For the non-boolean signals, we only code the fact that the signal is present or absent: (present — 1
and absent — 0). Note that the square of present is 1, whatever its value, when it is present. Hence,
for a signal X, its clock can be coded by z*. It follows that two synchronous signals X and Y satisfy the
constraint equation: z? = y*. This fact is used extensively in the following. Primitive operators.
Each of the primitive processes of SIGNAL can be encoded in a polynomial equation. For example C :=
A when B, which means ”if b =1 then ¢ = a else ¢ = 0” can be rewritten in ¢ = a(—b—b?): the solutions
of this are the set of behaviors of the primitive process when. The delay $, which is a dynamic operator
deserves some extra explanations. It requires memorizing the past value of the signal into a state variable.
Translating B := A $1, requires the introduction of two auxiliary equations: (1) z’ = a + (1 — a®)z, where
«' denotes the next value of state variable &, expresses the dynamics of the system. (2) b = a’z delivers
the value of the delayed signal according to the memorization in state variable z. Table 2 shows how
all the primitive operators are translated into polynomial equations. For the non boolean expressions,
we just translate the synchronization between the signals. By composing the equations representing the

boolean instructions

B := not A b = -—a
C := A and B 22 _ Zé)(ab—a—b—l)
C = AorB 22 ; Zg(l—a—b—ab)
C := A default B c = a+(1-a®)b
C := A when B c = a(-b—1b?)

2 = a+(1—-ad’)z
B := A $1 (init bg) b = a’z

g = bo

non-boolean instructions

B = f(41,...,4,) ¥ = a=---=d
C := A default B A = a®+b-ad?
C := A when B 2 = a’(-b-b?
B A $1 (init bg) A = a

Table 2: Translation of the primitive operators.

primitive processes, any SIGNAL specification can be translated into a set of equations called polynomial
dynamical system (PDS) as the one described in (3).

We now explain how one can use the model-checker SIGALI, in order to analyze the obtain polynomial
dynamical system.

2.2 The SiGALI commands & Operations

2.3 General Commands

Starting and exiting The SIGALI environment can be started by the sigali command. A prompt
Sigali : appears. To quit, one can use the SIGALI command quit():

Sigali : quit();

~D works also fine.

Loading the file of a model The .z3z file which contains the PDS model of the system (or any
other S1GALI files, can be loaded by using the load or the read command. For example, in case of
double_m the command is:



Sigali : load("double_m.z3z");

Trace By the trace command it is possible to save in a file all the commands executed and results
obtained in the Sigali environment:

e trace("filename"); opens the file for trace.
e fintrace(); closes the current trace file.

All commands executed(and the corresponding responses) in between are saved in the trace file.

Execution time SicALI allows the measurement of the time taken for each computation. The com-
mand chrono (true) ; starts the clock. After each subsequent command, the time taken for the compu-
tation is displayed. The command chrono(false); stops the clock.

2.3.1 Symbols and declarations

A symbol or an identifier can be assigned to an expression in the following format:
symbol : <expression>;

For example:
P: a’2*Db+ c2;

assigns the identifier p to the expression a’b + ¢

Indeterminate symbols can be delared by the command: declare or 1declare. For example:
declare(a,b,c,d); takes one or more parameters.
ldeclare([a,b,c,d]); takes only one parameter (as a list).
Once a symbol is declared, its not possible to modify its value. The command indeter () ; lists all the
indeterminate symbols.

2.3.2 Polynomials and equations

A polynomial is an expression. An equation is of the form p1=p2 where pl and p2 are two polynomial
expressions. SIGALI can also manipulate lists of polynomials and equations. For example, [a + b, a, b,
0, 1]; is a list of 5 polynomials and [a "2 = b "2, ¢ = a and b]; is a list of 2 equations. Of course
a symbol can be assigned to a list as well. For example:

list : [a + b, a, b, 0, 1];

equations : [a "2 =b "2, ¢ = a and b];
The command eval evaluates a polynomial:

eval(p, [a,b,c],[0,1,-1]1);
evaluates the polynomial p after substituting 0, 1 and -1 for a, b and c respectively. Of course these
variables must occur in p.

If p is a polynomial, 1p1 and 1p2 are two lists of polynomials,1varl and 1var2 are two lists of variables,
and lconst is a list of constants(with values 0, 1 or -1), then:

rename (p, lvarl, lvar2);
replaces in p, the it variable of 1vari by the i** variable of 1var2.

subst(p, lvarl, 1lpl);
replaces in p, the it" variable of 1varl by the i** polynomial of 1pl.
In case of the functions:

1l eval(lpl, lvarl, lconmst);

1l_rename(lpl, lvarl, lvar2);

1_subst(lpl, 1lvaril, 1p2);
the first argument is a list of polynomials instead of one polynomial and they perform they same function
as their counterparts for each polynomial of the list.
The command equal compares two polynomials:

Sigali: 1ldeclare([a, bl);

Sigali: equal(a,b);
False

Sigali: equal(a when b, a * (- b - b™2));
True




Figure 6: TDD representation of the polynomial a?b + ¢2.

2.3.3 Representation of polynomials

A variable or polynomial can only take values belonging to F3 = {—1,0,1}. In S1GALI, a polynomial is
represented by means of a Ternary Decision Diagram(TDD) which is an extension of a Binary Decision
Diagram(BDD). In a TDD, each non-leaf node represents a variable and each leaf node is a value of the
polynomial. An arbitrary ordering of the variables must be done to facilitate the assignment of a node to
a variable. Further, each non-leaf node has 3 edges emanating from it, labelled by the 3 possible values:
{(-1 or 2), 0, 1} that the corresponding variable may take. So, each path from the root to a leaf assigns a
unique sequence of values to the variables and the value of the leaf gives the value of the polynomial for
that particular assignment. For example, if p is the polynomial a®b + ¢?, and the ordering is a < b < ¢,
then p is represented by S1GALI as follows (The TDD representation of p is shown in Fig. 6.):

Sigali : p : a"2 % b + c"2;

1%

b=0
subformula O

b=1

a=2
subformula 1
a

Note: The value 2 is equivalent to -1.



In order to avoid repetitions in listing, portions occuring more than once are labelled as #n# (n = 0, 1,
2, ...). These repetitions tend to occur when two or more edges enter a non-leaf node in the TDD. While
reading the TDD, the label subformula n, wherever it occurs, is to be replaced by the portion labelled
#n#.

2.3.4 (System of) Polynomials manipulation

The canonical generator of a polynomial system given by a list of polynomials can be computed by the
function gen. The command: gen(lpoly) ;s where lpoly is a list of polynomials. For example:

gen([a + b - ¢, a"2 - 1]); gives the canonical generator of the polynomial system given by the
two polynomials a + b - ¢ and a*2 - 1. The previous command can also be given as:

gen([a + b = c, a"2 = 1]);

Complementation. Let g be a polynomial and V its set of solution, then the generator of the
complement of V' is obtained by: complementary(g) ;

Intersection. Let pl and p2 be two polynomials and V'1 and V2 be the corresponding set of solutions,
then: intersection(pl,p2); is the canonical generator of Vi N Va. The number of arguments can be
greater than 2. For example one can write intersection(pl,p2,p3,p4);

Union. Let pl and p2 be two polynomials and V1 and V2 be the corresponding set of solutions,
then: union(p1,p2); is the canonical generator of V1 U V. As in case of intersection, the number of
arguments can be greater than 2.

Tests of inclusion Let p1 and p2 be two polynomials and V1 and V2 be the corresponding set of
solutions, then: inclus(gl,g2); is True if and only if Vi C V5. For example:

> declare(a);

> g1l : gen([a"2 = 11);
g1

> g2 : gen([a = 11);
82

> inclus(g2,g1);

True

> inclus(gl,g2);
False

An Example:

> declare(a, b);

> list : [a =1, b = -1];

list

> poly : gen([a = 1, b = -11);
poly

> A : gen([a = 1]);

A

> B : gen([b = -11);

B

> AnB : intersection(A, B);
AnB

> AuB : union(A, B);

AuB

> equal(poly, AmB);

True

> equal(poly, AuB);

False

> equal(complementary(AuB), intersection(complementary(A), complementary(B)));
True

> equal(AuB, A + B - AnB);
True

2.4 Systems and Processes

S1GALI distinguishes between two categories of dynamical systems: systems and processes.
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2.4.1 Systems

Systems are general dynamical systemss in which null transitions(basically self loops) are taken into
account even when all the signals are absent. For example in case of the process double m, a system can
be constructed as follows:

sys_double_m : systeme(conditions,etats,evolutions,initialisations,contraintes,controlables);

sys_double_m

conditions is a list of variables encoding the event variables, whereas etats is a list of variables which
encodes the states variables. controlables is a subset of conditions and corresponds to the controllable
event variables. evolutions is a list of polynomials (one for each state variables) which corresponds to the
evolution of each state variables. initialisations is a list of polynomials (the solutions of this polynomial
systems correspond to the initial states of the system). contraintes is also a list of polynomial encoding
the constraints part of the polynomial dyanmical system (i.e. Q(X,Y) =0).

2.4.2 Processes

In a process, null transitions are excluded i.e. no transition can take place in the absence all the signals.
All dynamical systems originating from SIGNAL programs fall under this category. In case of the process
double_m, a process can be constructed as follows:

proc_double_m :
processus(conditions,etats,evolutions,initialisations,contraintes,controlable);

proc_double_m

2.4.3 Access to the components

If syst is a dynamical system constructed by the command systeme or processus, then the 6 components
of syst can be accessed by:

event_var(syst) ;

state_var(syst) ;

evolution(syst) ;

initial(syst);

constraint (syst) ;

controllable_var (syst) ;

2.4.4 Some special sets

If g is the canonical generator of a set of states F, then: pred(syst, g); is the canonical generator of
the set of predecessors of E. Similarly, all_succ(syst, g); is the canonical generator of the set of states
all of whose successors belong to E. evnt_adm(syst, g);is the canonical generator of the set of events
admissible in E. If g is the canonical generator of a set of events F, then: etats_adm(syst, g); is the
canonical generator of the set of states compatible with at least one of the events in F.

3 Verification of systems using SIGALI
SIGALI provides certain functionalities for the verification of the properties of a dynamical system.

3.1 Loading of the necessary libraries
The following files must be loaded:

load("Creat_SDP.z3z");

load("Verif_Determ.bib");

11



A more convenient way is to make a file called Bibli.z3z containing the read commands for the
above files and then to load Bibli.z3z at the Sigali prompt.

3.2 Liveness
3.2.1 Rudiments

Definition: A dynamical system is alive iff Vz,y such that Q(z,y) = 0, Jy' such that Q(P(z,y),y') =
0.
In other words, a system is alive iff it contains no sink states.
If syst is a system or a process, then:
vivace(syst) ;
is True if and only if syst is alive.
In case of the process proc_double_m for example:

vivace(proc_double_m);

True

3.2.2 An example of the difference between system and process

A flipflop with constraint on the input. One may use the 1 bit memory m to define the process
flipflop_c:

process flipflop_c =
(? event E
! boolean B; )

( % One Boolean memory %
| B := m{false}(NewB)
% New value : negation of the current value %
| NewB := not B
% Memory no more frequent than input %
| E~+B"=E
% Input admissible when the memory value is True %
| E "= when B
B}

where

(declaration of m)
end;

The clock constraint specifies that an input is accepted only when the value of the memory is true.
It also specifies that the memory value is present only when the input is present. These together try
to impose constraints on the external event from within the system. This prevents the generation of
executable code in this case.

Also, once the memory value becomes false, it remains false since no further input is accepted.
Thus the process is blocked and it is not alive. On the other hand, in case of the system, null transitions
can still take place from the false state to itself and so the system is alive.

Relative liveness. The evaluation of liveness of the two representations(system and process) by
SIGALI yields:

load("flipflop_c.z3z");

sys_flipflop_c : systeme(conditions,etats,evolutions,initialisations,contraintes);

sys_flipflop_c

proc_flipflop_c : processus(conditions,etats,evolutions,initialisations,contraintes);

proc_flipflop_c

vivace(proc_flipflop_c);

False

vivace(sys_flipflop_c);

True

As expected, the system is alive but the process is not.

12



3.3 Safety Properties
3.3.1 Invariance

Definition: A set of states E is invariant for a dynamical system iff for every state x in E and every
event y admissible in x, the successor state ' = P(z,y) is also in E.
If syst is a dynamical system and g is the canonical generator polynomial of a set of states E,
invariant (syst, g);
is True if and only if E is invariant for syst.
For example, in case of the process double_m, one can specify a property preq : [etat_1 =
etat_2] ;. The invariance of this property can then be tested by the command:
invariant(pf, gen(pr_eq));,
where pf is the process constructed by the command processus.

3.3.2 Greatest invariant subset

Given a set of states E, there exists a set F' which is the greatest invariant subset of E. If syst is a
dynamical system and g is the canonical generator of E, then:

pg-invariant(syst, g);
gives the canonical generator of F'. Abbreviation: pgi(syst, g);

3.3.3 Invariance under control

Definition: A set of states E is control-invariant for a dynamical system iff for every state x in E,

there exists an event y such that Q(x,y) = 0 and the successor state x' = P(z,y) is also in E.

If syst is a dynamical system and g is the canonical generator polynomial of a set of states E,
c_invariant(syst, g);

is True if and only if E is control-invariant for syst.

3.3.4 Greatest control-invariant subset

Given a set of states E, there exists a set F’ which is the greatest control-invariant subset of E. If syst
is a dynamical system and g is the canonical generator of E then:

pg-c-invariant (syst, g);
gives the canonical generator of F'. Abbreviation: pgci(syst, g);

3.4 Reachability Properties
3.4.1 Reachability

Definition: A set of states E is reachable iff for every state © € E there ewists a trajectory starting
from the initial states that reaches x.
If syst is a dynamical system and g is the canonical generator polynomial of a set of states E,
accessible(syst, g);
is True if and only if F is reachable from the initial states of syst.
Note that Reachable(syst, g); works also fine

3.4.2 Attractivity

Definition: A set of states F is attractive for a set of states E iff every trajectory initialized on E
reaches F'. If syst is a dynamical system and g is the canonical generator polynomial of a set of states
E,

Attractivity(syst, g);
is True if and only if E is Attractive from the initial states of syst.

Note: To avoid confusion between states and properties, it is essential to keep in mind that
when a property is defined, SIGALI computes the set of states where the property holds. So
for every property, there always corresponds a unique set of states. This set is empty if
the property does not hold at any state of the system.
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3.5 A demonstration

In order to demonstrate how one can use the SIGALI commands given in this section, as well as interpret
SIGALI's response to these commands, a small example is given below. It is for the process double.m
which is defined and explained in Section 2.1. It will be a good exercise to check for oneself the results
produced by SIGALI in order to get a clear picture of the issues involved.

> trace("double_m.log");

> load("double_m.z3z");

> pf : processus(conditions, etats, evolutions, initialisations, comtraintes);
pt

> varetat(pf);

[etat_1, etat_2]

> varevent(pf);

[c1, c2]

> pr_eq : [etat_1 = etat_2];

Pr_eq

> pr_sync : [etat_1"2 = etat_272];
pr_sync

> pr_val : [etat_1 = -1, etat_2 = 1];
pr_val

> pr_par : [etat_2 = -1];

pr_par

> pr_eq;

etat_1=0
etat_2=0
%o
etat_2=1
2
etat_2=2
w1
etat_2
etat_1=1
#0#
etat_2=0
21
etat_2=1
%o
etat_2=2
%o
etat_2
etat_1=2
subformula 0
etat_1

> pr_par;
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> invariant(pf, gen(pr_eq));
False

> invariant(pf, gen(pr_sync));
True

> invariant(pf, gen(pr_val));
False

> invariant(pf, gen(pr_par));
False

> accessible(pf, gen(pr_eq));
True

> accessible(pf, gen(pr_sync));
True

> accessible(pf, gen(pr_val));
True

> accessible(pf, gen(pr_par));
True

> c_invariant(pf, gen(pr_eq));
True

> c_invariant(pf, gen(pr_sync));
True

> c_invariant(pf, gen(pr_val));
True

> c_invariant(pf, gen(pr_par));
True

> pg_invariant(pf, gen(pr_eq));
%1

> pgi(pf, gen(pr_eq));
P48

> pgci(pf, gen(pr_eq));
etat_1=0
etat_2=0
%o
etat_2=1
21
etat_2=2
21
etat_2
etat_1=
etat_2=0
w1
etat_2=1
%o
etat_2=2
%1
etat_2
etat_1=2
etat_2=0
w1
etat_2=1
w1
etat_2=2
%o
etat_2
etat_1

> pgi(pf, gen(pr_sync));
etat_1=0
etat_2=0
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A1
etat_2
etat_1=1
#0#
etat_2=0
"
etat_2=1
%o
etat_2=2
%o
etat_2
etat_1=2
subformula 0
etat_1

> pgeci(pf, gen(pr_sync));
etat_1=0
etat_2=0
%o
etat_2=1
w1
etat_2=2
w1
etat_2
etat_1=1
#0#
etat_2=0
w1
etat_2=1
%o
etat_2=2
%o
etat_2
etat_1=2
subformula 0
etat_1

> pgi(pf, gen(pr_val));
n

> pgci(pt, gen(pr_val));
etat_1=0
w1
etat_1=1
w1
etat_1=2
etat_2=0
w1
etat_2=1
%o
etat_2=2
21
etat_2
etat_1

> pgi(pf, gen(pr_par));
%1

> pgci(pf, gen(pr_par));
etat_2=0

> pg_c_invariant(pf, gen(pr_par));
etat_2=0
w1
etat_2=1
w1
etat_2=2
%o
etat_2

> quit();

3.6 Expression of system properties in SIGNAL+

It was already seen how system properties can be declared in SIGALI by means of symbols, identifiers and
indeterminates. The subsequent sections will explain how to verify these properties and synthesize the
controller using SIGALI. Using an extension of the SIGNAL language, called SIGNAL+, it is also possible
to express the properties to be checked, as well as the control objectives to be synthesized, in the SIGNAL
program. The syntax is:
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(I SIGALI(Objective(B_?7(PROP))) |)
The keyword SIGALI means that the subexpression has to be evaluated by SiGALI. The function B_? will
encode the “value” of the boolean PROP defined in the SIGNAL program, that we want to analyse (it
can be either B_True or B_False, which means that we are interested in analyzing the set of states where
the boolean PROP is true (resp. false The function Objective can be a verification objective: it can be
Always, C_Invariant, Reachable, Attractivity, etc, or a control objective to be synthesized. we will
come back to this point in the next section.
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