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Abstract

SIGNAL is a synchronized data flow language designed for programming real-time systems. A SIGNAL
program defines both data and control processing, from a system of equations, the variables of the system
are signals. These equations can be organized as sub-systems (or processes). A signal is a sequence
of values which has a clock associated with; this clock specifies the instants at which the values are
available.

This reference manual defines the syntax and the semantics ofthe INRIA version of the SIGNAL V4
language. The original official definition of the SIGNAL V4 language was published in French in june
1994. It is available at the following address:
ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz
It was defined together with François DUPONT, from TNI, now Geensoft1 (Dassault Systèmes). Some of
the evolutions described in this document have been defined too in cooperation with François DUPONT.
However, the SIGNAL version implemented by Geensoft in the RT-Builder tool is slightly different in
some aspects from the version described here. A descriptionof RT-Builder may be found at the following
address:
http://www.geensoft.com/en/article/rtbuilder

The definition of the SIGNAL version described in this manualis subject to evolutions. It is (partly)
implemented in the INRIA POLYCHRONY environment. Consult the following site:
http://www.irisa.fr/espresso/Polychrony

1Geensoft. Technopôle Brest-Iroise, 120 rue René Descartes, F-29280 Plouzané, France.

ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz
http://www.geensoft.com/en/article/rtbuilder
http://www.irisa.fr/espresso/Polychrony
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Main evolutions of this document

From version dated March 1, 2010 to the present one:

• addition of new classes of process models: procedure, whichis a special case of action (cf.
sectionXI–1.3, page186), and automaton—to be completed (cf. sectionXI–1.6, page187),
and addition of some precisions in the definition of functions and nodes;

• modified description of thetick of a process (cf. sectionVII–5, page138);

• modified definition of the choice process (cf. sectionVII–6, page139);

• addition of a new syntax for clock extraction from a condition (cf. sectionVI–5, page120);

• a distinction is made between external and virtual objects:types (cf. sectionV–7, page86),
constants (cf. sectionV–8, page88), process models (cf. sectionXI–1, page183); virtual
objects may be redefined in a given context (cf. sectionXII–1, page203);

• modified definitions of theafter andfrom counters (cf. sectionVI–4.5, page118).

From version dated March 7, 2008 to the present one:

• addition of an assertion process, applying on constraints (cf. sectionVII–7, page144); asser-
tions on a Boolean signal, that were previously described inintrinsic processes, are moved in
this new section andassert becomes a reserved word;

• addition of some pragmas (cf. sectionXI–7, page195).

From version dated June 19, 2006 to version dated March 7, 2008:

• explicit declaration of shared variables for signals defined using partial definitions (cf. section
V–10, page90);

• addition and renaming of some pragmas (cf. sectionXI–7, page195).

From version dated April 8, 2005 to version dated June 19, 2006:

• possibility to have directives in model types (cf. sectionXI–8, page200);

• addition of the intrinsic processmin_clock (cf. sectionXIII–1, page207);

• addition of intrinsic processes for affine clock relations (cf. sectionXIII–2, page207).
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From version dated March 31, 2004 to version dated April 8, 2005:

• more detailed description, with examples, of the intrinsicprocessassert.

From version dated December 18, 2002 to version dated March 31, 2004:

• precisions related to spatial processing (cf. chapterIX, page157) and addition of the prede-
fined functionindices (cf. sectionIX–10, page166).
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Chapter I

Introduction

The SIGNAL language has been defined at INRIA/IRISA with the collaboration and support from the
CNET. This reference manual defines the syntax and semanticsof the INRIA version of the language,
which is an evolution of the V4 version. The V4 version resulted from a synthesis of experiments made
by IRISA and by the TNI company. An environment of the SIGNAL language can be built in a style
and in a way it is not the objective of this manual to define. However, such an environment will have to
provide functions for reading and writing programs in the form specified in this manual; the translation
scheme will give the semantics of the texts built in this environment.

I–1 Main features of the language

A program expressed in the SIGNAL language defines some data and control processing from a system
of equations, the variables of which are identifiers ofsignals.These equations can be organized in sub-
systems (orprocesses). A model of processis a sub-system which may have several using contexts; for
that purpose, a model is designated by an identifier. It can beprovided with parameters specifying data
types, initialization values, array sizes, etc. In addition, sets of declarations can be organized in modules.

I–1.1 Signals

A signal is a sequence of values, with which a clock is associated.

1. All the values of a signalbelong to a samesub-domainof adomain of values,designated by their
commontype.This type can be:

• predefined (the Booleans, sub-domains of the Integers, sub-domains of the Reals, sub-domains
of the Complex. . . ),

• defined in the program (Arrays, Tuples),

• or referenced in the program but known only by the functions that handle it (Externals).

2. The clock of a signalallows to define, relatively to a totally ordered set containing at least as much
elements as the sequence of values of this signal, the subsetof instants at which the signal has a
value. A pure signal, the value of which belongs to the singleton event, can be associated with
each signal. This pure signal is present exactly at the presence instants of the signal; theevent
type is a sub-domain of the Booleans. By extension, this puresignal will be calledclock. A pure
signal is its own clock. In a process, the clock of a signal is the representative of the equivalence
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class of the signals with which this signal issynchronous(synchronous signals have their values at
the same instants).

3. These values are expressed in equations of definition and in constraints.

I–1.2 Events

A valuation associates, at a logical instant of the program (transition of the automaton), a value with a
variable.

An event is a set of simultaneous valuations defining a transition of the automaton. In an event, a
variable may have no associated value: it will be said that the corresponding signal is absent and its
“value” will be written⊥. An event contains at least one valuation.

Determining the presence of a signal (i.e., a valuation) in an event results from the solving of a system
of equations inF3, the field of integers modulo 3.

The value associated with a variable in an event results fromthe evaluation of its expression of
definition (thus it should not be implicit: circular definitions of non Boolean signals are not allowed).

I–1.3 Models

A model associates with an identifier a system of equations with local variables, sub-models and external
variables (free variables). The parameters of a model are constants (size of arrays, initial values of
signals, etc.).

A model may be defined outside the program; in that case, it is visible only through its interface.
Calling a model defined in a program is equivalent to replacing this call by the associated system of
equations (macro-substitution).

Invoking a model defined outside the program can produce side-effects on the context in which the
program is executed; these effects can be directly or indirectly perceived by the program and they can
affect the set of instants or the set of values of one or more interface signals. Such a model will be said
non functional (for example arandom“fonction” is such a non functional model).

I–1.4 Modules

The notion of module allows to describe an application in a modular way. In particular, it allows the
definition and use of libraries written in SIGNAL or external ones, and constitutes an access interface to
external objects.

I–2 Model of sequences

A program expressed in the SIGNAL language establishes a relation between the sequences thatconstitute
its external signals. The set of programs of the SIGNAL language is a subset of the space of subsets of
sequences (partB, chapterIII ).

I–3 Static semantics

The relations on sequences presented in the formal model describe a set of programs among them are
only considered as legal programs those for which the ordering of each set of instants is in accordance
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with the ordering induced by the dependencies (causality principle), and which do not contain implicit
definitions of values of non Boolean signals.

I–3.1 Causality

A real-time program has to respect the causality principle:according to this principle, the value of an
event at some instantt cannot depend on the value of a future event. The respect of this principle is
obtained in SIGNAL language by the implicit handling of time: the user has a set of terms that allow
him/her to make reference to passed or current values of a signal, not to future ones.

I–3.2 Explicit definitions

The synchronous hypothesis on which is based the definition of the SIGNAL language allows to develop
a calculus on the time considered as a pre-order in a discreteset.

I–4 Subject of the reference

This manual defines the syntax, the semantics, and formal resolutions applied by a compiler to a program
expressed in the SIGNAL language. The SIGNAL language has four classes of syntactic structures:

1. The structures of the kernel languagefor which a formal definition is given in the model of
sequences. The kernel language contains a minimal set of operators on sequences of signals of type
event andboolean on which the temporal structure of the program is calculated; it contains also
a mechanism allowing to designate signals of external typesand non interpreted functions aplying
to these signals. Removing anyone of these structures wouldstrictly reduce the expressiveness of
the language.

2. The structures of the minimal languagethat can be subdivided in three sub-classes:

(a) the non Boolean types and the associated operators, which allow to write a program com-
pletely in the SIGNAL language;the open vocation of theSIGNAL language is neverthe-
less clearly asserted:it is possible to use external functions/processes, definedin another
language, or even realized by some hardware component; thisis even advised when specific
properties exist, that are not handled by the formal calculimade possible in the SIGNAL

language;

(b) the syntactic structures providing to the language an extensability necessary for its special-
ization for a particular application domain, and for its opening toward other environments or
languages;

(c) the operators and constructors of general use providinga programming style that favours the
development of associated methodologies and tools.

3. The standard (or intrinsic) process modelswhich form a library common to all the compilers of
the SIGNAL language;

4. The specific process modelswhich constitute specific extensions to the standard library.

This manual describes the structures of the kernel languageand of the minimal language.
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I–5 Form of the presentation

Three classes of terms are distinguished for the description of the syntax of the language:

• the vocabulary of the lexical level: each one of theterminals designates an enumerated set of
indivisible sequences of characters;

• the lexical structures: theTerminals of the syntactic level are defined, at a lexical level, by rules
in a grammar the vocabulary of which is the union of theterminals sets; no implicit character
(separators, for instance) is authorized in the terms constructed following these rules;

• the syntactic structures: theNON-TERMINALS are defined, at a syntactic level, by rules in a
grammar the vocabulary of which is composed of theTerminals; any number of separators can be
inserted between twoTerminals.

Every unit of the language is introduced and then described,individually or by category, with the
help of all or part of the following items. Generally, a generic term representing the unit is given:
EXPRESSION(E1 , E2, . . . )
whereE1, E2, . . . are formal arguments of the generic term. This representative is used to define the
general properties of the unit in the rubrics that describe them.

The grammar gives the context-free syntax of the consideredstructure in one of the following forms:

1. Context-free syntax

STRUCTURE ::=

DERIVATION1
| DERIVATION2
| . . .

Terminal ::=

DERIVATION1
| DERIVATION2
| . . .

terminal ::=

SET1
| SET2
| . . .

DERIVATION1, DERIVATION2 are rewritings of the variableSTRUCTURE (respectively, of the
variableTerminal ). SET1, SET2 are rewritings of the variableterminal ; they areDerivations
reduced to one single element (cf. below).

Each DERIVATION is a sequence ofelements, each of them can be:

• asetof characters, written in this typography (lexical level only),

• a terminal symbol (of the syntactic grammar) composed of letters, in this typography, for
which only the lower case form is explicited in the grammar;

• a terminal symbol (composed of other acceptable characters), in this typography,

• aTerminal , in this typography,

• a syntacticSTRUCTURE, in this typography (syntactic level only),
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• a non empty sequence ofelements in their respective typography, with or withoutcomment
in this typography, respectively in the following forms:

– element { symbol element } ∗

– { element } +

• an optionalelement, denoted [element ],

• a difference of sets, denoted {element1 \ element2 }, allowing to derive the texts ofelement1
that are not texts ofelement2.

The syntactic structures may appear either in the plural, orin the singular, following the con-
text. They may be completed by acontextual information,in this typography. For example, in
S-EXPR-ARITHMETIC, “-ARITHMETIC ” is only a contextual information for the syntactic
structureS-EXPR. Finally, several derivations may be placed on a same line.

2. Profile
This item describes the sets of input and output signals of the expression. This description is done
with the notations? (E) that designates the list of input signals (or ports) ofE, and ! (E) that
designates the list of output signals (or ports) ofE. The notation? {a1, . . . ,an} (respectively,
! { a1, . . . ,an} ) designates explicitly the set of input ports (respectively, output ports)a1, . . . ,an.
Finally, the set operationsA ∩ B, A ∪ B andA − B (the latter to designate the set of elements of
A that are not inB).

3. Types
This item describes the properties of the types of the arguments using equations on the types of
value of the signals. The notationτ (E) is used to designate the type (domain of value) of the
expressionE. Given a process model with nameP (cf. part E, sectionXI–1, page183), the
notationsτ (?P ) andτ (!P ) are used to designate respectively the type of the tuple formed by the
list of the inputs declared in the interface of the model, andthe type of the tuple formed by the list
of the outputs declared in this interface (cf. partE, sectionXI–5, page189).

(a) EQUATION

4. Semantics
When the term cannot be redefined in the SIGNAL language, its semantics is given in the space of
equations on sequences.

5. Definition in SIGNAL

TERM(E1, E2, . . . )
is a generic term of the SIGNAL language, to which is equal, by definition, the representative of
the current unit.

6. Clocks
This unit describes the synchronization properties of the arguments (values of Booleans and clocks)
with a list of equations in the space of synchronization. Thenotationω(E) is used to designate
the clock of the expressionE and the notation~ to designate the clock of the constant expressions,
or more generally, the clock of the context. An equation has generally the following form:

(a) ω(E1) = ω(E2)
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7. Graph
This item defines the conditional dependencies between the arguments with a list of triples:

(a) E1
E3−−→ E2

The signalE1 precedes the signalE2 at the clock which is the product of the clock ofE1, the clock
of E2 and the clock representing the instants at which the BooleansignalE3 has the valuetrue:
at this clock,E2 cannot be produced beforeE1.

8. Properties
This item gives a list of properties of the construction (forexample, associativity, distributivity,
etc.).

(a) PROPERTY

9. Examples

(a) One or moreExamples in the SIGNAL language illustrate the use of the unit.
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Lexical units

The text of a program of the SIGNAL language is composed of words of the vocabulary built on a setof
characters.

II–1 Characters

The characters used in the SIGNAL language are described in this section (Character). They can be
designated by an encoding which is usable only in the comments, the character or string constants, and
the directives, as precised in the syntax.

1. Context-free syntax

Character ::= character | CharacterCode

II–1.1 Sets of characters

The set of characters (denotedcharacter) used in the SIGNAL language contains the following subsets:

1. Context-free syntax

character ::= name-char | mark | delimitor | separator | other-character

(i) The setname-charof characters used to build identifiers:

(a) Context-free syntax

name-char::= letter-char | numeral-char | _

letter-char ::=

upper-case-letter-char | lower-case-letter-char | other-letter-char

upper-case-letter-char::=

A | B | C | D | E | F | G | H | I

| J | K | L | M | N | O | P | Q | R

| S | T | U | V | W | X | Y | Z
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lower-case-letter-char::=

a | b | c | d | e | f | g | h | i

| j | k | l | m | n | o | p | q | r

| s | t | u | v | w | x | y | z

other-letter-char ::=

À | Á | Â | Ã | Ä | Å | Æ | Ç | È

| É | Ê | Ë | Ì | Í | Î | Ï | Ð | Ñ

| Ò | Ó | Ô | Õ | Ö | Ø | Ù | Ú | Û

| Ü | Ý | Þ | ß | à | á | â | ã | ä

| å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö

| ø | ù | ú | û | ü | ý | þ | ÿ

numeral-char ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Excepted for the reserved words of the language (keywords),the upper case and lower case forms
of a same letter (letter-char) are distinguished. The reserved words should appear totally in lower
case or totally in upper case.

(ii) The setmark composed of the distinctive characters of the lexical units, and the set of characters
used in operator symbols:

(a) Context-free syntax
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mark ::= . separating character in real constants
and distinctive character of matrix products
| ’ start and end of character constants

| " start and end of strings

| % start and end of comments

| : character used in the definition symbol

| = equality sign

| < inferior sign

| > superior sign and end of the dependency arrow

| + positive and additive sign

| − negative and subtractive sign, and dash of the dependency arrow

| ∗ product sign

| / division sign, mark of difference, and sign of confining

| @ construction of complex

| $ delay sign

| ̂ clock sign

| # exclusion sign

| | composition symbol

(iii) The delimitors are terminals of the syntactic level built with other characters than letters and nu-
merals:

(a) Context-free syntax

delimitor ::= ( | ) parenthesizing, tuple delimitors

| { | } parameter delimitors, dependencies parenthesizing

| [ | ] array delimitors

| ? input delimitor

| ! output delimitor

| , separation of units

| ; end of units

(iv) The separators given here in their ASCII hexadecimal code (the space character and thelong-
separators are distinguished) :

(a) Context-free syntax

separator ::= \x20 space

| long-separator

long-separator::= \x9 horizontal tabulation

| \xA new line

| \xC new page

| \xD carriage return
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(v) The otherprintablecharacters, usable in the comments, the directives and the denotations of con-
stants. This subset,other-character, is not defined by the manual.

II–1.2 Encodings of characters

All the characters (printable or not) can be designated by anencoded form (CharacterCode) in the
comments, the character constants, the string constants and the directives. The authorized codes are
those of the norm ANSI of the language C (possibly extended with codes for other characters), plus
the escape character\% used in the comments. An encoded character is either a special character
(escape-code), or a character encoded in octal form (OctalCode), or a character encoded in hexadecimal
form (HexadecimalCode). The numeric codes (OctalCodeandHexadecimalCode) contain at most the
number of digits necessary for the encoding of 256 characters; the manual does not define the use of
unused codes.

1. Context-free syntax

CharacterCode::= OctalCode | HexadecimalCode
| escape-code

OctalCode::= \ octal-char [ octal-char [ octal-char ] ]

octal-char ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

HexadecimalCode::= \x hexadecimal-char [ hexadecimal-char ]

hexadecimal-char::= numeral-char
| A | B | C | D | E | F

| a | b | c | d | e | f

escape-code::= \a audible signal

| \b backspace

| \f form feed

| \n newline

| \r carriage return

| \t horizontal tab

| \v vertical tab

| \\ backslash

| \" double quote

| \’ single quote

| \? question mark

| \% percent
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II–2 Vocabulary

A text of the SIGNAL language is a sequence of elements of theTerminal vocabulary (cf. section
I–5, page18) of the SIGNAL language. Between these elements,separators can appear in any number
(possibly zero). ATerminal of the SIGNAL language is the longest sequence of contiguousterminals
and aterminal is the longest sequence of contiguous characters that can beformed by a left to right
analysis respecting the rules described in this chapter. A terminal can contain a distinctive mark; the next
mark is not acharacter (it is used as escape mark):

1. Context-free syntax

prefix-mark ::= \ start ofCharacterCode

II–2.1 Names

A name allows to designate a directive, a signal (or a group ofsignals), a parameter, a constant, a type, a
model or a module, in a context composed of a set of declarations. Two occurrences of a same name in
distinct contexts can designate distinct objects.

A Name is a lexical unit formed by characters among the set composedof letter-chars plus the
character _ plus numeral-chars; aName cannot start with anumeral-char. A Name cannot be a
reserved word. All the characters of aNameare significant.

1. Context-free syntax

Name::= begin-name-char [ { name-char }+ ]

begin-name-char::= { name-char\ numeral-char }

2. Examples

(a) a andA are distinctNames.

(b) X_25, The_password_12Xs3 areNames.

In this document we will sometimes designate aNamefrom a particular categoryX by Name-X.

II–2.2 Boolean constants

A Boolean constant is represented bytrue or false which are reserved words (hence they can also

appear under their upper case forms,TRUE and FALSE ).

1. Context-free syntax

Boolean-cst::= true | false
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II–2.3 Integer Constants

An Integer-cst is a positive or zero integer in decimal representation composed of a sequence of numer-
als.

1. Context-free syntax

Integer-cst ::= { numeral-char }+

II–2.4 Real constants

A Real-cst denotes the approximate value of a real number. There are twosets of reals: the simple
precision reals and the double precision ones that contain the former. TheReal-csts are words of the
lexical level so they cannot contain separators.

1. Context-free syntax

Real-cst::= Simple-precision-real-cst
| Double-precision-real-cst

Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
| Integer-cst . Integer-cst [ Simple-precision-exponent ]

(a Simple-precision-real-cstmay have an exponent)

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
| Integer-cst . Integer-cst Double-precision-exponent

(a Double-precision-real-cstmust have an exponent)

Simple-precision-exponent::= e Relative-cst | E Relative-cst

Double-precision-exponent::= d Relative-cst | D Relative-cst

Relative-cst::= Integer-cst
| + Integer-cst

| − Integer-cst

2. Examples

(a) The notations contained in the following tables are simple precision representations respec-
tively equivalent to the unit value and to the centesimal part of the unit.

1e0 1e+0 10e-1
1.0 0.1e1 0.1e+1 10.0e-1

1e-2
0.01 0.001e1 0.001e+1 1.0e-2

II–2.5 Character constants

A Character-cst is formed of a character or a code of character surrounded by two occurrences of the
character ’ .
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1. Context-free syntax

Character-cst ::= ’ Character-cstCharacter ’

Character-cstCharacter ::= { Character \ character-spec-char }

character-spec-char::= ’
| long-separator

II–2.6 String constants

A String-cst value is composed of a list of sequences of characters surrounded by two occurrences of
the character " (list of substrings).

1. Context-free syntax

String-cst ::= { " [ { String-cstCharacter }+ ] " }+

String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char::= "
| long-separator

II–2.7 Comments

A comment may appear between any two lexical units and may replace a separator. It is composed of a
seuqence of characters surrounded by two occurrences of thecharacter% .

1. Context-free syntax

Comment::= % [ { CommentCharacter }+ ] %

CommentCharacter ::= { Character \ comment-spec-char }

comment-spec-char::= %

II–3 Reserved words

A reserved word must be either totally in lower case or totally in upper case. In this manual, only the
lower case form (in general) appears explicitly in the grammar rules. It can be replaced, for each reserved
word, by the corresponding upper case form.

The reserved words used by the SIGNAL language are the following ones:

1. Context-free syntax
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signalkw ::= action | after | and | array | assert

| boolean | bundle

| case | cell | char | complex | constant | count

| dcomplex | default | defaultvalue | deterministic | dreal

| else | end | enum | event | external

| false | from | function

| if | in | init | integer | iterate

| label | long

| module | modulo

| next | node | not

| of | operator | or

| pragmas | private | process

| real | ref

| safe | shared | short | spec | statevar | step | string | struct

| then | to | tr | true | type

| unsafe | use

| var

| when | where | window | with

| xor

Note: operator is currently hidden in the syntax of the language (cf. section XI–7, page195).



Part B

THE KERNEL LANGUAGE





Chapter III

Semantic model of traces

III–1 Syntax

We consider:

• A = {a, a1, . . . ,an, b, . . . }
a denumerable set of typed variables (orports);

• F = {f , f1, . . . ,g, . . . }
a finite set of symbols of typed functions;

• T = {event, boolean, . . . ,t, . . . }
a finite set of basic types (sets of values);

• TT =
⋃

n∈IIN
[0..n] → T T

the set of array types,

• SS =
⋃

B∈A

B → T T

the set of tuple types,

• T T = T ∪ TT ∪ SS
the set of types.

• the symbolsdefault, when, $.

We define the following sets of terms, defining the basic syntax of the SIGNAL language:

• GD = {t a}
the set ofdeclarations(association of a type with a variable);

• GSS = {an+1 :=: f (a1, . . . ,an)}
the set ofstatic synchronousgenerators (elementary processes), among them the set of generators
on arrays and tuples are distinguished;

• GDS = {a2 :=: a1 $ init a0}
wherea0 is a constant with same domain asa1, the set ofdynamic synchronousgenerators (ele-
mentary processes);
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• GE = {a3 :=: a1 when a2} the set ofextractiongenerators (elementary processes);

• GM = { a3 :=: a1 default a2}
the set ofmergegenerators (elementary processes);

• recursively the setPROC of syntactic processes as the least set containing:

– G = GD∪ GSS∪ GDS∪ GE ∪ GM
the set of generators,

– PC = {P1 | P2 whereP1 andP2 belong toPROC}
(composition process),

– PR = {P1 / a (denoted also P1 where a) whereP1 belongs toPROC anda
belongs toA}
(restriction process).

III–2 Configurations

Let IID be the set of values that can be taken by the variables,a configurationis an occurrence of the
simultaneousvaluation of distinct variables(synchronous commmunication).The values respect the
properties resulting from the interpretation of the terms which are used. In IID, the set of Boolean values,
IIB={true, false}, is distinguished.

For a variableai ∈ A, and a subsetAj of variables inA, we consider:

IID ai
the domain of values (Booleans, integers, reals. . . ) that may be taken byai.

IIDAj
=

⋃

ai ∈ Aj

IID ai

IIDA = IID

The symbol⊥ (⊥ 6∈ IID) is introduced to designate the absence of valuation of avariable. Then we
denote:

IID⊥ = IID ∪ {⊥}

IID⊥
Ai

= IIDAi
∪ {⊥}

ConsideringA1 a non empty subset ofA, we callconfigurationonA1 any application

e : A1 → IID⊥
A1

• e(a) = ⊥ indicates thata has no value for the configuratione.

• e(a) = v indicates, forv ∈ IID a, thata takes the valuev for the configuratione.

• e(A1) = {x/a ∈ A1, e(a) = x}

The set ofconfigurationsonA1 (A1 → IID⊥
A1

) is denotedE∗
A1

.

By convention,1e is the single configuration defined on the empty set of ports∅ (it is calledunit
configuration).

Theabsent configurationonA1 (A1 → {⊥}) is denoted⊥e(A1).
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The set

E∗
⊆A1

=
⋃

Ai⊆A1

E∗
Ai

is the set of all configurations on the subsets ofA1.
It is defined a special configuration onA, denoted♯, which is calledblocking configuration(or

impossible configuration).
The following notations are used:

EA1
= E∗

A1
∪ {♯}

E⊆A1
= E∗

⊆A1
∪ {♯}

Partial observation of a configuration

Let A1 ⊆ A andA2 ⊆ A two subsets ofA ande ∈ EA1
some configuration onA1.

The restriction ofe onA2, or partial observation ofe onA2, is denotede|A2
:

e|A2
∈ EA1∩A2

It is defined as follows:

• ((A1 ∩ A2 6= ∅)
∧

(e 6= ♯)) ⇒ ( (∀a ∈ A1 ∩ A2) ( (e|A2
)(a) = e(a) ) )

• ((A1 ∩ A2 6= ∅)
∧

(e = ♯)) ⇒ (e|A2
= ♯)

• (A1 ∩ A2 = ∅) ⇒ (e|A2
= e|∅ = 1e)

Product of configurations

Let e1 ∈ EA1
ande2 ∈ EA2

two configurations.
Their product is denotede1·e2:

e = e1·e2 ∈ EA1∪A2

It is defined as follows:

• (e = ♯) ⇔ (((e1 = ♯)
∨

(e2 = ♯))
∨

(e1|A1∩A2
6= e2|A1∩A2

))

• (e 6= ♯) ⇒ ((e|A1
= e1)

∧
(e|A2

= e2))

Corollary 1 (E⊆A1
,·,1e) is a commutative monoid.

The product operator· is idempotent and♯ is an absorbent (nilpotent) element.

III–3 Traces

A trace is a sequence of configurations (sequence of observations) without the blocking configuration.
For any subsetA1 of A, we consider the following definition of the setTA1

of traces onA1.
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III–3.1 Definition

T ∗
A1

is the set of non empty sequences of configurations onA1, composed of:

• finite sequences: they are the set of applications IIN<k → E∗
A1

where IIN<k represents the set of
finite initial segments of IIN (set of natural integers, including 0),

• infinite sequences: they are the set of applications IIN→ E∗
A1

.

The set

T ∗
⊆A1

=
⋃

Ai⊆A1

T ∗
Ai

is the set of all non empty sequences of configurations on the subsets ofA1.
The empty sequence of configurations is denoted0T .
A trace onA1 is either a sequence ofT ∗

A1
or the empty sequence. The set of traces onA1 is:

TA1
= T ∗

A1
∪ {0T }

The set of traces on subsets ofA1 is:

T⊆A1
= T ∗

⊆A1
∪ {0T }

The set of traces defined onA, denotedT, is the union of the setsTA1
for all subsetsA1 of A.

The single infinite sequence defined onT ∗
∅ is denoted1T and is calledunit trace. It is equal to the

infinite repetition(1e)
ω of the unit configuration1e.

Theabsent traceonA1 (IIN → {⊥e(A1)}: the infinite sequence formed by the infinite repetition of
⊥e(A1)) is denoted⊥A1

.

Notations

The smallest set of variables ofA on which a given traceT is defined (definition domain of the
configurations composingT ) is referred to asvar(T ). By convention,var(0T ) = A.

For a traceT andt an integer, we will note frequentlyTt the configurationT (t) of T at the instantt,
and we will note sometimesat the value of a variablea for this configuration.

III–3.2 Partial observation of a trace

Let A1 ⊆ A andA2 ⊆ A two subsets ofA andT ∈ TA1
some trace onA1.

The restriction ofT onA2, or partial observation ofT onA2, is denotedT‖A2
.

If A1 ∩ A2 6= ∅, T‖A2
is the traceT2 such that:

{
dom(T2) = dom(T )
∀t ∈ dom(T ) T2(t) = T (t)|A2

If A1 ∩ A2 = ∅, T‖A2
= T‖∅ = 1T .

If A2 6= ∅, 0T ‖A2
= 0T .
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III–3.3 Prefix order on traces

The following relation is defined on traces:
T1 ∠ T2 if and only if:

{
dom(T1) ⊆ dom(T2)
(∀t) ( (t ∈ dom(T1)) ⇒ (T1(t) = T2(t)) )

It is said thatT1 is a prefix ofT2.

Corollary 2

• ∠ is an order relation onT, 0T is the minimum for this order.

• The set of prefixes of a trace is a chain.

• Any subset of prefixes of a trace has an upper bound.

The notationT≤t represents the prefix of a traceT such thatt ∈ dom(T≤t) andt + 1 6∈ dom(T≤t).

III–3.4 Product of traces

The productT = T1·T2 of two tracesT1 andT2 defined respectively onA1 andA2 is the greatest trace
for the order relation∠ such that:

(T‖A1
∠ T1)

∧
(T‖A2

∠ T2)

(it is defined onA1 ∪ A2 and is obtained by termwise products of respective events).

Corollary 3 (T⊆A1
,·,1T ) is a commutative monoid.

The product operator· is idempotent and0T is an absorbent (nilpotent) element.

III–3.5 Reduced trace

A traceT1 is said to be asub-traceof a non empty traceT2 if and only if there exists an infinite sequence
f1, strictly increasing (i.e., injective and increasing) on IIN (such a sequence is calledexpansion function
onT1), such that:

T2 ◦ f1|dom(T1) = T1

(the notationf|X designates the restriction of a given functionf on the domainX).

Remarks

• 0T is a sub-trace of any trace;

• any prefixT1 of T2 is a sub-trace ofT2.

Corollary 4 The sub-trace relation is a preorder (reflexive and transitive).

The sub-trace relation is not antisymmetric, as shown by thefollowing sequences:(αβ)ω and(βα)ω

(with f1(n) = n + 1).
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Definition A traceT1 is said to be areduced traceof a non empty traceT2 if and only if T1 is a
sub-trace ofT2 and:

• (dom(T1) is finite) ⇒ (dom(T2) is finite)

• for any expansion functionf1 onT1 such thatT2 ◦ f1|dom(T1) = T1, then:

(∀t ∈ (dom(T2)) \ f1(dom(T1))) ( T2(t) = ⊥e(A2) )

Proposition The relation“is a reduced trace of”is an order relation.
“T1 is a reduced trace ofT2” is denoted:

T1 ⊆↓ T2

Proof of antisymmetry:T1 ⊆↓ T2 andT2 ⊆↓ T1

dom(T2) = dom(T1)
If dom(T1) is finite then the single possible expansion function onT1 is the identity.
For any traceT , T is a prefix ofT1 if and only if it is a prefix ofT2 is proved by recurrence on the

length ofT .
Then the existence of an upper bound to any subset of prefixes of a trace proves the equality. ✷

For a given expansion functionf and a traceT1, there exists a least trace (for the prefix order∠), T2,
such thatT1 ⊆↓ T2.

We denote by↑ the function that, to an expansion functionf and a traceT , associates this least trace
f ↑ T (example on figureB–III.1).

Then we have, by definition:

T ⊆↓ f ↑ T

T

e1

e1

f1 ↑ T

e2

e2

e3 e4

e3 ⊥⊥⊥⊥⊥

⊥

Figure B–III.1:f1 ↑ T with f1(0) = 0, f1(1) = 3, f1(2) = 4, f1(3) = 5. . .

Property:

f2 ↑ (f1 ↑ T ) = (f2 ◦ f1) ↑ T

For anyf , we have alsof ↑ 0T = 0T .
By convention:f ↑ 1T = 1T .
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III–4 Flows

Definition A flow is a trace which is minimal for the relation⊆↓.

Comment: A flowF on A1 is a trace that does not contain the absent configuration onA1 between
two configurations which have valued variables.

Corollary 5

• (F is a flow andF1 ∠ F ) ⇒ (F1 is a flow);

• 0T is a flow;

• 1T is a flow;

• if F is a finite flow onA1, then(F ⊥e(A1)
ω
) is a flow;

• ⊥A1
is a flow.

III–4.1 Equivalence of traces

Definition Two tracesT1 andT2 are said to be equivalent modulo⊥ (this is denoted:T1 ≡↓ T2) if
and only if there exists some traceT such thatT ⊆↓ T1 andT ⊆↓ T2.

This relation is indeed an equivalence relation.

Property For any traceT , the equivalence class ofT modulo⊥ is a lattice.

Proof

• By definition, every pairT1, T2 in an equivalence class has a lower bound.

• Every pairT1, T2 in an equivalence class has an upper bound:
Let f1, f2 such that:

T1 ◦ f1 = min(T1, T2)

T2 ◦ f2 = min(T1, T2)

The upper bound is the trace

max(T1, T2) = f ′
1 ↑ T1 = f ′

2 ↑ T2

with f ′
1, f ′

2 defined as follows:

∀t, if ∃s, f1(s) = t thenf ′
1(s) = max(t, f2(s)),

if s 6∈ f1(dom(min(T1, T2))) then ifs = 0 thenf ′
1(s) = 0 elsef ′

1(s) = f ′
1(s − 1) + 1

(f ′
2 is defined symmetrically).

Then

(f ′
1 ◦ f1) ↑ min(T1, T2) = (f ′

2 ◦ f2) ↑ min(T1, T2) = max(T1, T2)

✷
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Each equivalence class has a flow as lower bound. For a traceT , this flow is denotedT↓.

Notation The set of flows onA1 is denotedSA1
.

III–4.2 Partial flow

Let A1 ⊆ A andA2 ⊆ A two subsets ofA andF ∈ SA1
some flow onA1.

Theprojectionof F onA2, denotedΠA2(F ), is defined by:

ΠA2(F ) = (F‖A2
)↓

The following equalities hold:

• ∀F, Π∅(F ) = 1T

• ΠA2(0T ) = 0T

• ΠA2(⊥A1
) = ⊥A1∩A2

III–4.3 Flow-equivalence

Equivalence modulo⊥ is an equivalence relation that preserves the simultaneousness of valuations within
a configuration and the ordering of configurations within a trace: traces which are equivalent modulo⊥
possess the same synchronization relations.

A weaker relation is introduced, which is called flow-equivalence. It allows to compare traces with
respect to the sequences of values that variables hold.

Definition A traceT ′ defined onA1 is a relaxationof a traceT defined on the same set of variables
A1 if and only if for all a ∈ A1, T

‖{a} ⊆↓ T ′
‖{a}. This is denoted:T ⊑ T ′.

Corollary The relaxation relation⊑ is an order relation.

Definition Two tracesT1 andT2 are said to beflow-equivalent(this is denoted:T1 ≈ T2) if and only
if there exists some traceT such thatT ⊑ T1 andT ⊑ T2.

The class of flow-equivalence of a traceT is a semi-lattice. It admits a lower bound which is a flow,
writtenT≈.

III–5 Processes

III–5.1 Definition

A processonA1 ⊆ A is a set of flows onA1 which are non comparable by the prefix relation.
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Example Let us represent a flow by the sequence of its events, where an event is represented by the
variables which are valued for it (successive events are separated by the sign “;”).

Consider the following flows defined on variablesa, b:
F1 : a; ab; b
F2 : a; ab; ab
F3 : a; ab; b; b

The flowsF1 andF2 (respectively,F2 andF3) can belong to a same process. However,F1 andF3

cannot belong to a same process since they are comparable.

The set of processes onA1 is denotedPA1
. It is a subset ofP(SA1

), the set of subsets ofSA1
.

The set

P⊆A1
=

⋃

Ai⊆A1

PAi

is the set of processes on the subsets ofA1.
The process1P = {1T }, defined on the empty set of ports∅, and with the unit trace as single

element, is calledunit process.
The process onA1 defined by the empty set of flows is denoted0P(A1).

Notation

The notationvar(P ) is used to designate the smallest set of variables ofA on which the processP is
defined.

III–5.2 Partial observation of a process

Let A1 ⊆ A andA2 ⊆ A two subsets ofA andP a process onA1.
Theprojectionof P onA2, denotedΠA2(P ), is defined by:

ΠA2(P ) = {ΠA2(F ) / F ∈ P andΠA2(F ) is maximal for∠}

III–5.3 Composition of processes

Let P1 andP2 two processes defined respectively onA1 andA2.
Thecomposition(or synchronous composition) of P1 andP2, denotedP1|P2, is a process onA1∪A2

defined by:

P1|P2 = {F ∈ SA1∪A2
/ ( (∃F1 ∈ P1) ( ΠA1(F ) ∠ F1 ) )∧

( (∃F2 ∈ P2) ( ΠA2(F ) ∠ F2 ) )∧
(F is maximal for∠)}

Corollary 6 (P⊆A1
,|,1P ) is a commutative monoid.

The composition operator| is idempotent and0P(A1) is an absorbent (nilpotent) element.
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III–5.4 Order on processes

The following relation is defined on processes:
P1 ∠ P2 if and only if:

(∀F1 ∈ P1) ( (∃F2 ∈ P2) ( F1 ∠ F2 ) )

This relation is an order relation.

Proof of antisymmetry:
(P1 ∠ P2) ⇒ ( (∀F1 ∈ P1) ( (∃F2 ∈ P2) ( F1 ∠ F2 ) ) )
(P2 ∠ P1) ⇒ ( (∃F3 ∈ P1) ( F2 ∠ F3 ) )
ThenF1 = F3 since flows in a process are not comparable by∠.
ThenF1 = F2. ThusP1 = P2. ✷

Corollary 7

• ΠA2(0P(A1)) = 0P(A1 ∩ A2)

• Πvar(P )(P ) = P

• ΠA1∩A2(P ) = (ΠA1 ◦ ΠA2)(P )

• ΠA1∪A2(P ) ∠ ΠA1(P )|ΠA2(P )

• Πvar(P1)
(P1|P2) ∠ P1

• Π is monotonic: (P1 ∠ P2) ⇒ (ΠB(P1) ∠ ΠB(P2))

• | is monotonic: (P1 ∠ P2) ⇒ (Q|P1 ∠ Q|P2)

• ΠB(P1|P2) ∠ ΠB(P1)|ΠB(P2)

Proposition Let P1 andP2 two processes defined respectively onA1 andA2.

(P1 = ΠA1(P1|P2)) ⇔ (ΠA1∩A2(P1) ∠ ΠA1∩A2(P2))

Sketch of the proof:
SinceΠA1(P1|P2) ∠ P1 it is sufficient to prove that

(P1 ∠ ΠA1(P1|P2)) ⇔ (ΠA1∩A2(P1) ∠ ΠA1∩A2(P2))

⇒) Assume thatP1 ∠ ΠA1(P1|P2).
Let F ∈ ΠA1∩A2(P1)
(∃F1 ∈ P1) ( F = ΠA1∩A2(F1) )
SinceF1 ∈ P1, by hypothesis,(∃F ′ ∈ ΠA1(P1|P2)) ( F1 ∠ F ′ )
Thus (∃F ′′ ∈ P1|P2) ( F1 ∠ ΠA1(F

′′) )
By definition of the composition,(∃F ′′

2 ∈ P2) ( ΠA2(F
′′) ∠ F ′′

2 )
Let F ′′′

2 = ΠA1∩A2(F
′′
2 )

ThenF ∠ F ′′′
2
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⇐) Assume thatΠA1∩A2(P1) ∠ ΠA1∩A2(P2).
If F1 ∈ P1, then (∃F2 ∈ ΠA1∩A2(P2)) ( ΠA1∩A2(F1) ∠ F2 )
Thus (∃F ′

2 ∈ P2) ( ΠA1∩A2(F1) ∠ ΠA1∩A2(F
′
2) )

Thus (∃F ∈ P1|P2) ( F1 ∠ ΠA1(F ) ) ✷

Consequences

• if A1 ∩ A2 = ∅: P1 = ΠA1(P1|P2) andP2 = ΠA2(P1|P2)

• if A1 ⊆ A2: (P1 = ΠA1(P1|P2)) ⇔ (P1 ∠ ΠA1(P2))

• if A2 ⊆ A1: (P1 = P1|P2) ⇔ (ΠA2(P1) ∠ P2)

• if A1 = A2: (P1 = P1|P2) ⇔ (P1 ∠ P2)

As an application, ifP2 represents a safety property defined on the same set of variables asP1, P1

satisfies the propertyP2, which means that any flow ofP1 is a flow ofP2 (P2 is less constrained than
P1), if and only if P1 = P1|P2.

Note that there is the same result whenP2 is defined on a subset of the variables ofP1.
More generally, ifA2 ⊆ A1, P1 = P1|P2 means thatP2 is anabstractionof P1.

III–6 Semantics of basicSIGNAL terms

The semantics of each primitive operator is defined by a set offlows: a SIGNAL processonA1 ⊆ A is a
non empty set of flows onA1 (i.e., a subset ofSA1

) defined, from primitive operators and composition,
by constraints(relations) on the flows.

In the following, we denote genericallyP : PA1
a process onA1, to define the semantics of the

corresponding term. In addition, we denotevar(x1, . . . , xn) the set of thexi variables (i = 1, . . . , n)
which are distinct.

III–6.1 Declarations

Let µ designate a type whose domain of values isτ (µ).
The term

µ X

defines a processP : P{X} representing all the possible sequences of values of the signal X.

P =∆ { T ∈ S{X} /

(∀t) ( (Tt(X) 6= ⊥) ⇒ (Tt(X) ∈ τ (µ)) ) }

III–6.2 Monochronous processes

A processP defined onA1 is saidmonochronousif, at each instantt for which one of the signals
is present (respectively, absent), all of them are also present (respectively, absent). Flows defining
monochronous processes are called also monochronous flows.

(∀T ∈ P ) ( (∀t) ( ( (∃X ∈ A1) ( Tt(X) = ⊥ ) ) ⇒ ( (∀Y ∈ A1) ( Tt(Y ) = ⊥ ) ) ) )
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2-a Static monochronous processes

Let F be an operator. Under some interpretationI for which the interpretation ofF is denoted[|F |]I , the
term

Xn+1 :=: F(X1,. . .,Xn)

defines a processP : Pvar(X1, . . . , Xn, Xn+1) by some relation between the sequence of values of the
signalXn+1 and the sequence obtained by the pointwise extension of the application ofF, under this
interpretation, to the sequence of tuples of values of the signalsX1,. . . ,Xn (note that the sign “:=:”
makes explicit the fact that this term represents a non oriented equation).

P =∆ { T ∈ Svar(X1, . . . , Xn, Xn+1) /

T is monochronous and
(∀t) ( (Tt(Xn+1) 6= ⊥) ⇒ (Tt(Xn+1) = [|F |]I(Tt(X1), . . . , Tt(Xn))) ) }

2-b Dynamic monochronous processes: the delay

The term

X2 :=: X1 $ init V0

defines a processP : Pvar(X1, X2) by the relation constraining the equality of the sequence ofvalues
of the signalX2 and the sequence of values of the signalX1, delayed by 1;V0 is the initial value ofX2.

P =∆ { T ∈ Svar(X1, X2) /

T is monochronous
and (∀t > 0) ( (Tt(X2) 6= ⊥) ⇒ (Tt(X2) = Tt−1(X1)) )
and(T0(X1) 6= ⊥) ⇒ (T0(X2) = V0) }

III–6.3 Polychronous processes

A process defined onA1 is saidpolychronousif it contains a flowT for which there exists some instantt
in which one of the signals is present while another one is not. By extension, a term is said polychronous
if it allows to define polychronous processes.

3-a Sub-signals

The term

X3 :=: X1 when X2

defines a processP : Pvar(X1, X2, X3) by the relation constraining the equality of the sequence of
values of the signalX3 and the sequence of occurrences of value of the signalX1 when the Boolean signal
X2 carries the valuetrue.

P =∆ { T ∈ Svar(X1, X2, X3) / (∀t) (

((Tt(X2) = true) ⇒ (Tt(X3) = Tt(X1)))∧
((Tt(X2) 6= true) ⇒ (Tt(X3) = ⊥)) ) }
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3-b Merging of signals

The term

X3 :=: X1 default X2

defines a processP : Pvar(X1, X2, X3) by the relation constraining the equality of the sequence of
values of the signalX3 and the sequence formed by the occurrences of value of the signalX1 or by default
the occurrences of value of the signalX2.

P =∆ { T ∈ Svar(X1, X2, X3) / (∀t) (

((Tt(X1) 6= ⊥) ⇒ (Tt(X3) = Tt(X1)))∧
((Tt(X1) = ⊥) ⇒ (Tt(X3) = Tt(X2))) ) }

III–6.4 Composition of processes

The term

P1 | P2

whereP1 andP2 define respectively processesP1 andP2 on the sets of variablesA1 andA2, defines a
processP : PA1∪A2

by the greatest relation constraining their common signalsto respect the constraints
imposed respectively byP1 andP2 (see an example on the figureB–III.2).

P =∆ P1|P2

III–6.5 Restriction

The term

P1 / a

(or P1 where a)
whereP1 defines a processP1 on the set of variablesA1, defines a processP : PA1\{a} by the
projection ofP1 on the subset of ports ofP1 which are different froma.

P =∆ ΠA1 \ {a}
(P1)

III–7 Composite signals

The types of the SIGNAL language contain elementary types such as Booleans, integers, etc., but also
structured types allowing to declare composite objects. Structured types are tuple types and array types.
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Figure B–III.2: Two flows of the composition ofP1 andP2

III–7.1 Tuples

Construction of tuple

If E1, . . . ,Em designatem signals of respective typesµ1, . . . ,µm, the term

(E1,. . . ,Em)

defines a tuple of signals, of type(µ1 × . . . × µm) (where× designates the product of domains), such
that

(∀t) ( (E1, . . . , Em)t = (E1t, . . . , Emt) )

Tuple types
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Let m typesµ1, . . . ,µm, m names of variablesA1, . . . ,Am, and a process of synchronizationC.
The term

bundle (µ1 A1; . . . ;µm Am;) spec C

defines a tuple type (with named fieldsA1, . . . ,Am) as the set of functions:

Ξ : {A1, . . . , Am} →
m⋃

i=1

τ (µi) such thatΞ(Ai) ∈ τ (µi).

It is reminded that the notationτ (µi) designates the domain of values (type) associated withµi.
WhenC is the process of synchronization that defines all the fields of the tuple (recursively) as being

synchronous, the corresponding type is then denoted by the term:

struct (µ1 A1; . . . ;µm Am;)

It can be considered, generically, that a tuple type, represented by a tuple with named or unnamed
fields (cf. sectionV–5, page78), can be viewed as a product of domains
(µ1 × . . . × µm)
whereµk is the type of thekth element of the tuple.

Declaration of a tuple variable (with named fields)

The association of a tuple type with synchronizationC, with a variable, denoted by the term

bundle (µ1 A1; . . . ;µm Am;) spec C X

defines a polychronous tuple of signals, such that

(∀t) (

( (∀i) ( (Xt(Ai) 6= ⊥) ⇒ (Xt(Ai) ∈ τ (µi)) ) )
∧

(the relation defined by the process denoted byC is verified) )

Remark:
Such a declaration is a SIGNAL process with as interface,µ1 A1, . . . ,µm Am in input, and the empty set
in output.

For the particular case of a monochronous tuple, the association denoted by the term

struct (µ1 A1; . . . ;µm Am;) X

defines a monochronous tuplesignal,such that

(∀t) ( (Xt 6= ⊥) ⇒ ( (∀i) ( Xt(Ai) ∈ τ (µi) ) ) )

Access to an element

WhenX designates a polychronous tuple the type of which is defined as the set of functions

Ξ : {A1, . . . , Am} →
m⋃

i=1

µi such thatΞ(Ai) ∈ µi,

the term

Y :=: X.Ai
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defines a process allowing to access to a component of the tuple:

(∀t) ( Yt = Xt(Ai) )

Particular case: whenX designates a monochronous tuple, the term

Y :=: X.Ai

defies a monochronous process allowing to access to a component of the tuple:

(∀t) ( (Xt 6= ⊥) ⇒ (Yt = Xt(Ai)) )

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise exten-
sion) to tuples.

Let us consider someoperatorF defined with the following signature:
µ1 × . . . × µN → µN+1

(note that operators may be polymorphic on some of their operands, so that a givenµk may stand here
for some set of types).

We will denote
(X_a1k,. . . ,X_amk)
the elements of a tupleXk with m elements.

If at least one of theXk is a tuple the elements of which are correspondingly possible arguments of
the operatorF, more precisely, if
(∃ m) ( ( (∀ k) ( (τ (Xk) = (

.
µk1 × . . .×

.
µkm

))
∨

(τ (Xk) =
..
µk) ) )

∧
(

(∃ k) ( τ (Xk) = (
.
µk1 × . . .×

.
µkm

) ) ) )
(where

.
µk1, . . . ,

.
µkm

and
..
µk represent some particular instances of typeµk),

the term

XN+1 :=: F(X1,. . .,XN)

under some interpretationI, specifies a process which defines the tuple withm elementsXN+1 by a
pointwise application ofF:

(∀t) ( (∀i, 1 ≤ i ≤ m) ( X_aiN+1t = [|F |]I(v1_ait, . . . , vn_ait) )
where
((τ (Xk) = (

.
µk1 × . . .×

.
µkm

)) ⇒ (vk_ait = X_aikt))
∧

(

((τ (Xk) 6= (
.
µk1 × . . .×

.
µkm

))
∧

(τ (Xk) =
..
µk)) ⇒ (vk_ait = Xkt)) )

This defines recursively new signatures of the operators, sothat the pointwise extension can be
applied recursively.

III–7.2 Arrays

IID being the set of values that can be carried by a variable, we introduce a distinguished value, denoted
nil, such that, semantically,nil 6∈ IID and nil 6= ⊥. This value is in particular the value of a non defined
element of an array. In the language, a value equal tonil may be any (non determined) value of the
correct type.
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Array types

Let m integersn1, . . . ,nm (ni ∈ IIN), and a typeν.
The term

[n1, . . . , nm] ν

defines an array type as the set of functions:
([0..n1 − 1] × . . . × [0..nm − 1]) → τ (ν),
where [0..ni − 1] denotes the set of integers included between 0 andni−1, andτ (ν) denotes the domain
of values of typeν.

The curryfied and non curryfiedforms of the functions defining an array type are considered as
equivalent.
Thus, when the typeν is itself an array type, defined by the set of functions
([0..nm+1 − 1] × . . . × [0..nm+p − 1]) → τ (µ),
the type denoted by[n1, . . . , nm] ν is defined by the set of functions
([0..n1 − 1] × . . . × [0..nm+p − 1]) → τ (µ).

Declaration of an array variable

The association of an array type with a variable, denoted by the term

[n1, . . . , nm] ν X

defines an array signal such that

(∀t) (
(Xt 6= ⊥)

⇒ ( (∀k, 1 ≤ k ≤ m) ( (∀ik, 0 ≤ ik ≤ nk − 1) ( Xt(i1, . . . , im) ∈ τ (ν) ) ) ) )

ForX an array of type([0..n1 − 1] × . . . × [0..nm − 1]) → ν,
the set of tuples of types [0..n1 − 1] × . . . × [0..np − 1] where1 ≤ p ≤ m is designated byDom(X).

Complete arrays and partial arrays

An array of type([0..n1 − 1] × . . . × [0..nm − 1]) → ν is saidcompleteif the function
([0..n1 − 1] × . . . × [0..nm − 1]) → ν
that defines it is total.

If this function is partial, the array is saidpartial.
In this case, it is defined by the total function
([0..n1 − 1] × . . . × [0..nm − 1]) → ν ∪ {nil}
that extends this partial function by associatingnil with the non defined elements.

When the array defined by one of the following operators may bepartial, the function described
by this semantics is necessarily a restriction of the function that defines the array. The corresponding
extension is such that any element non defined by the semantics is equal tonil.
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Array element

WhenX designates an array the type of which is defined as the set of functions
([0..n1 − 1] × . . . × [0..nm − 1]) → ν,
andI1, . . . ,Im are signals of type integer,
the term

Y :=: X[I1,. . . ,Im]

defines a monochronous process allowing to access to an element of the arrayX:

(∀t) (
(Xt 6= ⊥)

⇒ (( (∀Ikt) ( 0 ≤ Ikt ≤ nk − 1 ) )
∧

(Yt = Xt(I1t, . . . , Imt))) )

This operator is generalized below (see “extraction of sub-array”).

Static enumeration of array

The term

X :=: [E1,. . . ,En]

defines a monochronous process enumerating the elements of an array:

(∀t) ( (Xt 6= ⊥) ⇒ ( (∀i = 1, . . . , n) ( Xt(i) = Eit ) ) )

Iterative enumeration of array

The term

K :=: N recur f from V0

(whereN, maximum number of iterations, denotes a positive integer,which has a stricly positive upper
bound,upper_bound(N); V0 denotes a value (or a tuple of values) of typeµ; andf is a function fromµ
into µ),
defines a process enumerating elements of a vector ofµ of sizeupper_bound(N):

(∀t) (
(Kt 6= ⊥)

⇒ ( (∀i) ( ((0 ≤ i < Nt − 1)
∧

((Kt(0) = V0t)
∧

(Kt(i + 1) = [|f |]I(Kt(i)))))∨
((Nt ≤ i < upper_bound(N))

∧
(Kt(i) = nil)) ) ) )

The equationKt(i) = nil expresses the fact that the corresponding value exists (since all the ele-
ments of an array have the same clock), but it is not determined. In the language, this can be represented
by: Kt(i) = Kt(i).

This form is not provided as such in the concrete syntax of thelanguage.

A particular form is 0..N − 1 which represents the term N recur f from 0 wheref
designates the function on integers such thatf(x) = x + 1.
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Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise exten-
sion) to arrays.

Let us consider some operatorF defined with the following signature:
µ1 × . . . × µN → µN+1

(note that operators may be polymorphic on some of their operands, so that a givenµk may stand here
for some set of types).

If at least one of theTXk has one dimension more than the corresponding argument in the definition
of the operatorF, more precisely, if
(∃ m) ( ( (∀ k) ( (τ (TXk) = [0..m − 1] →

.
µk)

∨
(τ (TXk) =

..
µk) ) )

∧
(

(∃ k) ( τ (TXk) = [0..m − 1] →
.
µk ) ) )

(where
.
µk and

..
µk represent some particular instances of typeµk),

the term

TXN+1 :=: F(TX1,. . .,TXN)

under some interpretationI, defines a monochronous process which defines the arrayTXN+1 by a point-
wise application ofF:

(∀t) (
(TXN+1t 6= ⊥)

⇒ ( (∀i, 0 ≤ i ≤ m − 1) ( TXN+1t(i) = [|F |]I(v1t(i), . . . , vnt(i)) )
where
((τ (TXk) = [0..m − 1] →

.
µk) ⇒ (vkt(i) = TXkt(i)))

∧
(

((τ (TXk) 6= [0..m − 1] →
.
µk)

∧
(τ (TXk) =

..
µk)) ⇒ (vkt(i) = TXkt))) )

This defines recursively new signatures of the operators, sothat the pointwise extension can be
applied recursively.

Cartesian product

With I andJ arrays of respective types
τ (I) = [0..m − 1] → µ andτ (J) = [0..n − 1] → ν,
the term

(II,JJ) :=:≪I,J≫

defines a monochronous tuple of signals,(II, JJ), with II andJJ of respective types
τ (II) = [0..m ∗ n − 1] → µ andτ (JJ) = [0..m ∗ n − 1] → ν,
such that:

(∀t) (
(It 6= ⊥)

⇒ ( (∀k, 0 ≤ k ≤ m − 1) ( (∀p, 0 ≤ p ≤ n − 1) (
(IIt(k ∗ n + p) = It(k))

∧
(JJt(k ∗ n + p) = Jt(p)) ) ) ) )

More generally, ifI is a tuple (with unnamed fields) of type
τ (I) = [0..m − 1] → µ1 × . . . × [0..m − 1] → µp
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andJ is an array of type
τ (J) = [0..n − 1] → ν,
the term

(II1,. . . ,IIp,JJ) :=:≪I,J≫

defines a monochronous tuple of signals,(II1, . . . , IIp, JJ), with, if II designates the tuple(II1, . . . , IIp),
II andJJ of respective types
τ (II) = [0..m ∗ n − 1] → µ1 × . . . × [0..m ∗ n − 1] → µp,
τ (JJ) = [0..m ∗ n − 1] → ν,
and:

(∀t) (
(It 6= ⊥)

⇒ ( (∀k, 0 ≤ k ≤ m − 1) ( (∀p, 0 ≤ p ≤ n − 1) (
(IIt(k ∗ n + p) = It(k))

∧
(JJt(k ∗ n + p) = Jt(p)) ) ) ) )

The cartesian product is used in particular to define jointlyindexes used for multi-dimensional itera-
tions of processes.

Remark:≪I1,. . . ,Im≫ = ≪I1,≪I2,. . . ,Im≫≫

Partial definition of array

The term

Y :=: (I1, . . . ,In) : X

whereI1, . . . ,In are integers or arrays of integers:
τ (I1) = . . . =τ (In) = ([0..b1] × . . . × [0..bp]) → ν
with ν an integer type, and the basic integer values of theIi are positive or zero,
τ (X) = ([0..c1] × . . . × [0..cp]) → µ with c1 ≥ b1, . . . , cp ≥ bp,
andτ (Y) = ([0..a1] × . . . × [0..an]) → µ ∪ {nil} with for 1 ≤ i ≤ n, ai = max

K∈Dom(Ii)
Ii(K)

defines a monochronous process which specifies, in the general case, a partially defined array:

(∀t) (
(Xt 6= ⊥)

⇒ (
((p = 0)

∧
(

(Yt(I1t, . . . , Int) = Xt)
∧

(
(∀J ∈ Dom(Y)) ( (J 6= (I1t, . . . , Int)) ⇒ (Yt(J) = nil) ) )))∨
((p ≥ 1)

∧
(

( (∀(j1, . . . , jn) ∈ IINn) (
K = {(k1, . . . , kp) ∈ IIN p / ∀i, 1 ≤ i ≤ n, Iit(k1, . . . , kp) = ji} ) ) ⇒ (
((K = ∅) ⇒ (Yt(j1, . . . , jn) = nil))

∧
(

(K 6= ∅) ⇒ ((Kmax = max
k∈K

k) ⇒ (Yt(j1, . . . , jn) = Xt(Kmax)))))))) )

where theKmax are obtained by the maximal elements in the setsK, using the lexicographic order on
IIN p.



III–7. COMPOSITE SIGNALS 51

Extraction of sub-array

The definition of the operator of access to an element of arraygiven above is generalized in the
following way to define the extraction of sub-array.

The term

X :=: Y[I1,. . . ,In]

whereI1, . . . ,In are integers or arrays of integers:
τ (I1) = . . . =τ (In) = ([0..b1] × . . . × [0..bp]) → ν
with ν an integer type, and the basic integer values of theIi are positive or zero,
τ (Y) = ([0..a1] × . . . × [0..an]) → µ
andτ (X) = ([0..b1] × . . . × [0..bp]) → µ ∪ {nil}

defines a monochronous process which, in the general case, extracts some sub-array fromY:

(∀t) (
(Yt 6= ⊥)

⇒ (
((((I1t, . . . , Int) ∈ Dom(Y)) ⇒ (Xt = Yt(I1t, . . . , Int)))

∧
(

((I1t, . . . , Int) 6∈ Dom(Y)) ⇒ (Xt = nil)))∨
( (∀(j1, . . . , jp) ∈ IIN p,∀k, 1 ≤ k ≤ p, 0 ≤ jk ≤ bk) ( (

((I1t(j1, . . . , jp), . . . , Int(j1, . . . , jp)) ∈ Dom(Y)) ⇒ (
Xt(j1, . . . , jp) = Yt(I1t(j1, . . . , jp), . . . , Int(j1, . . . , jp))))

∧
(

((I1t(j1, . . . , jp), . . . , Int(j1, . . . , jp)) 6∈ Dom(Y)) ⇒ (
Xt(j1, . . . , jp) = nil)) ) )) )

Sequential definition

The term

T :=: T1 next T2

where:
τ (T1) = ([0..c1] × . . . × [0..cp]) → µ1 ∪ {nil},
τ (T2) = ([0..b1] × . . . × [0..bp]) → µ2 ∪ {nil} with c1 ≥ b1, . . . , cp ≥ bp,
andτ (T) = ([0..c1] × . . . × [0..cp]) → (µ1 ⊔ µ2) ∪ {nil}

defines a monochronous process which specifies, in the general case, a sequential definition of an ar-
ray:

(∀t) (
(Tt 6= ⊥)

⇒ ( (∀(j1, . . . , jp) ∈ IIN p,∀k, 1 ≤ k ≤ p, 0 ≤ jk ≤ ck) ( (
(((j1, . . . , jp) ∈ Dom(T2))

∧
(T2t(j1, . . . , jp) 6= nil)) ⇒ (

Tt(j1, . . . , jp) = T2t(j1, . . . , jp)))
∧

(
(((j1, . . . , jp) 6∈ Dom(T2))

∨
(T2t(j1, . . . , jp) = nil)) ⇒ (

Tt(j1, . . . , jp) = T1t(j1, . . . , jp))) ) ) )
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III–8 Classes of processes

The following classes of processes are usefully distinguished.

III–8.1 Iterations of functions

Let P a process defined onA1. P is aniteration of functiononA2 ⊆ A1 if and only if:

(∀F1, F2 ∈ P ) ( (∀t1, t2) ( (F1‖A2
(t1) = F2‖A2

(t2)) ⇒ (F1(t1) = F2(t2)) ) )

Remark: An iteration of function does not need memory.

III–8.2 Endochronous processes

Let P a process defined onA1. P is endochronouson A2 ⊆ A1, whereA2 is considered as a totally
ordered set{a1, . . . , an}, if and only if the function

Φ : P → Π{a1}
(P ) × . . . × Π{an}

(P )

such that
Φ(F ) = (Π{a1}

(F ), . . . ,Π{an}
(F ))

is injective (and thus bijective, since it is necessarily surjective).
Informally, a process is endochronous on a set of variables if any flow of this process is entirely

determined by the sequences of values carried by these variables, independently of their relative presence
and absence.

In other words, a process is endochronous on a set of variables if given an external (asynchronous)
stimulation of these variables, it is capable of reconstructing a unique synchronous behavior (up to⊥-
equivalence). Then, it can be implemented as a process whichis mostly insensitive to internal and
external propagation delays. This implementation and its context have only to agree on activation starts
and on the availability of data.

Property A processP defined onA1 is endochronous onA2 ⊆ A1 if and only if:

(∀F,F ′ ∈ P ) ( ((ΠA2(F ))≈ = (ΠA2(F
′))≈) ⇔ (F ≡↓ F ′) )

If a subsetA2 ⊆ A1 is considered as the set ofinputs for P , we say thatP is endochronous if it is
endochronous on its inputs.

III–8.3 Deterministic processes

A process is deterministic on a set of variables if any flow of this process is entirely determined by its
restriction to this set of variables.

Let P a process defined onA1. P is deterministiconA2 ⊆ A1 if and only if the function

Φ : P → ΠA2(P )
such that
Φ(F ) = ΠA2(F )

is injective (and thus bijective, since it is necessarily surjective).

In other words, a process is deterministic on a set of variables if any two flows of this process have
the same behaviors when they have the same projection on thisset of variables.
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Property A processP defined onA1 is deterministic onA2 ⊆ A1 if and only if:

(∀F,F ′ ∈ P ) ( ((ΠA2(F )) ≡↓ (ΠA2(F
′))) ⇒ (F ≡↓ F ′) )

Remarks and examples:

• For any elementary processP of the SIGNAL language of the formx :=: E(y1, . . . , yn), if
x ∈ {y1, . . . , yn}, thenP is deterministic on{y1, . . . , yn}.

• For any elementary processP of the SIGNAL language of the formx :=: E(y1, . . . , yn), if
x 6∈ {y1, . . . , yn}, thenP is deterministic on{y1, . . . , yn}.

• X :=: Y default X

is not deterministic on{Y}.

• The determinism onAi is not stable by composition and restriction.

Properties:

If a processP is an iteration of function onA1, then it is deterministic onA1.
If a processP is endochronous onA1, then it is deterministic onA1.

III–8.4 Reactive processes

Reactivity of a process with respect to some set of variablesmay be defined as the ability of the process
to react to each configuration of these variables in all states.

Let P a process defined onA1. P is reactiveon A2 ⊆ A1 if and only if for each flowF ∈ P , for
eacht ∈ dom(F ), for each evente onA2, there exists a flowF ′ ∈ P such that:

(F ′
≤t−1 = F≤t−1)

∧
(F ′(t)|A2

= e).

P is strictly reactiveonA2 ⊆ A1 if and only if for each flowF ∈ P , for eacht ∈ dom(F ), for each
evente onA2 different from the absent event⊥e(A2), there exists a flowF ′ ∈ P such that:

(F ′
≤t−1 = F≤t−1)

∧
(F ′(t)|A2

= e).

A process which is reactive on a non empty setA2 is obviously strictly reactive onA2.

Examples:

• Z :=: X default Y

is strictly reactive on{X, Y}.

• Z :=: X and Y

is neither strictly reactive, nor reactive on{X, Y}.
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III–9 Composition properties

III–9.1 Asynchronous composition of processes

The partial order of relaxation is used to define the semantics of theasynchronouscomposition of pro-
cesses: roughly, the asynchronous composition of two processesP1 andP2 is defined by the flows the
projection of which on common variables ofP1 andP2 are relaxations of the projections on these com-
mon variables of flows ofP1 and of flows ofP2.

Definition Let P1 andP2 two processes defined respectively onA1 andA2.
Theparallel composition(or asynchronous compositionof P1 andP2, denotedP1‖P2, is a process

onA1 ∪ A2 defined by:

P1‖P2 = {F ∈ SA1∪A2
/ ( (∃F1 ∈ SA1

,∃F ′
1 ∈ P1) ( (F1 ∠ F ′

1)∧
(ΠA1∩A2(F1) ⊑ ΠA1∩A2(F ))∧
(ΠA1\A2

(F1) ≡↓ ΠA1\A2
(F )) ) )∧

( (∃F2 ∈ SA2
,∃F ′

2 ∈ P2) ( (F2 ∠ F ′
2)∧

(ΠA1∩A2(F2) ⊑ ΠA1∩A2(F ))∧
(ΠA2\A1

(F2) ≡↓ ΠA2\A1
(F )) ) )∧

(F is maximal for∠)}

III–9.2 Flow-invariance

Flow-invariance,based on flow-equivalence, is a property that relates synchronous and asynchronous
compositions of processes. It consists of ensuring that an asynchronous “implementation”P1‖P2 of a
synchronousspecificationP1|P2 preserves the sequences of values for all flows.

Definition Let P1 andP2 two processes defined respectively onA1 andA2.
The composition ofP1 andP2 is saidflow-invarianton I ⊆ A1 ∪ A2 if and only if:

(∀F ∈ P1|P2) ( (∀F ′ ∈ P1‖P2) ( ((ΠI(F ))≈ = (ΠI(F
′))≈) ⇒ (F ≈ F ′) ) )

It means that a synchronous design made of a flow-invariant composition of processes is robust to
their distribution.

III–9.3 Endo-isochrony

A special case of practical interest is the one of endochronous processes.

Definition Let P1 andP2 two processes defined respectively onA1 and A2. They are saidendo-
isochronousif and only if P1, P2 andΠA1∩A2(P1)|ΠA1∩A2(P2) are endochronous.

Property If P1 andP2 are endo-isochronous, then their composition is flow-invariant on its set of
variables.
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III–10 Clock system and implementation relation

The refinement of a system specification consists in transforming its abstract behaviors into more con-
crete ones that make intermediate computational steps explicit. Conversely, the abstraction of a behavior
consists in discarding some intermediate calculations. Thus it is useful to have animplementation rela-
tion between processes, that takes into account a notion of time refinement.

Sampler system

Let T a trace onA1. A sampler systemfor T is a functions : A1 → A1 such thats is acyclic, and
for all a ∈ A1, s(a) is a Boolean and

(∀t) ( (Tt(s(a)) = true) ⇒ (Tt(a) 6= ⊥) )

A function s is a sampler system for a processP if and only if it is a sampler system for every flow
of P .

Clock system

Let T a trace onA1. A clock systemfor T is a sampler system such that for alla ∈ A1,

(∀t) ( (Tt(s(a)) = true) ⇔ (Tt(a) 6= ⊥) )

A function s is a clock system for a processP if and only if it is a clock system for every flow ofP .

Sampling

Let T a trace onA1 ands a sampler system forT . Thesamplingof T by s is the traceT ′ = Ss(T )
defined onA1 such that for alla ∈ A1, (∀t) ( T ′

t(a) = S∗(Tt(a)) ) whereS∗ is recursively defined
as follows:
if s is not defined ona, thenS∗(Tt(a)) = Tt(a),
if s is defined ona, then

S∗(Tt(a)) = Tt(a) if S∗(Tt(s(a))) = true,
S∗(Tt(a)) = ⊥ if S∗(Tt(s(a))) 6= true.

Let P a process defined onA1. The sampling ofP by a sampler systems for P is the processP ′,
denotedP ′ = Σs(P ), defined as the set of flows which are equivalent to samplings of flows of P :

P ′ = {T ′
↓ ∈ SA1

/ (T ∈ P )
∧

(T ′ = Ss(T ))}

Well-clocked implementation

Let P a process onA1 andQ a process onA2 such that there exists a one-to-one correspondenceσ
such thatσ(A1) ⊆ A2, and lets a clock system onQ.
Q is awell-clocked implementationof P with respect tos (denotedQ �s P ) if and only if:

Πσ(A1)(Σs(Q)) = P.
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III–11 Transformation of programs

A general principal of transformation of programs (which isapplied for SIGNAL programs all along
the design of an application, for example for verification purpose, for implementation purpose, or to
calculate abstractions of behaviors) consists in the following generic rewritting scheme: homomorphisms
of programs are defined such that a program is contained in thecomposition of its transformations by
these homomorphisms. Typically, one of these transformations is an abstract interpretation of the initial
program.

Let A1 a set of variables. We consider:

• an interpretation homomorphism,f , which associates with each elementary processP defined on
A1 a processQf = f(P ) onA2,

• an homomorphismr, which associates with each elementary processP defined onA1 a process
Qr = r(P ) onA′

1 ⊆ A1,

such thatΠA1∩A2(P ) ∠ ΠA1∩A2(Qf |Qr)
and thusP = ΠA1(P |(Qf |Qr)).

Then we define a transformation of programs (which is an homomorphism)
Tfr : PA1

→ PA′

1∪A2

such that
Tfr(P ) = left(T Tfr(P ))|right(T Tfr(P ))
with:

• left(< X,Y >) = X

• right(< X,Y >) = Y

• T Tfr(P ) = < f(P ), r(P ) > if P is an elementary process

• T Tfr(P1|P2) = < left(T Tfr(P1))|left(T Tfr(P2)), right(T Tfr(P1))|right(T Tfr(P2)) >

Then,P = ΠA1(P |Tfr(P )).



Chapter IV

Calculus of synchronizations and
dependences

IV–1 Clocks

As said before, the clock of a signal represents the presenceinstants of this signal, relatively to the other
ones. A system of clock relations is associated with any system of SIGNAL equations (SIGNAL process),
in order to represent specifically thesynchronizationsof the process.

For that purpose, an homomorphism,Clock, is defined on processes, which has the following prop-
erty:
Clock(P) | P = P

or equivalently:P ∠ Clock(P)
(by abuse of notation, we use the same notation for the syntactic and semantic homomorphisms).

Then, the system of clock relations is encoded as a system of polynomial equations on the field of
integers modulo 3.

IV–1.1 Clock homomorphism

Let us consider the followingderivedelementary processes, in order to make easier the expression of
clock equations:

• a2 :=: â1

is defined bya2 :=: a1 == a1

where == represents the equality operator defined on values of any type. The signala2 is defined
at the same instants as the signala1 and at each one of these instants, its value is the Boolean value
true (the type ofa2 is the subtype calledevent of the Boolean type, which contains as single value
the valuetrue). It is said that̂a1 represents the event clock of the signala1.

• a1 ̂= a2

is defined by (a3 :=: â1 == â2) where a3

and is generalized ton variables (a1 ̂= . . . ̂= an). It expresses that the signalsa1 anda2 (more
generally,a1, . . . ,an) are present at the same instants (their clocks are equal).

TheClock homomorphism is defined as follows, depending on the types ofthe signals (the notation
τ (x) designates the type ofx): Boolean equations are left unchanged in the homomorphism.
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1-a Monochronous definitions

• Definitions by extension:

if τ (b) = τ (a1) = . . . =τ (an) = boolean:
b :=: f (a1, . . . ,an) 7→ b :=: f (a1, . . . ,an)

else:
b :=: f (a1, . . . ,an) 7→ b̂= a1 ̂= . . .̂= an

• Clock:

b :=: â 7→ b :=: â

• Delay:

if τ (b) = boolean:
b :=: a $ init v 7→ b :=: a $ init v

else:
b :=: a $ init v 7→ b̂= a

1-b Polychronous definitions

• Extraction:

if τ (b) = boolean:
b :=: a1 when a2 7→ b :=: a1 when a2

else:
b :=: a1 when a2 7→ b̂= â1 when a2

• Merging:

if τ (b) = boolean:
b :=: a1 default a2 7→ b :=: a1 default a2

else:
b :=: a1 default a2 7→ b̂= â1 default â2

1-c Hiding

Clock(P where a) = Clock(P ) where a

1-d Composition

Clock(P1 | P2) = Clock(P1) | Clock(P2)

IV–1.2 Verification

As a consequence, ifR is a safety property satisfied byClock(P ),
which is expressed byR | Clock(P ) = Clock(P ),
R is also satisfied byP sinceP = Clock(P ) | P .
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IV–1.3 Clock calculus

Since the system of clock relations handles only values of Boolean signals, and presence/absence for the
other types of signals, there is a natural encoding of these values in the fieldZ/3Z of integers modulo 3
(or Galois fieldF3 with three elements):
F3 = [{−1, 0, 1},+, ∗]
with the usual meanings for operations and values (+ is the usual addition modulo 3,∗ is the usual
multiplication).

We define the set of polynomials onF3 and a set of variables isomorphic to the variables of a SIGNAL

program. The association of the value 0 with a variable indicates the absence of value for the associated
signal in the corresponding instant. With each present Boolean signal, the value−1 (which is equal to 2
in Z/3Z) is associated if its current value isfalse, and the value+1 is associated if its current value is
true. Thus, the square of the value of the variable associated with a present Boolean signal is equal to 1;
for each non Boolean signal, we are interested only in the presence or absence of a value at the current
instant. So we associate with such a signal a squared variable.

The synchronization of a SIGNAL program is expressed by a system of equations in the set of poly-
nomials onF3 defined by the homomorphism described below.

3-a Monochronous definitions

• Definitions by extension:

b :=: f (a1, . . . ,an) 7→ b2 = a2
1 = . . . = a2

n

(some relation on the values ofb, a1, . . . ,an is obtained whenf designates a Boolean operator).

• Clock:

b :=: â 7→ b = a2

• Delay:

b :=: a $ init v 7→ ξn+1 = (1 − a2) ∗ ξn + a, ξ0 = v, b = a2 ∗ ξn

3-b Polychronous definitions

• Extraction:

b :=: a1 when a2 7→ b = a1 ∗ (−a2 − a2
2)

• Merging:

b :=: a1 default a2 7→ b = a1 + (1 − a2
1) ∗ a2

3-c Hiding

Replaces, in the system, the hidden variable by an internal one.

3-d Composition

The system obtained forP1 | P2 is the union of the systems obtained forP1 and forP2.



60 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

3-e Static and dynamic clock calculus

Then the calculus of synchronizations (clock calculus) of aSIGNAL program is done by studying a
dynamic system such as: 





Xn+1 = P (Xn, Yn)
Q(Xn, Yn) = 0
Q0(X0) = 0

whereX is a state vector in(Z/3Z)p andY is a vector of events (abstract interpretations of signals)that
make the system evolve.

Such a dynamic system is a particular form of finite state transition system. Thus it is a model of
discrete event system on which it is possible to verify properties or to make control.

Studying such a system then consists in:

• studying itsstaticpart, i.e., the set of constraints

Q(Xn, Yn) = 0

• studying itsdynamicpart, i.e., the transition system

Xn+1 = P (Xn, Yn)
Q0(X0) = 0

and the set of its reachable states, etc.

IV–2 Context clock

The clock relations imposed by SIGNAL operators imply the existence ofcontext clocksfor the various
occurrences of the signal variables.

A particular case of this situation is for the occurrence of constants, since such a context clock is the
only way to assign a clock to the occurrence of a constant.

Occurrences of constants are allowed in SIGNAL expressions as a practical way to designate constant
signals, i.e., signals with a constant value. The occurrence of such a constant,v, in some expression,
stands for the occurrence of some hidden signalx, defined asx :=: x $ init v.

Each occurrence of a constant has a particular clock (which cannot be fixed explicitly since the
corresponding signal is hidden): this clock is defined by thecontext of utilization of the constant.

It is defined a utilization mode of the constants:

• allowing as much flexible use as possible
(we want to be able to writex + 5 but alsox + (y default 5));

• allowing intuitive handling of their clocks (a constant is delivered at the clock necessary for the
coherence of a synchronous expression);

• free of interpretation for the synchronous operationsand in particular, preserving possible proper-
ties of commutativity, associativity. . . of these operators;

• preserving the spirit, if not the letter, of the substitution principle;

• preserving the properties of the temporal operators:

– “associativity” ofwhen,
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– associativity ofdefault,

– “right distributivity” of when ondefault.

These requirements lead to consider that the occurrence of aconstant has a clock which is provided by
the context.This has the consequence that the substitution principle cannot apply in general.

The rules for the definition of the context clock are introduced informally below.

• For a definition

X :=: E

the context clock ofE is the clock ofX.

• For a monochronous expression, the context clock of each argument is the context clock of the
expression.

• For a delay

E1 $

the context clock ofE1 is undefined, which means that the argument of a delay cannot be a constant
(note that it has also consequences on derived operators).

• For an extraction

E1 when C

havingH as context clock, the context clock ofC is H, that ofE1 is the clock product ofH and
of the clock at whichC has the valuetrue
(this can be used to assign explicitly a clock to a constant).

• For a merging of signals

E1 default E2

havingH as context clock, the context clock ofE1 and ofE2 is H.
For example,5 default x is equivalent to5.

In the sequel, the clock of a constant outside some context will be denoted~.
The rules for the calculation of the clock of a constant in a given context apply also for the signals

the clock of which is undefined; such a signal is obtained by the operatorvar. The clock ofvar E
outside some context is also denoted~.

IV–3 Dependences

The equations on signals imply, at the execution, an evaluation order which is described by the depen-
dence graph.
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Figure B–IV.1: Formal meaning of the dependence statement.

IV–3.1 Formal definition of dependences

The following informal definition of dependences can be stated:

A signalx depends on a signaly “at” a Boolean conditionc (noted y
c
−→ x) if, at each instant for which

c is present andtrue, the event setting a value tox cannot precede the event setting a value toy.

A formal definition in the form of an automaton is presented here. We give the formal meaning of the
statement

y
c
−→ x (IV.1)

in FigureB–IV.1. In the figure, the clock equations in states can be read as follows: y2(c + c2) = 0
means “absent(y) ∨ (absent(c) ∨ c = false)” (at the considered instant);y2 = 0 means “absent(y)”;
c+ c2 = 0 means “(absent(c) ∨ c = false)”. This figure describes a non deterministic automaton which
represents the legal schedulings of calculi in one instant as conform with statement (IV.1).

• States of the automaton are made of dependence graphs and clock equations. Clock equations can
be represented as equations inF3.

• Transitions are labelled by signals (y, c, x), or by the empty wordε. A transition labelled byy
reads: “signaly occurs, with any legal value”. A transition labelled byc(1) (respectively,c(−1))
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reads: “signalc occurs, with valuetrue (respectively,false)”; the empty wordε represents the
occurrence of any signal but (y, c, x).

• In the automaton of FigureB–IV.1, all the states have an additional transition (not represented in
the Figure), labelled byε, toward the initial state (which is represented with a thickcircle in the
Figure).

The automaton describing all legal schedulings of calculi for a program in one instant is obtained
by a synchronous product of such basic automata, as described in sectionIV–3.3. Since these automata
describe instantaneous behaviors, they are calledmicro automata. The states of the transition system
describing the overall behavior of a program are theforcedstates (orinitial states) of the micro automata.

IV–3.2 Implicit dependences

The equations defining a process may induce implicit dependences, such as described in the following.
Notations: For a Booleanc, we use the notation[c] to represent the clock at whichc has the value

true, and[¬c] to represent the clock at whichc has the valuefalse.
In addition to the implicit dependences described below, the following implicit dependences apply

equally:

• for any signalx, x̂
x̂

−−→ x

• for any Boolean signalc, c
ĉ

−→ [c] and c
ĉ

−→ [¬c]

• any dependence y
c
−→ x implies implicitly a dependence[c]

[c]
−−→ x.

2-a Monochronous definitions

• Definitions by extension:

b :=: f (a1, . . . ,an)
The following implicit dependences exist:
a1−→b, . . . ,an−→b

• Clock:

b :=: â
b is identified with the clock ofa, there is no implicit dependence.

• Delay:

b :=: a $ init v
There is no implicit dependence.

2-b Polychronous definitions

• Extraction:

b :=: a1 when a2

The following implicit dependence exists:

a1
b̂

−→ b
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• Merging:

b :=: a1 default a2

The following implicit dependences exist:

a1
â1−−→ b

a2
â2 −̂ â1−−−−−−−→ b

wherê a2 −̂ â1 designates the clock representing the instants ofa2 that are not instants ofa1.

IV–3.3 Micro automata

3-a Definition of micro automata

The micro automaton associated with a program describes thelegal schedulings of calculi inone instant.
Let A be a set of variables;As = A+ ∪ A− is the set of variables ofA labelled by+ or−.
A word onA is any subsetm of As such that

as ∈ m ⇒ as 6∈ m where+ = − and− = +

A micro automaton onA is a tuple

< S,P(As), SI ,Γ ⊆ S × P(As) × S >

such that:

• SI ⊂ S: S is the set of states andSI is a set of initial states;

• if s1
m1
❀ s2 ∈ Γ (Γ is the set of transitions,m1 is the label of the transition), ands2

m2
❀ s3 ∈ Γ, and

. . . andsn
mn
❀ sn+1 ∈ Γ, then:

∀i 6= j,mi ∩ mj = ∅

andm =
n⋃

i=1

mi is a word onA.

• if s1
∅
❀ s2 ∈ Γ then s2 ∈ SI

1

The micro automaton is calledsaturated micro automatonif, in addition,

s1
m1
❀ s2 ∈ Γ ands2

m2
❀ s3 ∈ Γ ⇒ s1

m1∪m2
❀ s3 ∈ Γ

Let AUT be a micro automaton,Sat(AUT ) is the saturated micro automaton which containsAUT .
Consider two micro automata defined respectively onA1 andA2 with A1 ∩ A2 = A. Two labels of

transitions,m1 onA1, andm2 onA2, are said tocoincideonA if and only if:

(m1 ∩ As) = (m2 ∩ As)

Let AUT1 =< S1,P(As
1), S1I ,Γ1 > andAUT2 =< S2,P(As

2), S2I ,Γ2 > two micro automata.
Their (synchronous) product, denotedAUT = AUT1||AUT2, is the micro automaton onA1 ∪ A2,
defined by:

AUT = Sat(< S1 × S2,P(As
1 ∪ As

2), S1I × S2I ,Γ >)

1
∅ is denotedε in IV–3.1.
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with Γ defined as follows:

(s1, s2)
m1
❀ (s′1, s2) ∈ Γ iff m1 ∩ As

2 = ∅ ands1
m1
❀ s′1 ∈ Γ1

(s1, s2)
m2
❀ (s1, s

′
2) ∈ Γ iff m2 ∩ As

1 = ∅ ands2
m2
❀ s′2 ∈ Γ2

(s1, s2)
m1∪ m2

❀ (s′1, s
′
2) ∈ Γ iff m1 andm2 coincide onA1 ∩ A2

ands1
m1
❀ s′1 ∈ Γ1 ands2

m2
❀ s′2 ∈ Γ2

3-b Construction of basic micro automata

(i) Micro automaton associated with a system of equations

Let us consider a system of clock equations on a set of variablesA:

Σ : R(A) = 0

having at least one solution (the system encodes clock equations of a program).
A partial valuationof Σ is any system of equationsΣ′ : R′(A′) = 0 equivalent toR(A) = 0 in which

a non empty subset{a1, . . . , an} of variables ofA have been replaced by valuesv1, . . . , vn ∈ {−1, 1}
such thatΣ′ has at least one solution.

If σ denotes such a substitution, the following notations are used:

σ(ai) = vi denotes the value assigned toai by σ
σ(R(A)) denotes the systemR′(A′) obtained by the substitution.

Then we considerP(Σ) the set ofR′(A′) such that there existsσ verifying
σ(R(A)) = R′(A′).

The micro automaton associated withΣ is the saturated micro automaton

< S,P(As), {s0},Γ >

such that:

• there exists a bijectionφ : P(Σ) → S with φ(R) = s0

• for any partial valuationσ of R′(A′) ∈ P(R(A)),

φ(R′)
T
❀ φ(σ(R′)) ∈ Γ

if and only if:

a+ ∈ T iff σ(a) = 1 and
a− ∈ T iff σ(a) = −1

• for all Σ′ : R′(A′) = 0 such that

∀a, a ∈ A′ ⇒ a = 0 is a solution ofΣ′

then
φ(R′)

∅
❀ s0 ∈ Γ
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(ii) Micro automaton associated with a dependence

The micro automaton associated with
y

c
−→ x

is defined as follows.
We consider the following states of resolutionE :

y
c
−→ x, y−→x, {y, x}, {c, x}, (y2(c + c2) = 0), {y}, {x}, {c}, (c + c2 = 0), (y2 = 0)

The micro automaton associated with y
c
−→ x is the saturated micro automaton

Sat(< S,P({y, x, c}s), {s0},Γ >)

such that there exists a bijectionφ : E → S with φ(y
c
→ x) = s0

and withΓ defined as follows:

φ(y
c
−→ x)

c+
❀ φ(y−→x) ∈ Γ

φ(y
c
−→ x)

c−
❀ φ({y, x}) ∈ Γ

φ(y
c
−→ x)

y±

❀ φ({c, x}) ∈ Γ

φ(y
c
−→ x)

x±

❀ φ(y2(c + c2) = 0) ∈ Γ

φ(y
c
−→ x)

∅
❀ φ(y

c
−→ x) ∈ Γ

φ(y−→x)
y±

❀ φ({x}) ∈ Γ

φ(y−→x)
x±

❀ φ(y2 = 0) ∈ Γ

φ(y−→x)
∅
❀ φ(y

c
−→ x) ∈ Γ

In addition,Γ contains all other transitions coming from resolution suchas described in (i).
The corresponding micro automaton is displayed in FigureB–IV.1, wherec+ andc− are denoted

respectivelyc(1) andc(−1), andy± andx± are denotedy andx; moreover, the∅ transitions have been
omitted in the figure.

(iii) Micro automaton associated with a memorization

The encoding presented inIV–3.1 considers not only the clocks, but also thevaluesof the Boolean
flows: delayed Boolean flows are thestate variablesof the program.

The micro automaton associated withx :=: y $ init v wherex andy are Boolean flows is the
saturated micro automaton obtained from the micro automaton depicted on FigureB–IV.2. The initial
states of this micro automaton are the states represented with a thick circle in the Figure.

(iv) Micro automaton associated with a process

The micro automaton associated with a process is the productof the saturated micro automata asso-
ciated with each definition involved in the process.
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x(1)

x(1) x(1)y(1)

y(1) y(1)

y(−1) y(−1)

y(−1)

x(−1)

x(−1)x(−1)

φ φ

φ φ

x :=: y$ init true x :=: y$ init false

Figure B–IV.2: Micro automaton ofx :=: y $ init v





Part C

THE SIGNALS





Chapter V

Domains of values of the signals

A signal is a sequence of values associated with a clock. These values have all the same type, which is
considered as the type of the sequence. The objective of thischapter is to present the notations used to
represent these types and the processings which are appliedon them. An element of the set of types of
the SIGNAL language is denotedtype.

LetE be a term of the SIGNAL language; we denote byτ (E) the type associated with the termE and,
whenE is a constant expression,ϕ(E) the value of this expression, elaborated in the context in which E
appears.

The set of types of the SIGNAL language contains the scalar types, the external types, thearray types
and the tuple types.

1. Context-free syntax

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

V–1 Scalar types

Scalar types are the following: synchronization types, integer types, real types, complex types, character
type, string type; the integer, real and complex types compose the set of numeric types; character and
string types compose the set of alphabetic types.

1. Context-free syntax

Scalar-type::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ::= Integer-type
| Real-type
| Complex-type

Alphabetic-type ::= char

| string
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V–1.1 Synchronization types

The synchronization types are used to define the clocks of thesignals. They are the typeevent (or pure
signal) and the typeboolean.

Denotations of types

1. Context-free syntax

Synchronization-type::= event

| boolean

2. Types

(a) τ (event) = event

(b) τ (boolean) = boolean

Denotations of values

• A signal of typeevent takes its values in a single-element set: there is no associated constant and
a parameter cannot be of that type.

• The constants of typeboolean are the logical values denoted with the syntax of aBoolean-cst(cf.
partA, sectionII–2.2, page25).

• The default initial value of typeboolean is the valuefalse.

V–1.2 Integer types

Integer values can be in short representation (typeshort), normal representation (typeinteger), or long
representation (typelong); a given implementation may not distinguish these types. In this document, the
notationsmax long, min long, max integer, min integer, max short andmin short will be used to
designate respectively: the greatest representable integer (of typelong), the smallest representable inte-
ger (of typelong), the greatest integer of typeinteger, the smallest integer of typeinteger, the greatest
integer of typeshort and the smallest integer of typeshort. These values depend of the implementation
and respect the following order:
min long ≤ min integer ≤ min short ≤ 0 < max short ≤ max integer ≤ max long
min integer < 0

Denotations of types

1. Context-free syntax

Integer-type ::= short

| integer

| long

2. Types

(a) τ (short) = short
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(b) τ (integer) = integer

(c) τ (long) = long

Denotations of values

The positive values of an integer type are denoted followingthe syntax of anInteger-cst (cf. part
A, sectionII–2.3, page26). A negative value has not a direct representation: it is obtained using the
operator − applied to a positive value.

1. Types

(a) The type of anInteger-cst E is the smallest integer type that contains it.

2. Semantics

• An Integer-cst denotes an integer value represented in decimal base, contained between 0
andmax long.

• An occurrence of an integer value of typeshort (respectively,integer and long) smaller
thanmin short (respectively,min integer andmin long) or greater thanmax short (re-
spectively,max integer andmax long) results, in the considered type, in a value depending
of the implementation.

• For anInteger-type, the default initial value is the value 0.

Bounded integers

Integers have a special role since they can be used to index arrays. In that case, we have to consider
bounded values.

In this document, for a given signalE, we will use sometimes the following notations:

• lower_bound(E) designates the lower bound of the values ofE;

• upper_bound(E) designates the upper bound of the values ofE.

These bounds are constant integers.

V–1.3 Real types

The real values can be in simple precision representation (typereal) or double precision representation
(typedreal); a given implementation may not distinguish these types.

Denotations of types

1. Context-free syntax

Real-type::= real

| dreal

2. Types

(a) τ (real) = real

(b) τ (dreal) = dreal
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Denotations of values E1.E2eE3 (simple precision) orE1.E2dE3 (double precision)

A value of real type is denoted following the syntax of aReal-cst(cf. partA, sectionII–2.4, page26).
A Real-cstdenotes the approximate value of a real number.

1. Types

(a) A Simple-precision-real-cstis of typereal.

(b) A Double-precision-real-cstis of typedreal.

2. Semantics

• The valueϕ(Ei), whenEi is omitted, is 0.

• If E2 hasn digits, the value of the constant is the approximate value of(ϕ(E1) + ϕ(E2) ∗
10−n) ∗ 10ϕ(E3).

• For aReal-type, the default initial value is the value0.0 or 0.0d0 following the type.

V–1.4 Complex types

The complex values have the common representation of their components (simple or double precision,
respectively typescomplex anddcomplex); both types are distinguished in a given implementation if
and only if the typedreal is distinguished from the typereal.

Denotations of types

1. Context-free syntax

Complex-type::= complex

| dcomplex

2. Types

(a) τ (complex) = complex

(b) τ (dcomplex) = dcomplex

Denotations of values

A value of complex type is obtained for example in the following expression, the first element of
which is the real part and the second one the imaginary part (cf. partC, sectionVI–8.1, page131).

1. Examples

(a) 1.0 @ (−1.0)

For aComplex-type, the default initial value is the pair of default real initial values.
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V–1.5 Character type

The typecharacter contains the set of the admitted characters in the language.

Denotation of type

1. Types

(a) τ (char) = character

Denotations of values
A value of typecharacter is denoted by aCharacter-cst (cf. partA, sectionII–2.5, page26).

The default initial value of typecharacter is the character’\000’.

V–1.6 String type

The typestring allows to represent any sequence of admitted characters. The value of the maximal
authorized size for a string,maxStringLength, depends of the implementation.

Denotation of type

1. Types

(a) τ (string) = string

Denotations of values
A value of typestring is denoted by aString-cst (cf. partA, sectionII–2.6, page27).
The default initial value of typestring is the empty string"".

V–2 External types

External types make possible the use of signals the type of which is not a type of the language.

Denotation of type A

An external type is designated by a name.

1. Context-free syntax

External-type ::= Name-type

2. Types

(a) For an external type with nameA, τ (A) = A
Two external types with distinct names are not comparable.

3. Examples

(a) pointer is an external type with namepointer.
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Denotations of values

An external constant can be denoted by a name; the value of an external constant can be defined by
the environment of the program (cf. partE, chapterXII , page203).

For example the identifiernil can represent a constant of typepointer.
For any external typeA, it is possible to define a constant that represents the default initial value of

typeA (cf. sectionV–7, page86).
The only operations the semantics of which is defined on external type signals are operations of

description of communication graphs (which are polymorphic operations).

V–3 Enumerated types

Enumerated types allow to represent finite domains of valuesrepresented by distinct names. These values
(the enumerated values) are the constants of the type to which they belong.

Denotation of types enum (a1, ..., am)

An enumerated type is defined by the list (considered as an ordered list) of its values (the enumerated
values) and by its name (cf. sectionV–7, page86): type A = enum (a1, ..., am);
However, like for the other types, such a name does not necessarily exist. In that case, the name of the
type is empty.
The definition of an enumerated type declares its enumeratedvalues.

1. Context-free syntax

ENUMERATED-TYPE ::=

enum ( Name-enum-value{ , Name-enum-value}∗ )

2. Types

(a) The type of the enumerated type is:
τ (A = enum (a1, ..., am)) = A × {a1, . . . , am}
where{a1, . . . , am} represents the finite set of ordered valuesa1, . . . ,am. It means that the
name of an enumerated type (the name that is given in the declaration of the type) is part
of that type. Depending on the implementation, it can be the case or not that synonyms (cf.
sectionV–7, page86) are considered in the definition of the type.
If the enumerated type is not designated by a name, then its type is just the finite set of its
ordered values.

(b) The type of the enumerated values of an enumerated type isthis enumerated type:τ (a1) =
. . . =τ (am) = τ (enum (a1, ..., am))

(c) Two enumerated types are considered to be equal if they have both the same name, and
the same set of enumerated values,in the same order.Two enumerated types that are not
designated by a name are considered to be equal if they have the same set of enumerated
values, in the same order.

3. Semantics
The enumerated values of an enumerated type are ordered (syntactic order of their declaration).
All the values of a given type are distinct; these values are distinguished by their name.
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4. Examples

(a) type color = enum (yellow, orange); andtype fruit = enum (apple,
orange); are two enumerated types, each one defining an enumerated value named “or-
ange”. Both enumerated values named “orange” are distinct values, with different types. The
next paragraph describes the way allowing to distinguish them.

Denotation of values

#ai or A#ai

whereA is the name of the enumerated type.
Note: the symbol# does not appear in the definition of the type (and its enumerated values), but only for
the use of an enumerated value.

1. Context-free syntax

ENUM-CST ::=

# Name-enum-value

| Name-type # Name-enum-value

2. Semantics

• The notation#ai can be used to reference an enumerated valueai in a context in which there
is no possible ambiguity on the referenced value. If it is notthe case, the notationA#ai has
to be used, whereA designates the enumerated type.

• The default initial value of an enumerated type is the first value of its declaration.

3. Clocks An enumerated valueai (designated by#ai or A#ai) is a constant.

(a) ω(ai) = ~

4. Examples

(a) color#orange andfruit#orange designate two different enumerated values (of two
different types) with the same name.

With respect to the fact that there are possibly identical names for different enumerated values in
different enumerated types, the visibility of enumerated values is the same as that of the type in which
they are declared (cf. partE, sectionXI–2, page187).

V–4 Array types

An array is a structure allowing to group togethersynchronouselements of a same type. The description
of such a structure and of the access to its elements uses constant expressions that have the general syntax
of signal expressions (S-EXPR).
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Denotation of types [n1, ..., nm]ν

An array type is defined by its dimensions and by the type of itselements.

1. Context-free syntax

ARRAY-TYPE ::=

[ S-EXPR { , S-EXPR }∗ ] SIGNAL-TYPE

2. Types

(a) The elaborated values ofn1 (ϕ(n1)), . . . ,nm (ϕ(nm)) are strictly positive integers.

(b) The type of the array is:
τ ([n1, ..., nm]ν) = ([0..ϕ(n1) − 1] × . . . × [0..ϕ(nm) − 1]) → τ (ν).

(c) When the typeτ (ν) itself is an array type[nm+1, ..., nm+p]µ, then the type of the
array is:
τ ([n1, ..., nm]ν) = ([0..ϕ(n1) − 1] × . . . × [0..ϕ(nm+p) − 1]) → τ (µ).

3. Clocks The integersni must be constant expressions.

(a) ω(ni) = ~

4. Properties

(a) The types[n1, n2]ν and[n1] [n2]ν are the same.

5. Examples

(a) [10,10] integer is a two dimensions integer array (the bounds of the array begin im-
plicitly at index 0 in each dimension).

(b) [n] pointer is a vector of values of external typepointer.

Denotations of values

A constant array is defined by a constant expression of array (cf. partD, sectionIX–2, page159);
the elements that compose a constant array are from the same domain.

For anARRAY-TYPE , the default initial value is an array of which each element has the default
initial value of the type of the elements of the array.

V–5 Tuple types

The SIGNAL language allows to define structured types, called in a generic way tuple types. Two cate-
gories of tuple types, called also tuple types with named fields, can be associated with the objects of the
SIGNAL language in declarations:

• polychronous tuples (designated by the keywordbundle);

• monochronous tuples (designated by the keywordstruct)
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(remark: the objects declared of tuple type can also be called tuples).
An object declared of type polychronous tuple is in fact a gathering of objects (family of objects).

In this way,a polychronous tuple of signals is not a signal(for example, in the general case, it has no
clock); it cannot be used as the type of the elements of an array. At the opposite, an object declared of
type monochronous tuple can be a signal: it has a clock (delivered by the operator̂) and it can be used
as the type of the elements of an array.

A general rule is that operators on signals do not apply on polychronous tuples, but they are pointwise
extended on the fields of these tuples (cf. partD, chapterX, page179).

The SIGNAL language allows also to manipulate gatherings (or tuples) of objects with no explicit
declaration of these gatherings. They define in fact tuples with unnamed fields, the type of which is a
product of types (cf. sectionV–6.2, paragraph “Order on tuples”, page82). The operators defined on
signals are pointwise extended to tuples with unnamed fields(cf. part D, chapterX, page179). By
extension, it will be possible to refer to the clock of a tupleof signals if all the signals of the tuple have
the same clock.

Denotation of types
struct (µ1 X1; ...; µm Xm;)
or
bundle (µ1 X1; ...; µm Xm;) spec C

A tuple type is defined by a list of typed and named fields; in addition, clock properties can be
specified on the fields of a tuple.

The description of such a type uses lists of declarations of sequence identifiersS-DECLARATION
(cf. sectionV–9, page89) for the designation of the fields, and propertiesSPECIFICATION-OF-
PROPERTIES (cf. part E, sectionXI–6, page191) to express the clock properties that must be re-
spected by the signals corresponding to the fields defined by the type. These properties should describe
exclusivelyclock propertieson the fields of the tuple, excluding for instance graph properties. Note that
constraints on values can be specified under the form of constraints on clocks.

A tuple type can be multi-clock (polychronous) or mono-clock (monochronous). If it is multi-clock,
it is distinguished by the keywordbundle and it can contain specifications of clock properties applying
on its fields. If it is mono-clock, it is distinguished by the keywordstruct and all its fields are implicitly
synchronous; in this case, it can be used as type of the elements of an array.

1. Context-free syntax

TUPLE-TYPE ::=

struct ( NAMED-FIELDS )

| bundle ( NAMED-FIELDS )
[ SPECIFICATION-OF-PROPERTIES ]

NAMED-FIELDS ::=

{ S-DECLARATION } +

2. Types

(a) From the point of view of the domains of associated values, the polychronous or monochronous
tuple types with named fields are designated in the same way inthis document. The domain
is a non associative product (i.e., preserving the structuring) of typed named fields.
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(b) τ (struct (µ1 X1; ...; µm Xm;))
= bundle({X1} → τ (µ1) × . . . × {Xm} → τ (µm))

(c) τ (bundle (µ1 X1; ...; µm Xm;) spec C)
= bundle({X1} → τ (µ1) × . . . × {Xm} → τ (µm))

(d) A type
bundle({X1} → τ (µ1) × . . . × {Xm} → τ (µm))
defines a set of functions

Ξ : {X1, . . . ,Xm} →
m⋃

i=1

τ (µi) such thatΞ(Xi) ∈ τ (µi).

3. Semantics
The tuple types with named fields (struct andbundle) allow to define structured types as non
associative grouping of typed named fields:(µ1 X1; ...; µm Xm;). The specifications
of propertiesspec C apply on the fields of the tuple. They establish constraints that must be
respected by the signals defined with such a type (space of synchronization of the values of the
domain).

4. Examples

(a) struct (integer X1, X2;)
is a tuple of two synchronous integers.

(b) bundle (integer A; boolean B;) spec (| A ̂# B |)
defines a union of types as a tuple the fields of which are mutually exclusive.

Denotations of values

A constant tuple is defined by a constant expression of tuple (cf. partD, sectionVIII–1 , page153).
For aTUPLE-TYPE , the default initial value is recursively the tuple of initial values of its fields.

V–6 Structure of the set of types

A partial order is defined on the types such that there exists a“natural” plunging of a smaller set into
a greater one. The types are organized into domains corresponding to theoretical sets (non constrained
by the implementation). In this way, the domain of synchronization values (Synchronization-type)
contains the typesevent andboolean; the domain of integers (Integer-type) contains the typesshort,
integer, andlong; the domain of reals (Real-type) contains the typesreal anddreal; the domain of
complex (Complex-type) contains the typescomplex anddcomplex.

V–6.1 Set of types

The set of types is composed of the types the expressions of which, in the SIGNAL language, described
in the following summary, are derived from the variableSIGNAL-TYPE :
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SIGNAL-TYPE




Scalar-type




Synchronization-type{
event denotes the typeevent

boolean denotes the typeboolean

Numeric-type




Integer-type




short denotes the typeshort

integer denotes the typeinteger

long denotes the typelong

Real-type{
real denotes the typereal

dreal denotes the typedreal

Complex-type{
complex denotes the typecomplex

dcomplex denotes the typedcomplex

Alphabetic-type{
char denotes the typecharacter

string denotes the typestring

External-type
Name-type

Generic form of the external types:name
ENUMERATED-TYPE

enum ( Name-enum-value{ , Name-enum-value} ∗ )
Generic form of the enumerated types:A × {a1, . . . , am}

ARRAY-TYPE
[ S-EXPR { , S-EXPR } ∗ ] SIGNAL-TYPE
Generic form of the array types:([0..n1 − 1] × . . . × [0..nm − 1]) → ν

TUPLE-TYPE




struct ( NAMED-FIELDS )

bundle ( NAMED-FIELDS ) [ SPECIFICATION-OF-PROPERTIES ]

Generic form of the tuple types with named fields:
bundle({X1} → µ1 × . . . × {Xm} → µm)

V–6.2 Order on types

Order on scalar and external types

The order on scalar and external types of the SIGNAL language is described in the figureC–V.1. A
downward solid arrow (→) links a type with a type directly superior from the same domain (two types
of a same domain arecomparable); the other arrows represent basic conversions, the semantics of which
is described below. The other conversions are obtained by composition of conversions. The partial order
is denoted⊑.

The notion of “comparable types” is extended to arrays and tuples.
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event

short

integer

long

real

dreal

complex

dcomplex

boolean

char

string

EXTERNAL_TYPE

Figure C–V.1: Order and conversions on scalar and external types

Order on arrays

The order on scalar and external types is extended to arrays:

• ([0..m1 − 1] × . . . × [0..mk − 1]) → µ ⊑ ([0..n1 − 1] × . . . × [0..nl − 1]) → ν if and only if

∗ k = l

∗ ∀i 1 ≤ i ≤ k ⇒ mi = ni

∗ andµ ⊑ ν

Order on tuples

A product of types is a type, called tuple type with unnamed fields, which preserves the structuring.
There is no syntactic designation of such a type (it is not possible to declare some object of type tuple
with unnamed fields); however, it is possible to manipulate objects of type tuple with unnamed fields
(product of types). A tuple with unnamed fields with a single element is considered as isomorphic to this
element.

The product of typesµ1, . . . ,µn (in this order) is denoted(µ1 × . . . × µn).
The order on the types of signals is extended as follows on tuples:
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• bundle({X1} → µ1 × . . . × {Xn} → µn)⊑ bundle({Y1} → ν1 × . . . × {Yp} → νp) if and only
if:
p = n
and (∀ i) ( Xi = Yi etµi ⊑ νi )

• (µ1 × . . . × µn) ⊑ bundle({Y1} → ν1 × . . . × {Yp} → νp) if and only if:
(µ1 × . . . × µn) ⊑ (ν1 × . . . × νp)

• (µ1 × . . . × µn) ⊑ (µ1 × (µ2 × . . . × µn))

• (µ1 × . . . × µn) ⊑ (ν1 × . . . × νp) if and only if:

((n = p)
∧

( (∀i) ( µi ⊑ νi ) ))
or

( (∃k, l) ( ((i < k) ⇒ (µi ⊑ νi))∧
(((µk × . . . × µk+l) ⊑ νk)∧
(((k + l = n)

∧
(k = p))

or (((k + l < n)
∧

(k < p))
∧

((µk+l+1 × . . . × µn) ⊑ (νk+1 × . . . × νp))))) ) )

Notation

The notationµ ⊔ ν is used to designate the upper bound of two comparable typesµ andν.

V–6.3 Conversions

A conversion is a function for which the image of an object of the typeµ of the argument is an object
of the typeν required by the context of utilization. The conversion functions for the types defined in the
SIGNAL language have the name of the reserved designation of the expected type or in general the name
of the expected type. In this document, these functions are denoted as follows, in order to describe their
semantics:
Cµ

ν : µ → ν
Direct conversion functions are available in the language,even if their semantics is described in terms of
composition of conversions.

3-a Conversions between comparable types

Between two directly comparable types µ ⊑ ν, the two following conversions are defined:

1. the conversionCµ
ν from a smaller typeµ to a greater typeν lets the values unchanged;

2. the conversionCν
µ : ν → µ which is the inverse of the previous one for the values of typeµ.

The conversion functions are extended to any pair of comparable types:

• if ν1 ⊑ µ ⊑ ν2 thenCν1
ν2

= Cµ
ν2 ◦ C

ν1
µ ;

• Cµ
µ is the identity function.

Implicit conversions

The only implicit conversions are the conversionsCµ
ν for which µ ⊑ ν. Implicit conversions do not

need to be explicited in the language.
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3-b Conversions toward the domain “Synchronization-type”

The conversions Cµ
event are defined for eachµ (except ifµ is a polychronous tuple); Trivially, they

deliver the single value of typeevent.

the conversions Cµ
boolean depend of the implementation while respecting the following rules:

• The conversionClong
boolean verifies:

– Clong
boolean(0) = false

– Clong
boolean(1) = true

• For aScalar-typeµ distinct fromevent
Cµ

boolean = Clong
boolean ◦ Cµ

long

3-c Conversions toward the domain “Integer-type”

The conversions Cµ
short depend of the implementation while respecting the following rules:

• Cinteger
short (v) = v if v is greater thanmin short and smaller thanmax short (non strictly in both

cases),

• Clong
short = Cinteger

short ◦ Clong
integer

• for aScalar-typeor ENUMERATED-TYPE µ
Cµ

short = Clong
short ◦ C

µ
long

The conversions Cµ
integer depend of the implementation while respecting the following rules:

• Clong
integer(v) = v if v is greater thanmin integer and smaller thanmax integer (non strictly in

both cases),

• for a Scalar-typeµ which is not smaller thaninteger (for the order defined on the types), or for
µ anENUMERATED-TYPE
Cµ

integer = Clong
integer ◦ C

µ
long

The conversions Cµ
long depend of the implementation while respecting the following rules:

• the conversionCboolean
long is defined by the following rules:

– Cboolean
long (false) = 0

– Cboolean
long (true) = 1

• the value ofCcharacter
long (C) is the numerical value of the code of the characterC,

• the value ofCdreal
long (v) is the integer partn of v if n is greater thanmin long and smaller than

max long (non strictly in both cases),

• for aScalar-typeµ which is not smaller thanlong (for the order defined on the types)
Cµ

long = Cdreal
long ◦ Cµ

dreal

• for anENUMERATED-TYPE µ equal toA × {a1, . . . , am}, the conversionCµ
long is defined by:

Cµ
long(a1) = 0, . . . ,Cµ

long(am) = m − 1.
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3-d Conversions toward the domain “Real-type”

For eachReal-type, a given implementation distinguihes thesafenumbers (in the same sense as in Ada),
which have an exact representation.

The conversions Cµ
real depend of the implementation while respecting the following rules:

• if v, of typedreal, is a safe number in the typereal, Cdreal
real (v) = v

• the conversion preserves the order on the real numbers included between the smallest and the
greatest safe number in the typereal,

• for aScalar-typeµ
Cµ

real = Cdreal
real ◦ Cµ

dreal

The conversions Cµ
dreal depend on the implementation while respecting the following rules:

• the conversion preserves the order on the real numbers included between the smallest and the
greatest safe number in the typedreal,

• Cdcomplex
dreal (re@im) = re

• Ccomplex
dreal = Cdcomplex

dreal ◦ Ccomplex
dcomplex

• if v, of typelong, is a safe number in the typedreal, Clong
dreal(C) = v

• for aScalar-typedistinct of the previous ones,
Cµ

dreal = Clong
dreal ◦ C

µ
long

3-e Conversions toward the domain “Complex-type”

There are no conversions toward the domainComplex-typeexcept those internal to that domain. How-
ever, a given implementation can provide such conversion functions. Note that the conversion of areal
re into acomplex (respectively, of adreal re into adcomplex) can be obtained byre@0.0.

The conversion Cdcomplex
complex depends on the implementation while respecting the following rule:

• Cdcomplex
complex (re@im) = {Cdreal

real (re), Cdreal
real (im)}

3-f Conversions toward the typescharacter and string

The conversions Cµ
character depend on the implementation while respecting the following rules:

• the value ofClong
character(v) is the character (if it exists) whose decimal value of its code is equal to

v,

• for aScalar-typeµ Cµ
character = Clong

character ◦ C
µ
long

There is no conversion toward the typestring.
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3-g Conversions of arrays

For any tuple of strictly positive integersn1, . . . ,nm, and any conversionCµ
ν ,

the conversionC([0..n1 − 1] × . . . × [0..nm − 1]) → µ

([0..n1 − 1] × . . . × [0..nm − 1]) → ν
is defined by:

C
([0..n1 − 1] × . . . × [0..nm − 1]) → µ

([0..n1 − 1] × . . . × [0..nm − 1]) → ν
(T ) = Cµ

ν ◦ T

3-h Conversions of tuples

Conversions of tuples with unnamed fields

For any conversionsCµ1
ν1 , . . . ,Cµn

νn ,

the conversionC(µ1 × . . . × µn)
(ν1 × . . . × νn) is defined by:

C
(µ1 × . . . × µn)
(ν1 × . . . × νn) (x1, . . . , xn) = (Cµ1

ν1 (x1), . . . , C
µn
νn (xn))

Conversions of tuples with unnamed fields toward tuples withnamed fields

For any conversionsCµ1
ν1 , . . . ,Cµn

νn and any tuple with named fields of type
bundle({X1} → ν1 × . . . × {Xm} → νm) that defines a functionΞ (cf. sectionV–5, page78),

the conversionC(µ1 × . . . × µn)
bundle({X1} → ν1 × . . . × {Xm} → νm) is defined by:

C
(µ1 × . . . × µn)
bundle({X1} → ν1 × . . . × {Xm} → νm) = Ξ ◦ C

(µ1 × . . . × µn)
(ν1 × . . . × νn)

V–7 Denotation of types

A type can be designated by an identifier, declared in aDECLARATION-OF-TYPES (it cannot be an
identifier of predefined type). In particular, such a type identifier can designate a generic type, which
can represent a type of the language, an external type, or avirtual type that can be “overridden” in its
compilation context.

Denotation of type A

1. Context-free syntax

SIGNAL-TYPE ::=

Name-type

2. Types

(a) The type designated by aName-typeA is the type associated withA in the declaration of the
typeA.

Declarations of types
type A = µ; or
type A = external; or
type A;

1. Context-free syntax
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DECLARATION-OF-TYPES ::=

type DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE } ∗ ;

DEFINITION-OF-TYPE ::=

Name-type
| Name-type = DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [ TYPE-INITIAL-VALUE ]

TYPE-INITIAL-VALUE ::=

init Name-constant

2. Types

(a) The declarationtype A = µ; defines the typeA as being equal to the typeµ:
τ (A) = τ (µ)

(b) The declarationtype A = external; specifies the typeA as an externally defined type.
The actual definition ofA is provided in the environment of the program.

It is possible to specify, in the declaration of an external type A, a constant name (which
must be the name of an external constant of typeA—cf. sectionV–8, page88), that allows
to designate the default initial value of that type.

A given compiler may consider that such a constant name appearing as default initial value
of an external type constitutes an implicit declaration of this external constant.

(c) If A is defined as an external type, then:
τ (A) = A

(d) Two external types with distinct namesA andB are considered as different types.

(e) When it appears in the formal parameters of a model (cf. part E, sectionXI–5, page189), the
declarationtype A; defines a formal generic type whose actual value is provided within
the call of the model (cf. sectionVI–1.2, page99).
Otherwise, the declarationtype A; that specifiesA as avirtual type in the current con-
text of declaration. It means thatA is a formal generic type, whose actual value is defined
elsewhere (A is “overridden”) in the context or is provided in a module (cf. partE, section
XII–1, page203). This actual value can be a type of the language or an external type.

3. Properties

(a) With the declarationstype A = µ; andtype B = µ;
thenτ (A) = τ (B) = τ (µ).
Some implementations may not ensure this property.

4. Examples

(a) type T = [n] integer; declares the typeT as vector of integers, of sizen.
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V–8 Declarations of constant identifiers

constant µ X1 = E1, . . . ,Yj, . . . ,Xn = En;

A constant sequence is a sequence each element of which has the same value. Such a sequence can
be designated by an identifier.

1. Context-free syntax

DECLARATION-OF-CONSTANTS ::=

constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT } ∗ ;

DEFINITION-OF-CONSTANT ::=

Name-constant
| Name-constant = DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

2. Types

(a) (∀ i) ( τ (µ) = τ (Xi) )

(b) (∀ i) ( τ (Ei) ⊑ τ (Xi) )

(c) When the constant declaration refers to the external notation, (for example,Yj = external;),
it specifiesYj as an externally defined constant. It means that the value ofYj should be pro-
vided in the environment of the program.

(d) When the constant declaration (for example forYj) does not contain an expression, nor the
external notation, it specifiesYj as avirtual constantin the current context of declaration.
It means that the value ofYj is provided elsewhere (Yj is “overridden”) in the context or is
provided in a module (cf. partE, sectionXII–1, page203).

3. Semantics

• Any expression defining a constant must be monochronous and functional (without side ef-
fect). With this reserve, the set of expressions admitted bya compiler contains the operators
and intrinsic functions and can contain a set of functions depending of a particular environ-
ment.

• The elaboration of the expressionEi, in the contextCD of the declarationD, minus the
identifierXi, provides a constant value (determined at compile time)ϕ(Ei) = v;

• the declarationD hides any higher declaration ofXi for the contextCD and the included
contexts;

• in a context whereD is visible, the elaboration of an occurrence of the identifier Xi provides
the valueϕ(Xi) = v.
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4. Clocks An occurrence of use ofXi (or Yj) is considered as an occurrence of the designated con-
stant.

(a) ω(Ei) = ~

(b) ω(Xi) = ~

(c) ω(Yj) = ~

5. Examples

(a) The declaration
constant real PI = 3.14;
defines the identifierPI of typereal and with valueϕ(3.14).

(b) The declaration
constant [2,2] real UNIT = [[1.0,0.0],[0.0,1.0]];
defines the identifierUNIT as a unit real matrix.

(c) The declaration
constant RECTANGLE BASE;
whereRECTANGLE is an identifier of external type, defines a constant of that type: BASE, the
value of which should be provided at code generation.

(d) The declaration
constant integer L = M + N;
is incorrect ifM or N does not designate a constant or a parameter; if it is correct, it defines
the identifierL as being equal to the sum of the constantsϕ(M) andϕ(N).

V–9 Declarations of sequence identifiers

µ ID1, ..., IDj init Vj, ..., IDn;

A sequence of values is provided with a type (the one of its elements); this type is associated with
an identifier in a declaration. In such a declaration, an identifier can designate a static parameter (formal
“signal”), a signal, or a tuple of signals. Initialization values can be associated with signals and tuples of
signals (IDj init Vj) in order to define their initial value(s) when these initialvalues are not defined
elsewhere.

1. Context-free syntax

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } ∗ ;

DEFINITION-OF-SEQUENCE ::=

Name-signal
| Name-signal init S-EXPR

2. Types

(a) The declared names must be mutually distinct. The same typeτ (µ) is given to the identifiers
ID1, . . . ,IDn in the context of the declaration.
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(b) For a signal expression (“assignment”, passage of static parameter or positional identifica-
tion) associating a valuev with an identifierIDi declared with typeµ, we must haveτ (v)
⊑ µ.

(c) The rules applying to initial values are exactly those described in the section “Initialization
expression” (cf. sectionVI–3.1, page110).

3. Semantics

• µ ID1, ..., IDn; declares the sequences (signals or parameters)ID1, . . . , IDn. If
µ designates a polychronous tuple type then the identifiersID1, . . . , IDn designate tuples
of signals (and not, strictly speaking, signals); the signals represented by these tuples are,
recursively, the fields of the tuples (the fields can be themselves tuples). For example, if
µ designates a tuple type with named fieldsbundle (µ1 X1; ...; µm Xm;) ...
then each tupleIDi gathers the signals (or, recursively, the tuples of signals) designated by
IDi.X1, . . . , IDi.Xm (cf. partD, sectionVIII–3 , page154), which have respectively the
typesµ1, . . . ,µm.

• The semantics of an initialization expression specified in adeclaration is exactly the same as
that described in the section “Initialization expression”(cf. sectionVI–3.1, page110). The
association of an initialization with a signal declarationspecifies a default initialization for
the corresponding signal. It can be overloaded by the definition of that signal (in that case, it
is unnecessary or only partly necessary).

4. Clocks

(a) The relations on the clocks of initialization expressions are described in the section “Initial-
ization expression” (cf. sectionVI–3.1, page110).

5. Examples

(a) The declarationreal X, Y; declares the signalsX andY of typereal.

(b) The declaration[n] integer V; declares the vector of integersV, of sizen.

V–10 Declarations of shared variables

shared µ ID1 init V1, ..., IDj, ..., IDn init Vn;

Shared variables are particular cases of signals or tuples of signals (cf. sectionV–9, page89). A
shared variable is defined via partial definitions (cf. section VI–1.1, paragraph1-c, page96). A shared
variable cannot be declared as input or output of a model of process.

1. Context-free syntax

DECLARATION-OF-SHARED-VARIABLES ::=

shared SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } ∗ ;
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2. Types

(a) The declared names must be mutually distinct. The same typeτ (µ) is given to the identifiers
ID1, . . . ,IDn in the context of the declaration.

(b) For a signal expression (partial “assignment” associating a valuev with an identifierIDi

declared with typeµ, we must haveτ (v) ⊑ µ.

(c) The rules applying to initial values are exactly those described in the section “Initialization
expression” (cf. sectionVI–3.1, page110).

3. Semantics

• shared µ ID1, ..., IDn; declares the shared variablesID1, . . . ,IDn.

• The semantics of an initialization expression specified in adeclaration is exactly the same as
that described in the section “Initialization expression”(cf. sectionVI–3.1, page110).

V–11 Declarations of state variables

statevar µ ID1 init V1, ..., IDj, ..., IDn init Vn;

A state variable is a typed sequence the elements of which arepresent as frequently as necessary (it is
available at a clock which is upper than the upper bound of theclocks of all the signals of the compilation
unit in which it is declared). A state variable is defined via partial definitions the clock of which are well
defined (cf. sectionVI–1.1, paragraph1-d, page97). It keeps its previous value as long as a new one
is defined. It should have an initial value associated with its declaration (if it has not, it takes as initial
value the default initial value of its type). A state variable can be used only in a context which defines
a context clock (the occurrence of a state variable is described in sectionVI–2.3, page108). A state
variable cannot be declared as input or output of a model of process.

1. Context-free syntax

DECLARATION-OF-STATE-VARIABLES ::=

statevar SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } ∗ ;

2. Types

(a) The declared names must be mutually distinct. The same typeτ (µ) is given to the identifiers
ID1, . . . ,IDn in the context of the declaration.

(b) For a signal expression (partial “assignment” associating a valuev with an identifierIDi

declared with typeµ, we must haveτ (v) ⊑ µ.

(c) The rules applying to initial values are exactly those described in the section “Initialization
expression” (cf. sectionVI–3.1, page110).

3. Semantics

• statevar µ ID1, ..., IDn; declares the state variablesID1, . . . ,IDn.
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• The semantics of an initialization expression specified in adeclaration is exactly the same as
that described in the section “Initialization expression”(cf. sectionVI–3.1, page110).

Note: The INRIA POLYCHRONY environment allows in some cases that the type of a constant,a
sequence identifier, a shared variable or a state variable isnot provided explicitly in their declaration (the
correspondingSIGNAL-TYPE is simply omitted). The corresponding type must be deduced from the
context of use of the object.



Chapter VI

Expressions on signals

The values associated with signals are determined by equations on signals; these equations are built by
composition of sub-systems of equations (named also processes) from elementary equations.

This chapter presents the expressions of definition of signals (S-EXPR). This presentation is pre-
ceded by an introduction to the expressions of composition of definitions (P-EXPR).

VI–1 Systems of equations on signals

Composition of definitions of signals

The equations of definition of signals can be composed by the operator | (see chapterVII , “Ex-
pressions on processes”). An expression on processes
E1 | E2

defines the signals (or, equivalently, has as outputs the signals) defined in each one of its sub-expressions,
and has as inputs the input signals of each one of these sub-expressions which are not outputs of the
other one. The value of an input signal of a sub-expression, which is defined in the other one, is the
value associated by this definition. As a signal cannot have adouble complete definition, a given signal
identifier representing a totally defined signal cannot be output of two sub-expressions. However, it
is possible to have severalpartial definitions,in different sub-expressions, for shared variables (partial
definitions are syntactically distinguished).

An expression on processes can be parenthesized by(| on the left and by |) on the right (note

the presence of the symbol| ).

A given output of an expression on processes can be hidden through the operator / (see chapter
VII , “Expressions on processes”). An expression on processes
E1 / a1

has as outputs the outputs ofE1 distinct froma1 and for inputs the inputs ofE1.
The signals are defined by explicit elementary equations ofDEFINITION-OF-SIGNALS , CON-

STRAINT s (cf. sectionVI–5.3, page123), or by referring to systems of equations declared as models
of processes (INSTANCE-OF-PROCESS).

VI–1.1 Elementary equations

A definition of signals allows to define a signal or a set of signals with the syntax given below. A
definition of signals is an expression of processes.
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1-a Equation of definition of a signal

X := E

1. Context-free syntax

ELEMENTARY-PROCESS ::=

DEFINITION-OF-SIGNALS

DEFINITION-OF-SIGNALS ::=

Name-signal := S-EXPR

2. Profile
An equation of definition of a signal has as output the defined signal and as inputs the inputs of the
expressionE distinct of the output.

• ! (X := E) = {X}

• The inputs ofE are the signal identifiers that have at least one occurrence in E.
? (X := E) = ? (E) − ! (X := E)

3. Types

(a) τ (E) ⊑ τ (X)

4. Semantics
The signalX is equal to the signal resulting from the evaluation ofE. An occurrence ofX in the
expressionE builds a recursive definition.

5. Definition in SIGNAL
Though it is the most frequently form of equation used in the SIGNAL language,X := E
is not the basic form. The sign:= expresses that the equation is oriented, while in the basic form

(cf. partB, chapterIII , page31) the sign :=: is used to express the fact that equations are non
oriented (cf. sectionVI–6, page125).
It is equal to the following process, where the dependences are made explicit:

( | X :=: E
| E −−> X
|)

6. Clocks A signal represented by an identifier and the signal that defines it are synchronous.

(a) ω(X) = ω(E)

7. Graph

(a) E−→X

8. Examples

(a) if x, y, z designate signals:
x := y + z defines the signal designated byx, equal to the sum of the signals designated
respectively byy andz; this expression has as inputsy andz and as outputx.
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1-b Equation of multiple definition of signals

(X1,. . . ,Xn) := E

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

( Name-signal{ , Name-signal}∗ ) := S-EXPR

2. Profile
An equation of multiple definition of signals has the inputs and outputs defined by the following
rules.

• The identifiers of defined signals represent the outputs of the equation:
! ((X1,. . . ,Xn) := E) = {X1, . . . ,Xn}

• The inputs of the equation are the inputs ofE which are not outputs of the equation:
? ((X1,. . . ,Xn) := E) = ? (E) − ! ((X1,. . . ,Xn) := E)

3. Types

(a) τ ((X1,. . . ,Xn)) = (τ (X1) × . . . × τ (Xn))
(b) τ (E) ⊑ (τ (X1) × . . . × τ (Xn))

4. Semantics

• X1, . . . ,Xn designate signals or tuples of signals.

• E can be viewed as a tuple ofn elements: let(E1,. . . ,En) this tuple.

• Each signal or tupleXi is respectively equal to the signal or tupleEi that corresponds to it
positionally as output ofE.

5. Definition in SIGNAL
(X1,. . . ,Xn) := E
is equal to the following process:

( | X1 := E1
...

| Xn := En

|)

As a particular case, when the defined signal or tuple is unique,(X) := E is equivalent to:
X := E
(the syntax without parentheses as described in1-acan be used whenX is a tuple).

6. Clocks A signal represented by an identifier and the signalEi that defines it are synchronous. In
this case, there is:

(a) ω(Xi) = ω(Ei)

7. Graph

(a) Ei−→Xi
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8. Examples

(a) if x, y, z, a designate signals andP a model with one formal parameter, one input and three
outputs:
(x,y,z) := P{n}(a+5) defines the signals designated byx, y andz, equal respectively
to the first, second and third output of the modelP instantiated with the parametern and
takingat+5 as input at each occurrence ofa; this expression has as inputa and as outputsx,
y andz;

(b) if w, v, b also designate signals:
(w,x,y,z,v):= (a,P{n}(a+5),b) defines the signalsw,x,y,z andv, equal respectively
to the signala, to the first, the second and the third output of the processP, and to the signal
b; this expression has as inputsa andb and as outputsw, x, y, z andv; it is equivalent to
the composition
(| (w,v) := (a,b) | (x,y,z) := P{n}(a+5) |);

(c) if x designates a tuple with named fields whose fields are respectively x1 andx2, anda, b
designate signals:
(a,b) := (x.x1,x.x2) defines the signalsa andb equal respectively to the first and the
second component of the tuplex;

(d) if x designates a tuple with named fields anda, b designate signals:
x := (a,b) defines the tuplex the components of which are respectively equal to the
signalsa andb.

1-c Equation of partial definition of a signal

Equations of partial definition of a signal are a way to avoid the syntactic single assignment rule, even
if semantically, this rule applies. Signals that are definedusing partial definitions should be declared as
shared variables (cf. sectionV–10, page90). Each one of the partial definitions of a given signal con-
tributes to the overall definition of this signal. These partial definitions can appear in different syntactic
contexts. All these partial definitions have to be mutually compatible. One default partial definition
can appear for a given signal: it allows to complete the definition of the signal by a default value when
the partial definitions do not apply. The overall definition of the signal is considered as complete in a
compilation unit.

Equations of partial definition are syntactically distinguished by the use of the special symbol::= .
The use of this symbol is mandatory to allow the presence of different syntactic definitions of a given
signal. The syntactic single assignment rule still applieswhen the assignment symbol:= is used. In
particular, it is not possible to have both complete definition and partial ones for a given signal.

X ::= E
X ::= defaultvalueE

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

Name-signal ::= S-EXPR

| Name-signal ::= defaultvalue S-EXPR
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2. Profile
An equation of partial definition of a signal has as output thepartially defined signal and as inputs
the inputs of the expressionE distinct of the output.

• ! (X ::= E) = {X}

• ? (X ::= E) = ? (E) − ! (X ::= E)
• ! (X ::= defaultvalueE) = {X}

• ? (X ::= defaultvalueE) = ? (E) − ! (X ::= defaultvalueE)

3. Types

(a) τ (E) ⊑ τ (X)

4. Definition in SIGNAL
Let the following composition represent the whole set of partial definitions of a signalX in a given
compilation unit:
( | X ::= E1

...
| X ::= En

| X ::= defaultvalue En+1

|)
It is semantically equivalent to:

( | X := E1 default X
...

| X := En default X
| X := (En+1 when (X ̂− (E1 ̂+ ... ̂+ En))) default X
| X ̂ = E1 ̂+ ... ̂+ En ̂+ X
|)

5. Clocks For the above set of partial definitions of the signalX , any two different expressionsEi

must have the same value at their common instants if they havesuch common instants. The clock
of X is greater than the upper bound of the clocks of the expressionsEi, i = 1, . . . , n.

(a) ∀i, j = 1, . . . , n ω(Ei ∗̂ Ej) = ω(when ((Ei when Êj) == (Ej when Êi)))
(b) ω(X) = ω(E1 +̂ . . . +̂ En +̂ X)
(c) Fori = 1, . . . , n, the clock of any expressionEi cannot be a context clock: in particular,Ei

cannot be a constant expression or a direct reference to a state variable.
The clock ofEn+1 can bea context clock.

1-d Equation of partial definition of a state variable

State variables (cf. sectionV–11, page91) can be defined exclusively by equations of partial definition.
These equations define thenextvalues of a state variable. The last defined value, which is the only one
that can be accessed at every instant, is referred to via the special notationX? (cf. sectionVI–2.3,
page108).
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X ::= E

1. Context-free syntax

The syntax is the same as that of an equation of partial definition of a signal.

2. Types

(a) τ (E) ⊑ τ (X)

3. Definition in SIGNAL
Let the following composition represent the whole set of partial definitions of a state variableX
in a given compilation unit:
( | X ::= E1

...
| X ::= En

|)
It is semantically equivalent to:

( | next_X := E1 default next_X
...

| next_X := En default next_X
| X := next_X $
|) / next_X

4. Clocks For the above set of partial definitions of the state variableX , any two different expressions
Ei must have the same value at their common instants if they havesuch common instants.

(a) ∀i, j ω(Ei ∗̂ Ej) = ω(when ((Ei when Êj) == (Ej when Êi)))
(b) The clock of any expressionEi has to be well defined: it cannot be a context clock. In

particular,Ei cannot be a constant expression or a non-clocked reference to another state
variable.

(c) The clock ofX is upper than the upper bound of the clocks of all the signals of the compila-
tion unit in whichX is declared.

1-e Equation of partial multiple definition

(X1,. . . ,Xn) ::= E
(X1,. . . ,Xn) ::= defaultvalueE

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

( Name-signal{ , Name-signal}∗ ) ::= S-EXPR

| ( Name-signal{ , Name-signal}∗ ) ::= defaultvalue S-EXPR

2. Types

(a) τ ((X1,. . . ,Xn)) = (τ (X1) × . . . × τ (Xn))
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(b) τ (E) ⊑ (τ (X1) × . . . × τ (Xn))

3. Semantics

• X1, . . . ,Xn designate signals or tuples of signals declared as shared variables, or state vari-
ables
(only signals or tuples of signals for(X1,. . . ,Xn) ::= defaultvalueE)

• This is the same generalization of1-cand1-d
(only of 1-c for (X1,. . . ,Xn) ::= defaultvalueE) as that of1-b with respect to1-a.

• Each signal, tuple or state variableXi is respectively partially defined by the signal or tuple
vi that corresponds to it positionally as output ofE.

VI–1.2 Invocation of a model

The invocation of a model of process provides anINSTANCE-OF-PROCESSby macro-expansionof
the text of the model, or by reference to this model if the textof the model is defined externally or is
compiled separately.

Depending on the fact that a model:

• has or not parameters,

• has or not inputs,

• has or not outputs,

the invocation of the model can take different syntactic forms. In all cases, the composition with the
context is done positionally, on the inputs and on the outputs.

If the model has no outputs, and only in this case, its invocation appears as an expression on processes
(ELEMENTARY-PROCESS ); in any other case, an invocation of model appears as an expression on
signals (S-EXPR).

The tableC–VI.1 gives the generic forms of the invocation of a model (which can be either an ex-
pression on processes or an expression on signals).

Positional definition No inputs
of the inputs

Without parameters P(E1,. . . ,En) P( )
With parameters P{V1,. . . ,Vm}(E1,. . . ,En) P{V1,. . . ,Vm}( )

Table C–VI.1: Syntactic forms of an invocation of model

The different forms are detailed below.

1. Context-free syntax

ELEMENTARY-PROCESS ::=

INSTANCE-OF-PROCESS
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2-a Macro-expansion of a model

One has to take care that this basic form is used here to describe the semantics of any invocation of model.
The composition with the context is made by identity of names. However, this form is not necessarily
available as an external form in the language, except if the corresponding model of process does not
have inputs.

P{V1,. . . ,Vm}
The static parameters are parenthesized by{ and } ; these parameters are types or constant

expressions mainly used as initial values of signals or array size. Note that parameters can also be
models (cf. partE, sectionXI–8, page200).

1. Context-free syntax

INSTANCE-OF-PROCESS::=

EXPANSION
| Name-model ( )

EXPANSION ::=

Name-model
{ S-EXPR-PARAMETER { , S-EXPR-PARAMETER } ∗ }

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE

2. Profile

• ! (P{V1,. . . ,Vm}) is equal to the set of the names of the outputs of the visible declaration of
P , let {Y1, . . . , Yq}.

• ? (P{V1,. . . ,Vm}) is equal to the set of the names of the inputs of the visible declaration of
P , let {X1, . . . ,Xp}.

3. Types

(a) Let, in this order,P1, . . . ,Pl be the names of the formal parameters of the visible declaration
of P .

(b) The actual parameters (S-EXPR-PARAMETER ) of the invocation of the model must cor-
respondpositionally to the formal parameters of the declaration of the model (cf.part E,
sectionXI–5, page189). In particular, to the parameter types can only correspondtypes
(SIGNAL-TYPE ), and to the “constant sequences” parameters can only correspond expres-
sions on sequences (S-EXPR).

(c) (τ (V1) × . . . × τ (Vm)) ⊑ (τ (P1) × . . . × τ (Pl))
(d) τ (P{V1,. . . ,Vm}) = τ (!P)

(cf. partE, sectionXI–5, page189)

4. Semantics

• P being the name of a model of visible process, the expressionsV1, . . . , Vm are the actual
parameters of the expansion, correspondingpositionally to the formal parameters of this
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model. The expansionP{V1,. . . ,Vm} is equivalent to the body of the visible declaration ofP
in which each formal parameter has been substituted by the corresponding actual parameter.

• P( ) is the expansion ofP whenP has no parameters.

5. Clocks The actual parameters of sequencesVi must be constant expressions.

(a) ω(Vi) = ~

2-b Positional macro-expansion of a model

P{V1,. . . ,Vm}(E1,. . . ,En) or P(E1,. . . ,En) with n ≥ 1
In the external form of the language, the input signals are associated with an instance of model,

respecting their “position”: a list of expressions betweenthe symbols ( and ) redefines the input
signals declared in the model respecting the order of these declarations.

1. Context-free syntax

INSTANCE-OF-PROCESS::=

PRODUCTION

PRODUCTION ::=

MODEL-REFERENCE ( S-EXPR { , S-EXPR }∗ )

MODEL-REFERENCE ::=

EXPANSION
| Name-model

2. Profile

• ! (P{V1,. . . ,Vm}(E1,. . . ,En)) is equal to the set of the names of the outputs of the visible
declaration ofP , let {Y1, . . . , Yq}.

• ? (P{V1,. . . ,Vm} (E1,. . . ,En)) =
n⋃

i=1

? (Ei) − {Y1, . . . , Yq}.

3. Types

(a) Let, in this order,P1, . . . , Pl be the names of the formal parameters andX1, . . . , Xp the
names of the inputs of the visible declaration ofP .

(b) (τ (V1) × . . . × τ (Vm)) ⊑ (τ (P1) × . . . × τ (Pl))
(c) (τ (E1) × . . . × τ (En)) ⊑ (τ (X1) × . . . × τ (Xp))
(d) τ (P{V1,. . . ,Vm}(E1,. . . ,En)) = τ (!P )

(cf. partE, sectionXI–5, page189)

4. Semantics
The formP(E1,. . . ,En) is used whenP has no parameters.
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5. Definition in SIGNAL
P{V1,. . . ,Vm}(E1,. . . ,En)
is equal to the process defined below in which{SXi} is a set of signal names that do not belong

to the inputs of the expressionsEi (
n⋃

i=1

? (Ei)), or to the sets of input or output names ofP .

( | (SX1,...,SXp) := (E1,...,En)
| ( | (X1,...,Xp) := (SX1,...,SXp)

| P{V1,...,Vm}
|) / X1, ..., Xp

|) / SX1, ..., SXp

6. Clocks The actual parameters of sequencesVi must be constant expressions.

(a) ω(Vi) = ~

2-c Call of a model

(SS1,. . . ,SSr) := P{V1,. . . ,Vm}(E1,. . . ,En)
(the formP{V1,. . . ,Vm}(E1,. . . ,En) is used here generically to represent one of the forms definedin
2-aor in 2-b; moreover, it can also appear as argument of any expression on signals)

1. Context-free syntax

S-EXPR ::=

INSTANCE-OF-PROCESS

2. Definition in SIGNAL
(SS1,. . . ,SSr) := P{V1,. . . ,Vm}(E1,. . . ,En), with the modelP having the output signals
{Y1, . . . , Yq}, is equal to the process defined below in which{SYi} is a set of signal names that do

not belong to the inputs of the expressionsEi (
n⋃

i=1

? (Ei)), or to the sets of input or output names

of P , or to the set{SS1, . . . , SSr}.

( | (SS1,...,SSr) := (SY1,...,SYq)
| ( | P{V1,...,Vm}(E1,...,En)

| (SY1,...,SYq) := (Y1,...,Yq)
|) / Y1, ..., Yq

|) / SY1, ..., SYq

The tableC–VI.2 gives the different forms of the invocation of a model together with the priority of
their arguments (refer to the tablesC–VI.3 andC–VI.4).

2-d Expressions of type conversion

T(E)
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Scheme Type
Arguments → Result

P{V 0
1 ,. . . ,V 0

m}(E0
1 ,. . . ,E0

n)
P{V 0

1 ,. . . ,V 0
m}() (µ1 × . . . × µm) × (ν1 × . . . × νn)

P{V 0
1 ,. . . ,V 0

m} → (ρ1 × . . . × ρp)
P(E0

1 ,. . . ,E0
n) (ν1 × . . . × νn)

P()

Table C–VI.2:INSTANCE-OF-PROCESSE25

• When the inputsEi are absent, it is a model without input (the tuple ((ν1 × . . . × νn)) is then empty);

• When the model has at least one input, the typesν′

1, . . . ,ν′

p being, in this order, those of the declaration of
the inputs ofP , there is
(ν1 × . . . × νn) ⊑ (ν′

1 × . . . × ν′

p)

• The typeρi is that of the signal declaration corresponding positionally in output inP .

The conversions of values between distinct effective typescan be explicited as call of a model
(INSTANCE-OF-PROCESS); the name of this model is the name of the destination type ofthe conver-
sion; the expressions of conversion can only appear as expressions on signals, but not as expressions on
processes.

1. Context-free syntax

S-EXPR ::=

CONVERSION

CONVERSION ::=

Type-conversion ( S-EXPR )

Type-conversion::=

Scalar-type
| Name-type

2. Types

(a) If the conversionC
τ (E)
τ (T) exists,

τ (T(E)) = τ (T )

(b) If the conversionC
τ (E)
τ (T) does not exist,T(E) is incorrect.

3. Semantics

• If v is an element of the sequence of values represented byE, the corresponding element is

C
τ (E)
τ (T) (v) in the sequence represented byT(E) (if the conversionC

τ (E)
τ (T) exists).

• If the typeT or the type ofE is an external type, the applied conversion, when it exists,
depends on the environment while respecting the general rules concerning conversions (cf.
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sectionV–6.3, page83).

4. Clocks A conversion is a monochronous expression.

(a) ω(T(E)) = ω(E)

5. Examples

(a) integer(3.14) has the value3.

VI–1.3 Nesting of expressions on signals

The expressions on signals can be nested in the respect of thepriorities of the operators: any expression
with lower priority than the expression of which it is an argument must be parenthesized. Parenthesizing
is possible but not necessary in the other cases. Non parenthesized expressions which contain operators
with the same priority are evaluated from left to right, unless it is explicitly mentioned.

1. Context-free syntax

S-EXPR ::=

( S-EXPR )

2. Profile
The expressionsS-EXPR do not return a named output; their inputs are the set obtained by the
union of the sets of inputs of their operands.

3. Semantics
In the respect of the rules of priority, an equationS :=: T (E1,. . . ,En) formed by a function (or
an operator) and sub-expressionsE1,. . . ,En is equal to the composition

• of the equations calculating these expressions in auxiliary variables:
(Xi,1,. . . ,Xi,mi

) :=: Ei

• of the equationS :=: T (X1,1,. . . ,Xn,nm) equal to the equationS :=: T (E1,. . . ,En) in
which has been substituted, to each expressionEi, the tuple (Xi,1,. . . ,Xi,mi

) of the auxiliary
variables in which it is evaluated,

• and of the clock equations depending on the context of each one of these expressions.

Priorities and types of the operators on signals The tablesC–VI.3 andC–VI.4 contain a sum-
mary of the properties of expressions on signals. In these tables:

• the priorities are described in the first column (priority ofthe expression) and the second column
(priorities of its arguments) by usingEi to describe an expression of priorityi; the expressions are
evaluated in the decreasing order of priorities;

• the third column describes the types of the arguments and of the result:

– anyi represents any type (however, one must refer to the definition of the operators for a
more precise description)

– booli is the typeboolean or event

– compari is any type in which there exists a partial order
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Prio- Scheme Type
rity Arguments → Result

E0 0̂ event

E1 E1 next E2
([0..n1 ] × . . . × [0..np ]) → any1 ×

([0..m1 ] × . . . × [0..mp ]) → any2 → ([0..n1 ] × . . . × [0..np ]) → any1 ⊔ any2 a
E2 E3 : E3

([0..l1 ] × . . . × [0..lp ]) → int1
n ×

([0..m1 ] × . . . × [0..mp ]) → any1 → ([0..r1 ] × . . . × [0..rn ]) → any1

E3 E3 defaultE4 any1 × any2 → any1 ⊔ any2 a
E4 E4 when E5 any1 × bool1 → any1

E5 E6 after E6 event × event → integer
E6 from E6

E6 count E6

E6 E6 +̂ E7, E6 −̂ E7 any1 × any2

E7 E7 ∗̂ E8 → event
E8 when E8, [:E0], [/:E0] bool1

E9 if E0 then E0 else E9 bool1 × any1 × any2 → any1 ⊔ any2 a

E10 E11..E11 step E11 int1 × int2 × int3 → [0..n] → int1 ⊔ int2
E11..E11 int1 × int2 → [0..n] → int1 ⊔ int2

E11 E11 xor E12 bool1 × bool2 → bool1 ⊔ bool2
E12 E12 or E13

E13 E13 and E14

E14 not E14 bool1
E15 E16 == E16 any1 × any2 a

E16 «= E16 compar1 × compar2 → boolean a
E16 E17 Op E17 any1 × any2 → boolean a, b

compar1 × compar2 a, c

E17 E17 + E18, E17 − E18 num1 × num2 → num1 ⊔ num2

E17 |+ E18
[0..m1 ] → any1 × [0..m2 ] → any2 → [0..m1 + m2 + 1] → any1 ⊔ any2 a

E18 E18 ∗ E19, E18 / E19 num1 × num2 → num1 ⊔ num2

E18 |∗ E19 any1 × int1 → [0..m] → any1

E18 modulo E19 int1 × int2 → int2
E18 ∗. E19 d

E19 E20 ∗∗ E20 num1 × int1 → num1

E20 @ E20 real1 × real2 → cmplx1 e
E20 + E21, − E21 num1 → num1

E21 var E22 init E22 any1 × any2 → any1 f
var E22 any1

E21 cell E22 init E22 any1 × bool1 × any2 → any1 f
E21 cell E22 any1 × bool1

S-EXPR-DYNAMIC C–VI.6

Table C–VI.3: Expressions on signals
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Prio- Scheme Type
rity Arguments → Result

E22 tr E22 ([0..l] × [0..m]) → any1 → ([0..m] × [0..l]) → any1

E23 E24\\E24 any1 × any2 → any1 ⊔ any2 a

E24 Ê24 any1

E25 ≪E0,. . . ,E0≫ [0..m1 − 1] → any1 × . . . × [0..mn − 1] → anyn → [0..
n

Y

k=1

mk − 1] → any1

× . . . × [0..
n

Y

k=1

mk − 1] → anyn

[E0,. . . ,E0] any1 × . . . × anyn → [0..n − 1] →

n
G

i=1

anyi a

INSTANCE-OF-PROCESS C–VI.2
T(E0) any1 → τ (T) h

E26 E26[E0,. . . ,E0] (([0..n1 ] × . . . × [0..nm ]) → any1) × (int1 × . . . × intm) → any1

([0..l1 ] × . . . × [0..ln ]) → any1 ×

([0..m1 ] × . . . × [0..mp ]) → int1
n → ([0..m1 ] × . . . × [0..mp ]) → any1

E26.Xi bundle({X1} → any1 × . . . × {Xm} → anym) → anyi

E27 (E0,. . . ,E0) any1 × . . . × anyn → (any1 × . . . × anyn)

CONSTANT C–VI.5
Id τ (Id) i

( E0 ) τ (E)

Table C–VI.4: Expressions on signals

[a] for types belonging to the same domain

[b] for Op = or / =

[c] for Op <= or >= or < or >, a partial order being defined in the typecompar

[d] matrix products

[e] cmplx1 is of typecomplex if both arguments are of typereal, it is of typedcomplex otherwise

[f] for any2 ⊑ any1

[g] Iterative enumeration

[h] Conversion

[i] τ (Id) is the type of the declaration of the signal identifierId

– inti is an integer type (i.e., amongshort, integer, long)

– reali is a real type (i.e., amongreal, dreal)

– cmplxi is a complex type (i.e., amongcomplex, dcomplex)

– numi is a numeric type (i.e., amonginti, reali, cmplxi);

when, on a same line, two notations of type have the same index, then they designate the same
type;

• the last column is a reference to the notes that follow the table (lowercase letter) or a reference to
another table.
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VI–2 Elementary expressions

The expressions of elementary signals are the following:

1. Context-free syntax

S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal
| Label
| Name-state-variable ?

VI–2.1 Constant expressions

A constant expression is aCONSTANT, an occurrence of constant identifier, an occurrence of parameter
identifier, a constant expression of tuple (cf. partD, sectionVIII–1, page153), a constant expression of
array (cf. partD, sectionIX–2, page159), or one of the following expressions having recursively as
arguments constant expressions:

• an INSTANCE-OF-PROCESS (only if it is the call of a monochronous function with constant
arguments), or aCONVERSION,

• amongS-EXPR-TEMPORAL, aMERGING or anEXTRACTION ,

• anS-EXPR-BOOLEAN,

• anS-EXPR-ARITHMETIC,

• anS-EXPR-CONDITION.

Clock expressions (S-EXPR-CLOCK) and dynamic expressions (S-EXPR-DYNAMIC ) cannot be part
of a constant expression.

A constant is a denotation of value of aScalar-typeor of anENUMERATED-TYPE :

1. Context-free syntax

CONSTANT ::=

Boolean-cst
| Integer-cst
| Real-cst
| Character-cst
| String-cst
| ENUM-CST

These syntactic categories are described elsewhere (cf. part A, sectionII–2, page25).

1. Profile
A constant and consequently a constant expression have neither named input, nor named output.
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2. Types

(a) The type of a constant expression is evaluated in accordance with the type of theS-EXPR
having the same syntax.

3. Clocks

(a) The clock of a constant expression and of its arguments is~.

The tableC–VI.5contains a summary of these properties and gives the priority of the constant lexical
expressions.

Scheme Type

true event

false boolean

Integer-cst Integer-type following its value
Simple-precision-real-cst real

Double-precision-real-cst dreal

Character-cst character

String-cst string

Table C–VI.5: Types of the constantsE27

VI–2.2 Occurrence of signal or tuple identifier

An occurrence of signal identifier has as value the signal that defines this identifier, as clock, the clock
of this signal and as type the type of its most internal declaration; the profile which is associated with it
contains as input this single identifier and does not containa named output.

An occurrence of tuple identifier has as value the tuple of thesignals that define this identifier.
In the rules describing the context-free syntax of the language,Name-signalcan designate, following

the context, a signal name, a tuple name, or a field name in a tuple.
The occurrence of a label is more specifically described in chapterVII , sectionVII–5, page138.

VI–2.3 Occurrence of state variable

The notationX? allows to refer to the last defined value of a state variableX (cf. sectionV–11, page91).
State variables can be defined exclusively by equations of partial definition, that define the next values of
the state variable (cf. sectionVI–1.1, paragraph1-d, page97). For a declared state variableX , the direct
reference toX is not allowed in expressions on signals; the only way to refer to the last defined value of
the state variable is by using the notationX?. The notationX? designates the value of the state variable
X at the beginning of the “current step”. Moreover, this notation must be used in a context in which a
context clock is well defined.

X?

1. Types

(a) τ (X?) = τ (X)
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2. Definition in SIGNAL
Let H be the context clock ofX?, then, with the definition ofX as it is given in sectionVI–1.1,
paragraph1-d, page97, X? is equivalent to:
X when H

3. Clocks

(a) The clock ofX?, which is equal to the clock ofX , is upper than the upper bound of the
clocks of all the signals of the compilation unit in whichX is declared.

VI–3 Dynamic expressions

Dynamic expressions allow the handling of values of signalshaving distinct dates. They require the
definition of the value of the signals at their initial instants.

1. Context-free syntax

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

The tableC–VI.6 gives the different forms of dynamic expressions.

Scheme Type
Arguments → Result

E21 window E22 init E22 A1 × E1 × W1 → W2

E21 window E22 A1 × E1 → W2

E21 $ E22 init E22 A1 × E11 × W11 → A1

E21 $ init E22 A1 × A2 → A1

E21 $ E22 A1 × E11 → A1

E21 $ A1 → A1

Table C–VI.6:S-EXPR-DYNAMIC E21

A1 any1

E1 constantM of Integer-type, strictly positive

W1 [0..M − 2] → A2

W2 [0..M − 1] → A1

E11 signali of Integer-type, positive or zero, bounded by a constantN ,
of implicit value 1

W11 [0..N − 1] → A2

Ai A2 ⊑ A1
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VI–3.1 Initialization expression

E init V

The initialization expression allows to define the initial value(s) of a signal.

1. Types

(a) E is a signal of any type.

(b) The type ofV can be, depending on the context of the initialization:

• a typeν such thatν ⊑ τ (E),
• a type [0..n − 1] → ν such thatν ⊑ τ (E).

2. Semantics

• If V has a typeν such thatν ⊑ τ (E), the value ofV defines an initial value for the expression
E init V .

• If V has a type [0..n − 1] → ν such thatν ⊑ τ (E), then the value ofV definesn initial
values for the expressionE init V : the valueϕ(V [0]) defines the value of this expres-
sion at its first instant, the valueϕ(V [1]) defines the value of the expression at its second
instant, etc.

If V defines more values than required by the initialization of the expressionE, the extra values
are not taken into account.
If V defines less values than required by the initialization of the expressionE, the missing values
are defined by the default initial value of typeν.
An initialization expression can be associated with a signal either in an expression on signals, as it
is the case here, or in the declaration of a signal (cf. section V–9, page89). When both forms of
initialization are defined for a same signal, the one which has the priority is that appearing in the
expression of definition of the signal. The presence of an initialization expression in the definition
of a signal specifies, with the same semantics as above, adefaultinitialization for the signal, when
no initialization is specified in its expression of definition. For a state variable (cf. sectionV–11,
page91), it is recommended that its initialization is described inits declaration, and not in its
expressions of definition.
When several initialization expressions are associated with a signal in different partial definitions,
they should be compatible.

3. Clocks

(a) ω(E init V ) = ω(E)
(b) ω(V ) = ~

VI–3.2 Simple delay

E $ init v0

1. Context-free syntax

SIMPLE-DELAY ::=

S-EXPR $ [ init S-EXPR ]
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2. Types

(a) E is a signal of any type.

(b) τ (E $ init v0) = τ (E)
(c) τ (v0) ⊑ τ (E)

3. Semantics
The semantics of the delay is described formally in partB, sectionIII–6.2, page41.

The value of the signalE $ init v0 is at each instantt the value of the delayed signalE at the
instantt − 1. Initially, this value is the value defined by the initialization (ϕ(v0)).

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of typeτ (E) (which implies that
it is defined for any type, including external one), 0τ (E):

E $ = E $ init 0τ (E),

except if an initial value is associated with the defined signal, in its declaration (cf. sectionVI–3.1,
page110).

5. Clocks

(a) ω(v0) = ~

(b) ω(E $ init v0) = ω(E)

6. Examples

(a) The values taken byy for y defined byy := x $ init 0 are described below for the corre-
sponding values ofx in input:

x = 1 2 3 4 . . .
ց ց ց ց

y = 0 1 2 3 . . .

Note that the initial value is the first value ofy, not that ofx.

VI–3.3 Sliding window

E windowM init TE0

1. Context-free syntax

WINDOW ::=

S-EXPR window S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) The size of the window,M , is an integer constant expression the value of which is greater
than or equal to 1. If it is equal to 1, the initialization has no effect.

(c) τ (E windowM init TE0) = [0..ϕ(M) − 1] → τ (E)
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(d) τ (TE0) = [0..n − 1] → µ,
whereµ ⊑ τ (E), n ≥ ϕ(M) − 1, andn > 0
(in the particular case whereϕ(M) = 2, the single initialization value can be given by an
element of typeτ (TE0) = µ, whereµ ⊑ τ (E))

3. Semantics
For a signalX defined byX := E windowM init TE0:

• (t + i ≥ ϕ(M)) ⇒ (Xt[i] = E
t−ϕ(M)+i+1

)

• (1 ≤ t + i < ϕ(M)) ⇒ (Xt[i] = TE0[t-ϕ(M) + i + 2])

4. Definition in SIGNAL
X := E windowM init TE0

whose right side of:= represents an expression of sliding window, is equal to the process defined

as follows, whenϕ(M) > 1:

( | X0 := E
| X1 := X0 $ init TE0[M − 2]

...
| XM−1 := XM−2 $ init TE0[0]
| X := [ XM−1, ..., X0 ]
|) / X0, ..., XM−1

5. Definition in SIGNAL
E windowM is equal, whenϕ(M) > 1, to the following expression on signals:

E windowM init 0[0..ϕ(M) − 2] → τ (E)

6. Definition in SIGNAL
X := E window 1 is equal to the process defined as follows:

X := [ E ]

7. Clocks

(a) ω(M) = ~

(b) ω(TE0) = ~

(c) ω( E window M init TE0) = ω(E)

8. Examples

(a) The values taken byy for y defined byy := x window 3 init [ -1,0 ] are described
below for the corresponding values ofx in input:

x = 1 2 3 4 . . .
y = [ −1, 0, 1 ] [ 0, 1, 2 ] [ 1, 2, 3 ] [ 2, 3, 4 ] . . .
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VI–3.4 Generalized delay

E $ I init TE0

1. Context-free syntax

GENERALIZED-DELAY ::=

S-EXPR $ S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) I is a positive or equal to zero integer, with an upper bound.
Let N be the upper bound (ifI is an integer constant,N is equal toI).

(c) τ (E $ I init TE0) = τ (E)
(d) τ (TE0) = [0..n − 1] → µ,

whereµ ⊑ τ (E), n ≥ ϕ(N), andn > 0
(in the particular case whereϕ(N) = 1, the single initialization value can be given by an
element of typeτ (TE0) = µ, whereµ ⊑ τ (E))

3. Definition in SIGNAL
X := E $ I init TE0

whose right side of := represents an expression of generalized delay bounded by the maximal
valueN , is equal to the process defined as follows:

( | TX := E window N+1 init TE0

| X := TX[N − I]
|) / TX

4. Definition in SIGNAL
X := E $ I
is equal to the process defined as follws:

( | TX := E window N+1
| X := TX[N − I]
|) / TX

5. Clocks

(a) ω(I) = ω(E)
(b) ω(TE0) = ~

(c) ω(E $ I) = ω(E)

6. Examples

(a) The values taken byy for y defined byy := x $ 3 init [ -2,-1,0 ] are described
below for the corresponding values ofx in input:
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x = 1 2 3 4 5 6 . . .
y = −2 −1 0 1 2 3 . . .

(b) The values taken byy for y defined byy := x $ i init [ -2,-1,0 ] are described
below for the corresponding values ofx andi in input:

i = 1 3 3 1 2 1 . . .
x = 1 2 3 4 5 6 . . .
y = 0 −1 0 3 3 5 . . .

VI–4 Polychronous expressions

The polychronous expressions are built on signals which have possibly different clocks.

1. Context-free syntax

S-EXPR-TEMPORAL ::=

MERGING
| EXTRACTION
| MEMORIZATION
| VARIABLE
| COUNTER

VI–4.1 Merging

E1 default E2

1. Context-free syntax

MERGING ::=

S-EXPR default S-EXPR

2. Types

(a) τ (E1) andτ (E2) are signals of a same domain.

(b) τ (E1 defaultE2) = τ (E1) ⊔ τ (E2)

3. Semantics
The semantics is described formally in partB, sectionIII–6.3, page42.

4. Clocks

(a) ω(E1 default E2) = ω(E1) + ((1 −ω(E1)) ∗ω(E2)) if ω(E2) 6= ~

(b) ω(E1 default E2) = ω(E1) + ((1 −ω(E1)) ∗ω(E1 default E2))
if ω(E2) = ~

5. Graph
Whenτ (E1 default E2) 6= boolean andτ (E1 default E2) 6= event:

(a) E1−→E1 defaultE2
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(b) E2
1 −ω(E1)
−−−−−−−−→ E1 defaultE2

6. Properties

(a) (E1 defaultE2) defaultE3 = E1 default (E2 default E3)

(b) E1 defaultE2 = E1 default (E2 when not Ê1 default Ê2)

(c) (ω(E1) ∗ ω(E2) = 0̂) ⇒ ( E1 defaultE2 = E2 defaultE1)

(d) ((ω(E1) ≥ ω(E2))
∨

(ω(E1) = ~)) ⇒ (E1 default E2 = E1)

7. Examples

(a) the values taken byY defined byY := E1 default E2 are described below for the corre-
sponding values ofE1 andE2 in input:

E1 = 1 3 ⊥ 5 7 . . .
E2 = 2 4 6 ⊥ 8 . . .
Y = 1 3 6 5 7 . . .

VI–4.2 Extraction

E when B

The values of a signal can be produced by extraction of the values of another signal when the values
of a Boolean signal are equal totrue.

1. Context-free syntax

EXTRACTION ::=

S-EXPR when S-EXPR

2. Types

(a) E is a signal of any type.

(b) τ (B) ⊑ boolean

(c) τ (E when B) = τ (E)

3. Semantics
The semantics is described formally in partB, sectionIII–6.3, page42.

4. Clocks

(a) ω(E when B) = ω(E) ∗ω(B) ∗ (−1 − B) if ω(E) 6= ~

(b) ω(E when B) = ω(B) ∗ (−1 − B) if ω(E) = ~

5. Graph
Whenτ (E when B) 6= boolean andτ (E when B) 6= event:

(a) E−→E when B
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6. Properties

(a) (τ (B) = event) ⇒ (B when B = B)

(b) (E when B1) when B2 = E when (B1 when B2)

(c) E when (B when B) = E when B

7. Examples

(a) the values taken byX when C are described below for the corresponding values ofX andC
in input:

X = 1 3 ⊥ 5 ⊥ 7 . . .
C = T ⊥ T F F T . . .

X when C = 1 ⊥ ⊥ ⊥ ⊥ 7 . . .

VI–4.3 Memorization

E cell B init V0

The memorization allows to memorize a given signal at the clock defined by the upper bound of the
clock of the signal and the clock defined by the instants at which a Boolean signal has the valuetrue.

1. Context-free syntax

MEMORIZATION ::=

S-EXPR cell S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) τ (B) ⊑ boolean

(c) τ (E cell B init V0) = τ (E)
(d) τ (V0) ⊑ τ (E)

3. Definition in SIGNAL
X := E cell B init V0

whose right side of:= represents an expression of memorization ofE at the instants at whichB
is true, is equal to the process defined as follows:

( | X := E default (X $ init V0)
| X ̂ = E ̂+ (when B)
|)

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of typeτ (E), 0τ (E):

E cell B = E cellB init 0τ (E),

except if an initial value is associated with the defined signal, in its declaration (cf. sectionVI–3.1,
page110).
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5. Clocks

(a) ω(E cell B init V0) = ω(E) + ((1 −ω(E)) ∗ω(B) ∗ (−1 − B))

6. Examples

(a) the values taken byX cell C init 0 are described below for the corresponding values
of X andC in input:

X = ⊥ 1 3 ⊥ ⊥ ⊥ 5 ⊥ 7 . . .
C = T F T T F T ⊥ T ⊥ . . .

X cell C init 0 = 0 1 3 3 ⊥ 3 5 5 7 . . .

VI–4.4 Variable clock signal

var E init V0

Thevar operator allows to use a signal at any clock defined by the context.

1. Context-free syntax

VARIABLE ::=

var S-EXPR [ init S-EXPR ]

2. Types

(a) E is a signal of any type.

(b) τ (var E init V0) = τ (E)
(c) τ (V0) ⊑ τ (E)

3. Definition in SIGNAL
Let:

• F an expression on processes containing an occurrencevari of the expression on signals
var E init V0,

• H the context clock ofvari in F ,

• FF the expression on processes equal toF in whichXX has been substituted tovari.

F is then equivalent to:

( | FF
| X := E default (X $ init V0)
| XX := X when H
| X ̂ = E ̂+ H
|) / X, XX

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of typeτ (E), 0τ (E):

var E = var E init 0τ (E)
except if an initial value is associated with the defined signal, in its declaration (cf. sectionVI–3.1,
page110).
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5. Clocks

(a) ω(var E init V0) = ~

VI–4.5 Counters

H1 modality H2 or H1 count M

The counter expressions (modalityafter or from, or counter modulo:count) allow the number-
ing of the occurrences of a clock.

1. Context-free syntax

COUNTER ::=

S-EXPR after S-EXPR

| S-EXPR from S-EXPR

| S-EXPR count S-EXPR

2. Types

(a) τ (H1) = τ (H2) = event

(b) M is an integer constant expression.

(c) τ (H1 modality H2) = integer

(d) τ (H1 countM) = integer

3. Definition in SIGNAL
N := H1 afterH2

whose right side of:= represents an expression of counter of the eventsH1 after the reinitializa-
tion H2, is equal to the process defined as follows:

( | counting_active ::= H2

| count_state ::= newCount
| newCount := (0 when H2) default incrementedCount
| incrementedCount := (count_state? + 1) when counting_active? when H1

| N := (newCount when H1) default (0 when H1)
|) where

statevar boolean counting_active init false;
statevar integer count_state init 0;
integer newCount, incrementedCount;

The signalN counts the number of occurrences of the signalH1 (o1) since the last occurrence
of the signalH2 (o2); but the occurrenceso1 which are simultaneous to occurrenceso2 are not
counted.

4. Definition in SIGNAL
N := H1 fromH2
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whose right side of:= represents an expression of counter of the eventsH1 since the reinitializa-
tion H2, is equal to the process defined as follows:

( | counting_active ::= H2

| count_state ::= newCount
| newCount := (1 when H2 when H1) default (0 when H2) default incrementedCount
| incrementedCount := (count_state? + 1) when counting_active? when H1

| N := (newCount when H1) default (0 when H1)
| ) where

statevar boolean counting_active init false;
statevar integer count_state init 0;
integer newCount, incrementedCount;

The signalN counts the number of occurrences of the signalH1 (o1) since the last occurrence
of the signalH2 (o2); the occurrenceso1 which are simultaneous to occurrenceso2 are counted.

5. Definition in SIGNAL
N := H1 countM
whose right side of := represents an expression of counter of the eventsH1 moduloϕ(M), is
equal to the process defined as follows:

( | N := (0 when ZN >= (M − 1)) default (ZN + 1)
| ZN := N $ init (M − 1)
| N ̂ = H1

|) / ZN

The signalN has 0 as initial value and is incremented by 1, moduloϕ(M), at each new oc-
currence of the signalH1.

6. Clocks

(a) ω(H1 modality H2) = ω(H1)
(b) ω(M) = ~

(c) ω(H1 count M) = ω(H1)

7. Examples

(a) the values taken byE1 from E2, E1 after E2 andE1 count 3 are described below for
the corresponding signalsE1 andE2 in input:

E1 = ⊥ • • • • • ⊥ • . . .
E2 = • ⊥ ⊥ • ⊥ ⊥ • ⊥ . . .

E1 from E2 = ⊥ 1 2 1 2 3 ⊥ 1 . . .
E1 after E2 = ⊥ 1 2 0 1 2 ⊥ 1 . . .
E1 count 3 = ⊥ 0 1 2 0 1 ⊥ 2 . . .

VI–4.6 Other properties of polychronous expressions

See also properties in sectionVI–4.1, page114and sectionVI–4.2, page115.

• (E1 defaultE2) when B = (E1 when B) default (E2 when B)
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• (τ (B1) = event) ⇒ (E when (B1 defaultB2) = (E when B1) default (E when B2))

VI–5 Constraints and expressions on clocks

A CONSTRAINT is an expression of processes which contributes to the construction of the system of
clock equations of the program. It is the tool for constraintprogramming. Such an expression can take
as arguments expressions on clocks or expressions on signals.

1. Context-free syntax

ELEMENTARY-PROCESS ::=

CONSTRAINT

VI–5.1 Expressions on clock signals

1-a Clock of a signal

Ê

The clock of a signal (of any type) is obtained by applying theoperator̂ to this signal.

1. Context-free syntax

S-EXPR-CLOCK ::=

SIGNAL-CLOCK

SIGNAL-CLOCK ::=

̂ S-EXPR

2. Types

(a) E is a signal of any type.

(b) τ (̂ E) = event

3. Definition in SIGNAL

E == E
Remark: this definition uses the operator of relation== defined on any type (cf. sectionVI–7.2,
page127).

4. Examples

(a) the values taken bŷX are described below for the corresponding values ofX in input:
X = 1 2 3 4 . . .

̂X = T T T T . . .

Remark: the expression̂E and the conversionevent (E) have the same result.
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1-b Clock extraction

when B or [:B] or [/:B]

The extraction of thetrue values of a Boolean condition are obtained by applying the operator unary
when on the condition; the extraction of thefalse values of a Boolean condition are obtained by
applying the operator unarywhen on the negation of the condition:

1. Context-free syntax

S-EXPR-CLOCK ::=

CLOCK-EXTRACTION

CLOCK-EXTRACTION ::=

when S-EXPR

| [: S-EXPR ]

| [/: S-EXPR ]

2. Types

(a) τ (B) ⊑ boolean

(b) τ (when B) = event

3. Definition in SIGNAL
when B, or equivalently[:B], is equal to:
B̂ when B

4. Definition in SIGNAL
[/:B] is equal to:
B̂ when not B

5. Clocks

(a) ω(when B) = ω(B) ∗ (−1 − B)

(b) ω([:B]) = ω(B) ∗ (−1 − B)

(c) ω([/:B]) = ω(B) ∗ (1 − B)

6. Examples

(a) the values taken by[:C] (or when C) and[/:C] are described below for the correspond-
ing values ofC in input:

C = T T F F T . . .
when C = [:C] = T T ⊥ ⊥ T . . .

[/:C] = ⊥ ⊥ T T ⊥ . . .
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1-c Empty clock

0̂
The empty clock is the clock that does not “contain” any instant.

1. Context-free syntax

S-EXPR-CLOCK ::=

0̂

2. Types

(a) τ (̂ 0) = event

3. Definition in SIGNAL
0̂ is the lexical expression of the empty clock; it is equal to the solution of the following equation:
when not ( 0̂) ̂= 0̂

4. Clocks

(a) ω(̂0) = 0̂

VI–5.2 Operators of clock lattice

E1 ̂Op E2

1. Context-free syntax

S-EXPR-CLOCK ::=

S-EXPR +̂ S-EXPR

| S-EXPR −̂ S-EXPR

| S-EXPR ∗̂ S-EXPR

2. Types

(a) E1 andE2 are signals of any types.

(b) τ (E1 ̂Op E2) = event

3. Definition in SIGNAL
X := E1 +̂ E2

defines a signal equal to the upper bound of the clocks of the signalsE1 andE2; this expression is
equal to the process defined as follows:

( | X := ̂E1 default ̂E2

|)
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4. Definition in SIGNAL
X := E1 ∗̂ E2

defines a signal equal to the lower bound of the clocks of the signalsE1 andE2; this expression is
equal to the process defined as follows:

( | X := ̂E1 when ̂E2

|)

5. Definition in SIGNAL
X := E1 −̂ E2

defines a signal equal to the complementary clock ofE1 ∗̂ E2 in Ê1; this expression is equal to
the process defined as follows:

( | X := when ((not ̂E2) default ̂E1)
|)

6. Clocks

(a) ω(E1 ̂+ E2) = ω(E1) + ((1 −ω(E1)) ∗ω(E2))
(b) ω(E1 ̂∗ E2) = ω(E1) ∗ω(E2)
(c) ω(E1 ̂− E2) = ω(E1) − (ω(E1) ∗ω(E2))

7. Properties

(a) E1 +̂ (E2 +̂ E3) = (E1 +̂ E2) +̂ E3

(b) E1 +̂ E2 = E2 +̂ E1

(c) E +̂ 0̂ = Ê

(d) E +̂ E = Ê

(e) E1 ∗̂ (E2 ∗̂ E3) = (E1 ∗̂ E2) ∗̂ E3

(f) E1 ∗̂ E2 = E2 ∗̂ E1

(g) E ∗̂ 0̂ = 0̂

(h) E ∗̂ E = Ê

(i) (E1 ∗̂ E2) +̂ E3 = (E1 +̂ E3) ∗̂ (E2 +̂ E3)

(j) (E1 +̂ E2) ∗̂ E3 = (E1 ∗̂ E3) +̂ (E2 ∗̂ E3)

VI–5.3 Relations on clocks

E1 ̂Op E2

The following expressions are expressions on processes describing constraints between clocks of
signals.

1. Context-free syntax
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CONSTRAINT ::=

S-EXPR { ̂= S-EXPR }∗

| S-EXPR { ̂< S-EXPR }∗

| S-EXPR { ̂> S-EXPR }∗

| S-EXPR { #̂ S-EXPR }∗

2. Profile
A relation on clocks of signals is a process with no output andwith:

? (E1 ̂Op ... ̂Op En) =
n⋃

i=1

? (Ei).

3. Types

(a) The argumentsEi are signals of any types, possibly distinct.

4. Definition in SIGNAL
E1 ̂Op E2 ̂Op EE
(wherê Op is one of the operatorŝ=,̂<,̂> and̂ #, and whereEE is an expression on clocks
or recursively a relation on clocks), builds the composition of the expressionsEi ̂Op Ej , for
any pair of distinct indexesi andj, and thus expresses the conjunction of the associated relations.
It is recursively defined by the composition of the followingexpressions of processes:

( | E1 ̂Op E2

| E1 ̂Op EE
| E2 ̂Op EE
|)

5. Definition in SIGNAL
E1 ̂ = E2

constrains the clock of the expression on signalsE1 to be equal to that ofE2; this expression,
whenH1 6∈ ? (E1 ̂ = E2), is equal to the process with no output defined as follows:

( | H1 := (̂E1) == (̂E2)
|) / H1

6. Definition in SIGNAL
E1 ̂ < E2

constrains the clock of the expression on signalsE1 to be smaller than (or equal to) that ofE2; this
expression is equal to the process with no output defined as follows:
E1 ̂= E1 ∗̂ E2

7. Definition in SIGNAL
E1 ̂ > E2

constrains the clock of the expression on signalsE1 to be greater than (or equal to) that ofE2; this
expression is equal to the process with no output defined as follows:
E1 ̂= E1 +̂ E2
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8. Definition in SIGNAL
E1 ̂# E2 specifies the mutual exclusion of the clocks of the expressions on signalsE1 and
E2; henceω(E1)∗ω(E2) = 0̂. This expression is equal to the process with no output defined as
follows:
0̂ ̂= E1 ∗̂ E2

VI–6 Identity equations not yet
imple-

mentedE1 :=: E2

Identity equations are expressions on processes describing equality constraints between the sequences
of values (and clocks) of two expressions.

1. Context-free syntax

CONSTRAINT ::=

S-EXPR :=: S-EXPR

2. Profile
An identity equation is a process with no output and with:
? (E1 :=: E2) = ? (E1) ∪ ? (E2).

3. Types

(a) E1 andE2 are of comparable types.

4. Semantics
If E1 andE2 can be viewed respectively as tuples(E11,. . . ,E1n) and(E21,. . . ,E2n), the identity
equationE1 :=: E2 constrains the sequences of values of the expressionsE1i and E2i to be
respectively equal.
An equationE1 :=: E2 is the basic identity equation between signals in the language (cf. partB,
chapterIII , page31). It is a non oriented equation, that does not induce dependences betweenE1

andE2.

5. Clocks

If E1i andE2i designatesignals,they are synchronous. In this case:

(a) ω(E1i) = ω(E2i)

6. Properties

(a) E1 :=: E2

is equal to the following process:
( | (when (E11 == E21)) ̂ = E11

...
| (when (E1n == E2n)) ̂ = E1n

|)
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VI–7 Boolean synchronous expressions

The Boolean expressions are synchronous expressions on signals. The operators defining such expres-
sions are the standard operators on Boolean elements extended to sequences of elements. The Boolean
expressions (or expressions with Boolean result) are either expressions of the Boolean lattice, or rela-
tions.

VI–7.1 Expressions on Booleans

1-a Negation

not E1

1. Context-free syntax

S-EXPR-BOOLEAN ::=

not S-EXPR

2. Types

(a) τ (E1) ⊑ boolean

(b) τ (not E1) = boolean

3. Semantics
The operator of negation has, on the occurrences of signals,its usual semantics.

4. Clocks

(a) ω(not E1) = ω(E1)

1-b Operators of Boolean lattice

E1 Op E2

1. Context-free syntax

S-EXPR-BOOLEAN ::=

S-EXPR or S-EXPR

| S-EXPR and S-EXPR

| S-EXPR xor S-EXPR

2. Types

(a) τ (E1) ⊑ boolean

(b) τ (E2) ⊑ boolean

(c) τ (E1 Op E2) = boolean

3. Semantics
The expressions on Boolean signals have, on the synchronousoccurrences of these signals, their
usual semantics; however, they are not primitive operatorsof the SIGNAL language.
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4. Definition in SIGNAL
X := E1 and E2

is equal to the process defined as follows:

( | X := (E1 when E2) default (not ̂E1)
| E1 ̂ = E2

|)

5. Definition in SIGNAL
X := E1 or E2

is equal to the process defined as follows:

( | X := (E1 when not E2) default ̂E1

| E1 ̂ = E2

|)

6. Definition in SIGNAL
X := E1 xor E2

is equal to the process defined as follows:

( | X := not (E1 == E2)
|)

7. Clocks

(a) ω(E1) = ω(E2)
(b) ω(E1 Op E2) = ω(E1)

VI–7.2 Boolean relations

The Boolean relations are equality, difference, and strictand non strict greater and lower relations.
Two classes of relation operators are distinguished according to their denotation:

• the operators which have a pointwise extension on elements of arrays (cf. partD, chapterX,
page179), denoted respectively= , / =, > , >=, < et <=; for example, the operator=
applied on two vectors has as result a vector of Booleans;

• the operators which have a Boolean result, whatever is the type of thesignalson which they are
applied; in this class are only defined the operator of equality, denoted== and the operator of

inferior or equal relation order, denoted<<= (these operators are pointwise extended tofamilies
of signals:polychronous tuples with named fields and tuples with unnamed fields).

E1 Op E2

1. Context-free syntax

S-EXPR-BOOLEAN ::=

RELATION
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RELATION ::=

S-EXPR = S-EXPR

| S-EXPR / = S-EXPR

| S-EXPR > S-EXPR

| S-EXPR >= S-EXPR

| S-EXPR < S-EXPR

| S-EXPR <= S-EXPR

| S-EXPR == S-EXPR

| S-EXPR <<= S-EXPR

2. Types

(a) τ (E1 Op E2) = boolean

(b) ForE1 == E2:
E1 andE2 aresignalsof a same domain, which is any domain.

(c) ForE1 = E2 andE1 / = E2:
E1 andE2 are signals of a same domainScalar-typeor ENUMERATED-TYPE .

(d) ForE1 <<= E2:
E1 andE2 are signals of a same domainScalar-type (other than aComplex-type), or of
ENUMERATED-TYPE , or of a same type for which the environment defines this operator
while respecting the properties enounced in this section.

(e) ForE1 > E2, E1 >= E2, E1 < E2, andE1 <= E2:
E1 andE2 are signals of a same domainScalar-type (other than aComplex-type), or of
ENUMERATED-TYPE .

3. Semantics

• Two objects of array types are equal if and only if both arrayshave the same dimension, are
of comparable types and the elements of same index are respectively equal.

• Two objects of monochronous tuple types are equal if and onlyif both objects are of compa-
rable types and the elements of corresponding fields are respectively equal.

• In the order defined on the values of typeboolean, false is lower thantrue.

• The order defined on the values of typecharacter is the order on the decimal values of their
encoding.

• The order defined on the values of typestring is the corresponding lexicographic order.

• The order defined on the values of anENUMERATED-TYPE is the syntactic order of their
declaration in the definition of the type (cf. sectionV–3, page76).

With these precisions, the operators of relation have theirusual semantics. The operators== and

= denote the relation of equality; the operators<<= and<= denote the relation inferior or
equal.
The comparisons are made in the greatest type (of a same domain). Then ifv1 is an element of
the sequence of values represented byE1 and if v2 is the corresponding element in the sequence
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of values represented byE2,
the corresponding element isv1 Op E2 in the sequence represented byE1 Op E2.

4. Definition in SIGNAL
The expressionE1 /= E2 is equal to the following expression:
not (E1 = E2)

5. Definition in SIGNAL
The expressionE1 < E2 is equal to the following expression:
(not (E1 = E2)) and (E1 <= E2)

6. Definition in SIGNAL
The expressionE1 >= E2 is equal to the following expression:
E2 <= E1

7. Definition in SIGNAL
The expressionE1 > E2 is equal to the following expression:
E2 < E1

8. Clocks

(a) ω(E1) = ω(E2)
(b) ω(E1 Op E2) = ω(E1)

9. Graph
When theEi are not of a domainSynchronization-type:

(a) E1−→E1 Op E2

(b) E2−→E1 Op E2

10. Properties
The relation <<= is an order relation on all the types of signals for which it isdefined; it has all
the properties of an order relation:

(a) reflexivity

(b) transitivity

(c) anti-symmetry: ((E1 «= E2)
∧

(E2 «= E1)) ⇒ (E1 == E2)

11. Properties
The relation<= is an order relation on the domains of values on which it is defined; it is:

(a) reflexive,

(b) transitive,

(c) anti-symmetric: ((E1 <= E2)
∧

(E2 <= E1)) ⇒ (E1 = E2)

VI–8 Synchronous expressions on numeric signals

The synchronous expressions on numeric signals are defined by pointwise extension of the standard
arithmetic operators on sequences of elements.
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VI–8.1 Binary expressions on numeric signals

E1 Op E2

1. Context-free syntax

S-EXPR-ARITHMETIC ::=

S-EXPR + S-EXPR

| S-EXPR − S-EXPR

| S-EXPR ∗ S-EXPR

| S-EXPR / S-EXPR

| S-EXPR modulo S-EXPR

| S-EXPR ∗∗ S-EXPR
| DENOTATION-OF-COMPLEX

2. Semantics
If the result of an expression cannot be represented in the typeµ of this expression, its value is a
value of typeµ depending on the implementation.

If v1 is an element of the sequence of values represented byE1 and if v2 is the corresponding
element of the sequence of values represented byE2, the corresponding element in the sequence
represented byE1 Op E2 is:
v1 Op v2

3. Clocks

(a) ω(E1) = ω(E2)
(b) ω(E1 Op E2) = ω(E1)

4. Graph

(a) E1−→E1 Op E2

(b) E2−→E1 Op E2

Operators + −, ∗, / E1 Op E2

1. Types

(a) τ (E1) andτ (E2) are of anyNumeric-type in a same domain,

(b) τ (E1 Op E2) = τ (E1) ⊔ τ (E2)

2. Semantics
When an expression of division is of domainInteger-type, the division is the integer division.
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Operator modulo E1 modulo E2

1. Types

(a) τ (E1) andτ (E2) are of domainInteger-type.
In addition,E2 must be a constrained integer (strictly positive and with anupper bound).

(b) τ (E1 modulo E2) = τ (E2)

2. Semantics
If r is defined byr := a modulo b,
then at each instant, the following property is true:
(∃ an integerq) ( (a=b∗q+r)

∧
( 0 ≤ r < b) )

Operator ∗∗ E1 ∗∗ E2

1. Types

(a) τ (E1) is aNumeric-type.

(b) τ (E2) is anInteger-type.

(c) τ (E1 ∗∗ E2) = τ (E1)

Operator @ E1@E2

A pair of synchronous elements ofReal-typedefines a signal of domainComplex-type.

1. Context-free syntax

DENOTATION-OF-COMPLEX ::=

S-EXPR @ S-EXPR

2. Types

(a) τ (E1) is aReal-type,

(b) τ (E2) is aReal-type,

(c) if τ (E1) ⊔ τ (E2) = real, thenτ (E1@E2) = complex
if τ (E1) ⊔ τ (E2) = dreal, thenτ (E1@E2) = dcomplex

3. Examples

(a) 1.0 @ (−1.0) defines a complex constant.

VI–8.2 Unary operators

Op E1

1. Context-free syntax

S-EXPR-ARITHMETIC ::=

+ S-EXPR

| − S-EXPR
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2. Types

(a) τ (E1) is aNumeric-type.

(b) τ (Op E1) = τ (E1)

3. Semantics
If the result of an expression cannot be represented in the typeµ of this expression, its value is a
value of typeµ depending on the implementation.

If v1 is an element of the sequence of values represented byE1,
the corresponding element in the sequence represented byOp E1 is:
Op v1

4. Clocks

(a) ω(Op E1) = ω(E1)

5. Graph

(a) E1−→Op E1

VI–9 Synchronous condition

if B then E1 else E2

The synchronous condition is an expression on signals with same clock.

1. Context-free syntax

S-EXPR-CONDITION ::=

if S-EXPR then S-EXPR else S-EXPR

2. Types

(a) τ (B) ⊑ boolean

(b) E1 andE2 are signals of a same domainScalar-type, External-type or ENUMERATED-
TYPE.

(c) τ (if B then E1 else E2) = τ (E1) ⊔ τ (E2)

3. Definition in SIGNAL
X := if B then E1 else E2

whose right side of:= represents an expression of synchronous condition, is equal to the process
defined as follows:

( | X := (E1 when B) default E2

| B ̂ = E1 ̂ = E2

|)

4. Clocks

(a) ω(E1) = ω(E2)
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(b) ω(B) = ω(E1)
(c) ω(if B then E1 else E2) = ω(E1)





Chapter VII

Expressions on processes

The expressions on processes allow to compose systems of equations on signals with the following
syntax:

1. Context-free syntax

P-EXPR ::=

ELEMENTARY-PROCESS
| HIDING
| LABELLED-PROCESS
| GENERAL-PROCESS

GENERAL-PROCESS ::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS
| ASSERTION-PROCESS

VII–1 Elementary processes

An elementary process is an instance of process (cf. sectionVI–1.2, page99), a definition of signals (cf.
sectionVI–1.1, page93), a constraint on clocks (cf. sectionVI–5, page120) or on values (cf. section
VI–6, page125), or an expression of dependence (cf. partE, sectionXI–6.2, page192).

VII–2 Composition

The composition of two processesP1 andP2 produces a process for which each execution observed on
the variables ofP1 (respectively,P2) is an execution ofP1 (respectively,P2). This composition is similar
to the aggregation of two systems of equations in a single one.

P1 | P2

1. Context-free syntax

COMPOSITION ::=

(| [ P-EXPR { | P-EXPR }∗ ] |)
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2. Profile

• ! (P1 | P2) = ! (P1) ∪ ! (P2)
• ? (P1 | P2) = (? (P1) − ! (P2)) ∪ (? (P2) − ! (P1))

3. Types

(a) If their names are identical, an outputx of P1 (respectively,P2) and an inputx of P2 (respec-
tively, P1) have also the same type.

(b) If their names are identical, an inputx of P1 and an inputx of P2 have also the same type.

4. Semantics
A signal, input ofP1 (respectively,P2), having as name the name of a signal, output ofP2 (respec-
tively, P1) and totally defined in it, has as definition inP1 (respectively, inP2) its definition inP2

(respectively, inP1).
If the definitions of such a signal are partial definitions, inP1 and inP2, its resulting definition
is the combination of both partial definitions, as it is specified in sectionVI–1.1, paragraph1-c,
page96.

5. Clocks

(a) If their names are identical, an outputx of P1 (respectively,P2) and an inputx of P2 (respec-
tively, P1) have also the same clock.

(b) If their names are identical, an inputx of P1 and an inputx of P2 have also the same clock.

VII–3 Hiding

The hiding is an expression that modifies the profile of an expression of processes by hiding some of its
outputs.

P / A1, ..., An

1. Context-free syntax

HIDING ::=

GENERAL-PROCESS / Name-signal{ , Name-signal}∗

| HIDING / Name-signal{ , Name-signal}∗

2. Profile

• ? (P / A1, ..., An) = ? (P )
• ! (P / A1, ..., An) = ! (P ) − {A1, . . . , An}

3. Semantics
The hiding operation allows to hide outputs of the processP : the outputs of the resulting process
are the outputs ofP which do not appearin the listA1, ..., An.
TheAi can be names of tuples: in that case, the hiding applies globally on the tuples.
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4. Examples
Let P be a process withA, B andC as inputs andX andY as outputs.

(a) P / Y has onlyX as output;

(b) P / Z is equal toP.

VII–4 Confining with local declarations

Local declarations can be associated with any expression ofprocesses.

1. Context-free syntax

CONFINED-PROCESS::=

GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

where { DECLARATION } + end

TheDECLARATION s are local to theCONFINED-PROCESS; they are described in partE, sec-
tion XI–2, page187(chapter “Models of processes”).

Local declarations of sequences

The signals (or tuples) that appear in a list ofS-DECLARATION s associated with an expression of
processes are hidden in output of thisCONFINED-PROCESS.

P where µ1 A1, ..., An1; ...; µm A1, ..., Anm ... end

The namesA1, . . . ,An1, . . . ,A1, . . . ,Anm must be mutually distinct.

1. Profile

• ? (P where µ1 A1, ..., An1; ...; µm A1, ..., Anm ... end) = ? (P )
• ! (P where µ1 A1, ..., An1; ...; µm A1, ..., Anm ... end) =

! (P ) − {A1, . . . , An1 , . . . , A1, . . . , Anm}

2. Types
The expression
P where µ1 A1, ..., An1; ...; µm A1, ..., Anm end
establishes a new syntactic context ofP .
The declarations
where µ1 A1, ..., An1; ...; µm A1, ..., Anm end
are called “local declarations” forP .

(a) In this context, the typeτ (µi) is that associated with the signalsA1, . . . ,Ani
, in accordance

with the rules defined in partC, chapterV, “Domains of values of the signals”.
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3. Definition in SIGNAL

P / A1, ..., An1, ..., A1, ..., Anm

with, in the context ofP , the associations of types defined above.

The following rules help to specify the context of visibility established by the local declarations of a
confined process (see also in partE, sectionXI–2, page187).

• An identifier of sequenceX (or an identifier of constant, or an identifier of type) used inan ex-
pression on processes that does not contain a declaration ofX is said external to this expression of
processes.

• An identifier of sequence (or of constant, or of type)X local to an expression of processesP ,
or external toP and declared in a list ofDECLARATION s D, is local to theCONFINED-
PROCESSP where D end.

• An identifier of sequence (or of constant, or of type)X external to an expression of processesP ,
and not declared in a list ofDECLARATION sD, is external to theCONFINED-PROCESSP
where D end.

• Let A be an identifier of input signal of an expression of processesP (used but not defined inP ),
thenA must be external toP .

• Let B be an identifier of output signal of a modelM , thenB must be an output signal defined
(at least partially) in the expression of processes associated withM , external to this expression of
processes.

• Any sequence used in aMODEL but not declared in the interface of thisMODEL must be either
local to the associated expression of processes, or external to theMODEL (visible in a syntactic
context that includes it). In the same way, any constant or type identifier used in aMODEL must
be either local to the associated expression of processes, or external to thatMODEL .

VII–5 Labelled processes

It is possible to label an expression of processes:

XX :: P

1. Context-free syntax

LABELLED-PROCESS ::=

Label :: P-EXPR

Label ::=

Name

The labelled processXX :: P has the same semantics as the processP , but the labelXX defines
a context clock for the processP , and implicit signals are added to the graph.
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The labelXX associated withP can be used to designate the processP in some expressions (de-
pendences, for example).

In particular, the labelXX can be used to define or to reference a characteristic clock ofP : the tick
of P . For that purpose, the label is considered as a signal of special type label, for which it is always
possible to reference its clock (in the usual ways:X̂X for example).
This clock of the labelXX (the tick of the processP ) is recursively defined as the upper bound of the
ticksof the components of the process.

Thetick of an equationX := E is the clock ofX.
Thetick of an equationX ::= E is the clock ofE.
The tick of the invocation of a process model is thetick of this process model. There is a particular

case when the called process model is an external process model:

• In that case, if the (external) process model is declared as being an action (cf. partE, section
XI–1.2, page186), thetick of its invocation is fixed through the closest label of the invocation: it is
equal to the clock of this label (which can be fixed by explicitequations, for instance). This clock
must be greater than the upper bound of the clocks of the inputs/outputs of the action.

• Otherwise (if the external process model is not declared as an action), thetick of its invocation is
equal to the upper bound of the clocks of its inputs/outputs.

The clock of the labelXX represents the context clock ofP .

The other effect of labelling a process is to add the two following signals to the graph: let us denote
them respectively? XX and! XX , although these notations are not available in the syntax ofthe
language.

Both? XX and! XX have the clock̂ XX as their common clock. The implicit signal? XX is
a signal that precedes all the nodes of the graph of the process P : there is a dependence from? XX
to each one of the signals designated inP . Symmetrically, the implicit signal! XX is a signal which
is preceded by all the nodes of the graph ofP : there is a dependence from each one of the signals
designated inP to the signal! XX .

This feature is used to specify explicit dependences between processes (cf. partE, sectionXI–6.2,
page192).

The labels declared in a model of process (cf. partE, chapterXI , page183) are visible (i.e., can be
referenced) everywhere in this model, but not in its included models of processes: a label is in some way
local to a model.

In one model, a label cannot have the same name as another visible object (signal, parameter, con-
stant, type, model).

VII–6 Choice processes not yet
fully

imple-
mented

A choice process is an expression of processes that allows tocompose definitions according to the dif-
ferent values of a signal1.
case X in

{V1,1, ..., V1,n1} : P1
...
1not yet implemented in POLYCHRONY: intervals of values.
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{Vm,1, ..., Vm,nm} : Pm

else Pm+1

end

The “else” part is optional.
Other forms of enumeration of values can also be used in the different branches of the choice process.
They are described below.

1. Context-free syntax

CHOICE-PROCESS ::=

case Name-signal in { CASE }+ [ ELSE-CASE ] end

CASE ::=

ENUMERATION-OF-VALUES : GENERAL-PROCESS

ELSE-CASE ::=

else GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=

{ S-EXPR { , S-EXPR }∗ }

| [. [ S-EXPR ] , [ S-EXPR ] .]

| [. [ S-EXPR ] , [ S-EXPR ] [.

| .] [ S-EXPR ] , [ S-EXPR ] .]

| .] [ S-EXPR ] , [ S-EXPR ] [.

2. Profile

• ? (Pi) = {ei,1, . . . , ei,pi
}

• ! (Pi) = {si,1, . . . , si,qi
}

• ? (case X in ... end) = {X} ∪
⋃

i

? (Pi) −
⋃

i

! (Pi)

• ! (case X in ... end) =
⋃

i

! (Pi)

3. Types

(a) X has aScalar-typeor ENUMERATED-TYPE and
∀i, j τ (Vi,j) ⊑ τ (X)

4. Semantics
EachENUMERATION-OF-VALUES enumerates some subset of constant values which are in
the same domain as the signalX , signal on which the choice is based, and which are possible
values ofX .
All the enumerations of values of the different branches (the “guard” values of the choice) must
be mutually exclusive. When there is an “else” part, the different sub-types corresponding to the
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guard values of the different branches form a partition of the type ofX.
The enumerations of values can take the form of explicit enumerations (used for the description
below), or of intervals. The four possible forms of intervals are usable only if the values of the type
of X are totally ordered: they define intervals of values that canbe, for both sides of the interval,
opened or closed. The bounds of an interval are optional (oneof the two must be present): if the
lower bound is absent, the interval represents all the values smaller than the upper bound (included
or not); if the upper bound is absent, the interval represents all the values greater than the lower
bound (included or not).

5. Definition in SIGNAL
In each branch, the guard of the choice (i.e., the condition representing the instants at which the
signalX on which the choice is based takes as value one of the values enumerated in the consid-
ered branch) defines a context clockl̂i which provides atick (cf. sectionVII–5, page138) for the
process defined by the corresponding branch: in this process, no visible clock can be greater than
this context clock. For this branch, the inputs of the process Pi are filtered by this guard. Then the
above choice process is equivalent to:
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( | ( | B1 := when ((X = V1,1) or ... or (X = V1,n1))
| e′1,1 := e1,1 when B1

...
| e′1,p1

:= e1,p1 when B1

| l1 ::
( | P1 [e′1,1/e1,1, ..., e′1,p1

/e1,p1]
| l1 ̂ = B1

|)

|) / B1, e′1,1, ..., e′1,p1

|
...

| ( | Bm := when ((X = Vm,1) or ... or (X = Vm,nm))
| e′m,1 := em,1 when Bm

...
| e′m,pm

:= em,pm when Bm

| lm ::
( | Pm [e′m,1/em,1, ..., e′m,pm

/em,pm]
| lm ̂ = Bm

|)

|) / Bm, e′m,1, ..., e′m,pm

| ( | Bm+1 := when ((X /= E1,1) and ... and (X /= Em,nm))
| e′m+1,1 := em+1,1 when Bm+1

...
| e′m+1,pm+1

:= em+1,pm+1 when Bm+1

| lm+1 ::
( | Pm+1 [e′m+1,1/em+1,1, ..., e′m+1,pm+1

/em+1,pm+1]

| lm+1 ̂ = Bm+1

|)

|) / Bm+1, e′m+1,1, ..., e′m+1,pm

|)

wherePi [e′i,1/ei,1, . . . ,e′i,pi
/ei,pi

] represents the processPi in which new identifierse′i,j are sub-
stituted to the identifiersei,j which are inputs ofPi.
For all the processesPi, the new identifierse′i,j are mutually distinct and do not appear elsewhere.
Note that it is possible that a given shared variable or statevariable be defined in different branches
of the choice process. In this case, corresponding equations may appear as partial definitions.

6. Clocks The valuesVi,j are constant expressions:

(a) ω(Vi,j) = ~
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Example

The statechart:

Q

i

j

Q2

Q1

m

nj

a

b

a

b

P

VU

X Y

Z

R

S

may be described by the following program (process models and modules are described respectively in
chapterXI , page183and chapterXII , page203):

module P_statechart =

type P_states = enum (Q, R, S);
type Q1_states = enum (U, V);
type Q2_states = enum (X, Y, Z);

process P_chart =
( ? event Tick;

event a, b, i, j, m, n;
! P_states P_currentState;

Q1_states Q1_currentState;
Q2_states Q2_currentState;

)
(| (| case P_currentState in

{#Q}: (| P_nextState ::= (#R when a) default (#S when b) |)
{#R}: (| P_nextState ::= #S when b |)
{#S}: (| P_nextState ::= #Q when a |)

end
| P_nextState ::= defaultvalue P_currentState
| P_currentState := P_nextState $ init #Q
| P_currentState ^= Tick
|)

| clk_Q_chart := when (P_currentState = #Q)
| start_Q_chart := when (P_nextState = #Q) when (P_currentState /= #Q)
| Q1_State ^= Q2_State ^= clk_Q_chart ^+ start_Q_chart
| (| case Q1_State in

{#U}: (| Q1_newState ::= #V when i |)
{#V}: (| Q1_newState ::= #U when j |)

end
| Q1_newState ::= defaultvalue Q1_State
| Q1_newState ^= Q1_State
| Q1_nextState := (#U when start_Q_chart) default Q1_newState
| Q1_State := Q1_nextState $ init #U
| Q1_currentState := Q1_State when clk_Q_chart
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|)
| (| case Q2_State in

{#X}: (| Q2_newState ::= #Y when m |)
{#Y}: (| Q2_newState ::= #Z when n |)
{#Z}: (| Q2_newState ::= #X when j |)

end
| Q2_newState ::= defaultvalue Q2_State
| Q2_newState ^= Q2_State
| Q2_nextState := (#X when start_Q_chart) default Q2_newState
| Q2_State := Q2_nextState $ init #X
| Q2_currentState := Q2_State when clk_Q_chart
|)

|)
where

shared P_states P_nextState;
shared Q1_states Q1_newState;
shared Q2_states Q2_newState;
event clk_Q_chart, start_Q_chart;
Q1_states Q1_State, Q1_nextState;
Q2_states Q2_State, Q2_nextState;

end;
end;

(note that the program could be better structured using several process models).

VII–7 Assertion processes

An assertion process is a process with no output which specifies assumed properties in a model. It can be
used in particular to specify assumptions on inputs of the model or guarantees on outputs. The assertions
are expressed as constraints.

assert (| P1 | ... | Pn |)

1. Context-free syntax

ASSERTION-PROCESS::=

assert (| [ CONSTRAINT { | CONSTRAINT } ∗ ] |)

2. Profile

• ! (assert (| P1 | ... | Pn |) ) = ∅

• ? (assert (| P1 | ... | Pn |) ) = ? (P1) ∪ . . .∪ ? (Pn)

3. Definition in SIGNAL

assert (| P1 | ... | Pn |)
is equivalent to:
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( | assert (| P1 |)
...

| assert (| Pn |)
|)

We distinguish the different sorts of constraint equations: clock relations (cf. sectionVI–5.3, page123)
and identity equations (cf. sectionVI–6, page125).

VII–7.1 Assertions of clock relations

• assert (| E1 ̂Op E2 ̂Op EE |)

(wherê Op is one of the operatorŝ=,̂<,̂> and̂ #) is recursively defined by:

1. Definition in SIGNAL

( | assert (| E1 ̂Op E2 |)
| assert (| E1 ̂Op EE |)
| assert (| E2 ̂Op EE |)
|)

In the following definitions, we use aclock_assert process which is defined below (cf. section
VII–7.3, page147). Note that this process is not provided in the syntax of the language.

• assert (| E1 ̂ = E2 |)
asserts that the clock of the expression on signalsE1 is equal to that ofE2.

1. Definition in SIGNAL

clock_assert(E1, E2)

Example The following example adds an assumption of clock equivalence:

process two_oversampling =
( ? integer u1, u2;

! boolean b1, b2;
)

(| b1 := oversampling(u1)
| b2 := oversampling(u2)
| assert (| when b1 ^= when b2 |)
|)

where
process oversampling =

( ? integer u;
! boolean b;

)
(| z := u default v
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| v := (z $ init 1) - 1
| b := v <= 0
| u ^= when b
|)

where
integer z, v;

end
;
end

;

• assert (| E1 ̂ < E2 |)
asserts that the clock of the expression on signalsE1 is smaller than (or equal to) that ofE2.

1. Definition in SIGNAL

clock_assert(E1, E1 ∗̂ E2)

• assert (| E1 ̂ > E2 |)
asserts that the clock of the expression on signalsE1 is greater than (or equal to) that ofE2.

1. Definition in SIGNAL

clock_assert(E1, E1 +̂ E2)

• assert (| E1 ̂# E2 |)
asserts that the clocks of the expressions on signalsE1 andE2 are mutually exclusive.

1. Definition in SIGNAL

clock_assert( 0̂, E1 ∗̂ E2)

VII–7.2 Assertions of identity equations

assert (| E1 :=: E2 |)
asserts that: 1/ the clocks of the expressions on signalsE1 andE2 are equal; 2/ at this common clock,
the values of these expressions are equal.

1. Definition in SIGNAL
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( | clock_assert(E1, E2)
| assert(E1 == E2)
|)

This definition uses the assertion on Boolean signal which isdefined below (cf. sectionVII–7.3,
page147).

VII–7.3 Assertion on Boolean signal

The syntax of anINSTANCE-OF-PROCESS(cf. sectionVI–1.2, page99) is used to assert that a given
Boolean signal must have the valuetrue each time it is present. It is a process with no output (it has the
syntax of a process call with no output).

assert(B)

1. Context-free syntax

INSTANCE-OF-PROCESS::=

assert ( S-EXPR )

2. Profile

• ! (assert(B)) = ∅

• ? (assert(B)) = ? (B)

3. Types

(a) τ (B) = boolean

4. Semantics
A property specified by an assertion can be assumed by the clock calculus.

5. Definition in SIGNAL
assert(B)
is equal to the process defined as follows:

( | B ̂ = when B
|)

6. Examples

(a) The process
assert(A < 5)
expresses that the values ofA must be always lower than 5 (whenA is present).

• The processassert(h1 = h2) does not specify that the clocks (signals of typeevent) h1 and
h2 are equal. In the same way, the processassert(x ∗̂ y = 0̂) does not specify that the signals
x andy are exclusive.
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This is the reason why we introduced the process (or “macro”)clock_assert, which is defined
as follows:
process clock_assert = ( ? event h1, h2; ! )
( | b1 := h1 default not (h1 ̂+ h2)
| b2 := h2 default not (h1 ̂+ h2)
| assert(b1 = b2)
|)

where boolean b1, b2;
end;

Using theleft_tt process (cf. sectionXIII–3, page210), an equivalent definition is the follow-
ing:
process clock_assert = ( ? event h1, h2; ! )
( | b1 := left_tt(h1, h2)
| b2 := left_tt(h2, h1)
| assert(b1 = b2)
|)

where boolean b1, b2;
end;

Using this process, for instance,clock_assert(h1, h2), the equality of the clocksh1 andh2
can be assumed by the clock calculus.

Again, note that the processclock_assert is not provided in the syntax of the language: it is
only used as intermediate macro for the definition of assertion processes.

• The keywordassert may be used in two different contexts:

– in anASSERTION-PROCESS, it takes a composition ofCONSTRAINTS as argument,

– in anINSTANCE-OF-PROCESS, it takes a Boolean signal as argument.

Example

The following example uses the intrinsic processaffine_sample defined in sectionXIII–2 ,
page207 and, given general properties of affine relations such as theone encoded in the assertion,
allows to synchronize resulting clocks, even if the clock calculus does not implement the corresponding
synchronisability rules.

process affine_relations =
{ integer n1, n2, n3, phi1, phi2, phi3; }
( ? integer e;
! integer s;

)
(| s1 := affine_sample {phi1, n1} (e)
| s2 := affine_sample {phi2, n2} (e)
| s3 := affine_sample {phi3, n3} (s2)
| s := s1 + s3
| (| b := ^s1 default not (s1 ^+ s3)

| bb := ^s3 default not (s1 ^+ s3)
| assert ((b = bb) when (n2*phi3+phi2 = phi1) when (n1 = n2*n3))
|)

|)
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where
integer s1, s2, s3;
boolean b, bb;

end
;





Part D

THE COMPOSITE SIGNALS





Chapter VIII

Tuples of signals

An expression of tuple is an enumeration of elements of tuple, or a designation of field.

1. Context-free syntax

S-EXPR-TUPLE ::=

TUPLE-ENUMERATION
| TUPLE-FIELD

VIII–1 Constant expressions

A constant expression of tuple is anS-EXPR-TUPLEwhich has recursively as arguments constant ex-
pressions, or any expression defining a tuple the elements ofwhich are constants.

VIII–2 Enumeration of tuple elements

A tuple represents a list (finite sequence) of signals or tuples.

(E1, . . . ,En)

1. Context-free syntax

TUPLE-ENUMERATION ::=

( S-EXPR { , S-EXPR }∗ )

2. Types

(a) τ ((E1, . . . ,En)) = (τ (E1) × . . . × τ (En))

3. Semantics
The tuple(E1, . . . , En) is equal to< v1, . . . , vn > where< v1, . . . , vn > is the sequence of
signals or tuples resulting from the evaluation of the expressionsE1, . . . ,En.
The semantics is described formally in partB, sectionIII–7.1, page44.
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VIII–3 Denotation of field

X.Xi

1. Context-free syntax

TUPLE-FIELD ::=

S-EXPR . Name-field

2. Types

(a) τ (X) = bundle({X1} → µ1 × . . . × {Xm} → µm)

(b) τ (X.Xi) = µi

3. Semantics
If X is a tuple with named fieldsX1, . . . , Xm, X.Xi designates the signal or the tuple corre-
sponding to the field with nameXi.

In particular, the denotation of field may apply on anINSTANCE-OFPROCESSwhen the output
of the corresponding model is a tuple with named fields. It mayalso apply on an array element if
the elements of the array are monochronous tuples with namedfields.
The semantics is described formally in partB, sectionIII–7.1, page44.

VIII–4 Destructuration of tuple

The syntax of anINSTANCE-OF-PROCESS is used to denote the call of predefined functions of de-
structuration of tuples:

• tuple(X)

– If X is a tuple with named fields of typebundle({X1} → µ1 × . . . × {Xm} → µm),
tuple(X) is the corresponding tuple with unnamed fields,(X1, . . . ,Xm), of type(µ1 × . . . × µm)

– If X is a tuple with unnamed fields, the components of which are, inthis order,X1, . . . ,Xm,
tuple(X) is the tuple with unnamed fields(tuple(X1), . . . ,tuple(Xm))

– If X is not of tuple type, thentuple(X) is equal toX.

• rtuple(X)

– If X is a tuple with named fields of typebundle({X1} → µ1 × . . . × {Xm} → µm),
rtuple(X) is the tuple with unnamed fields
(rtuple(X1), . . . ,rtuple(Xm))

– If X is a tuple with unnamed fields, the components of which are, inthis order,X1, . . . ,Xm,
rtuple(X) is the tuple with unnamed fields
(rtuple(X1), . . . ,rtuple(Xm))

– If X is not of tuple type, thenrtuple(X) is equal toX .
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VIII–5 Equation of definition of tuple component

A tuple can be defined component by component. An equation of definition of component of tuple is
an expression of processes the syntax of which extends theDEFINITION-OF-SIGNALS given in part
C, sectionVI–1.1, page93. The general form can contain both definitions of componentsof tuples and
global definitions of tuples and signals.

(X1.A1, . . . ,Xn.An) := E

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

COMPONENT := S-EXPR

| COMPONENT ::= S-EXPR

| COMPONENT ::= defaultvalue S-EXPR

| ( COMPONENT { , COMPONENT } ∗ ) := S-EXPR

| ( COMPONENT { , COMPONENT } ∗ ) ::= S-EXPR

| ( COMPONENT { , COMPONENT } ∗ ) ::= defaultvalue
S-EXPR

COMPONENT ::=

Name-signal
| Name-signal . COMPONENT

2. Types

(a) τ ((X1.A1, . . . ,Xn.An)) = (τ (X1.A1) × . . . × τ (Xn.An))
(b) τ (E) ⊑ (τ (X1.A1) × . . . × τ (Xn.An))

3. Semantics

• X1.A1, . . . ,Xn.An designate signals or tuples of signals, respectively components of the
tuplesX1, . . . ,Xn.

• Each signal or tupleXi.Ai is respectively equal to the signal or tuplevi that corresponds
positionally to it in output ofE.

4. Clocks A signaland the signalvi that defines it are synchronous. In that case:

(a) ω(Xi.Ai) = ω(vi)





Chapter IX

Spatial processing

Spatial processing is obtained by manipulations of arrays.
The following operators are provided:

• operators of definition by enumeration
(ARRAY-ENUMERATION , CONCATENATION , ITERATIVE-ENUMERATION );

• an operator of definition of indices (INDEX );

• operators of access to elements of arrays (ARRAY-ELEMENT , SUB-ARRAY);

• an operator of array restructuration (ARRAY-RESTRUCTURATION );

• operators of sequential definition
(SEQUENTIAL-DEFINITION , ITERATIVE-ENUMERATION );

• global operators on matrices such as transposition (TRANSPOSITION ) and products (ARRAY-
PRODUCT).

Moreover, structures of iteration are also defined on processes (ITERATION-OF-PROCESSES),
with an associated operator of definition of multiple indices (MULTI-INDEX ).

1. Context-free syntax

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
| CONCATENATION
| ITERATIVE-ENUMERATION
| INDEX
| ARRAY-ELEMENT
| SUB-ARRAY
| ARRAY-RESTRUCTURATION
| MULTI-INDEX
| SEQUENTIAL-DEFINITION
| TRANSPOSITION
| ARRAY-PRODUCT
| REFERENCE-SEQUENCE
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IX–1 Dimensions of arrays and bounded values

Dimensions of arrays

The syntax of anINSTANCE-OF-PROCESSis used to denote the call of predefined functions with
constant result giving the dimension of an array and the sizeof a dimension:

• dim(T)
If T has a type([0..n1 − 1] × . . . × [0..nm − 1]) → ν whereν is aScalar-typeor External-type
or ENUMERATED-TYPE ,
thenϕ(dim(T)) = m.
If T has a typeν whereν is aScalar-typeor External-type or ENUMERATED-TYPE ,
thenϕ(dim(T)) = 0.

• size(T ,I)
If T has a type([0..n1 − 1] × . . . × [0..nm − 1]) → ν whereν is aScalar-typeor External-type
or ENUMERATED-TYPE ,
and if1 ≤ ϕ(I) ≤ m,
thenϕ(size(T ,I)) = nI ,
elseϕ(size(T ,I)) is not defined: it is an error in the program.

• size(T) is, by definition, equivalent to
size(T ,1)

Bounded values

The syntax of anINSTANCE-OF-PROCESS is used to denote the call of a predefined function
used to deliver bounded values.

bounds(E1, E2, E3)

The values ofE1 are compelled to evolve between that ofE2 andE3.

1. Types

(a) E1, E2 andE3 are signals of a same domainScalar-type (other than aComplex-type), or
ENUMERATED-TYPE .

(b) τ (bounds(E1, E2, E3)) = τ (E1) ⊔ τ (E2) ⊔ τ (E3)
(c) The pointwise extension is described in partD, chapterX, page179.

2. Definition in SIGNAL
X := bounds(E1, E2, E3)
whose right side of:= represents an expression of bounded values, is equal to the process defined
as follows:

( | X := if E1 < E2 then E2 else if E1 > E3 then E3 else E1

|)

3. Clocks

(a) ω(E1) = ω(E2)
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(b) ω(E1) = ω(E3)
(c) ω(bounds(E1, E2, E3)) = ω(E1)

IX–2 Constant expressions

A constant expression of array is anS-EXPR-ARRAY which has recursively as arguments constant
expressions, or any expression defining an array the elements of which are constants.

IX–3 Enumeration

The enumeration of the elements of an array defines a vector bythe ordered list of its elements.

[E1, . . . ,En]

1. Context-free syntax

ARRAY-ENUMERATION ::=

[ S-EXPR { , S-EXPR }∗ ]

2. Profile

? ([E1, . . . ,En]) =
n⋃

i=1

? (Ei)

3. Types

(a) τ ([E1, . . . ,En]) = [0..n − 1] →
n⊔

i=1

τ(Ei)

4. Semantics
[E1, . . . ,En] designates the vector then components of which are, in this order,E1, . . . ,En (cf.
partB, sectionIII–7.2, page46).

5. Clocks

(a) ω([E1, ..., En]) = ω(Ei) ∀i = 1, . . . , n

6. Examples

(a) With M1:= [[M11,M12,M13],[M21,M22,M23]],
M1[0] is equal to[M11,M12,M13].

IX–4 Concatenation

The concatenation allows to concatenate arrays along to their first dimension.

E1 |+ E2

1. Context-free syntax
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CONCATENATION ::=

S-EXPR |+ S-EXPR

2. Types

(a) τ (E1) = [0..m1 − 1] → µ1

(b) τ (E2) = [0..m2 − 1] → µ2

(c) τ (E1 |+ E2) = [0..m1 + m2 − 1] → µ1 ⊔ µ2

3. Definition in SIGNAL
X := E1 |+ E2 is equal to the process defined as follows:

X := [E1[0], . . . ,E1[m1 − 1], E2[0], . . . ,E2[m2 − 1]]

4. Clocks

(a) ω(E1) = ω(E2)
(b) ω(E1 |+ E2) = ω(E1)

IX–5 Repetition

The repetition is a simple form of iterative enumeration which allows the finite repetition of a value.

E |∗ N

1. Context-free syntax

ITERATIVE-ENUMERATION ::=

S-EXPR |∗ S-EXPR

2. Types

(a) τ (E) = µ

(b) N is a positive integer expression, with a strictly positive upper bound,Nmax.

(c) τ (E |∗ N) = [0..Nmax − 1] → µ

3. Semantics
At a given instant, all the elements of the vector defined byE |∗ N have the same value, which is
the value ofE.
The semantics is described formally in partB, sectionIII–7.2, page46, using the “iterative enu-
meration of array”. The maximum number of iterations is given by N , and the iteration function
which is used here is the identity function with first value the valueE itself.

4. Clocks

(a) ω(E) = ω(N)
(b) ω(E |∗ N) = ω(E)
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IX–6 Definition of index

E1..E2 step E3

1. Context-free syntax

INDEX ::=

S-EXPR .. S-EXPR [ step S-EXPR ]

2. Types

(a) E1 andE2 are bounded integers such that the differenceE1 − E2 has always the same sign
(at every instant):∀t, E1t ≤ E2t or ∀t, E1t ≥ E2t.
lower_bound(E1), upper_bound(E1), lower_bound(E2) andupper_bound(E2) will de-
note respectively the lower bounds and upper bounds ofE1 andE2.

(b) E3 is an integer constant different from 0, such that
if ∀t, E1t ≤ E2t thenϕ(E3) > 0
and if∀t, E1t ≥ E2t thenϕ(E3) < 0.
When the step expression,E3, is omitted, its value is implicitly equal to 1.

(c) If ϕ(E3) > 0,
τ (E1..E2 step E3) =
[0..((upper_bound(E2) − lower_bound(E1))/ϕ(E3) + 1) − 1] → τ (E1) ⊔ τ (E2)
If ϕ(E3) < 0,
τ (E1..E2 step E3) =
[0..((upper_bound(E1) − lower_bound(E2))/(−ϕ(E3)) + 1) − 1] → τ (E1) ⊔ τ (E2)
In any case, the size of the vector must be strictly positive.

3. Semantics
The vector of integers defined byE1..E2 step E3 has as successive elements the valuesE1t,
E1t + ϕ(E3), E1t + (2 ∗ϕ(E3)), etc., up to the last value betweenE1t andE2t (included).
The semantics is described formally in partB, sectionIII–7.2, page46, using the “iterative enu-
meration of array”.
The iteration function is the functionf such thatf(x) = x + ϕ(E3). The first value isE1.
If ϕ(E3) > 0, the maximum number of iterations is given by
N = (E2 − E1) / ϕ(E3) + 1.
If ϕ(E3) < 0, the maximum number of iterations is given by
N = (E1 − E2) / (−ϕ(E3)) + 1.

4. Clocks

(a) ω(E1) = ω(E2) = ω(E1..E2 step E3)
(b) ω(E3) = ~

IX–7 Array element

An array element is obtained by indexing following the syntax of the first rule below. Every index of
array must be a positive bounded integer, whose upper bound is strictly inferior to the sizen of the
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considered dimension; the second rule provides a syntax of “local recovery” which defines the value of
the expression for the values of index outside the segment [0..n − 1].

1. Context-free syntax

ARRAY-ELEMENT ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]

| S-EXPR [ S-EXPR { , S-EXPR }∗ ] ARRAY-RECOVERY

ARRAY-RECOVERY ::=

\\ S-EXPR

IX–7.1 Access without recovery

T[E1, . . . ,Em]

1. Profile

? (T[E1, . . . ,Em]) = ? (T) ∪
m⋃

i=1

? (Ei)

2. Types

(a) For alli, Ei is a positive (or zero) integer, with an upper bound. Letni the value of its upper
bound.

(b) τ (T ) = ([0..n1 − 1] × . . . × [0..nm − 1]) → µ
(remark:µ can be an array type.)

(c) τ (T[E1, . . . ,Em]) = µ

3. Semantics
If v1, . . . , vm represent respectively the self-corresponding elements in the sequences of values
represented byE1, . . . , Em, the corresponding element in the sequence represented byT[E1,
..., Em] is T (< v1, . . . , vm >).
The semantics is described formally in partB, sectionIII–7.2, page46.

4. Clocks

(a) ω(E1) = ω(T ), . . . ,ω(Em) = ω(T )
(b) ω(T[E1, ..., Em]) = ω(T)

5. Properties

(a) (E1, . . . ,Em of type integer) ⇒ (T[E1, . . . , Em] = T[E1] . . .[Em])

IX–7.2 Access with recovery

T[E1, . . . ,Em]\\V

1. Types

(a) τ (T ) = ([0..n1 − 1] × . . . × [0..nm − 1]) → µ1
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(b) For alli = 1, . . . ,m, τ (Ei) is anInteger-type.

(c) τ (V ) = µ2

(d) τ (T[E1, . . . ,Em]\\V ) = µ1 ⊔ µ2

2. Definition in SIGNAL
X := T[E1, . . . ,Em]\\V
whose right side of := represents an expression of access to an array element with recovery, is
equal to the process defined as follows:

( | X1 := T[E1 modulo n1, ..., Em modulo nm]
| B1 := (0 <= E1) and (E1 <= (n1 − 1))

...
| Bm := (0 <= Em) and (Em <= (nm − 1))
| B := (B1 and ... and Bm) when ̂T
| X2 := V when ̂T
| X := (X1 when B) default X2

|) / X1, X2, B, B1, ..., Bm

3. Clocks

(a) ω(E1) = ω(T ), . . . ,ω(Em) = ω(T )
(b) ω(V ) = ω(T )
(c) ω(T[E1, ..., Em]\\V ) = ω(T )

IX–8 Extraction of sub-array

The expression of extraction of sub-array is a generalization, with the same syntax, of the expression of
access to an array element (cf. sectionIX–7, page161). Only the form where the accesses are obtained
via “generalized indices” (represented as arrays of integers) is given here; when they are integers, the
description of the corresponding expression is given inIX–7.

T[I1, . . . ,In]

1. Context-free syntax

SUB-ARRAY ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]

2. Types

(a) τ (I1) = . . . =τ (In) = ([0..b1] × . . . × [0..bp]) → ν
with ν an integer type, and the basic integer values of theIi are positive or zero.

(b) More generally, the list of indicesI1, . . . , In can be specified by any expression denoting a
function([0..b1] × . . . × [0..bp]) → νn (with ν an integer type).

(c) τ (T ) = ([0..a1] × . . . × [0..an]) → µ
(µ can be an array type).
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(d) τ (T[I1, . . . ,In]) = ([0..b1] × . . . × [0..bp]) → µ

3. Semantics
T[I1, . . . ,In] extracts some sub-array fromT .
The semantics is described formally in partB, sectionIII–7.2, page46 (non defined values, repre-
sented bynil in the semantics, are any values of correct type).

If T has at leastn dimensions (and has the basic typeµ for the elements corresponding to thesen
first dimensions), it can be traversed using jointlyn indicesI1, . . . , In (one per dimension), that
allow to extract elements of typeµ.

Each one of the indices is an array with the same number of dimensions, letp.

The result, letX , has the same number of dimensions as the indices, which isp. Its basic elements
have the typeµ (type of the extracted elements).

With each “position”(j1, . . . , jp) in X , it is associated the element ofT the position of which is
given by the value of then indices in(j1, . . . , jp), i.e., in the position
(I1[j1, . . . , jp], . . . , In[j1, . . . , jp]) in T .

4. Clocks

(a) ω(I1) = ω(T ), . . . ,ω(In) = ω(T )
(b) ω(T[I1, ..., In]) = ω(T )

5. Properties

(a) If V is a vector of type [0..n − 1] → µ and if I is an index defined byI := 0..n−1, then
the expressionsV andV [I] are equivalent.

6. Examples

(a) ([[10,20],[30,40]])[1,0] value is30.

(b) (0..10)[2..4] value is[2,3,4].

(c) if M is an × n matrix, thenM[0..n−1,0..n−1] is the vector containing its diagonal.

IX–9 Array restructuration

The array restructuration allows to define partially (in thegeneral case) an array, by defining some
indices-defined coordinate points of this array. Non definedvalues are any values of correct type. This
operator is the “reverse” of the operator of extraction of sub-array (cf. sectionIX–8, page163) in the
following informal way: letT be the result of(I1,. . . ,In) : S; if the indices are such that each element
of S is used only once by the definition, thenT[I1, . . . ,In] value isS.

(I1,. . . ,In) : S

1. Context-free syntax

ARRAY-RESTRUCTURATION ::=

S-EXPR : S-EXPR
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2. Types
Depending onI1, . . . ,In being integers or arrays of integers, one of the following sets of relations
on types applies:

(a) • For anyk, τ (Ik) is a positive or null integer, with an upper bound. Letak this upper
bound.

• τ (S) = µ

• τ ((I1,. . . ,In) : S) = ([0..a1] × . . . × [0..an]) → µ

(b) • τ (I1) = . . . =τ (In) = ([0..b1] × . . . × [0..bp]) → ν
with ν an integer type, and for1 ≤ i ≤ n, min

K∈Dom(Ii)
Ii(K) ≥ 0

• More generally, the tuple of indices(I1,. . . ,In) can be specified by any expression
denoting a function([0..b1] × . . . × [0..bp]) → νn (with ν an integer type).

• τ (S) = ([0..c1] × . . . × [0..cp]) → µ
with c1 ≥ b1, . . . , cp ≥ bp

• τ ((I1,. . . ,Im) : S) = ([0..a1] × . . . × [0..an]) → µ
with for 1 ≤ i ≤ n, ai = max

K∈Dom(Ii)
Ii(K)

3. Semantics
(I1,. . . ,In) : S specifies a partial definition of array, using the coordinatepoints defined by the
tuple of “generalized indices”(I1, . . . , In) and the values ofS obtained by skimming through
these coordinates.
The semantics is described formally in partB, sectionIII–7.2, page46 (non defined values, repre-
sented bynil in the semantics, are any values of correct type).

Let T be the array defined by the expression(I1,. . . ,In) : S. If the indicesI1, . . . ,In are such that
they allow to scan exactly the arrayT (each position is visited only once using these indices), then
the restructurationT := (I1,. . . ,In) : S defines the arrayT such that the extraction of sub-array
T[I1, . . . ,In] (cf. sectionIX–8, page163) is equal toS.

In other words,T[I1[k1,. . . ,kp], . . . ,In[k1,. . . ,kp]] = S[k1,. . . ,kp].

If (I1[k1, . . . , kp], . . . , In[k1, . . . , kp]) defines the same position for several distinct values of
(k1, . . . , kp), it is the element corresponding to themaxof the(k1, . . . , kp) (in lexicographic order)
which is used.

4. Clocks

(a) ω(I1) = ω(S), . . . ,ω(In) = ω(S)
(b) ω((I1,...,In) : S) = ω(S)

5. Examples

(a) 2 : 1 is a vector[any,any,1].
whereany represents any well-typed value (nil in the semantics).
Its type is [0..2] → integer since the maximal value of 2 is 2.

(b) (1,2) : 3 is a matrix[[any,any,any],[any,any,3]].
Its type is([0..1] × [0..2]) → integer.
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(c) 1 : [[1,2],[3,4]] is a 3-dimensions array
[[[any,any],[any,any]],[[1,2],[3,4]]].
Its type is([0..1] × [0..1] × [0..1]) → integer.

(d) [3,6] : [2,4] is a vector[any,any,any,2,any,any,4].

(e) ([0,1],[2,1]) : [4,5] is a matrix[[any,any,4],[any,5,any]].

IX–10 Generalized indices

The syntax of anINSTANCE-OF-PROCESS is used to denote the call of a predefined function that
delivers generalized “unit” indices. Such indices can be used for standard array traversal in extraction of
sub-array (cf. sectionIX–8, page163) or array restructuration (cf. sectionIX–9, page164).

indices(a1,. . . ,an)

Let the expressionindices(a1,. . . ,an) define jointlyn indicesI1, . . . ,In:
(I1,. . . ,In) := indices(a1,. . . ,an)

1. Types

(a) The elaborated values ofa1 (ϕ(a1)), . . . ,an (ϕ(an)) are strictly positive integers.

(b) For allj = 1, . . . , n,
τ (Ij) = ([0..ϕ(a1) − 1] × . . . × [0..ϕ(an) − 1]) → ν
whereν is anInteger-type.

2. Semantics
For all j = 1, . . . , n,
for all kl such that0 ≤ kl ≤ ϕ(al) − 1,

(∀t) ( Ij t
(k1, . . . , kn) = kj )

3. Definition in SIGNAL
(I1,. . . ,In) := indices(a1,. . . ,an)
may be obtained by the process defined as follows:

( | (II1,...,IIn) := ≪0..a1 − 1,...,0..an − 1≫
| iterate (II1,...,IIn) of

(I1[II1,...,IIn], ..., In[II1,...,IIn]) := (II1, ..., IIn)
end

|) / II1, ..., IIn

(cf. sectionIX–12, page167and sectionIX–13, page168).

4. Clocks

(a) ω(a1) = ~, . . . ,ω(an) = ~

(b) ω(indices(a1, . . . , an)) = ~

5. Examples

(a) if M is a4 × 5 matrix, thenM[indices(3,4)] is the3 × 4 submatrix ofM that contains
the three first lines and the four first columns of the matrixM.
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IX–11 Extended syntax of equations of definition not yet
fully

imple-
mented

The following syntax1 extends the syntax ofDEFINITION-OF-SIGNALS given inVIII–5, page155:

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

DEFINED-ELEMENT := S-EXPR

| DEFINED-ELEMENT ::= S-EXPR

| DEFINED-ELEMENT ::= defaultvalue S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )

:= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )

::= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )

::= defaultvalue S-EXPR

DEFINED-ELEMENT ::=

COMPONENT
| COMPONENT [ S-EXPR { , S-EXPR }∗ ]

An equation
X[I1,. . . ,Im] := E
is another way to write:
X := (I1,. . . ,Im) : E

The definition is similar when the symbol::= is used.
If one equation defines only partially an array, this array can be defined using several equations,

defining different parts or elements of this array.
Independently of non defined elements (represented bynil in the semantics), like any signal, a given

element cannot be defined by distinct values at a same instant.
All the elements of an array have the same clock, which is the clock of the array. In particular, if some

element is undefined at a given instant at which other elements are defined, this element is considered to
have any well-typed value.

IX–12 Cartesian product

The cartesian product is used mainly to define jointly indices, to be used in the provided structure of
iteration of processes (cf. sectionIX–13, page168). Intuitively, the sequence of iteration is represented
by the first dimension of the indices (which are vectors). Thus, it is different from the generalized indices
used in extraction of sub-array (cf. sectionIX–8, page163) or array restructuration (cf. sectionIX–9,
page164), which are, in the more general case, multi-dimensional indices.

≪I1, . . . ,In≫

1not yet implemented in POLYCHRONY: multiple partial definitions for different elements of an array.
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1. Context-free syntax

MULTI-INDEX ::=

<< S-EXPR { , S-EXPR }∗ >>

2. Types

(a) ∀k, τ (Ik) = [0..mk − 1] → µk

(b) τ (≪I1, . . . ,In≫) = [0..
n∏

k=1

mk − 1] → µ1 × . . . × [0..
n∏

k=1

mk − 1] → µn

3. Semantics
The cartesian product≪I1, . . . ,In≫ defines a tuple ofn vectorsII1, . . . ,IIn, the size of which
is equal to the product of the sizes of the vectorsI1, . . . ,In. These vectorsII1, . . . ,IIn are such
that the tuples obtained by their elements of same index describe successively the respective values
of the elements ofI1, . . . , In in embedded loops such that the most external one enumeratesthe
elements ofI1 and the most internal one enumerates the elements ofIn.
The semantics is described formally in partB, sectionIII–7.2, page46.

4. Clocks

(a) ω(I1) = . . . =ω(In)
(b) Each one of the definedIIk has the same clock asIk.

IX–13 Iterations of processes not yet
fully

imple-
mented

Structures of iteration are provided as process expressions2.

1. Context-free syntax

GENERAL-PROCESS ::=

ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=

array ARRAY-INDEX of P-EXPR [ ITERATION-INIT ] end

| iterate ITERATION-INDEX of P-EXPR [ ITERATION-INIT ] end

ARRAY-INDEX ::=

Name to S-EXPR

ITERATION-INDEX ::=

DEFINED-ELEMENT
| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )
| S-EXPR

2not yet implemented in POLYCHRONY: creation of the implicit added dimension when necessary; multiple associated
indices.



IX–13. ITERATIONS OF PROCESSES 169

ITERATION-INIT ::=

with P-EXPR

REFERENCE-SEQUENCE::=

S-EXPR [ ? ]

The structure of array is used in the SIGNAL language to represent a notion of iteration.
The signals which are defined iteratively have a virtual additional first dimension (with respect to

their declaration), the size of which is the number of iterations. Moreover, a virtual index−1 in this first
dimension is used to represent the initial value of the considered signal, at the beginning of the iterations.
The current value of the signal at a given iteration step may be a function of its value at the previous
iteration step.

Note that this representation of bounded iterations using an additional spatial dimension is only a
means to represent simply such iterations within the existing semantic context.In practice, this added
dimension has not necessarily to be created.

Let us first consider the following form:
iterate (I1,. . . ,Ip) of P with Pinit end
whereP is a process expression with equations that may contain the following occurrences of signal

expressions:

• in the left hand side:
X[f(I1, . . . , Ip)] (or justX)

• in the right hand side:
X[g(I1, . . . , Ip)] (or justX)
and:
X[?][h(I1, . . . , Ip)] (or justX[?])

Pinit is also a process expression with equations that may containsignal expressions of the form
X[u(I1, . . . , Ip)] (or justX) in the left hand side.

The equations which are under the scope of a structure of iteration (“iteration of processes”) in a
given unit of compilation are rewritten as a new system of equations according to the context of rewritting
established by the embedding of iteration structures. An indexing function (which can be represented as
some list of indexes) corresponds to such a context. The indexing function is a function:
I : [0..(n1 ∗ . . . ∗ np) − 1] → [0..n1 − 1] × . . . × [0..np − 1] (where theni are integer constants).
For simplicity, let this function be represented here by thetuple of indexesI1, . . . ,Ip (in this order): each
index has a size equal ton1 ∗ . . . ∗ np. We notem = n1 ∗ . . . ∗ np.

Let us consider also the following “generic” forms of equations inPinit:
X[u(I1, . . . , Ip)] := E
and inP :
X[f(I1, . . . , Ip)] := k(X[?][h(I1,. . . ,Ip)], Y [g(I1,. . . ,Ip)], . . .)
(X , Y represent any variable—Y may beX— defined in the iteration, the functionsf , g, h, u. . . on
indexes can represent tuples. . . ; note that besides the representation of the iteration in an added dimension
for the signals, each defined element has several definitionsalong the iteration.)

Considering this iteration context, the equations affected by this context are rewritten in the follow-
ing way (“expanded”, in some way), as a composition of equations (XX , Y Y . . . are new variables,
corresponding to the variables defined in the iteration, with the same type as the corresponding variable,
but with an additional first dimension of sizem + 1):
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• initialization equations:
X[u(I1, . . . , Ip)] := E
is rewritten as the composition of equations:
∀i1, . . . , ip,∀ϕ(I1[i1]), . . . ,ϕ(Ip[ip]),
XX[−1][u(ϕ(I1[i1]), . . . ,ϕ(Ip[ip]))] := E
where−1 refers to the virtual first index of the added dimension.

• equations of the body:
X[f(I1, . . . , Ip)] := k(X[?][h(I1,. . . ,Ip)], Y [g(I1,. . . ,Ip)], . . .)
is rewritten as the composition of equations:
∀l = 0, . . . ,m − 1,

– XX[l][f(I1[l], . . . , Ip[l])] :=
k(XX[l − 1][h(I1[l], . . . , Ip[l])], Y Y [l][g(I1[l], . . . , Ip[l])], . . .)

– ∀j 6= f(I1[l], . . . , Ip[l]),
XX[l][j] := XX[l − 1][j]

• final results:
X := XX[m − 1]

This rewritting is some sort of preprocessing. In particular, the typing of a program has to be consid-
ered on the rewritten program.

As mentioned above, the iteration indexes can be represented as some list of indexes. A particular
case is to have such a list defined as a tuple resulting from thecartesian product of indexes. More
generally, the iteration indexes can be specified by any expression denoting a function
[0..(n1 ∗ . . . ∗ np) − 1] → [0..n1 − 1] × . . . × [0..np − 1] (where theni are integer constants).

For a given set of equations, the context of iteration is established, in some unit of compilation,
by the whole embedding structure of the iterations containing these equations. As it will be easier to
understand it in a regular context, let us consider as typical example the embedding of two structures of
iteration, the indexing functions of them, taken separately, are given by cartesian products of indexes:
let ≪I1, . . . , Ip≫ for the most external one, and≪Ip+1, . . . , Ip+q≫ for the inner one. Then, for
the equations which are under the scope of both structures ofiteration, the indexing function (which
determines the rewritting) is given by the following cartesian product:≪I1, . . . , Ip+q≫. This rule is
generalized following the same principle for any indexing function and for any embedding of structures
of iteration.

Particular case. In order to allow “incomplete” iterations (for instance with some iteration index de-
pending on the value of another iteration index), it may be allowed to define only partially, for a given
iteration, indexes used as iterators. In that case, the “nondefined” values are not considered for the re-
sulting indexing functionI: more precisely, tuples(i1,. . . ,ip) where at least oneik is “non defined” are
not considered. In that case,m = n1 ∗ . . . ∗np is not the actual size of iteration but only its upper bound.

The “array” notation is a special case of the “iterate” one, inherited from the previous version of the
SIGNAL language.

array I to N of P with Pinit end
whereN is an expression defining a constant integer (and for whichI has not to be declared)
is equal to the process defined as follows:
( | I := 0..N
| iterate I of P with Pinit end
|) / I
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Examples

• array I to N−1 of
array J to N−1 of

U[I,J] := if I=J then 1 else 0
end

end definesU as a unit matrix.

• array I to N−1 of
array J to N−1 of

T[I,J] := if J>=I then I+J else 0
end

end
definesT as a triangular matrix.

• array I to N−1 of
D[I] := M[I,I]

end
definesD as a vector equal to the diagonal of matrixM.

• array I to N−1 of
T[I] := if I=K then A else (T$)[I]

end
defines the vectorT which at each instant keeps the values it had at the previous instant, except in
K where it takes the values ofA (K andA can be signals).

• array I to N−1 of
V[I] := T[I] + V[?][I−1]\\0

end
defines the vectorV in which each element, of indexi, contains the sum of the firsti elements of a
vectorT.

• array I to N−1 of
R := op(T[I],R[?])

with R := v0
end
defines inR the scalar obtained by thereductionof the vectorT by the operatorop (v0 is the
initial value).

• array I to N−1 of
Y[I] := FILTER(Y[?][I−1]\\X)

end
defines a cascade ofN processesFILTER connected in series. The process modelFILTER is
declared with one input and one output of some basic type. Each input of an instance of the
processFILTER is supplied by the output of the previous processFILTER (the signalX provides
the input of the first processFILTER). The vectorY is delivered as output.
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• array I to N of
F := if I=0 then 1 else I∗F[?]

end
defines inF the factorial ofN. Note that here,N is a constant.
It is also possible (in a different way) to specify in the SIGNAL language the computation of
factorial for an “unbounded” integer signalN by “inserting instants” between consecutive instants
of the input signalN (oversampling).

• array I to N−1 of
FOUND := if FOUND[?] /= −1

then FOUND[?]
else if ELEM = TABLE[I]

then I
else FOUND[?]

with FOUND := −1
end
specifies the research of the elementELEM in an unsortedTABLE.

• With fulladd a model of function defined as follows (cf. chapterXI , page183):
function fulladd =

( ? boolean cin, x, y; ! boolean cout, s; )
(| s := x xor y xor cin
| cout := (x and y) or (y and cin) or (cin and x)
|)

;
then the following model of function defines an unsigned byteadder:
function byte_adder =

( ? [8] boolean X, Y; ! [8] boolean S; boolean overflow; )
(| array i to 7 of

(overflow, S[i]) := fulladd (overflow[?], X[i], Y[i])
with overflow := false
end

|)
;

• Using the model of functionexchg:
function exchg =

( ? integer a, v; ! integer aa, w; )
(| aa := v | w := a
|)

;
then the following model of function (cf. chapterXI , page183) defines inW a circular permutation
of V:
function Rotate =

{ integer n; } ( ? [n] integer V; ! [n] integer W; )
(| array i to n-1 of

(aa, W[i]) := exchg (aa[?], V[i])
with aa := V[n-1]
end
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|)
where integer aa; ... end

;

• The following model of function sorts the vectorA in increasing order inT:
function Sort =

{ integer n; } ( ? [n] integer A; ! [n] integer T; )
(| array j to n-2 of

array i to (n-2)-j of
(| T := T[?]

next (i : if T[?][i] > T[?][i+1]
then T[?][i+1] else T[?][i])

next (i+1 : if T[?][i] > T[?][i+1]
then T[?][i] else T[?][i+1])

|)
end

with T := A
end

|)
;
(the sequential expression is defined in sectionIX–14, page174).

It can be written as follows, usingiterate:
function Sort =

{ integer n; } ( ? [n] integer A; ! [n] integer T; )
(| j := 0..n-2
| iterate j of

(| i := 0..(n-2)-j
| iterate i of

(| T := T[?]
next (i : if T[?][i] > T[?][i+1]

then T[?][i+1] else T[?][i])
next (i+1 : if T[?][i] > T[?][i+1]

then T[?][i] else T[?][i+1])
|)

end
|)

with T := A
end

|)
where [n-1] integer j, i;
end;
(note that this is an example with “incomplete” iterations).

Some other examples are given in the definition of operators on matrices (cf. sectionIX–16, page175).
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IX–14 Sequential definition

The sequential definition is used mainly for the redefinitionof elements of arrays.

T1 next T2

1. Context-free syntax

SEQUENTIAL-DEFINITION ::=

S-EXPR next S-EXPR

2. Types

(a) τ (T1) = ([0..c1] × . . . × [0..cp]) → µ1

(b) τ (T2) = ([0..b1] × . . . × [0..bp]) → µ2

with c1 ≥ b1, . . . , cp ≥ bp andµ1 andµ2 are comparable types
(T1 andT2 are, in the general case, arrays with the same number of dimensions, but on each
of them,T2 may be smaller thanT1)

(c) τ (T1 next T2) = ([0..c1] × . . . × [0..cp]) → µ1 ⊔ µ2

3. Semantics
T1 next T2 defines, in the general case, the array which takes the value of T2 at each point at
whichT2 is defined (i.e., is semantically different fromnil), and the value ofT1 elsewhere.
The semantics is described formally in partB, sectionIII–7.2, page46.

4. Clocks

(a) ω(T1) = ω(T2)
(b) ω(T1 next T2) = ω(T1)

5. Examples

(a) T := T $ next K : A
defines the vectorT which at each instant keeps the values it had at the previous instant,
except inK where it takes the values ofA (K andA can be signals).

IX–15 Sequential enumeration

The sequential enumeration is a form of iterative enumeration that allows to define arrays using sequential
multi-dimensional iterations.

1. Context-free syntax

ITERATIVE-ENUMERATION ::=

[ ITERATION { , PARTIAL-DEFINITION } ∗ ]

PARTIAL-DEFINITION ::=

DEFINITION-OF-ELEMENT
| ITERATION
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DEFINITION-OF-ELEMENT ::=

[ S-EXPR { , S-EXPR }∗ ] : S-EXPR

ITERATION ::=

{ PARTIAL-ITERATION { , PARTIAL-ITERATION } ∗

: DEFINITION-OF-ELEMENT

| { PARTIAL-ITERATION { , PARTIAL-ITERATION } ∗

: S-EXPR

PARTIAL-ITERATION ::=

[ Name ] [ in S-EXPR ] [ to S-EXPR ] [ step S-EXPR ]

Let us consider the following definition of an arrayT by sequential enumeration:
T := [D1,. . .,Dm]
(note: this is not an enumeration such as described in section IX–3, page159).

This definition is equivalent to:
T := D1 next . . . next Dm

whereD1 should be a complete definition of the array.
Let us now consider the following general form of a givenDk:

{i1 in b1 to c1 step d1,. . .,ip in bp to cp step dp} : [f(i1, . . . , ip)] : E
It can be considered that the definition ofDk is obtained by the following composition:

( | i1 := b1..c1 step d1

| iterate i1 of
(| . . .
(| ip := bp..cp step dp

| iterate ip of Dk[f(i1, . . . , ip)] := E end
|)

. . .
|)

end
|) / i1, ..., ip

If the denotation of the indices,[f(i1, . . . , ip)], is omitted, it is equivalent to[(i1,. . . ,ip)].
If the lower bound of an index is omitted, it is by default equal to 0. An upper bound can be omitted

if it corresponds without ambiguity to the upper bound of thecorresponding dimension of the array. If a
step is omitted, it is by default equal to 1. The name of an index can be omitted if it has not to be used
explicitly.

A Dk with the simple form:
[I] : E
can be considered as being defined by the equation:
Dk[I] := E

IX–16 Operators on matrices

IX–16.1 Transposition

1. Context-free syntax
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TRANSPOSITION ::=

tr S-EXPR

Transposition on matrix

tr E

1. Types

(a) τ (E) = ([0..l − 1] × [0..m − 1]) → µ

(b) τ (tr E) = ([0..m − 1] × [0..l − 1]) → µ

2. Definition in SIGNAL
X := tr E
whose right side of:= represents an expression of transposition of matrix, is equal to the process
defined as follows:

array i to m − 1 of
array j to l − 1 of

X[i,j] := E[j,i]
end

end

3. Clocks

(a) ω(tr E) = ω(E)

Transposition on vector

To create a matrix-column, it is possible to create a matrix-line and then to transpose it as follows:
tr [V ]

IX–16.2 Matrix products

1. Context-free syntax

ARRAY-PRODUCT ::=

S-EXPR ∗. S-EXPR

2. Types

(a) The elements of the operands of an expression of matrix product have a basic type which is
aNumeric-type.

3. Clocks

(a) The operators of matrix product are synchronous.
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2-a Product of matrices

E1 ∗. E2

1. Types

(a) τ (E1) = ([0..l − 1] × [0..m − 1]) → µ1

(b) τ (E2) = ([0..m − 1] × [0..n − 1]) → µ2

(c) τ (E1 ∗. E2) = ([0..l − 1] × [0..n − 1]) → µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of := represents an expression of product of matrices, is equal tothe process
defined as follows:

array i to l − 1 of
array j to n − 1 of

array k to m − 1 of
X[i,j] := X[?][i,j] + E1[i,k] ∗ E2[k,j]

with X[i,j] := 0
end

end
end

2-b Matrix–vector product

E1 ∗. E2

1. Types

(a) τ (E1) = ([0..l − 1] × [0..m − 1]) → µ1

(b) τ (E2) = [0..m − 1] → µ2

(c) τ (E1 ∗. E2) = [0..l − 1] → µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of:= represents an expression of matrix–vector product, is equal to the process
defined as follows:

array i to l − 1 of
array k to m − 1 of

X[i] := X[?][i] + E1[i,k] ∗ E2[k]
with X[i] := 0
end

end
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2-c Vector–matrix product

E1 ∗. E2

1. Types

(a) τ (E1) = [0..l − 1] → µ1

(b) τ (E2) = ([0..l − 1] × [0..m − 1]) → µ2

(c) τ (E1 ∗. E2) = [0..m − 1] → µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of:= represents an expression of vector–matrix product, is equal to the process
defined as follows:

array j to m − 1 of
array k to l − 1 of

X[j] := X[?][j] + E1[k] ∗ E2[k,j]
with X[j] := 0
end

end

2-d Scalar product

E1 ∗. E2

1. Types

(a) τ (E1) = [0..l − 1] → µ1

(b) τ (E2) = [0..l − 1] → µ2

(c) τ (E1 ∗. E2) = µ1 ⊔ µ2

2. Definition in SIGNAL
X := E1 ∗. E2

whose right side of:= represents an expression of scalar product, is equal to the process defined
as follows:

array i to l − 1 of
X := X[?] + E1[i] ∗ E2[i]

with X := 0
end



Chapter X

Extensions of the operators

X–1 Rules of extension not yet
fully

imple-
mentedThe operators defined in the SIGNAL language are termwise extended to arrays and tuples, provided that

there is no possible ambiguity between the new operator resulting from the extension and some other
operation1.

The extension of a given operator defines a new operator, so that termwise extension may be applied
recursively.

The semantics of the extension on tuples is described formally in part B, sectionIII–7.1, page44.
The semantics of the extension on arrays is described formally in part B, sectionIII–7.2, page46.

Instances of processes and conversions follow the same rules of extension than operators.
A given extension is either an extension on tuples, or an extension on arrays. Mixed extensions are

not defined. If the types of the arguments of an operator are such that both extension on tuples and
extension on arrays can be applied, the extension on tuples applies first.

When an extension is applied, the rules associated with the operator (type relations, clock relations. . . )
apply element by element. Moreover, for the arrays, the constraint that all the elements have the same
clock has to be respected.

For tuples, there are different categories of tuples: monochronous tuples, which are signals, and
polychronous tuples, which are gatherings of signals (theyhave not, in general, one proper clock).
Monochronous tuples are tuples with named fields and polychronous tuples may be tuples with named or
unnamed fields. Whatever is the type of the arguments, the results of an extension on tuples are always
tuples withunnamedfields (remind that a tuple with unnamed fields can always be assigned to a tuple
with named fields with a compatible type). Moreover, if the extension applies on tuples with named
fields, the operator applies on the elements of these tuples,independently of their names in the consid-
ered tuples. In other words, ifX is such a tuple with named fields on which the extension applies, this
extension applies effectively ontuple(X).

The possibly existing extensions for the operators of the SIGNAL language are deduced from the
examination of authorized types for the arguments of there operators.

For example, the operator== is defined onsignalsof any types (in particular, on arrays and on

monochronous tuples with named fields) and has always a Boolean result. Thus the extension of== on
arrays or on monochronous tuples with named fields has no purpose. On the other hand, this extension
is defined on polychronous tuples (in that case, the result isa polychronous tuple with unnamed fields of
Booleans).

1not yet implemented in POLYCHRONY: extensions to tuples; some extensions to arrays.
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Concerning the other equality operator,= , it is defined only on signals of scalar types. Thus the
extension on arrays (for example) can apply and in this case,the result is an array of Booleans. The
extension on tuples (monochronous or polychronous) applies too.

The extension of the operatorwhen on polychronous tuples applies, on the first argument as wellas
on the second one. But the extension on arrays is not defined inthe general case on the second argument
since the resulting array would have elements with different clocks.

X–2 Examples

• If V1 andV2 are two vectors, the expressionV1 ∗ V2 defines the termwise product of the vectors
V1 andV2.

• If K is a scalar andV a vector, the expressionK ∗ V defines the vector each element of which is
equal to the product ofK with the corresponding element ofV.

• If M1 andM2 are two matrices, the expressionM1 ∗ M2 defines the termwise product of the
matricesM1 andM2.

• If P designates a process model which defines two outputsX andY,
the expressionP() when C defines the signalsX when C andY when C.

• If P designates a process model with two inputs,
the expressionP ((A,B) when C) specifies a subsampling by the conditionC on each one of
the inputs ofP.
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Chapter XI

Models of processes

The language allows to describe signals (synchronized sequences of typed values) and relations between
signals by equations; these equations can be grouped together in parameterized models of systems of
equations: themodels of processes.The call of a model in a system is, in principle (when the cor-
responding model is not compiled separately), equivalent to the direct writing of the equations of this
model.

XI–1 Classes of process models

A process model establishes a designation between a name anda set of parameterized equations; any
reference to this name is formally replaced by the designated equations.

The set of equations may be simply defined by the keywordexternal (cf. sectionXII–1, page203).
In that case, it is anexternalprocess model (or model of external process). Its definitionshould be pro-
vided in the environment of the program.

The set of equations may also be empty. In that case, it is avirtual process model.It means that
its actual definition is defined elsewhere (the virtual process model is “overridden”) in the context or is
provided in a module (cf. partE, sectionXII–1, page203).

If the process model is external, or if the considered model is compiled separately, the replacement
of a reference to this model by its equations remains partial. Such a partial replacement is limited to the
EXTERNAL-GRAPH of the called process (cf. sectionXI–6, page191). The result of the invocation of
a model of external process or of a separately compiled process model (which could be not in accordance
with its description) can be only theoretically described.The tick characteristic clock of the invocation
of an external process model is described in partC, sectionVII–5, page138.

For a model of external process, its graph properties are established by theEXTERNAL-GRAPH .
For a described process model, the graph properties are established by the composition of theEXTERNAL-
GRAPH and the body of the model. A good situation is that theEXTERNAL-GRAPH verifies the
properties deduced from the body of the model.

The following classes of processes are distinguished:

• A process is saidsafeif it is an iteration of function(on the inputs), such as highlighted in partB,
sectionIII–8.1, page52.

It does not make any “side effect”:
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(| Y1 := f(X) | Y2 := f(X) |) ≡ (| Y1 := f(X) | Y2 := Y1 |)

Two different instantiations of asafeprocess with the same input values will provide the same
results. Such a process is memoryless. It cannot call external processes that are not safe.

• A process is saiddeterministic automaton—or more shortly,deterministic—(or memory safe), if
it is a function of sequences, from initial states, trajectories of the inputs and trajectories of the
clocks of the outputs (considered, in some sense, as inputs), into trajectories of the outputs.

This corresponds to the notion ofdeterministic process(on the inputs), highlighted in partB,
sectionIII–8.3, page52.

Its only possible “side effects” are changes to its private memory.

Two different instantiations of adeterministic automatonprocess with the same sequences of input
values (and output clocks), and in the same initial conditions, will provide the same sequences of
outputs. It cannot call external processes that are not safe.

Any safeprocess isdeterministic automaton.

• A process isunsafein all other cases.

Two different calls of anunsafeprocess are never supposed to return the same results.

The following SIGNAL processes are examples ofunsafeprocesses:

– x := a or x

– (| x := a default ((x$1 init 0)+1) | b:= x when ̂b |)/x

The class of the process described by a process model may be precised by a specific keyword in the
EXTERNAL-GRAPH of the model.

In addition, it is possible to specify non normalized complementary informations (cf. sectionXI–7,
page195) in theDIRECTIVES .

Besides the above characterization of processes, different classes of process models are syntactically
distinguished. These are models of:

• processes,

• actions,

• procedures,

• nodes,

• functions,

• automata.

Any process model called in the program must have a declaration visible in the syntactic context of
the call.

A processMODEL is defined according to the following syntax:

1. Context-free syntax
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MODEL ::=

PROCESS
| ACTION
| PROCEDURE
| NODE
| FUNCTION
| AUTOMATON

PROCESS::=

process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

ACTION ::=

action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

PROCEDURE ::=

procedure Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

AUTOMATON ::=

automaton Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

BODY ::=

DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

XI–1.1 Processes

A process(described by a model of process) belongs to the most generalclass of processes.
There are no required particular relations regarding clocks as well as dependences. It is the job of the

compilation (clock calculus, dependence calculus) to synthesize these relations.
A process may besafe, deterministic automaton,orunsafe.This may be specified in theEXTERNAL-



186 MODELS OF PROCESSES

GRAPH. By default, unless it can be proved different, it is considered asunsafe.

XI–1.2 Actions

Actions are processes that are called (activated) at a specific clock, that may be designated via a label,
which is thetick of the action (cf. partC, sectionVII–5, page138). Syntactically, the invocation (or
activation) of an action has to be under the scope of such a label, in a labelled process.

An action (described by a model of action) has to respect some relations regarding its clocks and
dependences:

• Its tick is the clock designated by the label under the scope of which the action call is. If the
action is not an external one, thistick is also equal, as usual, to the upper bound of theticksof its
components.
Thetick of the action is not necessarily available through the interface of the model of the action.

• For the dependence relation, each input of an action precedes each output of that action at the
product (intersection) of their clocks.

An action may besafe, deterministic automaton,orunsafe.This may be specified in theEXTERNAL-
GRAPH. By default, unless it can be proved different, it is considered asunsafe.

XI–1.3 Procedures

Procedures are special cases of actions. Thetick of a procedure is defined as the upper bound of the
clocks of its inputs and outputs (the procedure is called at this tick).

A procedure must have at least one input or one output.

XI–1.4 Nodes
not yet

fully
imple-

mentedNodes are essentiallyendochronousprocesses (cf. partB, sectionIII–8.2, page52).
Roughly speaking, an endochronous process knows when it hasto read its inputs, thus it is au-

tonomous when run in a given environment.
It may be shown that if the clock relations associated with a process can be organized as a tree of

clocks, the root of the tree representing themost frequentclock (which is the single greatest clock) of the
system, then this process is endochronous.

Besides the property that it is endochronous, anode(described by a model of node) has to respect
some relations regarding its clocks and dependences:

• Its tick (cf. partC, sectionVII–5, page138) is necessarily the clock of an input or output of the
node.

• For the dependence relation, each input of a node precedes each output of that node at the product
(intersection) of their clocks.

A model of node must provide an abstraction (cf. sectionXI–6, page191) of its interface clock
functional hierarchy.

A node must have at least one output.
A node may besafeordeterministic automaton.This may be specified in theEXTERNAL-GRAPH .

By default, unless it can be provedsafe,it is considered asdeterministic automaton.
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XI–1.5 Functions

A function is a process that specifies aniteration of functionsuch as defined in partB, sectionIII–8.1,
page52.

A function (described by a model of function) is a sec-automataparticular case of node and has to
respect all the relations respected by a node regarding its clocks and dependences (cf. sectionXI–1.4,
page186). In addition, all the inputs and outputs of a function must have the same clock.

A function must have at least one output.
A function is constant on time and does not produce any side effect. In particular, it cannot contain

delay operators (or other operators derived from delay), that define some memory.
Note that it is nevertheless possible to specify some assertions on the input signals (for instance) of

a function. For example, the equationx̂= when (x > 0) specifies that when it is present,x must be
positive.

A function is necessarilysafe(this has not to be specified in theEXTERNAL-GRAPH ).

XI–1.6 Automata

TO BE COMPLETED

XI–2 Local declarations of a process model

The local declarations of a process model may be declarations of signals (or tuples), declarations of
shared variables, declarations of state variables, declarations of constants, declarations of types, decla-
rations of labels, declarations of references to signals with extended visibility, or declarations of local
models.

1. Context-free syntax

DECLARATION ::=

S-DECLARATION
| DECLARATION-OF-SHARED-VARIABLES
| DECLARATION-OF-STATE-VARIABLES
| DECLARATION-OF-CONSTANTS
| DECLARATION-OF-TYPES
| DECLARATION-OF-LABELS
| REFERENCES
| MODEL

A given zone of local declarations constitutes a givenlevel of declarations; this level is that of the
process expression that defines this zone. When this expression is the expression that defines the process
model, this zone is said the zone of the local declarations ofthe model. When this expression is the
expression that defines the external graph of the model, thiszone is said the zone of the local declarations
of the external graph.

The zones of declaration of the formal parameters and of the inputs and outputs of a process model
constitute a samelevelof declarations, the one of the model.

The levels of declarations are ordered in the following way:

• the level of a model is greater than the level of the local declarations of the external graph;
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• the level of the local declarations of the external graph is greater than the level of the local decla-
rations of the model;

• the level of a model is greater than the level of any sub-expression of this model;

• the level of an expression is greater than the level of any sub-expression of this expression;

• the level of a model is greater than the level of any local model declared in this model.

A local declaration of a model in a given level is visible (andthus, this model can be called as
INSTANCE-OF-PROCESS) in this whole level and in all lower levels, everywhere it isnot hidden by
a declaration with the same name in a lower level. In particular, a modelQ declared in the zone of the
local declarations of a modelP can be called in the expression associated withP and in the expressions
associated with the other sub-models ofP . For these expressions, it possibly hides a model with the
same name that, without it, would be visible.

The set of sub-models declared in a modelP cannot contain two models with the same name. More
generally, any two objects (models, types, signals, etc.) declared in a same level of declaration cannot
have the same name (see below).

The parameters declared in a process model are visible (and thus, may be referenced) in this whole
process model (in particular, the other parameters, the inputs and outputs, etc.) and in all the embedded
process models, everywhere they are not hidden by a declaration with the same name in a lower level.

The constants declared in a given level are visible in this whole level and in all lower levels, every-
where they are not hidden by a declaration with the same name in a lower level.

The types declared in a given level are visible in this whole level and in all lower levels, everywhere
they are not hidden by a declaration with the same name in a lower level.

The declaration of labels and their visibility obey to specific rules, which are more detailed in section
XI–3, page188.

As a general rule, the local declarations of signals (or tuples)—including shared variables—and
state variables correspond to the confining of these objects(cf. partC, sectionVII–4, page137) to the
corresponding level and the lower ones. However, the visibility of signals, tuples and state variables obey
to specific rules, which are more detailed in sectionXI–4, page189.

The names of declared objects (models, signals or tuples, state variables, parameters, constants,
types, labels) can mutually mask themselves. In a given level, there cannot have two such identical
names.

Note that the scope of the declarations is statically definedby the syntax: it does not depend on
instantiations of process models.

A given compiler may adapt the visibility rules for some classes of objects in the following way:
in the level where it is declared, a given object can be used only in a syntactic position thatfollows its
declaration (in this case, the order of declarations is significant). The rules for names redefinitions may
be adapted accordingly.

XI–3 Declarations of labels

1. Context-free syntax

DECLARATION-OF-LABELS ::=

label Name-label{ , Name-label}∗ ;
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The labels declared in a process model, at any declaration level of this model, are visible (and can
be referenced) anywhere in this model, except in its interface (parameters, inputs and outputs, external
graph). The labels declared in the external graph of a process model are visible (and can be referenced)
anywhere in this model.

However, the labels declared in a process model are not visible in the sub-models of that model.
A label declared in a model cannot have the same name as any other object declared in that model (it

cannot be masked).

XI–4 References to signals with extended visibility not yet
imple-

mented1. Context-free syntax

REFERENCES ::=

ref Name-signal{ , Name-signal}∗ ;

The rules for the visibility of signals in the previous versions of SIGNAL were that this visibility was
always limited to the process model in which the signal was declared, excluding the sub-models of that
model.

This version offers the possibility to extend the visibility of signals (or tuples) and state variables,
with the same rules as for most of the other objects of the language. In that case, a signal (or tuple, or
state variable) declared in a given level is visible in this whole level and in all lower levels, everywhere
it is not hidden by a declaration with the same name in a lower level. A signal with extended visibility
is assimilated to a shared variable (cf. sectionV–10, page90) with at most one definition (but it can be
declared in the interface of a process model).

However, some freedom is left to the compilers to accept or not (possibly according to specific
options) signals with extended visibility. The three following cases may be distinguished:

1. Signals with extended visibility are not allowed.

2. Signals with extended visibility are allowed, but the useof such a signal must be explicitly refer-
enced as such when it crosses a frontier of process model withrespect to its declaration.

Such a use is pointed by a “ref” declaration, under the scope of which is the considered use (with
the general scoping rules, restricted here to the considered process model).

A signal with extended visibility cannot be used if it has been hidden by the declaration of another
object with the same name.

A “ref” declaration cannot mask some object with the same name.

3. Signals with extended visibility are allowed, and their use may be explicitly referenced (previous
case), though it is not mandatory.

XI–5 Interface of a model

The interface of a model contains an optional description ofits formal static parameters, followed by a
description of its visible part. This one is composed of the lists (possibly empty) of its input and output
signals, and an optional description of the external behavior of the model.

1. Context-free syntax
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DEFINITION-OF-INTERFACE ::=

INTERFACE

INTERFACE ::=

[ PARAMETERS ] ( INPUTS OUTPUTS ) EXTERNAL-GRAPH

PARAMETERS ::=

{ [ { FORMAL-PARAMETER } + ] }

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=

? [ { S-DECLARATION } + ]

OUTPUTS ::=

! [ { S-DECLARATION } + ]

The formal parameters of the interface of a model can containtype parameters. These type param-
eters necessarily appear under the form of names of types, without aDESCRIPTION-OF-TYPE
definition (cf. partC, sectionV–7, page86).

2. Types
The list of inputs (respectively, outputs) declared in the interface of a process model namedP
constitutes a tuple the type of which is denotedτ (?P ) (respectively,τ (!P )).

The type of the tuple of inputs and the type of the tuple of outputs are tuples with unnamed fields.

Thus:

(a) if the inputs and outputs of a process modelP appear as
(? µ1 E1; ... µm Em; ! ν1 S1; ... νn Sn;)
(to simplify the presentation, we consider that each designation of type qualifies one single
name of signal or tuple; the generalization to the case with lists of names is trivial)
then
τ (?P ) = (τ (µ1) × . . . × τ (µm))
τ (!P ) = (τ (ν1) × . . . × τ (νn))

3. Semantics
A model must have at least one input, or one output, or one communication with non null clock
with some external process.

The names of parameters, input signals and output signals must be mutually distinct.

The declarations of the input signals (INPUTS) and the output signals (OUTPUTS) of a model
are declarations of sequences. The declarations of formal parameters (PARAMETERS ) can con-
tain declarations of parameter types (DECLARATION-OF-TYPES ) and declarations of constant
sequences (S-DECLARATION ). In particular, the declarations of sequences can containtuples of
parameters or signals. The declaration of a model sets up a context in which:
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• the parameter types define formal types, in a way similar to the declarations of types de-
scribed in partC, chapterV, “Domains of values of the signals”;

• a type is associated with the declared parameters, input signals, and output signals, in a
similar way to the association of a type to local signals of a process (cf. partC, chapter
VII , “Expressions on processes”), according to the rules defined in the chapter “Domains of
values of the signals”.

The invocation of a model sets up an expansion context in which:

• an effective type is associated with the parameter types, ina similar way to the definition of
type obtained by aDESCRIPTION-OF-TYPE (cf. partC, sectionV–7, page86): if µ is
the effective parameter corresponding, positionally, to the formal parameter typetype A;
then the typeA is defined as being equal to the typeµ in the context of this invocation of
model;

• a value (or a tuple of values) is associated with each identifier of formal parameter, and a
signal (or a tuple of signals) is associated with each name ofinput or output signal (or tuple).

The declaration of a process model induces the existence of agiven order on the parameters (what-
ever they are parameter types or not), an order on the input signals of the model, and an order on
its output signals. Each one of these orders is the order of specification of the objects of the con-
sidered class (parameter, input or output) in the interface. Any positional invocation of the model
is made respectively to these orders.

Example: a process modelP the interface of which is specified as
{Y1; ... Yl;} ( ? A1; ... An; ! B1; ... Bm;)
can be called such as
(BB1, ..., BBm) := P {Y Y1, ..., Y Yl} (AA1, ..., AAn)
where each signal or parameterXXi corresponds to the signal or parameterXi.

XI–6 Graph of a model

TheEXTERNAL-GRAPH of a model allows to specify clock and graph properties of themodel, such
as the properties necessary and sufficient to be able to use this model after a separate compilation. These
properties may be provided by the designer or calculated by the compiler. They refer to input and output
signals of the model.

1. Context-free syntax

EXTERNAL-GRAPH ::=

[ PROCESS-ATTRIBUTE ] [ SPECIFICATION-OF-PROPERTIES ]

PROCESS-ATTRIBUTE ::=

safe

| deterministic

| unsafe

SPECIFICATION-OF-PROPERTIES ::=

spec GENERAL-PROCESS



192 MODELS OF PROCESSES

ThePROCESS-ATTRIBUTE allows to qualify the corresponding model assafe(keywordsafe),
deterministic automaton(keyword deterministic), or unsafe(keyword unsafe)—cf. section
XI–1, page183. It must be in accordance with the syntactic class of the model.

The SPECIFICATION-OF-PROPERTIES of an EXTERNAL-GRAPH uses a process expres-
sion that can make reference to the formal parameters and input and output signals of theMODEL . Any
other identifier used in this expression is that of a local object (signal, process model, etc.), that must
have a declaration in this expression.

When theEXTERNAL-GRAPH is that of a described process model, the process defined by the
model is obtained, at the semantic level, by the compositionof the process defined by thisEXTERNAL-
GRAPH and of the process defined by the body of this model. By construction, the process defined by
theEXTERNAL-GRAPH is thus an abstraction of the process defined by composing itself with the one
of the body of the process model. A particular case may be the one for which the properties established
by theEXTERNAL-GRAPH are deduced from the properties verified by the body of the model (i.e.,
the process defined by theEXTERNAL-GRAPH is an abstraction of the process defined by the body
of the model).

When theEXTERNAL-GRAPH is that of an external process model, the properties it describes
establish the properties of the model for any invocation of this model.
In that case, the invocationX {V1, ..., Vl} of an external process model
process X = {F1; ... Fl;}

( ? E1; ... Em;
! S1; ... Sn; )

spec C;
is equal to the process defined as follows:
( | X {V1, ..., Vl}
| C
|)

If C1 is the syntactic context of expansion established by the invocation of the model of external
process by the association of a value with each identifier of formal parameter, and by the association of
a signal with each input or output signal name, then, the invocation of this model results in the context
of expansionC2 equal toC1 enriched by the equations (in particular, clock equations and dependences)
resulting from the construction of theEXTERNAL-GRAPH .

XI–6.1 Specification of properties

TheSPECIFICATION-OF-PROPERTIES is described by a usual process expression, the elementary
expressions of which are typically an instance of process (which may be, in that case, an instance of a
model of synchronization), a definition of signals, a clock equation, or an expression of dependence.

XI–6.2 Dependences

An expression of explicitDEPENDENCESmay appear in theEXTERNAL-GRAPH of a MODEL ,
but also in its body. The purpose of a specification of dependences in the external graph is to make
explicit dependences between input and output signals of the model, or to establish these dependences in
the case of a model of external process. The explicit dependences between signals are defined with the
following syntax:
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1. Context-free syntax

ELEMENTARY-PROCESS ::=

DEPENDENCES

DEPENDENCES::=

SIGNALS { −− > SIGNALS }∗

| { SIGNALS −− > SIGNALS } when S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
| { ELEMENTARY-SIGNAL { , ELEMENTARY-SIGNAL } ∗ }

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label

We distinguish first the case where some of the “signals” for which dependences are specified are
labels (cf. partC, sectionVII–5, page138). In that case, for a labelXX , the designated signal is either
!XX (that is preceded by all the signals that are defined in the process labelled byXX), or?XX (that
precedes all the signals that are defined in the process labelled byXX), depending thatXX appears at
the left side or at the right side of the dependence arrow. In the following,! XX and? XX are only
notations used to designate the corresponding signals.

If XX is a label:

• XX −−> E

1. Definition in SIGNAL

! XX −−> E

• E −−> XX

1. Definition in SIGNAL

E −−> ? XX

Then, with the designated signals:

• E1 −−> E2 −−> E3

1. Definition in SIGNAL

( | E1 −−> E2

| E2 −−> E3

|)
Note that for the particular case where a labelXX appears as
E1 −−> XX −−> E3

this expression is equivalent to:
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( | E1 −−> ? XX
| ! XX −−> E3

|)

• {X1, ..., Xn} −−> E

1. Definition in SIGNAL

( | X1 −−> E
...

| Xn −−> E
|)

• E −−> {Y1, ..., Ym}

1. Definition in SIGNAL

( | E −−> Y1
...

| E −−> Ym

|)

• {E −−> {Y1, ..., Ym}} when B

1. Definition in SIGNAL

( | {E −−> Y1} when B
...

| {E −−> Ym} when B
|)

• {X −−> Y } when B

1. Types
(a) τ (B) ⊑ boolean

2. Semantics
The result of the expression {X −−> Y } when B
is to add to the dependence graph a dependence fromX to Y labelled by the conditionB,
representing the clock at whichB has the valuetrue.
The semantics of such a dependence is described formally in partB, sectionIV–3.1, page62.

3. Graph

(a) X
B
−−→ Y

4. Examples
(a) (| S1 :: ERASE (X)

| S2 :: DISPLAY (X)
| S1 −−> S2 |)

allows to sequentialize the actionsERASE andDISPLAY.
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XI–7 Directives

TheDIRECTIVES allow to associate specific informations, orpragmas,with the objects of a program.
These informations may be used by a compiler or another tool.

A PRAGMA contains aName, the list of the designations of objects with which it is associated, and
aPragma-statement.

PR {X1,...,Xn} "Y Y Y "

1. Context-free syntax

DIRECTIVES ::=

pragmas { PRAGMA } + end pragmas

PRAGMA ::=

Name-pragma
[ { PRAGMA-OBJECT { , PRAGMA-OBJECT } ∗ } ]
[ Pragma-statement ]

PRAGMA-OBJECT ::=

Label
| Name

Pragma-statement::=

String-cst

2. Semantics
The pragma with namePR and with (optional) statement"Y Y Y " is associated with each one of
the objects designated byX1, . . . ,Xn.
The designations (that should reference objects which are visible at the level of the model, model
type or module) can be:

• labels (in that case, the designated object is a process expression),

• names of signals, parameters, constants, types, etc. (the designated object is the correspond-
ing signal, parameter, constant, type, etc.).

By default (when there is no designated object), the pragma is associated with the current process
model (cf. sectionXI–1, page183), model type (cf. sectionXI–8, page200) or module (cf. section
XII–1, page203).

A pragma has no semantic effect. It can be ignored by a compiler, or it can trigger a specific
processing.

3. Examples
The following pragmas are recognized in the INRIA POLYCHRONY environment:

(a) General information

• Comment:

– Associated with the current model.

– Comment on this model.
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• Note:

– Associated with the current model.

– Comment (note) on this model.

(b) Compilation directives

• Unexpanded:

– Associated with the current model (used for traceability and code generation pur-
pose).

– Means that the model is not expanded when it is called. The corresponding process
must be endochronous, its greatest clock must be the clock ofan input signal, and
every output signal is preceded by every input signal. Moreover, if the model has
inner memorization or static parameters, then no more than one instance is allowed
in its nesting process. If the model refers to outer shared variables or state variables,
then no more than one instance can be active at each instant: in this case, the actual
greatest clocks of two instances of the same unexpanded process must be exclusive.

• DefinedClockHierarchy:

– Associated with the current model.

– Means that the corresponding process is endochronous, without clock constraints,
and that its clock hierarchy is explicit (it may be the resultof a previous compila-
tion). When it is compiled, its clock hierarchy can be rebuilt without clock synthesis.

(c) Partitioning information

• RunOn:

– Associated with the current model,P , or with a list of labels of labelled processes
partitioning the subprocesses of this model.

– The statement of this pragma is a string representing a constant integer valuei.

– If the pragma is associated with the current modelP , each “node” (or vertex) of the
internal representation ofP (this internal representation is a graph) is attributed by
the valuei.
If the pragma is associated with a list of labels, each “node”(or vertex) of the in-
ternal representation of the processes labelled by one of these labels is attributed by
the valuei.
When a partitioning based on the use of the pragmaRunOn is applied on an appli-
cation, the global graph of the application is partitioned according to then different
values of the pragmasRunOn so as to obtainn sub-graphs, corresponding ton sub-
models. The tree of clocks and the interface of these sub-models may be completed
in such a way that they represent endochronous processes.

• Topology:

– Associated with a list of input or output signals.

– The statement of this pragma is a string representing a constant integer valuei. This
value must be a value used also in a pragmaRunOn.

– Read or write “nodes” (or vertices), corresponding to the considered input or output
signals, of the internal representation of the process model (this internal representa-
tion is a graph) are attributed by the valuei.
This pragma may be used when a partitioning based on the use ofthe pragmaRunOn
is applied on an application.
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(d) Separate compilation

• BlackBox:

– Associated with the current model.

– Qualifies the “black box” abstraction of a model (may be the result of a compilation).
Only the interface of the model, including its external graph, is represented: its body
is empty.

• GreyBox:

– Associated with the current model.

– Qualifies a “grey box” abstraction of a model. It contains an external graph that
represents clock and dependence relations of the interface, but also a restructuring
of the model intoclusterstogether with a representation of theschedulingof these
clusters (clock and dependence relations between these clusters). Each cluster is
represented as a “black box” abstraction which is such that any input of the cluster
precedes any of its outputs.

• Cluster:

– Associated with the current model.

– Qualifies the “black box” abstraction of a model. It may be added to theBlackBox
pragma to represent the fact that the abstracted model is onecluster in a “grey box”
abstraction.

• DelayCluster:

– Associated with the current model.

– May qualify one of the clusters of a “grey box” abstraction when code generation is
expected from this abstraction: in that case, one of the clusters, the “delay cluster”
(represented, like the other ones, by its “black box” abstraction), groups together
the delay operations of the model and is preceded by each one of the other clusters
(in the generated code, memories will be updated at the end ofone instant).

(e) Code generation directives

The pragmasC_Code, CPP_Code, Java_Code are specific to code generation.

They are associated with the current model.

Their statement is a “parameterized” string representing apiece of code in the considered
implementation language. Each call of the model is translated by this string in the gener-
ated code, after substitution of the encoded parameters by the corresponding signals in the
considered call. See below for the description of parameters.

• C_Code: is used for C code generation.

• CPP_Code: is used for C++ code generation.

• Java_Code: is used for Java code generation.

(f) Distribution

• Target:

– Associated with the current model.

– The statement of this pragma is a string representing some communication system
(for example,"MPI").

– When distributed code is generated, the corresponding communication system is
used.
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• Environment:

– Associated with an input or output signal, which corresponds to an input or output
of the application.

– The statement of this pragma is a string representing a logical tag.

– The logical tag represents the channel used for the communication with the environ-
ment when distributed code is generated.

• Receiving:

– Associated with an input signal,x, of the current process model,P1. This input has
to be received from another process model,P2, of the application.

– The statement of this pragma is a string constant composed oftwo substrings: the
first one, say"s1", represents a logical tag; the second one, say"s2", is the name
of the process modelP2.

– When distributed code is generated, the component corresponding to the process
modelP1 receives the signalx from the component named"s2", using the channel
represented by the logical tag"s1".

• Sending:

– Associated with an output signal,x, of the current process model,P1. This output
has to be sent to another process model,P2, of the application.

– The statement of this pragma is a string constant composed oftwo substrings: the
first one, say"s1", represents a logical tag; the second one, say"s2", is the name
of the process modelP2.

– When distributed code is generated, the component corresponding to the process
model P1 sends the signalx to the component named"s2", using the channel
represented by the logical tag"s1".

(g) Profiling directives

• Morphism:

– Associated with the current model (“operator”).

– This pragma is used to describe homomorphisms of programs inthe SIGNAL lan-
guage. An homomorphism associates a new program in the SIGNAL language with
an original one. A typical example is profiling for performance evaluation, for which
the homomorphic program represents time evaluation for theoriginal program. A
new signal is associated with each original signal and a new operator is associated
with each original operator. For example, an operator “CostPlus” can be associ-
ated with the operator “+”.
Associated with a model represented as an “operator”, the pragmaMorphism spec-
ifies the homomorphic image of eachreferenceto this operator. The statement of
the pragma is a “parameterized” string representing this image. See below for the
description of parameters.

Note
Although they do not belong to the official syntax of the SIGNAL language, operators
may be described as follows:

MODEL ::=

OPERATOR
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OPERATOR ::=

operator Operator-name =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

Operator-name ::= Name-model
| Operator-symbol

whereOperator-symbol represents reserved words or symbols of operators.

• ProcessorType:

– Associated with the current model.

– The statement of this pragma is a string representing a name,for example,"DSP",
that should be the name of a fileDSP.LIB containing a module that defines the cost
of each operator by particular models.

– When profiling (performance evaluation) is required on a given program imple-
mented on some processor represented as a model with theProcessorType
pragma, a morphism of this program is applied, that defines a new program repre-
senting cost evaluation of the original program. The image of the original program
by this morphism uses the library designated by the pragma tointerpret the cost
evaluation operators.

(h) Link with the SIGALI prover

• Sigali:

– Associated with the current model.

– The statement of this pragma is a “parameterized” string that may represent the way
a call of this model has to be viewed by the SIGALI prover. See below for the
description of parameters.

– This pragma is used for referring to models contained in a specific library dedicated
to the SIGALI prover. The calls of these models are external calls that are inter-
preted when translated into the SIGALI representation. These are models used for
verification purpose or for controller synthesis.

Parameters of pragmas

The statements of some of the pragmas (for example, code generation directives, profiling
directives, link with the SIGALI prover) are strings that may be “parameterized”. Gener-
ally, such a string describes a model of translation in whichparameters serve to transmit the
names of designated objects. In this case, the pragma is associated with a model (process
model, “operator”) and describes the translation that has to be associated with eachcall of
this model (i.e., with each reference to this model). The resulting translation is obtained after
substitution of the encoded parameters by the corresponding objects in the considered call.

The following encoded parameters are recognized:

– &pj (wherej is a constant integer value) represents thejth parameter of the call;

– &ij (wherej is a constant integer value) represents thejth input signal of the call;

– &oj (wherej is a constant integer value) represents thejth output signal of the call;

– &n represents the name of the model;

– &m represents the name of the higher level model which is the current compilation unit.
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A few parameters are followed by other parameters to which they apply:

– &t represents the type of the considered object (for example,&t&i1 represents the type
of the first input signal of the call);

– &b represents the scalar basic type for an object which is an array;

– &lexp represents a list of objects (for example,&lexp&o represents the list of output
signals of the call);

– &ck represents the clock of the considered object;

– &h represents the image of the considered object in the considered homomorphism when
the translation describes an homomorphism (for example,&h&i1 represents the first
input signal of the image of the call in the homomorphic program);

– &hck represents the clock of the image of the considered object inthe considered ho-
momorphism when the translation describes an homomorphism.

XI–8 Models as types and parameters

The notion of type presented so far is enriched with the notion of model type,that represents the interface
of a process model. Then model types can be used to specify formal process models as formal parameters
of process models: a process model with the corresponding model type as interface must then be provided
as effective parameter.

Model types

A model type is an interface of process model.
The following rules for aDEFINITION-OF-TYPE extend those given in partC, sectionV–7,

page86 (these rules do not concern formal parameters, which are described below).
Pragmas may be associated with the objects of a model type in the same way they can be associated

with the objects of a model (cf. sectionXI–7, page195). When there is no designated object for a pragma
specified in a model type, it is by default associated with theconsidered model type.

The rule for aDEFINITION-OF-INTERFACE extends those given in sectionXI–5, page189.

process T = I
(the correspondingDECLARATION-OF-TYPE is: type process T = I;),
or action T = I, etc.

1. Context-free syntax

DEFINITION-OF-TYPE ::=

process Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| action Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| procedure Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| node Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| function Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| automaton Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]
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DEFINITION-OF-INTERFACE ::=

Name-model-type

2. Types

(a) The declarationtype process T = I; defines the model type with nameT as being
equal to the interface ofprocessmodelI.
Let us denote this equality:
τ (T ) = interfaceprocess(I)

(b) When a named interface (model type) is used for a process model declaration, both classes
of process models (function, node, action or process) must be coherent.

3. Semantics

• The same scoping rules as for other types apply to model types.

4. Properties

(a) With the declarations
type process A = I;
andtype process B = I;
thenτ (A) = τ (B) = interfaceprocess(I).
Some implementations may not ensure this property.
On the opposite, the declarations
type process A = I;
andtype function B = I; (for instance)
define distinct model types.

5. Examples

(a) type process T = ( ? integer a; ! integer b; ); declares the pro-
cess model typeT.

(b) type process TT = T; declares the process model typeTT which is equal toT.

(c) process PP =
T
(| ...|);

declares the process modelPP with its interface specified byT.

Models as parameters

The following rules for aFORMAL-PARAMETER extend those given in sectionXI–5, page189.
The rule forS-EXPR-PARAMETER extends those given in partC, section2-a, page100.

1. Context-free syntax

FORMAL-PARAMETER ::=

FORMAL-MODEL
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FORMAL-MODEL ::=

process Name-model-typeName-model

| action Name-model-typeName-model

| procedure Name-model-typeName-model

| node Name-model-typeName-model

| function Name-model-typeName-model

| automaton Name-model-typeName-model

S-EXPR-PARAMETER ::=

Name-model

The formal parameters of the interface of a modelP can contain model parameters, that appear as
a formal name of model, sayQ, typed with a model type, sayT , which is visible in the current
syntactic context: typically,process T Q.

2. Semantics
To complete the description that was given in sectionXI–5, page189, the declaration of a model
sets up a context in which the model parameters define formal models, that is to say, models for
which only the interface (described by a model type) is known(analogous to model of external
processes).
The same scoping rules as for other parameters apply to modelparameters.
In the body of the process modelP , the formal modelQ is invoked using the usual syntax for the
invocation of models.

The invocation of a model sets up an expansion context in which an effective model, designated
by its name (which must be the name of a process model visible in the context of this invocation),
is associated with each model (positional association, just like other parameters).

3. Examples

(a) process P =
{ process T Q; }
( ? ... ! ... )
(| ... x := Q(y) ... |);

declares the process modelP wich has a model parameterQ, the interface of which is de-
scribed by the model typeT (in that case, it has, for instance one input and one output).
The modelPmust be called with a visible process model as effective parameter; the interface
of this process model must be equal toT.
For example:... P{PP}(...)...



Chapter XII

Modules

XII–1 Declaration and use of modules

A module is a named set of declarations of constants, types and models.
The syntax ofDECLARATION-OF-CONSTANTS , DECLARATION-OF-TYPES , PROCESS,

ACTION , NODE andFUNCTION given below extends the syntax of these declarations such asde-
fined in partC, sectionV–8, page88, partC, sectionV–7, page86 and partE, sectionXI–1, page183.
The presence of theprivate attribute is reserved to declarations which are in a module.The syn-
tax of EXTERNAL-NOTATION may be used as well for aDESCRIPTION-OF-CONSTANT , a
DESCRIPTION-OF-TYPE or a DESCRIPTION-OF-MODEL , either they appear in a model or in
a module. It is provided in this section.

The importation of objects of a module in another module or ina model is done via ause importation
command that may be found in a list ofDECLARATION s. Then, the syntax ofDECLARATION given
below extends that defined in partE, sectionXI–2, page187.

1. Context-free syntax

MODULE ::=

module Name-module =

[ DIRECTIVES ] { DECLARATION } + end ;

DECLARATION-OF-CONSTANTS ::=

private constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT } ∗ ;

DECLARATION-OF-TYPES ::=

private type

DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE } ∗ ;
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PROCESS::=

private process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

ACTION ::=

private action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

private node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

private function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

EXTERNAL-NOTATION ::=

external [ String-cst ]

DECLARATION ::=

IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=

use IMPORTED-OBJECTS { , IMPORTED-OBJECTS } ∗ ;

IMPORTED-OBJECTS ::=

Name-module

Pragmas may be associated with the objects of a module in the same way they can be associated with
the objects of a model (cf. sectionXI–7, page195). When there is no designated object for a pragma
specified in a module, it is by default associated with the current module.

The set of declarations of a module constitutes a same level of declarations: the level of a module.
The level of a module is greater than the level of any model declared in this module. With the usual rule,
there cannot be two objects with the same name declared in a module.

The visibility of the objects declared in a module may be restricted to this module using the attribute
private: when a declaration of constants, types or model is precededby the keywordprivate
(private constant ...,private type ...,private process ..., etc.), then the vis-
ibility of the corresponding objects is confined to the module that contains thatprivatedeclaration, even
if this module is referenced by ause command.

In a moduleM , but also in a model, the description of a constant, a type or amodel can be given
by an expression of the SIGNAL language, or it can be described as external by using theexternal
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attribute, or it can be specified as virtual by the absence of description.
The objects declared in a module can be totally or partially imported from a model or another module

thanks to theuse command. Such a module provides a context of definition for some of the objects
described as virtual in the model or the module containing theuse command (and visible at this level).
These virtual objects areredefined(or overridden) in this way if they are imported (as corresponding
objects with the same name) from ausedmodule, or transitively, from a module imported in an imported
module. The overridden constants must have a smaller type (or the same one) as that appearing in their
declaration as virtual (or an overriding of this type if it isa virtual type). In the same way, the overridden
models must have compatible interfaces.

More generally, any object described as virtual in some zoneof declarationsL may inherit a
(re)definition from any context, visible inL, that provides such a definition.

Though it is not mandatory, it may be a good policy to systematically declare as virtual in a module
M the objects referenced inM , but imported by ause command from another module. However, in
this case, they should be used only as virtual objects: for example, if some signal is declared with a
virtual type, only polymorphic operators could be applied to it.

A model or a module are acompilation unitwhen all the objects they use (except predefined or
intrinsic ones) have a declaration (which may be that of a virtual object) in this entity, taking into account
theuse commands contained in it. In any case, a module necessarily constitutes a compilation unit.

Note that for code generation purpose, it may be necessary that all the virtual objects of a compilation
unit have been overridden.

The objects whose definitions or redefinitions are imported in a model or moduleP by ause com-
mand situated in a zone of local declarations ofP are made visible at the level of the expression con-
taining these local declarations and at all lower levels (with the usual scoping rules, everywhere another
object with the same name is not declared at such a level). More precisely, ause command inside the
local declarations of an expression establishes a new levelof declaration which is just greater than that
of the expression. For example, an expression
E where L; use M; end
may be considered, from the point of view of the scoping rules, as equivalent to the following one:
(E where L; end) where Decl(M) end
whereDecl(M ) represents the declarations ofM . This equivalence holds wherever theuse command
is located in the local declarations.

A similar rule also applies for ause command located in the declarations of a module.
The importable objects of a module are the objects of this module that are not declared asprivate.

The objects imported by ause command are all the importable objects of the module.
When severaluse commands appear at a same level of declaration, their syntactic order determines

a corresponding nesting of the importations, thus avoidingmultiple definitions of a same object at a given
level. For example, to:
E where L; use M1; ...; use Mn; end
corresponds the following nesting:
(((E where L; end) where Decl(Mn) end) ...) where Decl(M1) end
(the declarations ofM1 are visible inMn, but the converse is not true).

In this way, if several objects with the same name are imported in a given context from different
modules, the single one which is effectively visible is the one from the last module containing it in the
ordered list of theuse commands. Note that the rule applies differently for virtual objects since virtual
definitions are overridden by corresponding non virtual ones.
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The nesting of declarations also allows to override, in someway, declarations of imported modules
(libraries) by local declarations, since the local ones have priority.

When several modules are specified in a sameuse command, the corresponding declarations are
imported at the same level. For example,
E where L; use M1, ..., Mp;end
would correspond to:
(E where L; end) where Decl(M1) ... Decl(Mp) end
In this case, there is a potential risk of conflicts of the declarations imported from different modules.

In a given compilation unit, when an object is described as virtual, then:

• either it is defined in an imported module,

• or it is defined in the context in which this compilation unit is used.

In a given compilation unit, when an object is described as external (using theexternal nota-
tion), then it means that it is externally defined, in anotherlanguage for instance, in the implementation
environment of the compilation unit.

The description of an object as external may be followed by a string, such asexternal "X",
which is an attribute allowing to describe specific characteristics of the implementation of this object:
implementation language, for instance (this is indeed a short notation for a specific pragma).

The nameM used in a command “use M;” is the name of a module visible in the design
environment. The way this module is made available is not normalized.

As an example, in the INRIA POLYCHRONY environment, there is an environment variable,
SIGNAL_LIBRARY_PATH,
which defines the paths at which library files may be found in the design environment. Such a file has
the name “M”, with the suffixe “.LIB” or “.SIG” (i.e., “M.LIB” or “M.SIG”), and contains the definition
of a module namedM , in SIGNAL .

Examples

• module Stack =
use my_elem;
type elem;
type stack = external;
process initst = ( ! stack p;);
process push = ( ? stack p; elem x; ! event except; )

spec (| x ^> except | x --> except |);
process pop = ( ? stack p; ! elem x; ! event except; )

spec (| x ^# except |);
...

end;
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Intrinsic processes

Intrinsic process models constitute libraries of processes that may be used in SIGNAL programs. These
models have not to be declared. The names of the intrinsic process models are not reserved words of the
SIGNAL language.

XIII–1 Minimal clock not yet
imple-

mentedThe intrinsic processmin_clock is a process with no output which is used to fix the clock of a signal
in the current compilation unit. When the considered clock has some freedom, which is expressed by
a recursive definition of this clock, a solution of the equation is chosen, which is the non null minimal
clock.

min_clock(X)

1. Types

(a) X is a signal of any type.

2. Semantics
A call to the intrinsic process model
process min_clock = ( ? x; ! );
expresses a directive for the clock calculus.

Usingmin_clock(X), the clock of the signalX is replaced by the non null minimal solution
of the system of equations that defines it.

In this way, ifω(X) = Q ∗ω(X) + R, the solutionω(X) = R is chosen.

XIII–2 Affine transformations

Consider(n, φ, d) such thatn, d ∈ IIN∗, the set of strictly positive integers, andφ ∈ Z, the set of integers.
Given some processP , an (n, φ, d)-affine transformation from a clockc1 to a clock c2 may be

obtained through the following steps:

1. Construct a new clockc′ as the union of the set of instants ofc1 with the set of instants obtained
by introducingn − 1 fictive instants between any two successive instants ofc1 (and−φ fictive
instants before the first instant ofc1 whenφ is negative).
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2. Define the clockc2 as the set of instants{dt + φ|t ∈ c′}, with c′ = {t|t ∈ IIN}: in other words,
counting everyd instant, starting with the instantφ of c′ (or with the first instant ofc′ whenφ is
negative).

Clocksc1 andc2 are then said to be in an(n, φ, d)-affine relation:c1R
P
(n,φ,d)c2.

It can be expressed as follows: clocksc1 andc2 are in an(n, φ, d)-affine relation if there exists a clock
c′ such thatc1 andc2 can be respectively expressed using the affine functionsλ.(nt+φ1) andλ.(dt+φ2),
with φ2 − φ1 = φ, with respect to the time indices ofc′: c′ = {t|t ∈ IIN}, c1 = {nt + φ1|t ∈ c′},
c2 = {dt + φ2|t ∈ c′}.

A particular case of affine relation isRP
(1,φ,d), with φ ≥ 0. In this case, the relationc1R

P
(n,φ,d)c2 in

a processP can be denotedc2 = [c1](φ,d) to express thatc2 is a subsampling of positive phaseφ and
strictly positive periodd on c1.

The clock calculus may implement synchronisability rules based on properties of affine relations,
against which synchronization constraints can be assessed.

The followingaffine_sample, affine_clock_relation andaffine_unsample pro-
cesses are defined as intrinsic process models.

Affine sample process

The processaffine_sample is defined as follows:

process affine_sample =
{ integer phi, d; }
( ? x;
! y;
)

(| v ^= x
| v := (d-1) when (zv=0) default (zv-1)
| zv := v $ init phi
| y := x when (zv=0)
|)

where
integer v, zv;

end
;

The signaly is defined as an affine subsampling of phasephi and periodd on the signalx.
The phasephi is a positive integer (ϕ(phi) ≥ 0) and the periodd is a strictly positive integer

(ϕ(d) ≥ 1).
The following affine relation holds between the clocks ofx andy:

ω(y) = [ω(x)]
(ϕ(phi),ϕ(d))

Affine clock relation process

The processaffine_clock_relation is defined as follows:

process affine_clock_relation =
{ integer n, phi, d; }
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( ? x, y; )
(| clk_x := affine_sample {max(0,-phi), n} (clk_i)
| clk_y := affine_sample {max(0,phi), d} (clk_i)
| clk_x ^= x
| clk_y ^= y
|)

where
event clk_x, clk_y, clk_i;
function max =
( ? long x1, x2; ! long y; )
(| y := if (x1 >= x2) then x1 else x2 |);

end
;

There is an(n, phi, d)-affine relation between theclocksof x andy: ω(x)RP
(n,phi,d)

ω(y). The

process does not constrain the values ofx andy.
The values ofn andd are strictly positive integers (ϕ(n) ≥ 1, ϕ(d) ≥ 1) and the value ofphi is an

integer.
The clockclk_i is a clock defined by the process, such that the following affine relations hold

betweenclk_i and the clocks ofx andy:
ω(x) = [ω(clk_i)]

(max(0,−ϕ(phi)),ϕ(n))

ω(y) = [ω(clk_i)]
(max(0,ϕ(phi)),ϕ(d))

Affine unsample process

The processaffine_unsample is defined as follows:

process affine_unsample =
{ integer n, phi; }
( ? x1, x2;
! y;
)

(| affine_clock_relation {n, phi, 1} (x1, y)
| y := (x1 when ^y) default x2
| x2 ^= y
|)

;

The signaly is defined as an oversampling from the signalx1. The signalx2 provides thevaluesof
y whenx1 is not present; note that thoughx2 is an input signal ofaffine_unsample, its clock has
not to be defined as input of this process: it is internally defined as equal to the clock of the output.

The value ofn is a strictly positive integer (ϕ(n) ≥ 1) and the value ofphi is an integer.
The clockclk_i is a clock defined by the process, such that the following affine relations hold

betweenclk_i and the clocks ofx1 andy:
ω(x1) = [ω(clk_i)]

(max(0,−ϕ(phi)),ϕ(n))

ω(y) = [ω(clk_i)]
(max(0,ϕ(phi)),1)

The clocks ofx2 andy are equal:
ω(y) = ω(x2)
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XIII–3 “Left true” process

The followingleft_tt process is defined as intrinsic process model:
process left_tt = ( ? boolean b1, b2; ! boolean c; )

(| c := b1 default false when ̂b2 |)
;

It may be used to define some clock (represented by thetrue values of a Booleanb1) at an other
clock (the upper bound of the clocks ofb1 andb2): with respect to this upper bound, thetrue values of
b1 are retained, thefalse values are retained, and the absence is represented asfalse values.

XIII–4 Mathematical functions

The following mathematical functions are defined as intrinsic process models. They correspond to func-
tions of the “math.h” library of the language C. A full description of them may be found in the documen-
tation of this library.

• arc cosine function:
function acos = ( ? dreal x; ! dreal y; );

• arc sine function:
function asin = ( ? dreal x; ! dreal y; );

• arc tangent function:
function atan = ( ? dreal x; ! dreal y; );

• arc tangent function of two variables:
function atan2 = ( ? dreal x1; dreal x2 ! dreal y; );

• cosine function:
function cos = ( ? dreal x; ! dreal y; );

• sine function:
function sin = ( ? dreal x; ! dreal y; );

• tangent function:
function tan = ( ? dreal x; ! dreal y; );

• hyperbolic cosine function:
function cosh = ( ? dreal x; ! dreal y; );

• hyperbolic sine function:
function sinh = ( ? dreal x; ! dreal y; );

• hyperbolic tangent function:
function tanh = ( ? dreal x; ! dreal y; );

• exponential function:
function exp = ( ? dreal x; ! dreal y; );

• multiply floating-point number by integral power of 2:
function ldexp = ( ? dreal x; integer i ! dreal y; );
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• logarithmic function:
function log = ( ? dreal x; ! dreal y; );

• base-10 logarithmic function:
function log10 = ( ? dreal x; ! dreal y; );

• power function:
function pow = ( ? dreal x1; dreal x2; ! dreal y; );

• square root function:
function sqrt = ( ? dreal x; ! dreal y; );

• smallest integral value not less than x:
function ceil = ( ? dreal x; ! dreal y; );

• absolute value of an integer:
function abs = ( ? integer x; ! integer y; );

• absolute value of floating-point number:
function fabs = ( ? dreal x; ! dreal y; );

• largest integral value not greater than x:
function floor = ( ? dreal x; ! dreal y; );

• floating-point remainder function:
function fmod = ( ? dreal x1; dreal x2; ! dreal y; );

• convert floating-point number to fractional and integral components:
function frexp = ( ? dreal x; ! dreal y1; integer y2; );

• extract signed integral and fractional values from floating-point number:
function modf = ( ? dreal x; ! dreal y1; dreal y2; );

XIII–5 Complex functions

The following complex functions are defined as intrinsic process models.

• conjugate of a complex:
function conj = ( ? complex x; ! complex y; );
and
function conjd = ( ? dcomplex x; ! dcomplex y; );

• module of a complex:
function modu = ( ? complex x; ! real y; );
and
function modud = ( ? dcomplex x; ! dreal y; );

• argument of a complex:
function arg = ( ? complex x; ! real y; );
and
function argd = ( ? dcomplex x; ! dreal y; );
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• real part of a complex:
function rpart = ( ? complex x; ! real y; );
and
function rpartd = ( ? dcomplex x; ! dreal y; );

• imaginary part of a complex:
function ipart = ( ? complex x; ! real y; );
and
function ipartd = ( ? dcomplex x; ! dreal y; );

XIII–6 Input-output functions

The following input-output functions are defined as intrinsic process models of the INRIA POLYCHRONY

environment. They allow to read and write signals of basic types on standard input and output.
Theread andwrite processes below are described with no explicit type for the input or output

signalx: it means that they are polymorphic processes for which the effective type of the considered
argument is provided by the type of the corresponding signalin the call of the process.

• process read = ( ? string message; ! x )
spec (| message ^= x | message --> x |);

A message is displayed and a value is read forx.
A standard read function is used in the generated code for thefollowing possible types ofx:
boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.

• process write = (? string message; x; ! )
spec (| message ^= x |);

A message is displayed and the value ofx is written.
A standard write function is used in the generated code for the following possible types ofx:
boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.

• process writeString = ( ? string message; ! );

A message is displayed on the standard output.
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Chapter XIV

Grammar of the SIGNAL language

XIV–1 Lexical units

XIV–1.1 Characters

Character ::= character | CharacterCode

Sets of characters

character ::= name-char | mark | delimitor | separator | other-character

name-char::= letter-char | numeral-char | _

letter-char ::=

upper-case-letter-char | lower-case-letter-char | other-letter-char

upper-case-letter-char::=

A | B | C | D | E | F | G | H | I

| J | K | L | M | N | O | P | Q | R

| S | T | U | V | W | X | Y | Z

lower-case-letter-char::=

a | b | c | d | e | f | g | h | i

| j | k | l | m | n | o | p | q | r

| s | t | u | v | w | x | y | z
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other-letter-char ::=

À | Á | Â | Ã | Ä | Å | Æ | Ç | È

| É | Ê | Ë | Ì | Í | Î | Ï | Ð | Ñ

| Ò | Ó | Ô | Õ | Ö | Ø | Ù | Ú | Û

| Ü | Ý | Þ | ß | à | á | â | ã | ä

| å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö

| ø | ù | ú | û | ü | ý | þ | ÿ

numeral-char ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

mark ::= . | ’ | " | % | : | = | < | > | +

| − | ∗ | / | @ | $ | ̂ | # | | | \

delimitor ::= ( | ) | { | } | [ | ]

| ? | ! | , | ;

separator ::= \x20

| long-separator

long-separator::= \x9

| \xA

| \xC

| \xD

Encodings of characters

CharacterCode::= OctalCode | HexadecimalCode
| escape-code

OctalCode::= \ octal-char [ octal-char [ octal-char ] ]
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octal-char ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

HexadecimalCode::= \x hexadecimal-char [ hexadecimal-char ]

hexadecimal-char::= numeral-char
| A | B | C | D | E | F

| a | b | c | d | e | f

escape-code::= \a | \b | \f | \n | \r | \t

| \v | \\ | \" | \’ | \? | \%

XIV–1.2 Vocabulary

prefix-mark ::= \

Names

Name::= begin-name-char [ { name-char }+ ]

begin-name-char::= { name-char\ numeral-char }

Boolean constants

Boolean-cst::= true | false

Integer constants

Integer-cst ::= { numeral-char }+
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Real constants

Real-cst::= Simple-precision-real-cst
| Double-precision-real-cst

Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
| Integer-cst . Integer-cst [ Simple-precision-exponent ]

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
| Integer-cst . Integer-cst Double-precision-exponent

Simple-precision-exponent::= e Relative-cst | E Relative-cst

Double-precision-exponent::= d Relative-cst | D Relative-cst

Relative-cst::= Integer-cst
| + Integer-cst

| − Integer-cst

Character constants

Character-cst ::= ’ Character-cstCharacter ’

Character-cstCharacter ::= { Character \ character-spec-char }

character-spec-char::= ’
| long-separator

String constants

String-cst ::= " [ { String-cstCharacter }+ ] "

String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char::= "
| long-separator



XIV–2. DOMAINS OF VALUES OF THE SIGNALS 219

Comments

Comment::= % [ { CommentCharacter }+ ] %

CommentCharacter ::= { Character \ comment-spec-char }

comment-spec-char::= %

XIV–2 Domains of values of the signals

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

XIV–2.1 Scalar types

Scalar-type::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ::= Integer-type
| Real-type
| Complex-type

Alphabetic-type ::= char

| string
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Synchronization types

Synchronization-type::= event

| boolean

Integer types

Integer-type ::= short

| integer

| long

Real types

Real-type::= real

| dreal

Complex types

Complex-type::= complex

| dcomplex

XIV–2.2 External types

External-type ::= Name-type
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XIV–2.3 Enumerated types

ENUMERATED-TYPE ::=

enum ( Name-enum-value{ , Name-enum-value}∗ )

ENUM-CST ::=

# Name-enum-value

| Name-type # Name-enum-value

XIV–2.4 Array types

ARRAY-TYPE ::=

[ S-EXPR { , S-EXPR }∗ ] SIGNAL-TYPE

XIV–2.5 Tuple types

TUPLE-TYPE ::=

struct ( NAMED-FIELDS )

| bundle ( NAMED-FIELDS )
[ SPECIFICATION-OF-PROPERTIES ]

NAMED-FIELDS ::=

{ S-DECLARATION } +
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XIV–2.6 Denotation of types

SIGNAL-TYPE ::=

Name-type

DECLARATION-OF-TYPES ::=

type DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE } ∗ ;

DEFINITION-OF-TYPE ::=

Name-type
| Name-type = DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [ TYPE-INITIAL-VALUE ]

XIV–2.7 Declarations of constant identifiers

DECLARATION-OF-CONSTANTS ::=

constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT } ∗ ;

DEFINITION-OF-CONSTANT ::=

Name-constant
| Name-constant = DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

XIV–2.8 Declarations of sequence identifiers



XIV–3. EXPRESSIONS ON SIGNALS 223

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } ∗ ;

DEFINITION-OF-SEQUENCE ::=

Name-signal
| Name-signal init S-EXPR

XIV–2.9 Declarations of shared variables

DECLARATION-OF-SHARED-VARIABLES ::=

shared SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } ∗ ;

XIV–2.10 Declarations of state variables

DECLARATION-OF-STATE-VARIABLES ::=

statevar SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } ∗ ;

XIV–3 Expressions on signals

XIV–3.1 Systems of equations on signals

Elementary equations

ELEMENTARY-PROCESS ::=

DEFINITION-OF-SIGNALS



224 GRAMMAR OF THE SIGNAL LANGUAGE

DEFINITION-OF-SIGNALS ::=

Name-signal := S-EXPR

DEFINITION-OF-SIGNALS ::=

( Name-signal{ , Name-signal}∗ ) := S-EXPR

DEFINITION-OF-SIGNALS ::=

Name-signal ::= S-EXPR

| Name-signal ::= defaultvalue S-EXPR

DEFINITION-OF-SIGNALS ::=

( Name-signal{ , Name-signal}∗ ) ::= S-EXPR

| ( Name-signal{ , Name-signal}∗ ) ::= defaultvalue S-EXPR

Invocation of a model

ELEMENTARY-PROCESS ::=

INSTANCE-OF-PROCESS

INSTANCE-OF-PROCESS::=

EXPANSION
| Name-model ( )

EXPANSION ::=

Name-model
{ S-EXPR-PARAMETER { , S-EXPR-PARAMETER } ∗ }

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE
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INSTANCE-OF-PROCESS::=

PRODUCTION

PRODUCTION ::=

MODEL-REFERENCE ( S-EXPR { , S-EXPR }∗ )

MODEL-REFERENCE ::=

EXPANSION
| Name-model

S-EXPR ::=

INSTANCE-OF-PROCESS

S-EXPR ::=

CONVERSION

CONVERSION ::=

Type-conversion ( S-EXPR )

Type-conversion::=

Scalar-type
| Name-type

Nesting of expressions on signals

S-EXPR ::=

( S-EXPR )

XIV–3.2 Elementary expressions
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S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal
| Label
| Name-state-variable ?

Constant expressions

CONSTANT ::=

Boolean-cst
| Integer-cst
| Real-cst
| Character-cst
| String-cst
| ENUM-CST

XIV–3.3 Dynamic expressions

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

Simple delay

SIMPLE-DELAY ::=

S-EXPR $ [ init S-EXPR ]

Sliding window

WINDOW ::=

S-EXPR window S-EXPR [ init S-EXPR ]
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Generalized delay

GENERALIZED-DELAY ::=

S-EXPR $ S-EXPR [ init S-EXPR ]

XIV–3.4 Polychronous expressions

S-EXPR-TEMPORAL ::=

MERGING
| EXTRACTION
| MEMORIZATION
| VARIABLE
| COUNTER

Merging

MERGING ::=

S-EXPR default S-EXPR

Extraction

EXTRACTION ::=

S-EXPR when S-EXPR

Memorization

MEMORIZATION ::=

S-EXPR cell S-EXPR [ init S-EXPR ]
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Variable clock signal

VARIABLE ::=

var S-EXPR [ init S-EXPR ]

Counters

COUNTER ::=

S-EXPR after S-EXPR

| S-EXPR from S-EXPR

| S-EXPR count S-EXPR

XIV–3.5 Constraints and expressions on clocks

ELEMENTARY-PROCESS ::=

CONSTRAINT

Expressions on clock signals

S-EXPR-CLOCK ::=

SIGNAL-CLOCK

SIGNAL-CLOCK ::=

̂ S-EXPR

S-EXPR-CLOCK ::=

CLOCK-EXTRACTION
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CLOCK-EXTRACTION ::=

when S-EXPR

| [: S-EXPR ]

| [/: S-EXPR ]

S-EXPR-CLOCK ::=

0̂

Operators of clock lattice

S-EXPR-CLOCK ::=

S-EXPR +̂ S-EXPR

| S-EXPR −̂ S-EXPR

| S-EXPR ∗̂ S-EXPR

Relations on clocks

CONSTRAINT ::=

S-EXPR { ̂= S-EXPR }∗

| S-EXPR { ̂< S-EXPR }∗

| S-EXPR { ̂> S-EXPR }∗

| S-EXPR { #̂ S-EXPR }∗

XIV–3.6 Constraints on signals

CONSTRAINT ::=

S-EXPR :=: S-EXPR
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XIV–3.7 Boolean synchronous expressions

Expressions on Booleans

S-EXPR-BOOLEAN ::=

not S-EXPR

S-EXPR-BOOLEAN ::=

S-EXPR or S-EXPR

| S-EXPR and S-EXPR

| S-EXPR xor S-EXPR

Boolean relations

S-EXPR-BOOLEAN ::=

RELATION

RELATION ::=

S-EXPR = S-EXPR

| S-EXPR / = S-EXPR

| S-EXPR > S-EXPR

| S-EXPR >= S-EXPR

| S-EXPR < S-EXPR

| S-EXPR <= S-EXPR

| S-EXPR == S-EXPR

| S-EXPR <<= S-EXPR

XIV–3.8 Synchronous expressions on numeric signals

Binary expressions on numeric signals
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S-EXPR-ARITHMETIC ::=

S-EXPR + S-EXPR

| S-EXPR − S-EXPR

| S-EXPR ∗ S-EXPR

| S-EXPR / S-EXPR

| S-EXPR modulo S-EXPR

| S-EXPR ∗∗ S-EXPR
| DENOTATION-OF-COMPLEX

DENOTATION-OF-COMPLEX ::=

S-EXPR @ S-EXPR

Unary operators

S-EXPR-ARITHMETIC ::=

+ S-EXPR

| − S-EXPR

XIV–3.9 Synchronous condition

S-EXPR-CONDITION ::=

if S-EXPR then S-EXPR else S-EXPR

XIV–4 Expressions on processes

P-EXPR ::=

ELEMENTARY-PROCESS
| HIDING
| LABELLED-PROCESS
| GENERAL-PROCESS
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GENERAL-PROCESS ::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS
| ASSERTION-PROCESS

XIV–4.1 Composition

COMPOSITION ::=

(| [ P-EXPR { | P-EXPR }∗ ] |)

XIV–4.2 Hiding

HIDING ::=

GENERAL-PROCESS / Name-signal{ , Name-signal}∗

| HIDING / Name-signal{ , Name-signal}∗

XIV–4.3 Confining with local declarations

CONFINED-PROCESS::=

GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

where { DECLARATION } + end
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XIV–4.4 Labelled processes

LABELLED-PROCESS ::=

Label :: P-EXPR

Label ::=

Name

XIV–4.5 Choice processes

CHOICE-PROCESS ::=

case Name-signal in { CASE }+ [ ELSE-CASE ] end

CASE ::=

ENUMERATION-OF-VALUES : GENERAL-PROCESS

ELSE-CASE ::=

else GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=

{ S-EXPR { , S-EXPR }∗ }

| [. [ S-EXPR ] , [ S-EXPR ] .]

| [. [ S-EXPR ] , [ S-EXPR ] [.

| .] [ S-EXPR ] , [ S-EXPR ] .]

| .] [ S-EXPR ] , [ S-EXPR ] [.

XIV–4.6 Assertion processes

ASSERTION-PROCESS::=

assert (| [ CONSTRAINT { | CONSTRAINT } ∗ ] |)
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Assertion on Boolean signal

INSTANCE-OF-PROCESS::=

assert ( S-EXPR )

XIV–5 Tuples of signals

S-EXPR-TUPLE ::=

TUPLE-ENUMERATION
| TUPLE-FIELD

XIV–5.1 Enumeration of tuple elements

TUPLE-ENUMERATION ::=

( S-EXPR { , S-EXPR }∗ )

XIV–5.2 Denotation of field

TUPLE-FIELD ::=

S-EXPR . Name-field
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XIV–5.3 Equation of definition of tuple component

DEFINITION-OF-SIGNALS ::=

COMPONENT := S-EXPR

| COMPONENT ::= S-EXPR

| COMPONENT ::= defaultvalue S-EXPR

| ( COMPONENT { , COMPONENT } ∗ ) := S-EXPR

| ( COMPONENT { , COMPONENT } ∗ ) ::= S-EXPR

| ( COMPONENT { , COMPONENT } ∗ ) ::= defaultvalue
S-EXPR

COMPONENT ::=

Name-signal
| Name-signal . COMPONENT

XIV–6 Spatial processing

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
| CONCATENATION
| ITERATIVE-ENUMERATION
| INDEX
| ARRAY-ELEMENT
| SUB-ARRAY
| ARRAY-RESTRUCTURATION
| MULTI-INDEX
| SEQUENTIAL-DEFINITION
| TRANSPOSITION
| ARRAY-PRODUCT
| REFERENCE-SEQUENCE

XIV–6.1 Enumeration
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ARRAY-ENUMERATION ::=

[ S-EXPR { , S-EXPR }∗ ]

XIV–6.2 Concatenation

CONCATENATION ::=

S-EXPR |+ S-EXPR

XIV–6.3 Repetition

ITERATIVE-ENUMERATION ::=

S-EXPR |∗ S-EXPR

XIV–6.4 Definition of index

INDEX ::=

S-EXPR .. S-EXPR [ step S-EXPR ]

XIV–6.5 Array element

ARRAY-ELEMENT ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]

| S-EXPR [ S-EXPR { , S-EXPR }∗ ] ARRAY-RECOVERY
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ARRAY-RECOVERY ::=

\\ S-EXPR

XIV–6.6 Extraction of sub-array

SUB-ARRAY ::=

S-EXPR [ S-EXPR { , S-EXPR }∗ ]

XIV–6.7 Array restructuration

ARRAY-RESTRUCTURATION ::=

S-EXPR : S-EXPR

XIV–6.8 Extended syntax of equations of definition

DEFINITION-OF-SIGNALS ::=

DEFINED-ELEMENT := S-EXPR

| DEFINED-ELEMENT ::= S-EXPR

| DEFINED-ELEMENT ::= defaultvalue S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )

:= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )

::= S-EXPR

| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )

::= defaultvalue S-EXPR
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DEFINED-ELEMENT ::=

COMPONENT
| COMPONENT [ S-EXPR { , S-EXPR }∗ ]

XIV–6.9 Cartesian product

MULTI-INDEX ::=

<< S-EXPR { , S-EXPR }∗ >>

XIV–6.10 Iterations of processes

GENERAL-PROCESS ::=

ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=

array ARRAY-INDEX of P-EXPR [ ITERATION-INIT ] end

| iterate ITERATION-INDEX of P-EXPR [ ITERATION-INIT ] end

ARRAY-INDEX ::=

| Name to S-EXPR

ITERATION-INDEX ::=

DEFINED-ELEMENT
| ( DEFINED-ELEMENT { , DEFINED-ELEMENT } ∗ )
| S-EXPR

ITERATION-INIT ::=

with P-EXPR

REFERENCE-SEQUENCE::=

S-EXPR [ ? ]
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XIV–6.11 Sequential definition

SEQUENTIAL-DEFINITION ::=

S-EXPR next S-EXPR

XIV–6.12 Sequential enumeration

ITERATIVE-ENUMERATION ::=

[ ITERATION { , PARTIAL-DEFINITION } ∗ ]

PARTIAL-DEFINITION ::=

DEFINITION-OF-ELEMENT
| ITERATION

DEFINITION-OF-ELEMENT ::=

[ S-EXPR { , S-EXPR }∗ ] : S-EXPR

ITERATION ::=

{ PARTIAL-ITERATION { , PARTIAL-ITERATION } ∗

: DEFINITION-OF-ELEMENT

| { PARTIAL-ITERATION { , PARTIAL-ITERATION } ∗

: S-EXPR

PARTIAL-ITERATION ::=

[ Name ] [ in S-EXPR ] [ to S-EXPR ] [ step S-EXPR ]

XIV–6.13 Operators on matrices

Transposition
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TRANSPOSITION ::=

tr S-EXPR

Matrix products

ARRAY-PRODUCT ::=

S-EXPR ∗. S-EXPR

XIV–7 Models of processes

XIV–7.1 Classes of process models

MODEL ::=

PROCESS
| ACTION
| NODE
| FUNCTION

PROCESS::=

process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

ACTION ::=

action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

PROCEDURE ::=

procedure Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;
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AUTOMATON ::=

automaton Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

BODY ::=

DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

XIV–7.2 Local declarations of a process model

DECLARATION ::=

S-DECLARATION
| DECLARATION-OF-SHARED-VARIABLES
| DECLARATION-OF-STATE-VARIABLES
| DECLARATION-OF-CONSTANTS
| DECLARATION-OF-TYPES
| DECLARATION-OF-LABELS
| REFERENCES
| MODEL

XIV–7.3 Declarations of labels

DECLARATION-OF-LABELS ::=

label Name-label{ , Name-label}∗ ;

XIV–7.4 References to signals with extended visibility

REFERENCES ::=

ref Name-signal{ , Name-signal}∗ ;
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XIV–7.5 Interface of a model

DEFINITION-OF-INTERFACE ::=

INTERFACE

INTERFACE ::=

[ PARAMETERS ] ( INPUTS OUTPUTS ) EXTERNAL-GRAPH

PARAMETERS ::=

{ [ { FORMAL-PARAMETER } + ] }

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=

? [ { S-DECLARATION } + ]

OUTPUTS ::=

! [ { S-DECLARATION } + ]

XIV–7.6 Graph of a model

EXTERNAL-GRAPH ::=

[ PROCESS-ATTRIBUTE ] [ SPECIFICATION-OF-PROPERTIES ]

PROCESS-ATTRIBUTE ::=

safe

| deterministic

| unsafe

SPECIFICATION-OF-PROPERTIES ::=

spec GENERAL-PROCESS
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Dependences

ELEMENTARY-PROCESS ::=

DEPENDENCES

DEPENDENCES::=

SIGNALS { −− > SIGNALS }∗

| { SIGNALS −− > SIGNALS } when S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
| { ELEMENTARY-SIGNAL { , ELEMENTARY-SIGNAL } ∗ }

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label

XIV–7.7 Directives

DIRECTIVES ::=

pragmas { PRAGMA } + end pragmas

PRAGMA ::=

Name-pragma[ { PRAGMA-OBJECT { , PRAGMA-OBJECT } ∗ } ]
[ Pragma-statement ]

PRAGMA-OBJECT ::=

Label
| Name

Pragma-statement::=

String-cst

XIV–7.8 Models as types and parameters
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DEFINITION-OF-TYPE ::=

process Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| action Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| procedure Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| node Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| function Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

| automaton Name-model-type = DEFINITION-OF-INTERFACE [ DIRECTIVES ]

DEFINITION-OF-INTERFACE ::=

Name-model-type

FORMAL-PARAMETER ::=

FORMAL-MODEL

FORMAL-MODEL ::=

process Name-model-typeName-model

| action Name-model-typeName-model

| procedure Name-model-typeName-model

| node Name-model-typeName-model

| function Name-model-typeName-model

| automaton Name-model-typeName-model

S-EXPR-PARAMETER ::=

Name-model

XIV–8 Modules

XIV–8.1 Declaration and use of modules

MODULE ::=

module Name-module =

[ DIRECTIVES ] { DECLARATION } + end ;
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DECLARATION-OF-CONSTANTS ::=

private constant SIGNAL-TYPE

DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT } ∗ ;

DECLARATION-OF-TYPES ::=

private type

DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE } ∗ ;

PROCESS::=

private process Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

ACTION ::=

private action Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

NODE ::=

private node Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

FUNCTION ::=

private function Name-model =

DEFINITION-OF-INTERFACE [ DIRECTIVES ] [ BODY ] ;

EXTERNAL-NOTATION ::=

external [ String-cst ]

DECLARATION ::=

IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=

use IMPORTED-OBJECTS { , IMPORTED-OBJECTS } ∗ ;

IMPORTED-OBJECTS ::=

Name-module
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