SIGNAL V4 — INRIA version: Reference Manual
(working version)

Loic BESNARD ! Thierry GAUTIER? Paul LE GUERNIC®

January 7, 2015

IRISA/CNRS. Campus universitaire de Beaulieu, F-35042 rieen Cedex, France — e-mail:
Loic.Besnard@irisa.fr

2INRIA Rennes - Bretagne Atlantique. Campus universitagddaulieu, F-35042 Rennes Cedex, France —
e-mail: Thierry.Gautier@inria.fr

3INRIA Rennes - Bretagne Atlantique. Campus universitagd@éaulieu, F-35042 Rennes Cedex, France —
e-mail: Paul.LeGuernic@inria.fr

Abstract

SIGNAL is a synchronized data flow language designed fornamgning real-time systems. A SIGNAL
program defines both data and control processing, from arsyst equations, the variables of the system
are signals. These equations can be organized as sub-sy&iemrocesses). A signal is a sequence
of values which has a clock associated with; this clock $@scihe instants at which the values are
available.

This reference manual defines the syntax and the semantios BNRIA version of the SIGNAL V4
language. The original official definition of the SIGNAL V4niguage was published in French in june
1994. Itis available at the following address:
ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI1832-94:v4_manual.ps.gz
It was defined together with FrangoisJBoNT, from TNI, now Geensott(Dassault Systémes). Some of
the evolutions described in this document have been defaweith tcooperation with FrancoisUPONT.
However, the SIGNAL version implemented by Geensoft in tieBRilder tool is slightly different in
some aspects from the version described here. A descrigitiem-Builder may be found at the following
address:
http://www.geensoft.com/en/article/rtbuilder

The definition of the SIGNAL version described in this manisaubject to evolutions. It is (partly)
implemented in the INRIA BLYCHRONY environment. Consult the following site:
http://www.irisa.fr/espresso/Polychrony

1Geensoft. Technopole Brest-Iroise, 120 rue René Desc&H23280 Plouzané, France.

ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz
http://www.geensoft.com/en/article/rtbuilder
http://www.irisa.fr/espresso/Polychrony

Main evolutions of this document

From version dated March 1, 2010 to the present one:

e addition of new classes of process models: procedure, whialspecial case of action (cf.
sectionXl-1.3, pagel86), and automaton—to be completed (cf. sectidnl.6, pagel87),
and addition of some precisions in the definition of funcsi@md nodes;

e modified description of théck of a process (cf. sectiovill-5, pagel38);
e modified definition of the choice process (cf. sectidi+6, pagel39);
e addition of a new syntax for clock extraction from a conditi@f. sectionVIl-5, pagel20);

e adistinction is made between external and virtual objegtses (cf. sectioV/—7, page86),
constants (cf. sectioW—8, page88), process models (cf. sectiofl-1, pagel83); virtual
objects may be redefined in a given context (cf. seckitirl, page203);

e modified definitions of thaf t er andf r omcounters (cf. sectiok|-4.5, pagel118).

From version dated March 7, 2008 to the present one:

e addition of an assertion process, applying on constraifitséctionVIl-7, pagel44); asser-
tions on a Boolean signal, that were previously describeatimsic processes, are moved in
this new section andssert becomes a reserved word;

e addition of some pragmas (cf. secti¥ih-7, pagel95).

From version dated June 19, 2006 to version dated March 7, 280

e explicit declaration of shared variables for signals definging partial definitions (cf. section
V=10, page90);

e addition and renaming of some pragmas (cf. secXibf7, pagel95).

From version dated April 8, 2005 to version dated June 19, 2@

e possibility to have directives in model types (cf. sectiir8, page200);
e addition of the intrinsic process n_cl ock (cf. sectionXIll-1, page207);
e addition of intrinsic processes for affine clock relatiook éectionXlll-2, page207).

From version dated March 31, 2004 to version dated April 8, 205:

e more detailed description, with examples, of the intrinsiccessassert .

From version dated December 18, 2002 to version dated Marchl32004:

e precisions related to spatial processing (cf. chalXempagel57) and addition of the prede-
fined functioni ndi ces (cf. sectionlX-10, pagel66).

Table of contents

A INTRODUCTION
I Introduction
-1 Main features of the language
-1.1 Signals.
-1.2 Events
-1.3 Models
-1.4 Modules
[-2 Model of sequences
-3
-3.1 Causality
-3.2 Explicit definitions
-4 Subject of the reference
-5 Form of the presentation
Il Lexical units
-1 Characters
I-1.1 Sets of characters
II-1.2 Encodings of characters
-2 Vocabulary
-2.1
[I-2.2 Boolean constants
[I-2.3 Integer Constants
[I-2.4 Real constants
[I-2.5 Character constants
[I-2.6 String constants
I-2.7 Comments
-3 Reserved words

B THE KERNEL LANGUAGE

[Semantic model of traces
-1 Syntax
-2 Configurations
-3 Traces

Static semantiCs. e e

13

15
15
15
16
16
16
16
16
17
17
17
18

21
21
21
24
25
25
25
26
26
26
27
27
27

6 TABLE OF CONTENTS
I-3.4 Productoftraces. i 35
I-3.5 Reducedtrace 35
MI=4 Flows. e 37
lI-4.1 Equivalenceoftraces 37
-4.2 Partialflow 38
I-4.3 Flow-equivalence. 38
MI-5 ProCcesses o i i e e e 38
MI-5.1 Definition 38
[I-5.2 Partial observation ofaprocess. 39
I-5.3 Compositionof processes. 39
I-5.4 OrderonproCesSSES v v v v i it et e e e e 40
-6 Semantics of basiCIBNAL terms. 41
I-6.1 Declarations. 41
[I-6.2 MONOChronous ProCcessSes. v v v v v v v v i e e e e 41
2-a Static monochronous processes. 42
2-b Dynamic monochronous processes: thedelay. 42
I-6.3 Polychronous processes. 42
3-a Sub-signals. 42
3-b Mergingofsignals., 43
II-6.4 Composition of processes., 43
I-6.5 Restriction. e 43
llI=7 Compositesignals. e 43
M=7.1 Tuples. e 44
HI=7.2 Arrays e e e e e e 46
I-8 Classes of processes. o i i i i i e e e e e e e 52
I-8.1 lterations of functions 52
[1I-8.2 ENdoChronous proCesSes v v v v v v v i i e e e e 52
[I-8.3 Deterministic processes. v v v v i v i i 52
[I-8.4 Reactive proCesSes. v v v v v v i e e e e e 53
-9 Composition properties. o i i e e 54
1I-9.1 Asynchronous composition of processes 54
I-9.2 Flow-invariance. 54
I-9.3 Endo-isochrony. 54
[I-10 Clock system and implementation relation. 55
lI-11 Transformation of programs e 56
v Calculus of synchronizations and dependences 57
IV=1 Clocks e e e e 57
IV=1.1 Clock homomorphism 57
1-a Monochronous definitions 58
1-b Polychronous definitions 58
1-c Hiding 58
1-d Composition 58
IV=1.2 Verification 58
IV-1.3 Clockcalculus 59
3-a Monochronous definitions 59
3-b Polychronous definitions 59

3-c Hiding 59

TABLE OF CONTENTS 7

3-d Composition 59
3-e Static and dynamic clock calculus. 60
IV=2 Contextclock e 60
IV=3 Dependences i i i i e e e 61
IV=3.1 Formal definition ofdependences 62
IV=3.2 Implicitdependences. 63
2-a Monochronous definitions L 63
2-b Polychronous definitions 63
IV=3.3 Microautomata. 64
3-a Definition of microautomata 64
3-b Construction of basic micro automata. 65
C THE SIGNALS 69
\% Domains of values of the signals 71
V-1 Scalartypes. e e e 71
V=1.1 Synchronizationtypes. 72
V=1.2 Integertypes e e e 72
V=1.3 Realtypes. e 73
V=14 Complextypes. e 74
V=15 Charactertype e 75
V=1.6 Stringtype e 75
V-2 Externaltypes. e 75
V-3 Enumerated types. 76
V-4 Array types. e e e e e e 77
V-5 Tuple types. 78
V-6 Structure of the setoftypes L 80
V=6.1 Setoftypes. e 80
V=6.2 Orderontypes i i i e e 81
V=6.3 CONVErSIONS. v v it e 83
3-a Conversions between comparabletypes. 83
3-b Conversions toward the domain “Synchronization-type”. . . . 84
3-c Conversions toward the domain “Integer-type”. 84
3-d Conversions toward the domain “Real-type’ 85
3-e Conversions toward the domain “Complex-type”. 85
3-f Conversions toward the typesaracter andstring 85
3-g Conversionsofarrays. 86
3-h Conversionsoftuples. 86
V-7 Denotation oftypes. e 86
V-8 Declarations of constant identifiers 88
V-9 Declarations of sequence identifiers, 89
V=10 Declarations of sharedvariables, 90
V-11 Declarations of state variables. 91

8 TABLE OF CONTENTS
VI Expressions on signals 93
VI-1 Systemsof equationsonsignals 93
VI-1.1 Elementaryequations. 93
1l-a Equation of definition ofasignal. 94
1-b Equation of multiple definition of signals 95
1-c Equation of partial definition ofasignal. 96
1-d Equation of partial definition of a state variable. 97
1l-e Equation of partial multiple definition 98
VI-1.2 Invocationofamodel L. 99
2-a Macro-expansionofamodel. 100
2-b Positional macro-expansion ofamodel. 101
2-c Callofamodel. 102
2-d Expressions of type conversion 102
VI-1.3 Nesting of expressionsonsignals 104
VI-2 Elementary expressions e e e 107
VI=2.1 Constantexpressions i e e 107
VI-2.2 Occurrence of signal or tuple identifier. 108
VI-2.3 Occurrence of statevariable 108
VI=3 DynamiCc eXpresSionsS. v v v i e e e e e e e e 109
VI-3.1 Initialization expression o 110
VI-3.2 Simpledelay 110
VI-3.3 Slidingwindow e 111
VI-3.4 Generalizeddelay 113
VI—4 Polychronous expressions. o i i i i e e e e e e 114
VI-4.1 Merging o . o e e e e e 114
VI-4.2 EXtraction. e 115
VI-4.3 Memorization. 116
VI-4.4 Variable clocksignal 117
VI-45 Counters. e e 118
VI-4.6 Other properties of polychronous expressions 119
VI-5 Constraints and expressionsonclocks. 120
VI-5.1 Expressionsonclocksignals. 120
l-a Clockofasignal. 120
1-b Clockextraction 121
1-c Emptyclock 122
VI-5.2 Operators of clock lattice 122
VI-5.3 Relationsonclocks. 123
VI-6 Identity equations. 125
VI-7 Boolean synchronous expressions v e e 126
VI-7.1 ExpressionsonBooleans. 126
l-a Negation. 126
1-b Operators of Boolean lattice 126
VI-7.2 Booleanrelations. 127
VI-8 Synchronous expressions on numericsignals. 129
VI-8.1 Binary expressions on numericsignals 130
VI-8.2 Unaryoperators i e e 131
VI-9 Synchronous condition. 132

TABLE OF CONTENTS 9

VIl Expressions on processes 135
VII-1 Elementary proCESSES v . v i v i i e e e e e e e 135
VII=2 Composition e e e e e e 135
VIIL3 Hiding e e e e e 136
VIl-4 Confining with local declarations. 137
VII-5 Labelled processes. e e 138
VII-6 ChoiCe PrOCESSES. v v e i e e e e e e e e e e e e 139
VII=7 ASSErtion PrOCESSES. . . .« v v v o i e e e e e e e e e e e e 144

VII-7.1 Assertions of clock relations. 145
VII-7.2 Assertions of identity equations. 146
VII-7.3 AssertiononBooleansignal. 147

D THE COMPOSITE SIGNALS 151

VIl Tuples of signals 153
VIII=1 Constant eXpressions. o i e e e e e e e e 153
VIlI-2 Enumeration of tupleelements., 153
VIII-3 Denotation offield. 154
VIlI-4 Destructuration oftuple. 154
VIII-5 Equation of definition of tuple component. 155

IX Spatial processing 157
IX-1 Dimensions of arrays and bounded values. 158
IX—=2 Constant eXpressSionsS. o e e e e e e e 159
IX=3 Enumeration. 159
IX—=4 Concatenation. e e 159
IX=5 Repetition e e 160
IX—=6 Definitionofindex. 161
IX=7 Arrayelement e e e 161

IX—=7.1 Accesswithoutrecovery. 162

IX=7.2 Accesswithrecovery. e 162

IX-8 Extractionofsub-array. 163
IX—=9 Arrayrestructuration e 164
IX=10 Generalizedindices. 166
IX—-11 Extended syntax of equations of definition. 167
IX=12 Cartesianproduct. 167
IX—13 Iterations of processes o e 168
IX—=14 Sequential definition L 174
IX=15 Sequential enumeration 174
IX=16 OperatorsonmatriCes i i i e e e 175
IX=16.1 Transposition. e e 175
IX=16.2 Matrix products. e 176

2-a Productofmatrices 177

2-b Matrix—vector product. L L 177

2-c Vector—-matrix product. 178

2-d Scalarproduct. 178

10 TABLE OF CONTENTS
X Extensions of the operators 179
X-1 Rulesofextension 179
X-2 Examples e 180
E THE MODULARITY 181
XI Models of processes 183
XI-1 Classesof processmodels., 183
XI=1.1 ProCesses. i i i 185
XI=1.2 ACtions 186
XI-1.3 Procedures 186
XI=1.4 Nodes. e 186
XI-1.5 Functions 187
XI=1.6 Automata 187
XI-2 Local declarations ofaprocessmodel, 187
XI-3 Declarationsof labels. 188
XI-4 References to signals with extended visibility 189
XI-5 Interface ofamodel. 189
XI-6 Graphofamodel e 191
XI-6.1 Specification of properties. oL 192
XI-6.2 Dependences. e 192
XI=7 DIrectives e e e e e 195
XI-8 Modelsastypesand parameters oo 200
Xl Modules 203
Xll-1 Declarationanduseofmodules. 203
XIII Intrinsic processes 207
XllI-1 Minimalclock 207
XllI-2 Affine transformations. 207
XII=3 “Lefttrue” proCess. o i i i i e e e e e e e e e 210
Xlll-4 Mathematical functions. 210
XllI-5 Complexfunctions. e 211
XllI-6 Input-output functions. 212
F ANNEX 213
XIV Grammar of the SIGNAL language 215
XIV=1 Lexicalunits 215
XIV=1.1 Characters e 215
XIV=1.2 Vocabulary e 217
XIV=2 Domains of values ofthesignals. 219
XIV=2.1 Scalartypes. e 219
XIV=2.2 Externaltypes. 220
XIV=2.3 Enumeratedtypes e 221
XIV=2.4 Array types o o e e e e e e 221
XIV=25 Tupletypes e 221

TABLE OF CONTENTS 11

XIV-3

XIvV-4

XIV-5

XIV-6

XIV=7

XIV=2.6 Denotationoftypes. 222
XIV=2.7 Declarations of constant identifiers. 222

XIV=2.8 Declarations of sequence identifiers. 222

XIV=2.9 Declarations of shared variables 223

XIV=2.10Declarations of state variables 223

Expressionsonsignals. 223
XIV=3.1 Systems of equationsonsignals. 223

XIV=3.2 Elementary eXpressions. v v v i i e e 225
XIV=3.3 Dynamic expressions v i i e 226
XIV=3.4 Polychronous expressions. v v v v v v i 227
XIV=3.5 Constraints and expressionsonclocks 228

XIV=3.6 Constraintsonsignals. 229
XIV=3.7 Boolean synchronous expressions. 230

XIV=3.8 Synchronous expressions on numericsignals. 230

XIV=3.9 Synchronous condition. 231
EXpPressions ON ProCeSSES v v v v v i i e e e e e 231
XIV=4.1 Composition. e 232
XIV=4.2 Hiding e 232
XIV-4.3 Confining with local declarations 232

XIV-4.4 Labelled processes. o i i i e 233
XIV=4.5 ChOICe ProCeSSES v v v v i e e e e e 233
XIV=4.6 ASSErtion ProCESSES« v v v v e e e e e e e 233
Tuplesofsignals. e 234
XIV=5.1 Enumeration oftupleelements. 234

XIV=5.2 Denotationoffield 234
XIV=5.3 Equation of definition of tuple component 235

Spatial processing. e 235
XIV=6.1 Enumeration 235
XIV=6.2 Concatenation 236
XIV=6.3 Repetition. e 236
XIV-6.4 Definitionofindex 236
XIV-6.5 Arrayelement. e 236
XIV-6.6 Extractionofsub-array., 237
XIV=6.7 Array restructuration. 237
XIV-6.8 Extended syntax of equations of definition. 237

XIV=6.9 Cartesianproduct 238
XIV-6.10lterations of processes.o 238
XIV-6.11Sequential definition. oL 239
XIV-6.12Sequential enumeration.o 239
XIV=6.130peratorsonmatrices. i i i 239
Models of processes e 240
XIV=7.1 Classesof processmodels 240
XIV=7.2 Local declarations of a processmodel. 241

XIV=7.3 Declarationsoflabels 241
XIV=7.4 References to signals with extended visibility. 241

XIV=7.5 Interface ofamodel 242
XIV=7.6 Graphofamodel. 242

XIV=7.7 DIreCtives e e 243

12 TABLE OF CONTENTS

XIV=7.8 Models as types and parameters. 243
XIV=8 Modules e e 244
XIV=8.1 Declarationanduseofmodules 244
List of figures 247
List of tables 249

Index 251

Part A

INTRODUCTION

Chapter |

Introduction

The SGNAL language has been defined at INRIA/IRISA with the collaboratind support from the
CNET. This reference manual defines the syntax and semanitibe INRIA version of the language,
which is an evolution of the V4 version. The V4 version restdilfrom a synthesis of experiments made
by IRISA and by the TNI company. An environment of thesSAL language can be built in a style
and in a way it is not the objective of this manual to define. kwsv, such an environment will have to
provide functions for reading and writing programs in thexispecified in this manual; the translation
scheme will give the semantics of the texts built in this smwvment.

-1 Main features of the language

A program expressed in tha@AL language defines some data and control processing fromensyst
of equations, the variables of which are identifiersighals. These equations can be organized in sub-
systems (oprocesses A model of process a sub-system which may have several using contexts; for
that purpose, a model is designated by an identifier. It cgorédaded with parameters specifying data
types, initialization values, array sizes, etc. In additisets of declarations can be organized in modules.

[-1.1 Signals

A signal is a sequence of values, with which a clock is assoigd.

1. All the values of a signalbelong to a samsub-domairof adomain of valuesjesignated by their
commontype. This type can be:

e predefined (the Booleans, sub-domains of the Integersjsoiains of the Reals, sub-domains
of the Complex...),

e defined in the program (Arrays, Tuples),
e or referenced in the program but known only by the functidrag handle it (Externals).

2. The clock of a signalallows to define, relatively to a totally ordered set contairat least as much
elements as the sequence of values of this signal, the sobisstants at which the signal has a
value. A pure signal, the value of which belongs to the stoglevent, can be associated with
each signal. This pure signal is present exactly at the peesmstants of the signal; theent
type is a sub-domain of the Booleans. By extension, this pigmreal will be calledclock. A pure
signal is its own clock. In a process, the clock of a signahérepresentative of the equivalence

16 INTRODUCTION

class of the signals with which this signakignchronougsynchronous signals have their values at
the same instants).

3. These values are expressed in equations of definitionnecwhistraints.

I-1.2 Events

A valuation associates, at a logical instant of the progrmemsition of the automaton), a value with a
variable.

An event is a set of simultaneous valuations defining a tiiansof the automaton. In an event, a
variable may have no associated value: it will be said thatcbrresponding signal is absent and its
“value” will be written 1.. An event contains at least one valuation.

Determining the presence of a signal (i.e., a valuationhiewgent results from the solving of a system
of equations inFs, the field of integers modulo 3.

The value associated with a variable in an event results ffmmevaluation of its expression of
definition (thus it should not be implicit: circular defimtis of non Boolean signals are not allowed).

I-1.3 Models

A model associates with an identifier a system of equatiotislatal variables, sub-models and external
variables (free variables). The parameters of a model amstants (size of arrays, initial values of
signals, etc.).

A model may be defined outside the program; in that case, iisiblg only through its interface.
Calling a model defined in a program is equivalent to reptadhis call by the associated system of
equations (macro-substitution).

Invoking a model defined outside the program can produceedfdets on the context in which the
program is executed; these effects can be directly or iatiyr@erceived by the program and they can
affect the set of instants or the set of values of one or mdesfate signals. Such a model will be said
non functional (for example @ndom“fonction” is such a non functional model).

I-1.4 Modules

The notion of module allows to describe an application in alatar way. In particular, it allows the
definition and use of libraries written in@NAL or external ones, and constitutes an access interface to
external objects.

-2 Model of sequences

A program expressed in the@\AL language establishes a relation between the sequencesitiséitute
its external signals. The set of programs of theM8\L language is a subset of the space of subsets of
sequences (paB, chapteill).

-3 Static semantics

The relations on sequences presented in the formal modelildes set of programs among them are
only considered as legal programs those for which the ardesf each set of instants is in accordance

I-4. SUBJECT OF THE REFERENCE 17

with the ordering induced by the dependencies (causalibcipte), and which do not contain implicit
definitions of values of hon Boolean signals.

[-3.1 Causality

A real-time program has to respect the causality principlecording to this principle, the value of an
event at some instaritcannot depend on the value of a future event. The respecisoptimciple is
obtained in $GNAL language by the implicit handling of time: the user has a §é¢mmns that allow
him/her to make reference to passed or current values ohalsigpt to future ones.

[-3.2 Explicit definitions

The synchronous hypothesis on which is based the definifibtmdAGNAL language allows to develop
a calculus on the time considered as a pre-order in a disseéte

|I-4 Subject of the reference

This manual defines the syntax, the semantics, and forn@utess applied by a compiler to a program
expressed in theISNAL language. The BNAL language has four classes of syntactic structures:

1. The structures of the kernel languagefor which a formal definition is given in the model of
sequences. The kernel language contains a minimal set @topgeon sequences of signals of type
event andboolean on which the temporal structure of the program is calculatetbntains also
a mechanism allowing to designate signals of external tgpeson interpreted functions aplying
to these signhals. Removing anyone of these structures vetridtly reduce the expressiveness of
the language.

2. The structures of the minimal languagethat can be subdivided in three sub-classes:

(a) the non Boolean types and the associated operatorshahaw to write a program com-
pletely in the $SGNAL languagethe open vocation of theSIGNAL language is neverthe-
less clearly asserted:it is possible to use external functions/processes, defmediother
language, or even realized by some hardware components tiven advised when specific
properties exist, that are not handled by the formal calcwdde possible in thel&NAL
language;

(b) the syntactic structures providing to the language @ansability necessary for its special-
ization for a particular application domain, and for its nimg toward other environments or
languages;

(c) the operators and constructors of general use provalp@gramming style that favours the
development of associated methodologies and tools.

3. The standard (or intrinsic) process modelsvhich form a library common to all the compilers of
the SGNAL language;

4. The specific process model@hich constitute specific extensions to the standard Nbrar

This manual describes the structures of the kernel langaad®f the minimal language.

18 INTRODUCTION

-5 Form of the presentation

Three classes of terms are distinguished for the desaripfithe syntax of the language:

e the vocabulary of the lexical level: each one of teeminals designates an enumerated set of
indivisible sequences of characters;

e the lexical structures: th€erminals of the syntactic level are defined, at a lexical level, by sule
in a grammar the vocabulary of which is the union of teeminals sets; no implicit character
(separators, for instance) is authorized in the terms oactsd following these rules;

e the syntactic structures: thdON-TERMINALS are defined, at a syntactic level, by rules in a
grammar the vocabulary of which is composed of Teeminals; any number of separators can be
inserted between twderminals.

Every unit of the language is introduced and then descriletividually or by category, with the
help of all or part of the following items. Generally, a gdnderm representing the unit is given:
EXPRESSIONE., Es, ...)
whereEy, Es, ... are formal arguments of the generic term. This reptasiea is used to define the
general properties of the unit in the rubrics that desciiieent

The grammar gives the context-free syntax of the considgredture in one of the following forms:

1. Context-free syntax

STRUCTURE ::=

DERIVATION1
| DERIVATION2

| ...
Terminal ::=

DERIVATION1
| DERIVATION2

| ...
terminal ;=

SET1
| SET2

DERIVATION1, DERIVATIONZ are rewritings of the variablBTRUCTURE (respectively, of the
variable Terminal). SET1, SET2 are rewritings of the variableerminal; they areDerivations
reduced to one single element (cf. below).

Each D=RIVATION is a sequence @lemens, each of them can be:

e asetof characters, written in this typography (lexical levelydn

° a symbol (of the syntactic grammar) composed of letters, imtipography, for
which only the lower case form is explicited in the grammatr;

» aterminal symbol| (composed of other acceptable characters), in this typbgra
e aTerminal, in this typography,

e asyntacticSTRUCTURE, in this typography (syntactic level only),

I-5.

FORM OF THE PRESENTATION 19

e a non empty sequence efemers in their respective typography, with or withatstmment
in this typography, respectively in the following forms:

— element { eement }*

— { element} "
e an optionalelementdenoted jelement |,

¢ adifference of sets, denoteaementl \ element2}, allowing to derive the texts aélementl
that are not texts oflement2

The syntactic structures may appear either in the pluralp dhe singular, following the con-
text. They may be completed byantextual informationin this typography. For example, in
S-EXPR-ARITHMETIC, “-ARITHMETIC™” is only a contextual information for the syntactic
structureS-EXPR. Finally, several derivations may be placed on a same line.

Profile

This item describes the sets of input and output signalseoépression. This description is done
with the notations? (E) that designates the list of input signals (or portsfbfand ! (E) that
designates the list of output signals (or ports)ibf The notation ? {al, ...,an} (respectively,

! { a1y ... ,an}) designates explicitly the set of input ports (respecyivelitput portsy, ..., a,.
Finally, the set operationgd N B, AU B andA — B (the latter to designate the set of elements of
A that are not inB).

. Types

This item describes the properties of the types of the argtsngsing equations on the types of
value of the signals. The notatio7n(E) is used to designate the type (domain of value) of the
expressionE. Given a process model with nanfe (cf. partE, sectionXl-1, pagel83), the
notations7(?P) and7 (! P) are used to designate respectively the type of the tuplecidiny the

list of the inputs declared in the interface of the model, gdtype of the tuple formed by the list
of the outputs declared in this interface (cf. parsectionXl-5, pagel89).

(a) EQUATION

. Semantics

When the term cannot be redefined in theaL language, its semantics is given in the space of
equations on sequences.

. Definition in SIGNAL

TERM(E, Es, ...)
is a generic term of theIBNAL language, to which is equal, by definition, the represeratf
the current unit.

Clocks

This unit describes the synchronization properties of tharments (values of Booleans and clocks)
with a list of equations in the space of synchronization. beationw(E) is used to designate
the clock of the expressioA and the notatiori to designate the clock of the constant expressions,
or more generally, the clock of the context. An equation resegally the following form:

(@ w(Er) =w(E)

20 INTRODUCTION

7. Graph
This item defines the conditional dependencies betweerrguenents with a list of triples:

@ B 2 B,

The signalE;, precedes the signél, at the clock which is the product of the clock Bf, the clock
of E, and the clock representing the instants at which the Bodegral F'5 has the valuérue:
at this clock,E> cannot be produced before .

8. Properties
This item gives a list of properties of the construction (@ample, associativity, distributivity,
etc.).

(a) PROPERTY
9. Examples

(a) One or moré&xanpl es in the SGNAL language illustrate the use of the unit.

Chapter Il

Lexical units

The text of a program of thelSNAL language is composed of words of the vocabulary built on afset
characters.

-1 Characters

The characters used in theGBIAL language are described in this secti@héracter). They can be
designated by an encoding which is usable only in the comsnéme character or string constants, and
the directives, as precised in the syntax.

1. Context-free syntax

Character ::= character | CharacterCode

[I-1.1 Sets of characters

The set of characters (denoteldaracter) used in the &NAL language contains the following subsets:
1. Context-free syntax

character::= name-char | mark | delimitor | separator | other-character

() The setname-charof characters used to build identifiers:

(a) Context-free syntax

name-char::= letter-char | numeral-char | I:|

letter-char ::

upper-case-letter-char | lower-case-letter-char| other-letter-char

upper-case-letter-char::=

Al[sli{clio]i[E]I[F]I[6]IH]I1]
e fifefimpi[ngifoli[P]i[Q]i[R]
s vl xJrivi 2]

22 LEXICAL UNITS

lower-case-letter-char::=

|
inin|
st

B
BE

588
EoE

=]
]
BEE
=]
BBE

other-letter-char ::=

>
]

>

SE
pral

<] o]l

BECE

all

<[e]o]=]ls][=
EHEERREE

=]l =]lo] ~]>]
EEEE

EEBREL
==le] =]l

numeral-char ::=
ofr[li2fifsifali[slifs]i[7]ie]i[e]

Excepted for the reserved words of the language (keywaittus)ypper case and lower case forms
of a same letterétter-char) are distinguished. The reserved words should appealytagtdbwer
case or totally in upper case.

(i) The setmark composed of the distinctive characters of the lexical yaitsl the set of characters
used in operator symbols:

(a) Context-free syntax

II-1. CHARACTERS

23

mark ::=

separating character in real constants

and distinctive character of matrix products

EEEERCEBNENAIRE

start and end of character constants

[| start and end of strings

start and end of comments

character used in the definition symbol

equality sign

inferior sign

superior sign and end of the dependency arrow
positive and additive sign

negative and subtractive sign, and dash of the dependemnay ar
product sign

division sign, mark of difference, and sign of confining
construction of complex

delay sign

clock sign

exclusion sign

composition symbol

(i) The delimitors are terminals of the syntactic levellbwith other characters than letters and nu-

merals:

(a) Context-free syntax

delimitor ::=

| parenthesizing, tuple delimitors
| parameter delimitors, dependencies parenthesizing

| array delimitors
input delimitor
output delimitor

separation of units

- ==l

end of units

(iv) The separators given here in their ASCIl hexadecimal code (the space ctearand thdong-
separators are distinguished) :

(a) Context-free syntax

separator::= space

| long-separator

long-separator::= | \x9|horizontal tabulation

| | \XA |new line

| | \XC | new page

| | \xD |carriagereturn

24 LEXICAL UNITS

(v) The othermrintable characters, usable in the comments, the directives ancetimtations of con-
stants. This subsetther-character, is not defined by the manual.

[I-1.2 Encodings of characters

All the characters (printable or not) can be designated bgramoded form CharacterCode) in the
comments, the character constants, the string constadtshardirectives. The authorized codes are
those of the norm ANSI of the language C (possibly extenddtl wades for other characters), plus
the escape charactpfo| used in the comments. An encoded character is either a spbeeacter
(escape-codg or a character encoded in octal for@dtalCode), or a character encoded in hexadecimal
form (HexadecimalCod¢. The numeric codegJctalCodeandHexadecimalCodg contain at most the
number of digits necessary for the encoding of 256 chargictee manual does not define the use of
unused codes.

1. Context-free syntax

CharacterCode::= OctalCode | HexadecimalCode
| escape-code

OctalCode::= octal-char [octal-char [octal-char]]

octal-char:= [o] | [1][[2]I[3]I[4]I[5]I[6]l

HexadecimalCode:= hexadecimal-char [hexadecimal-char]

hexadecimal-char::= numeral-char

[[a]r[Bli[c]i[o]I[E]I|F]
] rlegife]rfafi[e]i]]

escape-code= |\a|audible signal
backspace
form feed
newline
carriage return
horizontal tab
vertical tab
backslash
double quote
single quote

? | question mark

<

percent

/O///_///////
I == ~[|=|>|=|o

II-2. VOCABULARY 25

-2 Vocabulary

A text of the SGNAL language is a sequence of elements of Teeminal vocabulary (cf. section
I-5, pageld) of the SGNAL language. Between these elemestparators can appear in any number
(possibly zero). ATerminal of the SGNAL language is the longest sequence of contigueusinals
and aterminal is the longest sequence of contiguous characters that céorrbed by a left to right
analysis respecting the rules described in this chaptegrriihal can contain a distinctive mark; the next
mark is not echaracter (it is used as escape mark):

1. Context-free syntax

prefix-mark ::= start of CharacterCode

[1I-2.1 Names

A name allows to designate a directive, a signal (or a growgigofals), a parameter, a constant, a type, a
model or a module, in a context composed of a set of declasatidwo occurrences of a same name in
distinct contexts can designate distinct objects.

A Nameis a lexical unit formed by characters among the set composéetter-chars plus the
characte plus numeral-chars; aName cannot start with aumeral-char. A Name cannot be a
reserved word. All the characters oNmmeare significant.

1. Context-free syntax

Name::= begin-name-char [{ name-char }"]

begin-name-char.:= { name-char\ numeral-char }

2. Examples

(a) a andA are distinctNames.
(b) X _25,The_passwor d_12Xs3 areNames.

In this document we will sometimes designata@mefrom a particular categorX by Name X.

[I-2.2 Boolean constants

A Boolean constant is represented |lye | or ‘ false| which are reserved words (hence they can also
appear under their upper case forhTsI,?UE ‘ and| FALSE ‘).

1. Context-free syntax

Boolean-cst:= | [false]

26 LEXICAL UNITS

[1-2.3 Integer Constants

An Integer-cstis a positive or zero integer in decimal representation asag of a sequence of numer-
als.

1. Context-free syntax

Integer-cst::= {numeral-char}*

[I-2.4 Real constants

A Real-cstdenotes the approximate value of a real number. There aresdtgoof reals: the simple
precision reals and the double precision ones that corftgiriormer. TheReal-css are words of the
lexical level so they cannot contain separators.

1. Context-free syntax
Real-cst::= Simple-precision-real-cst
| Double-precision-real-cst
Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
| Integer—cstD Integer-cst [Simple-precision-exponent |
(a Simple-precision-real-cstmay have an exponent)

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
| Integer-cstlzl Integer-cst Double-precision-exponent
(aDouble-precision-real-cstmust have an exponent)

Simple-precision-exponent:= ERelative-cst | Relative-cst
Double-precision-exponent:= @Relative-cst | @Relative-cst

Relative-cst::= Integer-cst

| Integer-cst
| El Integer-cst

2. Examples

(a) The notations contained in the following tables are &nmpecision representations respec-
tively equivalent to the unit value and to the centesimat pathe unit.

1e0 le+0 10e-1 le-2
1.0 0.1el1 | 0. 1e+1 | 10.0e-1 0.01 | 0.001e1 | 0.001le+1 | 1.0e-2

[I-2.5 Character constants

A Character-cstis formed of a character or a code of character surroundedytcurrences of the
characteEl.

II-3. RESERVED WORDS 27

1. Context-free syntax

Character-cst::= El Character-cstCharacterEl
Character-cstCharacter::= { Character \ character-spec-char}

character-spec-char.:=
| long-separator

[I-2.6 String constants

A String-cst value is composed of a list of sequences of characters suteduby two occurrences of

the charact (list of substrings).

1. Context-free syntax

String-cst::= { El [{ String-cstCharacter } *] El |
String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char::=
| long-separator

[1-2.7 Comments

A comment may appear between any two lexical units and mdgaea separator. It is composed of a
seugence of characters surrounded by two occurrences dﬁﬂnacte.

1. Context-free syntax
Comment::= [{CommentCharacter}+ 1

CommentCharacter::= { Character \ comment-spec-char }

comment-spec-char:= |%

-3 Reserved words

A reserved word must be either totally in lower case or tptadlupper case. In this manual, only the
lower case form (in general) appears explicitly in the graanrales. It can be replaced, for each reserved
word, by the corresponding upper case form.

The reserved words used by thes8AL language are the following ones:

1. Context-free syntax

28

LEXICAL UNITS

signalkw ::=

action‘ | ‘after‘ | ‘and‘ | ‘array‘ | ‘assert‘

boolean| | | bundle

case|

cell| | | char

complex| | | constant| | | count|

dcomplex |‘default | | defaultvalue| | deterministic‘ | ‘dreal‘

else| | ‘end‘ | ‘enum‘ | event‘ | ‘external‘

false| | |from | | |function

if] | [in]

init‘ | ‘integer‘ | ‘iterate‘

[label ‘ | |long

module| | | modulo]

next‘ | ‘node | ‘not‘

o_f |\ﬂ3erator | E‘

pragmas| | ‘private‘ | ‘proces#

real| | |ref ‘

shared‘ | ‘short‘ | ‘spec‘ | ‘statevar‘ | ‘step‘ | ‘string‘ | ‘struct‘

|
ven] | [o] 1] I [we] | e

unsafe‘ | ‘ use‘

var

when| | [where| | |window| | |with |

xor

Note: is currently hidden in the syntax of the language (cf. seckib-7, pagel95).

Part B

THE KERNEL LANGUAGE

Chapter lll

Semantic model of traces

llI-1 Syntax

We consider:

e A={a,ai,...,an, b, ...}
a denumerable set of typed variablesorts);

° F:{f,fl,...,g,...}

a finite set of symbols of typed functions;

e T={event,bool ean,...,t, ...}
a finite set of basic types (sets of values);

e TT= |J [0.0) =TT

neN
the set of array types,

. SS=U B—77T

BcA
the set of tuple types,

e 7TT=TUTTUSS
the set of types.

e the symbolgef aul t ,when, $.
We define the following sets of terms, defining the basic synfdhe SGNAL language:

e GD={ta}
the set ofdeclarations(association of a type with a variable);

e GSS={u,41: = flay,...,ap)}
the set ofstatic synchronougenerators (elementary processes), among them the setarbters
on arrays and tuples are distinguished;

e GDS={as:=: a1 $init ap}
whereaqg is a constant with same domain @s the set ofdynamic synchronougenerators (ele-
mentary processes);

32 SEMANTIC MODEL OF TRACES

e GE ={a3: =: a; when as} the set ofextractiongenerators (elementary processes);

e GM={a3:=: a;defaul t as}
the set oimergegenerators (elementary processes);

e recursively the sdPROC of syntactic processes as the least set containing:

— G=GDUGSSUGDSUGEUGM
the set of generators,

— PC={P1| P2 wherePl andP2 belong toPROC}
(composition process),

— PR={P1/ a (denoted also Pl where a) wherePl belongs toPROC anda
belongs toA}
(restriction process).

lI-2 Configurations

Let D be the set of values that can be taken by the varialelesnfigurationis an occurrence of the
simultaneousvaluation of distinct variablegsynchronous commmunication)lhe values respect the
properties resulting from the interpretation of the ternfgolr are used. In D, the set of Boolean values,
B={true, false}, is distinguished.

For a variable:; € A, and a subset; of variables inA, we consider:

D, the domain of values (Booleans, integers, reals...) thatlmeaaken by;.

D= |J D
a; € A;j
D,=D

The symbolL (L ¢ D) is introduced to designate the absence of valuation \@rable. Then we
denote:

DL=DuU{l}
D =Dy U{l}
ConsideringA; a non empty subset of, we callconfigurationon A; any application
e: A — Djl
e ¢(a) = L indicates that has no value for the configuratien
e ¢(a) =v Iindicates, fow € D,, thata takes the value for the configuratiore.
e(A1)={x/a € Ay,e(a) =z}

The set ofconfigurationson 4; (4; — D%) is denoted‘,’zl.
By convention, 1, is the single configuration defined on the empty set of pbiis is called unit

configuratior).
Theabsent configuratioon A; (A; — {L})is denotedl .(A4,).

I1I-3. TRACES 33

The set
k k
CA, — U gAi

AiCAy

is the set of all configurations on the subsetsiof
It is defined a special configuration o, denoteds, which is calledblocking configuration(or

impossible configuration).
The following notations are used:

Eay =&, vt}

Partial observation of a configuration

Let A1 C AandAy C Atwo subsets ofd ande € 5,41 some configuration od;.
The restriction ok on A, or partial observation of on A, is denoteda‘AQ:

€14, € 5A10A2
It is defined as follows:
e (AiNA#NN(e#1) = ((VaecAindz) ((ea,)(a)=e(a)))
o (AiNAr#NA(e=1) = (ea,=1)
o (A1NAy=0) = (ea,=ep=1¢)

Product of configurations

Lete; € E4, andes € €4, two configurations.
Their product is denoted, -e5:

e=er-ez € EAUA
It is defined as follows:
e (e=1) & (e =1V (e2=1))V (e1ja1n4; # €214,04,))
o (e£t) = ((ea, =e1) \(eja, =e2))

Corollary 1 (5941 1) is a commutative monoid.
The product operatoris idempotent and is an absorbent (nilpotent) element.

1I-3 Traces

A traceis a sequence of configurations (sequence of observatiati®)uithe blocking configuration.
For any subsetl; of A, we consider the following definition of the s’é@ll of traces on4;.

34 SEMANTIC MODEL OF TRACES

[11-3.1 Definition

’]jjfl is the set of non empty sequences of configurationd grcomposed of:

e finite sequences: they are the set of applications, N— 5:11 where N.; represents the set of
finite initial segments of N (set of natural integers, inding 0),

e infinite sequences: they are the set of applications-N 521.

The set

ca= U 74

AiCAy

is the set of all non empty sequences of configurations onuibsess ofA; .
The empty sequence of configurations is denbted
A trace onA; is either a sequence Gf?fl or the empty sequence. The set of tracesiotis:

Ta, =74 u{0r}
The set of traces on subsetsAf is:

Tca, =72, 0{07}
The set of traces defined ofy denoted?, is the union of the sefd 4, for all subsetsA1 of A.
The single infinite sequence defined ’B@* is denotedl 7~ and is calledunit trace. It is equal to the
infinite repetition(1.)* of the unit configurationl ...
Theabsent traceon A; (N — {_L.(4;)}: the infinite sequence formed by the infinite repetition of
Le(Ay))is denotedl 4,.

Notations

The smallest set of variables @f on which a given tracd’ is defined (definition domain of the
configurations composing) is referred to asar(T). By conventionyar(O7) = A.

For a tracel” andt an integer, we will note frequently; the configuratior?’(¢) of T at the instant,
and we will note sometimes, the value of a variable for this configuration.

[11-3.2 Partial observation of a trace

Let A; C AandA; C A two subsets ofl andT € TAl some trace oni;.
The restriction ofl’ on A,, or partial observation df’ on A,, is denotedT” Ay-
If Ay N Ay # 0, T4, is the tracel’ such that:

dom(Tg) = dom(T)
{ Vit € dom(T) Th(t) = T(t)\Ag

If Ay N Ay =0, THA2 = T”g) =]_T.
If Ay # 0,074, = Or.

I1I-3. TRACES 35

11-3.3 Prefix order on traces

The following relation is defined on traces:
T, £ 15 ifand onlyif:

{ dom(Ty) C dom(T5)
(V&) ((t €dom(Tr)) = (Ta(t) =Ta(t)))

It is said thatl} is a prefix ofT5.

Corollary 2

e /is an order relation ori, O is the minimum for this order.
e The set of prefixes of a trace is a chain.

e Any subset of prefixes of a trace has an upper bound.

The notationZ<; represents the prefix of a tragesuch that € dom(T<;) andt + 1 ¢ dom(T<;).

[11-3.4 Product of traces

The productl” = T;-T> of two tracesl} and7; defined respectively oAd; and A, is the greatest trace
for the order relation/ such that:

(CTHA1 £ Tl) /\ (1—“.42 A Tg)
(it is defined on4; U A5 and is obtained by termwise products of respective events).

Corollary 3 (TgAl -, 17) is a commutative monoid.
The product operatoris idempotent anf)7 is an absorbent (nilpotent) element.

[11-3.5 Reduced trace

A traceT} is said to be aub-traceof a non empty trac& if and only if there exists an infinite sequence
f1, strictly increasing (i.e., injective and increasing) Hr{duch a sequence is callegpansion function
onT}), such that:

T 0 figomry) = T1

(the notationf|x designates the restriction of a given functifpion the domainX).

Remarks
e (7 is a sub-trace of any trace;
e any prefixT; of T5 is a sub-trace of 5.

Corollary 4 The sub-trace relation is a preorder (reflexive and trangii

The sub-trace relation is not antisymmetric, as shown bydalh@ving sequencesia)* and(fa)®
(with f1(n) =n+1).

36 SEMANTIC MODEL OF TRACES

Definition A traceT; is said to be aeduced traceof a non empty tracd if and only if 7 is a
sub-trace off; and:

e (dom(Ty)isfinite) = (dom(T?) is finite)

e for any expansion functioyi; on T such thatls o fl‘domm) = Ti, then:
(Vt € (dom(Tp)) \ fi(dom(T1))) (Ta(t) = Le(A2))

Proposition The relation'is a reduced trace of”is an order relation.
“Ty is areduced trace df,” is denoted:

T C| 1o

Proof of antisymmetry:T} C| T, and, C| Ty

dom(T) = dom(Ty)

If dom(T?) is finite then the single possible expansion functioriZpiis the identity.

For any tracel’, T is a prefix of T} if and only if it is a prefix ofT5 is proved by recurrence on the
length ofT".

Then the existence of an upper bound to any subset of prefixesace proves the equality. O

For a given expansion functighand a tracd}, there exists a least trace (for the prefix ordgrTs,
such thatly C| Ts.

We denote by the function that, to an expansion functigrand a tracd’, associates this least trace
f 1T (example on figur&-Ill.1).

Then we have, by definition:

TC AT
T €1 €2 1 €3 eil
1T ¢ L 1 e 1 ey 1 L

Figure B—IIl.1: f1 T T with f1(0) =0, f1(1) = 3, f1(2) =4, f1(3) =5...

Property:
L1 (ATT)=(feofi)TT

For anyf, we have als¢f 1 07 = Op.
By convention:f T 17 = 1.

lH-4. FLOWS 37

l1I-4 Flows

Definition A flowis a trace which is minimal for the relatian, .

Comment: A flowF" on A; is a trace that does not contain the absent configuratioA,dmetween
two configurations which have valued variables.

Corollary 5

e (Fisaflowandry / F) = (Fyisaflow);

e Opis aflow;

e lpisaflow;

e if Fis afinite flow onA;, then(F L. (A;)) is a flow;

o | 4 isaflow.

[lI-4.1 Equivalence of traces
Definition Two tracesT’; and7; are said to be equivalent modulo (this is denotedZ} = T5) if
and only if there exists some tragesuch thatl’ C| 77 andT’ C| Ts.

This relation is indeed an equivalence relation.
Property For any tracel’, the equivalence class @f modulo L is a lattice.

Proof
e By definition, every paifl’, T5 in an equivalence class has a lower bound.

e Every pairTy, 15 in an equivalence class has an upper bound:
Let f1, f5 such that:

Ty o fi = min(T1, T3)
Tg o f2 = min(Tl, TQ)

The upper bound is the trace
max(T1,T2) = fi 1 Th = f5 1 Tx
with f1, f; defined as follows:

Vt, if 3s, f1(s) = t then f{(s) = max(t, f2(s)),
if s & fi(dom(min(T1,75))) thenifs = 0thenf{(s) =0elsef(s) = fi(s—1)+1

(f4 is defined symmetrically).
Then

(f{ o fl) T min(Tl, TQ) = (fé [¢] fg) T min(Tl, Tg) = maX(Tl, TQ)

38 SEMANTIC MODEL OF TRACES

Each equivalence class has a flow as lower bound. For afraites flow is denoted’.

Notation The set of flows om; is denotedS 4, .

[1I-4.2 Partial flow

Let A; C AandA; C A two subsets ol andF € SA1 some flow onA4; .
Theprojectionof F' on Ay, denotedl 4, (F), is defined by:

A, (F) = (Fja,)y
The following equalities hold:
o VF, IIy(F) =171
e 14, (0r) =0p

i HA2(LA1) = L141(7142

11-4.3 Flow-equivalence

Equivalence moduld_is an equivalence relation that preserves the simultamesgf valuations within
a configuration and the ordering of configurations withineger. traces which are equivalent modulo
possess the same synchronization relations.

A weaker relation is introduced, which is called flow-eqlevece. It allows to compare traces with
respect to the sequences of values that variables hold.

Definition A trace7” defined onA; is arelaxationof a tracel” defined on the same set of variables
Ay ifandonly ifforalla € Ay, T”{a} - T’”{a}. This is denoted?' C T".

Corollary The relaxation relation: is an order relation.

Definition Two tracesl; and7) are said to bélow-equivalen{this is denoted?; ~ T5) if and only
if there exists some trackE such thafl’ C T andT C Ts.

The class of flow-equivalence of a tra€ds a semi-lattice. It admits a lower bound which is a flow,
written 7.

[1I-5 Processes

[1I-5.1 Definition

A processon A; C A is a set of flows om; which are non comparable by the prefix relation.

I1I-5. PROCESSES 39

Example Let us represent a flow by the sequence of its events, whereean is represented by the
variables which are valued for it (successive events araratggl by the sign “;”).
Consider the following flows defined on variables:

Fr:oajabb
Fy . ajab;ab
F5: a;ab; b;b

The flowsF; and Fy, (respectively,F, and F3) can belong to a same process. Howevérand F;
cannot belong to a same process since they are comparable.

The set of processes ofy is denotedPAl. Itis a subset OP(SAl), the set of subsets cﬁAl.
The set

P§A1: U PAi

A;CAy

is the set of processes on the subsetd of

The processlp = {17}, defined on the empty set of porls and with the unit trace as single
element, is callednit process.

The process onl; defined by the empty set of flows is denof@g(A,).

Notation

The notatiorvar(P) is used to designate the smallest set of variable$ of which the proces? is
defined.

[11-5.2 Partial observation of a process

Let A1 C AandA; C A two subsets ofd and P a process om;.
Theprojectionof P on Ay, denotedl 4, (P), is defined by:

T4, (P) ={lla,(F) / F € Pandlly,(F)is maximal for/}

[11-5.3 Composition of processes

Let P, and P, two processes defined respectively.onand A,.
Thecomposition(or synchronous compositipof P, and P, denotedP; | P, is a process oA U Ay
defined by:

PP, ={Fe8aua,/ (BGFeP) (la(F)LF))
AN((BF e Py) (Ha(F)LF))
A\ (F'is maximal for/)}

Corollary 6 (PgAl, ,1p) is a commutative monoid.
The composition operatdris idempotent an@p(A;) is an absorbent (nilpotent) element.

40 SEMANTIC MODEL OF TRACES

[11-5.4 Order on processes

The following relation is defined on processes:
P Z P, ifandonly if:
(VFieP) ((BReh) (RH4F))

This relation is an order relation.

Proof of antisymmetry:

(Pllpg) = ((VF1€P1) ((HFQEPQ) (Flng)))

(Pgépl) = ((EngGPl) (FQAFg))

ThenF; = Fj since flows in a process are not comparable/by

ThenF} = 5. ThusP, = Ps. O

Corollary 7

I14,(0p(A1)) = 0p(A1 N Az)

o Uyop)(P)= P

a4, (P) = (T4, 0 114,) (P)
ILa,ua, (P) £ 114, (P)[Ma, (P)
Myar(py)(Pi1P2) £ P2

IT is monotonic: P, £ P,) = ([Ig(P) £ p(PR))

|is monotonic: P, £) = (Q|P1 £ Q|F2)

° HB(P1|P2) Z HB(P1)|HB(P2)

Proposition Let P, and P, two processes defined respectively nand As.
(P =1la, (P1|P2)) < (ana,(P1) £ a,0a,(P2))

Sketch of the proof:
Sincell 4, (P1|P») £ Py itis sufficient to prove that

(P £, (P1|2) & (Hayna, (P1) £114,04,(P2))

=) Assume thaiP?, £ 114, (P1|FP2).

Let FF € TT4,na,(P1)

(FFre) (F=1Hana,(1))

SinceF € Py, by hypothesis,(3F’ € 114, (P |P)) (Fy £ZF")
Thus (3F" € P|Py) (Fy £114, (F"))

By definition of the composition(3Fy € P») (14,(F") L FY)
Let F2m = 114,04, (F2”)

ThenF £ Fy/

I1I-6. SEMANTICS OF BASICSIGNAL TERMS 41

<) Assume thatl,na, (P1) £ 114,04, (FP2).

If Fy € Pp,then (3F; € T na, (P2)) (Mayna,(F1) £ Fy)

Thus (EIF2/ € P2) (HAlﬂAz (Fl) Z1an4, (F2,))

Thus (3F € Pi|Py) (F1 £114,(F)) O

Consequences
o if AyNAy=0: P, =104, (P,|P,) andP, = 14, (P, | P,)
o if A) C Ay (P =14 (P1|P2)) & (P L4, (R))
o if Ay C Ay (PL=P|P) & (a(P)Z4P)
o if Ay = Ay: (P, =Pi|P) & (P ZP)

As an application, ifP, represents a safety property defined on the same set of lesriakP;, P,
satisfies the property’,, which means that any flow af; is a flow of P, (P is less constrained than
Pl), if and only if P = P1|P2.

Note that there is the same result whenis defined on a subset of the variablespf

More generally, ifAs C Ay, P = P;|P, means thaf; is anabstractionof P;.

[1I-6 Semantics of basicSIGNAL terms

The semantics of each primitive operator is defined by a sibws: a SGNAL processon A; C Aisa
non empty set of flows od; (i.e., a subset oSAl) defined, from primitive operators and composition,
by constraints(relations) on the flows.

In the following, we denote generically : PAl a process oM, to define the semantics of the
corresponding term. In addition, we denef (x4, ..., z,) the set of ther; variables { = 1,...,n)
which are distinct.

[11-6.1 Declarations

Let 1. designate a type whose domain of values (g.).
The term

X

defines a procesB : 73{ X} representing all the possible sequences of values of thalsig

P=x{ TeSx)/
V) (M(X)#1) = (T(X)eT(w)) }
[11-6.2 Monochronous processes

A processP defined onA; is saidmonochronousf, at each instant for which one of the signals
is present (respectively, absent), all of them are alsoepteGespectively, absent). Flows defining
monochronous processes are called also monochronous flows.

VIrepP) ((vt) ((BXeA) (Ti(X)=1)) = ((Wed) (L(Y)=1))))

42 SEMANTIC MODEL OF TRACES

2-a Static monochronous processes

LetF be an operator. Under some interpretatioior which the interpretation df is denoted|F'||, the
term

Xn+1 L=l F(X1, ..ty Xn)

defines a procesB : Pvar(Xh ..., Xn, X,.1) DY some relation between the sequence of values of the
signalX,, 1 and the sequence obtained by the pointwise extension ofpjplcation of F, under this
interpretation, to the sequence of tuples of values of tgeatsX,,... X, (note that the sign:“=:"
makes explicit the fact that this term represents a non tritaquation).

P=x{ TeSvanx,,. . XX/
T is monochronous and

(V) ((T(Xn1) #L) = (Ti(Xns1) = [[F1I(Ti(X1), Ti(Xn)))}
2-b Dynamic monochronous processes: the delay
The term
Xo 1= X% 8init v

defines a procesB : Pvar(X1, X5) by the relation constraining the equality of the sequenceabfes
of the signalX, and the sequence of values of the sighaldelayed by 1V, is the initial value ofX,.

P=x{ TeSarx,x,)/
T is monochronous
and (Vt >0) ((Ty(X2)# 1) = (Ti(X2) =T—1(X1)))
and(Tp(X1) # 1) = (To(X2)=V) }

[11-6.3 Polychronous processes

A process defined oA is saidpolychronousf it contains a flow!" for which there exists some instant
in which one of the signals is present while another one isBpextension, a term is said polychronous
if it allows to define polychronous processes.

3-a Sub-signals
The term
Xz :=: X;ywhenX,

defines a procesP : Pvar(Xl,Xg,Xg) by the relation constraining the equality of the sequence of
values of the signat; and the sequence of occurrences of value of the signahen the Boolean signal
X, carries the valuérue.

P —A { T e Svar(Xl,Xg,Xg) / (Vt) (
(Th(X2) = true) = (T1(X3) = Ty(X1)))
N (Ti(Xz) # true) = (T(X3)=1))) }

I1I-7. COMPOSITE SIGNALS 43

3-b Merging of signals
The term
Xz :=: X;default X,

defines a procesP : Pvar(Xth’XB) by the relation constraining the equality of the sequence of
values of the signat; and the sequence formed by the occurrences of value of thal gigor by default
the occurrences of value of the sigial

P =A { T e SV&I'(X17X2,X3) / (\V/t) (
(Ti(X1) #1) = (Ti(X3) = Ty(X1)))
AN (X)) =1) = (L(X3)=T(X2))) }

[11-6.4 Composition of processes

The term
Py | Py

whereP; andP, define respectively processPy§ andP5 on the sets of variabled,; and A,, defines a
proces® : P A,UA, by the greatest relation constraining their common sigieaigspect the constraints
imposed respectively by, andP, (see an example on the figuBe-ll.2).

P =A P4|P2

[11-6.5 Restriction

The term
P1 / a

(orPy wher e a)
whereP; defines a procesP; on the set of variables!;, defines a procesP PAl\{a} by the
projection of P, on the subset of ports & which are different frona.

P=ally (a3 (Fy)

llI-7 Composite signals

The types of the &NAL language contain elementary types such as Booleans, iigjege., but also
structured types allowing to declare composite objectsic8ired types are tuple types and array types.

44 SEMANTIC MODEL OF TRACES

! !
a L U3
P1 L
! !
a9)‘ Wa)‘ 1
/ /
/ /
/ /
/ /
/ /
/ / .
! /
((|
a9 : Wo : 1
P2 } }
as i L i T3
\ \
N N
/ /l AN AN
! / N N
({ 3 3
! ! ! !
aq 1 : U1 : V2 : 1 : V3
! ! ! !
! ! ! !
P1|P2 a9 1 Cwy 1 W | 1
| | | |
! ! ! !
as X1 :) : 1 : 1 : T3
! ! ! !
\ \ \ \
aq U3 Uy
Pl‘P2 a9 - 1 1 -
as 1 €T3

Figure B-IIl.2: Two flows of the composition @ft andpP2

1I-7.1 Tuples
Construction of tuple
If E4, ... ,E, designaten signals of respective types, ..., un,, the term

(Elv- v vEm)

defines a tuple of signals, of tyge, x ... x u,) (Where x designates the product of domains), such
that

(Vt) ((E1,...,En)¢t = (E1g,- -y Emy))

Tuple types

I1I-7. COMPOSITE SIGNALS 45

Letm typespuyq, ..., um, m names of variables,, ..., A,, and a process of synchronizatiéh
The term

bundl e (1 Ay; ... i An;) Spec C
defines a tuple type (with named fieldls ..., A,) as the set of functions:

Z:{Ar,. . A} — (7 (1s) such thaB(as) € T(u;).
=1
It is reminded that the notation(y;) designates the domain of values (type) associatedwyith
When(' is the process of synchronization that defines all the fiditlseotuple (recursively) as being
synchronous, the corresponding type is then denoted bgthe t

struct (pu1 Ag; ... fm Ag;)

It can be considered, generically, that a tuple type, remtesl by a tuple with named or unnamed
fields (cf. sectionv—5, page78), can be viewed as a product of domains

(1 X« X i)
whereyy, is the type of the:"* element of the tuple.

Declaration of a tuple variable (with named fields)

The association of a tuple type with synchronizatfoywith a variable, denoted by the term
bundl e (1 Ay ... Ap;) Spec C X

defines a polychronous tuple of signals, such that

(V) (
(V) ((Xe(hs)# L) = (X(as) €T(mi))))
/\ (the relation defined by the process denoted’tig verified))

Remark:
Such a declaration is a@\VAL process with as interface, A4, ..., 1, Ay ininput, and the empty set
in output.

For the particular case of a monochronous tuple, the asgmti@denoted by the term
struct (p1 Ay} ... Ap;) X

defines a monochronous tugignal, such that
V) ((Xe#L) = (V) (Xe(hs)eT(mi))))
Access to an element

WhenX designates a polychronous tuple the type of which is defisddeaset of functions
E:{A1,... Ay} — | Jui such thaB(a;) € p;,

i=1
the term

Y = X.A;

46 SEMANTIC MODEL OF TRACES

defines a process allowing to access to a component of the tupl

(V) (Ye=Xi(A1))

Particular case: whendesignates a monochronous tuple, the term
Y =X A
defies a monochronous process allowing to access to a comipafitae tuple:

(vt) ((Xe#L1) = (Yi=Xi(A1)))
Pointwise extension

The operators defined on values of elementary types may baded canonically (pointwise exten-
sion) to tuples.

Let us consider someperatorF defined with the following signature:
B1 X ... X UN — HN+1
(note that operators may be polymorphic on some of theiraopks, so that a given, may stand here
for some set of types).

We will denote
(X_aik,. .. X_ank)
the elements of a tuplg, with m elements.

If at least one of th&, is a tuple the elements of which are correspondingly possiljuments of
the operatoF, more precisely, if
@Am) (R ((T() = (e, % ox g,)) V(T (X) = i))) A (

@R (T(Xe) = (i X X 14,)))

(wherefig,, ...k, andfy, represent some particular instances of typg
the term
XN+1 L=l F(X1, ..ty XN)

under some interpretatioh, specifies a process which defines the tuple wittelementsXy, 1 by a
pointwise application of:

(vVt) (Vi, 1 <i<m) (X_ainy, = [[Fllr(vi_ait, .- vn_ast))
where
(T() = Gty x o3 iy,)) = (vp_ai = X _aigy)) A (
(T() # (g >,)) A (T(R) =hn)) = (vr_aiy = Xiy))

This defines recursively new signatures of the operatorghabthe pointwise extension can be
applied recursively.

-7.2 Arrays

D being the set of values that can be carried by a variabieiniroduce a distinguished value, denoted
nil, such that, semantically,il ¢ D andnil # 1. This value is in particular the value of a non defined
element of an array. In the language, a value equalitanay be any (non determined) value of the
correct type.

I1I-7. COMPOSITE SIGNALS a7

Array types

Letm integersny, ...,n,, (n; € N), and a typev.
The term

[n1,...,nm] v

defines an array type as the set of functions:
(0.n1 — 1] % ... x [0..n,, — 1]) — T(v),
where [0.n; — 1] denotes the set of integers included between Ogrdl, andT(u) denotes the domain
of values of typev.
The curryfied and non curryfiedforms of the functions defining an array type are considered a
equivalent.
Thus, when the type is itself an array type, defined by the set of functions
([0.72ms1 — 1] X ... X [0enmp — 11) — T (),
the type denoted blyn, ..., n,,] v is defined by the set of functions
([0.121 — 1] X ... X [0enpmsp — 11) — T(p).

Declaration of an array variable

The association of an array type with a variable, denotedhéydrm
[n1,...,nn] VX

defines an array signal such that

(vt) (
(X # L)
= ((Vk,1<k<m) ((Yig, 0<ip <np—1) (Xelin,....im) €T()))))

For X an array of typg[0..ny — 1] x ... x [0..n,, — 1]) — v,
the set of tuples of types [@; — 1] x ... x [0..n, — 1] wherel < p < m is designated by om(X).

Complete arrays and partial arrays

An array of type([0..nqy — 1] X ... x [0..n,,, — 1]) — v is saidcompletaf the function
([0.n; —1] x ... x [0.0, — 1]) = v
that defines it is total.
If this function is partial, the array is sagartial.
In this case, it is defined by the total function
([0.n1 — 1] x ... X [0.ny, — 1]) — v U {nil}
that extends this partial function by associating with the non defined elements.

When the array defined by one of the following operators mapdrtial, the function described
by this semantics is necessarily a restriction of the famcthat defines the array. The corresponding
extension is such that any element non defined by the sermamgqual toil.

48 SEMANTIC MODEL OF TRACES

Array element

WhenX designates an array the type of which is defined as the senciidns
([0.ny — 1] x ... x [0.ny, — 1]) — v,

andI,, ..., I, are signals of type integer,
the term
Y = X[I, I

defines a monochronous process allowing to access to anrélefrtae arrayx:

(vt) (
(Xi #1)
= (M) (02 Iy < — 1)) A (Yo =Xe(L1gs -5 Ime))))

This operator is generalized below (see “extraction of auhy").

Static enumeration of array

The term
X = [E4,...Eq]
defines a monochronous process enumerating the elememswoba:

vt) ((Xe#Ll) = ((Vi=1,....,n) (Xi(1)=Ey)))
Iterative enumeration of array

The term
K :=: Nrecur £ffromv,

(whereN, maximum number of iterations, denotes a positive integhich has a stricly positive upper
bound,upper_bound(N); Vo denotes a value (or a tuple of values) of typeandf is a function fromy
into p),

defines a process enumerating elements of a vectoiodbizeupper_bound(N):

(vt) (
(K # 1)
= (Vi) (((0<i< N —1) A ((Ke(0) = Vo) A (K@i + 1) = [[fl]1(Ke(4)))))
V(N <i < upper_bound(N)) N\ (K (i) =nil)))))

The equationk (i) = nil expresses the fact that the corresponding value existse(silh the ele-
ments of an array have the same clock), but it is not detenilmethe language, this can be represented

This form is not provided as such in the concrete syntax ofahguage.

A particular formis 0..N—1 which represents the term Nrecur £ fromO wheref
designates the function on integers such fifad) = = + 1.

I1I-7. COMPOSITE SIGNALS 49

Pointwise extension

The operators defined on values of elementary types may baded canonically (pointwise exten-
sion) to arrays.

Let us consider some operatdefined with the following signature:
p1 X oo X UN — N+
(note that operators may be polymorphic on some of theiraopby, so that a givem, may stand here
for some set of types).

If at least one of th&X, has one dimension more than the corresponding argument ithetimition
of the operatoF, more precisely, if
@m) (k) ((T(Tx) = [0.m — 1] —h) V (T(TXe) = i))) A (

~ GR(7(TX) = [0.m — 1] 1))

(whereft,, andi, represent some particular instances of typg
the term

TXN+1 L=l F(TX4, ..., TXN)

under some interpretatioh defines a monochronous process which defines the @Xgay by a point-
wise application of:

(vt) (
(TXNt1, # L)
= ((Vi, 0<i<m—1) (TXn414(0) = [[F[]1(vie(d), - .-, vne(i)))
where
((T(TX) = [0.m — 1]) = (vgg(i) = TXp (1)) A (
(T(Txe) # [0 — 1] =) A (T(THe) =ig)) = (vre(§) = T X)))

This defines recursively new signatures of the operatorghabthe pointwise extension can be
applied recursively.

Cartesian product

With I andJ arrays of respective types
7(1) =[0.m — 1] — pand7(3) =[0.n — 1] — v,
the term

(11,37) : = <L,JI>

defines a monochronous tuple of signdl&r, JJ), with IT andJJ of respective types
T(II) =[0.m*xn—1] — pu andT(JJ) =[0.mx*n—1] — v,
such that:

(vt) (
(I #1)
= ((Vk,0<k<m-—1) ((Vp,0<p<n-—1) (
(ILi(k*n+p)=1Li(k) N\ (JJ(kxn+p)=Jip)))))

More generally, ifl is a tuple (with unnamed fields) of type
T(I):[O..m—l] — p1 X ..o x [0em — 1] — pp

50 SEMANTIC MODEL OF TRACES

andJ is an array of type
7(3)=[0.n—1] — v,
the term
(II4,...11,0d) 1= <L,I>
defines a monochronous tuple of signéis,, . .., II,, JJ), with, if IT designates the tupl@I4,...,II;),
II andJJ of respective types
T(II):[O..m*n— 1] = p1 x ... x[0.mxn — 1] — py,
7(33) =[0.msn—1] — v,
and:
(ve) (
(It # 1)
= ((Vk,0<k<m-1) ((¥p,0<p<n-—1)
(Ii(kxn+p) = Li(k)) \ (JJi(kxn+p)=Ji(p))))))
The cartesian product is used in particular to define joiimttiexes used for multi-dimensional itera-
tions of processes.

Remark:<Iy,... Ip> =<1, 1o,. .. Ip>>

Partial definition of array

The term
Y =0 (Iq,...,Ih) 0 X
wherelq,...,I, are integers or arrays of integers:
7(1,) =.. —T(I)= ([0.01] x ... x [0.b)]) = v

with v an integer type, and the ba5|c integer values ofithare positive or zero,

T(X) = ([0..c1] x ... x [0..¢,]) — pwith ey > by, ... ¢, > by,

and7(Y) = ([0..a1] x ... x [0..a,]) — pU {nil} withfor1 <i <mn,a; = max I;(K)
KeDom(1;)

defines a monochronous process which specifies, in the gease a partially defined array:

(vt) (

(Xe # 1)

=
(p=0) /\(
(Y’t(Iltw") Xt)/\(
(VJ € Dom() ((J #(

V o ((p=1) A
((v(]lvvjn) GNn) (
K={(ki,....,kp) €NP/Vi,1<i<nLylki,....k)=75})) = (
(K ?é @) = ((Kmax = inez}}({ k) = (n(]la v 7]n) = Xt(Kmaw)))))))))

where thek,,,. are obtained by the maximal elements in the $€tsising the lexicographic order on
NP,

Ly Ing)) = (Vi(J) =nil)))))

I1I-7. COMPOSITE SIGNALS 51

Extraction of sub-array

The definition of the operator of access to an element of agiagn above is generalized in the
following way to define the extraction of sub-array.

The term
X =0 Y[14,0004
wherel,..., I, are integers or arrays of integers:
7(1.) =... =7(1,) = ([0.b1] x ... x [0.b,]) — v

with v an integer type, and the basic integer values ofithare positive or zero,
7(Y) = ([0..a1] x ... X [0..a,,]) — 1
and7(X) = ([0.01] x ... x [0.,]) — U {nil}

defines a monochronous process which, in the general cass;texsome sub-array froim

(vt) (

(Y # 1)

=
(((Lrgs-- - Ing) € Dom(Y)) = (Xe=Yi(L1gs-- - Lut))) A (
((Ligy -y Iny) & Dom(Y)) = (X¢ = nil)))

Vo (Y1, 55p) ENPVE T <k <p, 0<ji<bp) ((
((Ilt(jl,...,jp),...,lnt(jl,...,jp)) EDom(Y)) = (
Xe(g1y -0 dp) = Ye(L1e(rs -5 dp)s - Ine (1,5 9p)))) A (
(([1t(j1, o ,jp), o ,Int(jl, L ,jp)) € Dom(Y)) = (
Xi(J1s-- -5 Gp) = mil))))))

Sequential definition

The term
T :=: Tinext T2

where:

T(Tl) = ([0..c1] x ... x[0..cp]) — p1 U {nil},

7(T2) = ([0.01] x ... x [0..b,]) — p2 U {nil} with ¢; > by, ... ¢, > by,
and7(T) = ([0..c1] x ... x [0..¢,)) — (p1 U p2) U {nil}

defines a monochronous process which specifies, in the de@s® a sequential definition of an ar-
ray:

(vt) (
(T # 1)
= ((V(jl,...,jp)GNp,Vk,lﬁkgp, Oﬁ]kﬁck) ((
(((J1s---,Jp) € Dom(T2)) N\ (T2¢(j1,...,Jp) #nil)) = (
Ti(G1s-- - 0p) = T2, -, 3p))) A (
(1,5 dp) & Dom(T2)) V (T2(j1, - - -, Jp) = mil)) = (
Ti(G1s-- - 0p) = T1(Gr, -+ p))))))

52 SEMANTIC MODEL OF TRACES

lI-8 Classes of processes

The following classes of processes are usefully distirgrds

[11-8.1 Iterations of functions
Let P a process defined a#;. P is aniteration of functionon A, C A; if and only if:
(VF1, Fy € P) (Yt t2) ((Fhya,(t) = Foa,(t2)) = (Fi(t) = Fa(t2))))

Remark: An iteration of function does not need memory.

[11-8.2 Endochronous processes

Let P a process defined oA;. P is endochronou®n A, C A, whereA, is considered as a totally
ordered sefaq,...,a,}, if and only if the function

(I)P—>H{a1}(P) X .. XH{CLn}(P)

such that
O(F) = (H{al}(F), e ,H{an}(F))

is injective (and thus bijective, since it is necessarilgjesttive).

Informally, a process is endochronous on a set of varialblagyi flow of this process is entirely
determined by the sequences of values carried by thesdheiandependently of their relative presence
and absence.

In other words, a process is endochronous on a set of vasi#ldéven an external (asynchronous)
stimulation of these variables, it is capable of reconsitngca unique synchronous behavior (up_te
equivalence). Then, it can be implemented as a process vidiotostly insensitive to internal and
external propagation delays. This implementation andadtgext have only to agree on activation starts
and on the availability of data.

Property A processP defined on4; is endochronous oA, C A, if and only if:
(VE,F' € P) (((May(F))x = (4, (F))x) & (F =] F))

If a subsetd, C A; is considered as the setioputsfor P, we say thatP is endochronous if it is
endochronous on its inputs.

[11-8.3 Deterministic processes

A process is deterministic on a set of variables if any flowhis process is entirely determined by its
restriction to this set of variables.
Let P a process defined a#;. P is deterministicon A, C A; if and only if the function

O : P —114,(P)
such that
(1) = a4, (F)

is injective (and thus bijective, since it is necessarilgjesttive).

In other words, a process is deterministic on a set of vatalblany two flows of this process have
the same behaviors when they have the same projection osethisg variables.

I1I-8. CLASSES OF PROCESSES 53

Property A processP defined onA; is deterministic ords C A, if and only if:

(VE,F e P) (((May(F)) =, (May(F) = (F= F))

Remarks and examples:

e For any elementary proceds of the SGNAL language of the formx : =2 E(y1, ..., yn), if

x € {y1,...,yn}, thenP is deterministic oy, ..., yn}.

D B, oo yn), f

e For any elementary proced? of the SGNAL language of the form: :
x & {y1,...,yn}, thenP is deterministic oy, ..., yn}.

e X :=!YdefaultX
is not deterministic o Y}.

e The determinism om; is not stable by composition and restriction.

Properties:

If a processP is an iteration of function om;, then it is deterministic om;.
If a processP is endochronous oAy, then it is deterministic or;.

[11-8.4 Reactive processes

Reactivity of a process with respect to some set of variahlag be defined as the ability of the process
to react to each configuration of these variables in all state

Let P a process defined aA;. P is reactiveon A, C A, if and only if for each flowF € P, for
eacht € dom(F), for each event on A,, there exists a flow” € P such that:

(FLpoq = F<1) N (F' ()4, = ©)-

P is strictly reactiveon Ay C A; if and only if for each flowF' € P, for eacht € dom(F’), for each
evente on A, different from the absent event, (A,), there exists a flow” € P such that:

(Fét—l =Fei1) A (F/(t)\Ag =e).

A process which is reactive on a non empty detis obviously strictly reactive onls.

Examples:
e Z :=! Xdefaulty
is strictly reactive oq{X, Y}.

eZ :=:Xandy

is neither strictly reactive, nor reactive ¢R, Y}.

54 SEMANTIC MODEL OF TRACES

[I-9 Composition properties

[11-9.1 Asynchronous composition of processes

The partial order of relaxation is used to define the semauatictheasynchronousomposition of pro-
cesses: roughly, the asynchronous composition of two pses#’, and P, is defined by the flows the
projection of which on common variables 8f and P, are relaxations of the projections on these com-
mon variables of flows of?; and of flows ofP;.

Definition Let P; and P, two processes defined respectively dnand As.
The parallel composition(or asynchronous compositiasf P; and P, denotedP, || P, is a process

on A; U As defined by:

P1||P2:{F€SA1UA2/ ((EIFIGSANHFI/GPI) ((FIAFII)
/\ (HAlﬂAz (Fl) L HAlﬂAz (F))
A (Wapa,(F1) =) T a,(F)))
A ((BF, € Sa,,3Fy € Py) ((Fy L Fy)
N (ILayna, (F2) £ A na, (F))
A (g4, (Fo) =) Mg\ 4, (F)))
A (F'is maximal for/)}

11-9.2 Flow-invariance

Flow-invariance,based on flow-equivalence, is a property that relates sgnoluis and asynchronous
compositions of processes. It consists of ensuring thasgncharonous “implementation?, | P, of a
synchronouspecificationP; | P, preserves the sequences of values for all flows.

Definition Let P, and P, two processes defined respectively 4nand As.
The composition of?; and P, is saidflow-invarianton C A; U A, if and only if:

(VF e P|R,) (((VF' e P|[P2) (((Hr(F))~x = ((F))~) = (F=F)))
It means that a synchronous design made of a flow-invariamposition of processes is robust to

their distribution.

[11-9.3 Endo-isochrony

A special case of practical interest is the one of endochuspoocesses.

Definition Let P, and P, two processes defined respectively 4n and A;. They are saicendo-
isochronousf and only if Py, P» andIl s, na, (P1)|114,n4,(P) are endochronous.

Property If P, and P, are endo-isochronous, then their composition is flow-iaveron its set of
variables.

I1I-10. CLOCK SYSTEM AND IMPLEMENTATION RELATION 55

I1I-10 Clock system and implementation relation

The refinement of a system specification consists in tramsfigy its abstract behaviors into more con-
crete ones that make intermediate computational stepgixglonversely, the abstraction of a behavior
consists in discarding some intermediate calculationsisThis useful to have aimplementation rela-
tion between processes, that takes into account a notion of éfilement.

Sampler system

Let T a trace ond;. A sampler systerfor T'is a functions : A; — A; such thats is acyclic, and
forall a € Ay, s(a) is a Boolean and

(Vt) ((Ti(s(a)) =true) = (Ti(a) # 1))

A function s is a sampler system for a proceBsf and only if it is a sampler system for every flow
of P.

Clock system

LetT atrace omd;. A clock systenfior T is a sampler system such that foralE A,
(vt) ((Ti(s(a)) =true) < (Ti(a) # 1))

A function s is a clock system for a proce$sif and only if it is a clock system for every flow d?.
Sampling

Let 7" a trace ond; ands a sampler system féf. Thesamplingof 7" by s is the tracel” = S;(T')
defined ond; such that for alb € A4, (Vt) (T{(a) = S*(Ti(a))) whereS* is recursively defined
as follows:
if sis not defined om, thenS*(1;(a)) = Ti(a),
if s is defined oru, then

5*(Ty(a)) = Ti(a) if S*(Ti(s(a))) = true,
S*(Ti(a)) = L if S*(Ti(s(a))) # true.

Let P a process defined aA;. The sampling of® by a sampler systemfor P is the process”,
denotedP’ = X4(P), defined as the set of flows which are equivalent to samplih§ewves of P:

P'={T € Sa, /(T € P) \(T" = 55(T))}
Well-clocked implementation
Let P a process om; and(a process ol such that there exists a one-to-one correspondence
such thatr(A;) C A, and lets a clock system o).

Q is awell-clocked implementatioof P with respect tos (denoted =, P)if and only if:

y4,)(2(Q)) = P.

56 SEMANTIC MODEL OF TRACES

lI-11 Transformation of programs

A general principal of transformation of programs (whichajgplied for SGNAL programs all along
the design of an application, for example for verificatiorrgmse, for implementation purpose, or to
calculate abstractions of behaviors) consists in thewiatlg generic rewritting scheme: homomorphisms
of programs are defined such that a program is contained indimposition of its transformations by
these homomaorphisms. Typically, one of these transfoonatis an abstract interpretation of the initial

program.
Let A, a set of variables. We consider:

e an interpretation homomorphisnfi, which associates with each elementary prodeskefined on
A; aprocess)s = f(P)on Ay,

e an homomorphism, which associates with each elementary prodestefined onA; a process
Q,« = T’(P) OnAll C Ay,

such thalll4;na, (P) £ 114,04, (Qf|Qr)
and thusP = Il4, (P|(Qf|Qr)).
Then we define a transformation of programs (which is an hoanphism)
T Pa, — Pajua,
such that
Ty, (P) = 1eft(T Ty, (P))|right(7 7. (P))
with:

o lefti< X,V >)=X

o right(< X,Y >) =Y

o TT;.(P) =< f(P),r(P)>if Pisan elementary process

o TT;,(Pi|Py) = < eft(TT;, (P1))left(T Ty, (Py)), ight(T T, (Py))|right(T Ty, (Py)) >

Then,P =11y, (P|7f,.(P)).

Chapter IV

Calculus of synchronizations and
dependences

V-1 Clocks

As said before, the clock of a signal represents the preseatants of this signal, relatively to the other
ones. A system of clock relations is associated with anyesystf SGNAL equations (85NAL process),
in order to represent specifically tegnchronization®f the process.

For that purpose, an homomorphisfiipck, is defined on processes, which has the following prop-
erty:
Clock(P)| P=P
or equivalently:P £ Clock(P)
(by abuse of notation, we use the same notation for the gyotand semantic homomorphisms).

Then, the system of clock relations is encoded as a systeralyfigmial equations on the field of
integers modulo 3.

IV=1.1 Clock homomorphism

Let us consider the followinglerivedelementary processes, in order to make easier the expressio
clock equations:

e ay: =
is defined byus : = a1 == a1
where == represents the equality operator defined on values of amy Tpe signak is defined
at the same instants as the sigmahnd at each one of these instants, its value is the Booleaa val
true (the type ofas is the subtype calleebent of the Boolean type, which contains as single value
the valuetrue). It is said thata, represents the event clock of the signal

® alA: a9
is defined by ¢3 : =: "a1 =="ao) Wher e ag
and is generalized to variables ¢; "= ...” = a,). It expresses that the signals anda, (more
generally,aq, ...,a,) are present at the same instants (their clocks are equal).

TheClock homomorphism is defined as follows, depending on the typésecdignals (the notation
T(x) designates the type af): Boolean equations are left unchanged in the homomorphism

58 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

1-a Monochronous definitions

e Definitions by extension:
it 7(b) =7(a1) =...=7(a,) = boolean:
b:=: flai,...,ap) —b: = f(ay,...,ap)
else:
b:=: flai,...,ap)— b =a1 =..."=a,
e Clock:

b:=: "a—b:="a

e Delay:
if 7(b) = boolean:
b:=a$initv—ob:=raPinito
else:
b:= a$initv—b =a

1-b Polychronous definitions

e Extraction:

if 7(b) = boolean:
b:=: agwhenas—b:=: a; when ay

else:
b:=: agwhenas — b~ ="a; when ay
e Merging:

if 7(b) = boolean:
b:=: apdefault ao—b:=: aydefault ay

else:

b:=: aydefault ag— b~ ="u; def aul t "as
1-c Hiding
Clock(P wher e a) = Clock(P) wher e a

1-d Composition
Clock(Py | P)=Clock(Py)| Clock(Py)

IV=1.2 \Verification

As a consequence, R is a safety property satisfied 8yock(P),
which is expressed b{ | Clock(P) = Clock(P),
R is also satisfied by sinceP = Clock(P) | P.

IV-1. CLOCKS 59

IV=1.3 Clock calculus

Since the system of clock relations handles only values olé&m signals, and presence/absence for the
other types of signals, there is a natural encoding of thakees in the fieldZ/3Z of integers modulo 3

(or Galois fieldF; with three elements):

Fs=[{—1,0,1},+, %]

with the usual meanings for operations and valuesq the usual addition modulo 3, is the usual
multiplication).

We define the set of polynomials ¢y and a set of variables isomorphic to the variables oiGav&L
program. The association of the value 0 with a variable migis the absence of value for the associated
signal in the corresponding instant. With each present &@ookignal, the value 1 (which is equal to 2
in Z/3Z) is associated if its current value false, and the valuet1 is associated if its current value is
true. Thus, the square of the value of the variable associatédaygtesent Boolean signal is equal to 1;
for each non Boolean signal, we are interested only in thegmee or absence of a value at the current
instant. So we associate with such a signal a squared \ariabl

The synchronization of alSNAL program is expressed by a system of equations in the setwf pol
nomials onF; defined by the homomorphism described below.

3-a Monochronous definitions

e Definitions by extension:

b:=: flar,...,ap)— b =a?=...=a?

(some relation on the values &fa, .. .,a, is obtained wherf designates a Boolean operator).
e Clock:

b:=: "a—b=a?
e Delay:

b:=a$initv—&ui=0-a?)*x& +a, =0, b=a’*¢&,

3-b Polychronous definitions

e Extraction:

b:=: a;whenag b =ay*(—ay — a3)
e Merging:
b:=: a;default ag+b=aj + (1 —a?)*ay
3-c Hiding

Replaces, in the system, the hidden variable by an intemal o

3-d Composition

The system obtained fé?1 | P2 is the union of the systems obtained Rit and forP2.

60 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

3-e Static and dynamic clock calculus

Then the calculus of synchronizations (clock calculus) @l@anAL program is done by studying a
dynamic system such as:

Xn+1 - P(XN7YH)
Q(Xm Yn) = 0
Qo(Xo) = 0

whereX is a state vector ifZ/3Z)P andY is a vector of events (abstract interpretations of sigrihks)
make the system evolve.

Such a dynamic system is a particular form of finite statesiteom system. Thus it is a model of
discrete event system on which it is possible to verify progg or to make control.

Studying such a system then consists in:

e studying itsstaticpart, i.e., the set of constraints

e studying itsdynamicpart, i.e., the transition system

Xpp1 = P(Xn,Yn)
Qo(Xo) = 0

and the set of its reachable states, etc.

IV—2 Context clock

The clock relations imposed by&VAL operators imply the existence obntext clockgor the various
occurrences of the signal variables.

A particular case of this situation is for the occurrenceafstants, since such a context clock is the
only way to assign a clock to the occurrence of a constant.

Occurrences of constants are allowed iBAL expressions as a practical way to designate constant
signals, i.e., signals with a constant value. The occug@icsuch a constant;,, in some expression,
stands for the occurrence of some hidden signalefinedas : =: z$init v.

Each occurrence of a constant has a particular clock (wheemat be fixed explicitly since the
corresponding signal is hidden): this clock is defined bycihatext of utilization of the constant.

It is defined a utilization mode of the constants:

e allowing as much flexible use as possible
(we want to be able to write + 5 butalsox + (y default 5));

¢ allowing intuitive handling of their clocks (a constant igliglered at the clock necessary for the
coherence of a synchronous expression);

e free of interpretation for the synchronous operati@msl in particular, preserving possible proper-
ties of commutativity, associativity. .. of these operator

e preserving the spirit, if not the letter, of the substitatjgrinciple;
e preserving the properties of the temporal operators:

— “associativity” ofwhen,

IV-3. DEPENDENCES 61

— associativity ofdef aul t ,
— “right distributivity” of when ondef aul t .

These requirements lead to consider that the occurrencemistant has a clock which is provided by
the context.This has the consequence that the substitution principieaigapply in general.
The rules for the definition of the context clock are introgltiinformally below.

e For a definition

the context clock of¥ is the clock ofX.

e For a monochronous expression, the context clock of eaalreegt is the context clock of the
expression.

e For adelay
E$

the context clock oF; is undefined, which means that the argument of a delay caeratbnstant
(note that it has also consequences on derived operators).

e For an extraction
FEiwhen C

having H as context clock, the context clock 6fis H, that of F; is the clock product o/ and
of the clock at whichiC' has the valuerue
(this can be used to assign explicitly a clock to a constant).

e For a merging of signals
FEidefault By

having H as context clock, the context clock &f and of E5 is H.
For exampleb default x isequivalent tc.

In the sequel, the clock of a constant outside some contéibevdenoted:.

The rules for the calculation of the clock of a constant inveegicontext apply also for the signals
the clock of which is undefined; such a signal is obtained leydberatovar . The clock ofvar E
outside some context is also denoted

V-3 Dependences

The equations on signals imply, at the execution, an evaluatrder which is described by the depen-
dence graph.

62 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

Figure B-IV.1: Formal meaning of the dependence statement.

IV=3.1 Formal definition of dependences

The following informal definition of dependences can beestat

A signalx depends on a signal“at” a Boolean conditiort (noted y£> x) if, at each instant for which
cis present andrue, the event setting a value tocannot precede the event setting a valug.to

A formal definition in the form of an automaton is presentecehé&Ve give the formal meaning of the
statement

y S x (IV.1)

in Figure B—IV.1. In the figure, the clock equations in states can be read msvil 3 (c + ¢?) = 0
means “abseng) v (absentf) vV ¢ = false)” (at the considered instant);?> = 0 means “abseny(”;
c+c® = 0 means “(absent] VV ¢ = false)”. This figure describes a non deterministic automaton thic
represents the legal schedulings of calculi in one instawebaform with statement\(.1).

e States of the automaton are made of dependence graphs akaeglemtions. Clock equations can
be represented as equationsfin

e Transitions are labelled by signalg, ¢, z), or by the empty word. A transition labelled byy
reads: “signaly occurs, with any legal value”. A transition labelled &yl) (respectivelyc(—1))

IV-3. DEPENDENCES 63

reads: “signak occurs, with valudrue (respectivelyfalsg”; the empty worde represents the
occurrence of any signal bug,(c, x).

¢ In the automaton of FigurB-IV.1, all the states have an additional transition (not reprteseim
the Figure), labelled by, toward the initial state (which is represented with a thigkle in the
Figure).

The automaton describing all legal schedulings of calaulia program in one instant is obtained
by a synchronous product of such basic automata, as desénilsectionlV—3.3. Since these automata
describe instantaneous behaviors, they are cafleio automata. The states of the transition system
describing the overall behavior of a program areftiteedstates (ormitial states) of the micro automata.

IV=3.2 Implicit dependences

The equations defining a process may induce implicit deperede such as described in the following.
Notations: For a Boolean, we use the notatiofr] to represent the clock at whichhas the value
true, and[—c| to represent the clock at whiethas the valug alse.
In addition to the implicit dependences described below,fdtlowing implicit dependences apply
equally:

. ~
e for any signalks, =z — x

o for any Boolean signat, ¢ -5 [¢] and ¢ [~(]

[¢]

e any dependenceA,% x implies implicitly a dependencle] — x.

2-a Monochronous definitions

e Definitions by extension:

b:= flay,...,an)

The following implicit dependences exist:

a1—b,...,a,—b
e Clock:

b:=!"a

b is identified with the clock o, there is no implicit dependence.
e Delay:

b:=:a$initow

There is no implicit dependence.

2-b Polychronous definitions

e Extraction:

b:=: apwhenay
The following implicit dependence exists:
D

CL1—>b

64 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

e Merging:

b:=: apdefault ay
The following implicit dependences exist:

ag
where as, "— "a; designates the clock representing the instants, dfiat are not instants af .

IV=3.3 Micro automata
3-a Definition of micro automata

The micro automaton associated with a program describdegheschedulings of calculi iane instant.
Let A be a set of variablesd® = A+ U A~ is the set of variables of labelled by+ or —.
A word on A is any subsetn of A° such that

a® € m = a® ¢ mwheret = —and— = +
A micro automaton o is a tuple

< S,P(A%),S;, I C S xP(A%) x S >

such that:
e S; C S: Sisthe set of states arf§} is a set of initial states;

o if 51 "3 55 € I' (' is the set of transitionsy; is the label of the transition), and ~3 s3 € T, and
. ands,, "% s,,1 € I, then:

Vi # j,m; N'm; =10
n
andm = Uml is a word onA.
i=1
. @ 1
o if sy~ s0€ll then s5 € S;
The micro automaton is calleshturated micro automatoif, in addition,
31@(92eFandSQTﬁszj,eF:slml«Lﬁsz;@eP

Let AUT be a micro automato&at(AUT) is the saturated micro automaton which contadds?.
Consider two micro automata defined respectivelydgrand A, with A1 N A; = A. Two labels of
transitions,m; on Ay, andms on A, are said ta@oincideon A if and only if:

(ml N AS) = (MQ N As)

Let AUT) =< S1,P(Af),S11,T1 > and AUT, =< S, P(A3), Sar, T2 > two micro automata.
Their (synchronous) product, denoted/T = AUT;||AUT,, is the micro automaton od; U As,

defined by:
AUT = Sat(< S X SQ,’P(AT U A§)751[x Sor, I’ >)

10 is denotedk in IV-3.1.

IV-3. DEPENDENCES 65

with I" defined as follows:

mi

(s1,82) ~ (8],82) €T iff mlﬁAgz(Z)andslTﬁ sh el

(s1,80) "5 (s1,85) €T iff o N Aj = () andsy "3 sheTy

(s1,82) "2 (s, sh) € T iff my andms coincide onA; N As
ands; 3 5| € T'; andsy "3 s € Ty

3-b Construction of basic micro automata

(i) Micro automaton associated with a system of equations

Let us consider a system of clock equations on a set of vagabl
Y:R(A)=0

having at least one solution (the system encodes clock iegsatf a program).

A partial valuationof X is any system of equations : R'(A’) = 0 equivalent taR(A) = 0in which
a non empty subsefuy, ..., a,} of variables ofA have been replaced by values ..., v, € {—1,1}
such tha®>’ has at least one solution.

If o denotes such a substitution, the following notations aeelus

o(a;) =v; denotes the value assignedaddy o
o(R(A)) denotes the syste’(A’) obtained by the substitution.

Then we consideP (%) the set ofR'(A’) such that there exists verifying
o(R(A)) = R'(4).

The micro automaton associated wilhs the saturated micro automaton

< S, P(A®*),{so}, T >

such that:

e there exists a bijection : P(X) — S with ¢(R) = sg

o for any partial valuatiow of R'(A’) € P(R(A)),

() 5 §o(R) € T
if and only if:

at €T iff o(a)=1and
a-eT iff o(a)=-1

e forall X' : R'(A") = 0 such that

Va,a € A’ = a = 0is a solution of®/

then
d(R) L so el

66 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

(ii) Micro automaton associated with a dependence

The micro automaton associated with c
y—X

is defined as follows.
We consider the following states of resolutién

c
Yy —X,y—=X, {y> l‘}, {Cv :E}» (y2 (C + 62) = 0)7 {y}> {$}> {C}v (C + ? = 0)7 (y2 = 0)
The micro automaton associated Withgy x is the saturated micro automaton

Sat(< S, P({y,z,c}*), {so}, T >)

such that there exists a bijectign: £ — S with ¢(y =) = sg
and withI" defined as follows:

0] £ y—x)el
¢ S ¢({y,x}) €T

In addition,T" contains all other transitions coming from resolution sasldescribed in (i).

The corresponding micro automaton is displayed in Figg#&V.1, wherec™ andc¢~ are denoted
respectivelyc(1) andc(—1), andy® andz® are denoted andx; moreover, thd) transitions have been
omitted in the figure.

(iif) Micro automaton associated with a memaorization

The encoding presented iW—3.1 considers not only the clocks, but also treduesof the Boolean
flows: delayed Boolean flows are th&ate variableof the program.

The micro automaton associated with =: y $ i ni t v wherex andy are Boolean flows is the
saturated micro automaton obtained from the micro automdépicted on Figur&-IV.2. The initial
states of this micro automaton are the states representiéwiick circle in the Figure.

(iv) Micro automaton associated with a process

The micro automaton associated with a process is the pradtice saturated micro automata asso-
ciated with each definition involved in the process.

IV-3. DEPENDENCES

67

X :=: y$ init true x :=: y$ init false

Figure B—IV.2: Micro automatonof : =: y$init v

Part C

THE SIGNALS

Chapter V

Domains of values of the signals

A signal is a sequence of values associated with a clock. eTvases have all the same type, which is
considered as the type of the sequence. The objective oftihister is to present the notations used to
represent these types and the processings which are appligdm. An element of the set of types of
the SGNAL language is denotedpe.

Let E be a term of the &NAL language; we denote by(E) the type associated with the teirand,
whenE is a constant expressiom,(E) the value of this expression, elaborated in the context iictvE
appears.

The set of types of theISNAL language contains the scalar types, the external typearridnetypes
and the tuple types.

1. Context-free syntax

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

V-1 Scalar types

Scalar types are the following: synchronization typesget types, real types, complex types, character
type, string type; the integer, real and complex types c@®be set of numeric types; character and
string types compose the set of alphabetic types.

1. Context-free syntax

Scalar-type::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ;= Integer-type

| Real-type
| Complex-type

Alphabetic-type ;= |char

string

72 DOMAINS OF VALUES OF THE SIGNALS

V-1.1 Synchronization types

The synchronization types are used to define the clocks digmals. They are the typ@ent (or pure
signal) and the typé&oolean.

Denotations of types

1. Context-free syntax

Synchronization-type::= |event

boolean

2. Types

(a) T(event) = event
(b) 7(bool ean) = boolean

Denotations of values

e A signal of typecvent takes its values in a single-element set: there is no asesdaanstant and
a parameter cannot be of that type.

e The constants of typolean are the logical values denoted with the syntax Bfoelean-cst(cf.
partA, sectionll-2.2, page25).

e The default initial value of typéoolean is the valuefalse.

V-1.2 Integer types

Integer values can be in short representation (&/pet), normal representation (typeteger), or long
representation (typleng); a given implementation may not distinguish these typeshis document, the
notationsnax long, min long, mazx integer, min integer, max short andmin short will be used to
designate respectively: the greatest representablesinefitypelong), the smallest representable inte-
ger (of typelong), the greatest integer of typateger, the smallest integer of typateger, the greatest
integer of typeshort and the smallest integer of typéort. These values depend of the implementation
and respect the following order:

min long < man integer < min short <0 < max short < max integer < max long

min integer < 0

Denotations of types

1. Context-free syntax

Integer-type ::= |short
integer

e

| |long

2. Types

(@) T(short) = short

V-1. SCALAR TYPES 73

(b) T(i nt eger) = integer
(c) T(I ong) =long

Denotations of values

The positive values of an integer type are denoted followihegsyntax of arinteger-cst (cf. part
A, sectionll-2.3, page26). A negative value has not a direct representation: it isiabd using the
operatoB applied to a positive value.

1. Types
(&) The type of arninteger-cst F is the smallest integer type that contains it.

2. Semantics

e An Integer-cst denotes an integer value represented in decimal base jreeshtaetween 0
andmax long.

e An occurrence of an integer value of typkort (respectively,integer andlong) smaller
thanmin short (respectively,min integer andmin long) or greater thamnax short (re-
spectively,maz integer andmax long) results, in the considered type, in a value depending
of the implementation.

e For aninteger-type, the default initial value is the value O.
Bounded integers

Integers have a special role since they can be used to indeysain that case, we have to consider
bounded values.

In this document, for a given signal, we will use sometimes the following notations:
e lower_bound(E) designates the lower bound of the valuegof

e upper_bound(E) designates the upper bound of the value& of
These bounds are constant integers.

V-1.3 Realtypes

The real values can be in simple precision representatyge {teal) or double precision representation
(typedreal); a given implementation may not distinguish these types.

Denotations of types
1. Context-free syntax

Real-type::= |real
| | dreal

2. Types

(@) 7(real) =real
(b) 7(dr eal) = dreal

74 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values FE;. Eye E5 (simple precision) o;. E»d E5 (double precision)

A value of real type is denoted following the syntax dR@al-cst(cf. partA, sectionll-2.4, page26).
A Real-cstdenotes the approximate value of a real number.

1. Types

(&) A Simple-precision-real-cstis of typereal.
(b) A Double-precision-real-cstis of typedreal.

2. Semantics

e The valueyp(E;), whenE; is omitted, is 0.

e If E, hasn digits, the value of the constant is the approximate valugafe;) + ©(E2)
10-7) + 10P ().

e For aReal-type the default initial value is the valu& 0 or 0. 0d0 following the type.

V-1.4 Complex types

The complex values have the common representation of tbaiponents (simple or double precision,
respectively typesomplex anddcomplex); both types are distinguished in a given implementation if
and only if the typeireal is distinguished from the typecal.

Denotations of types

1. Context-free syntax

Complex-type::=
|

2. Types
(a) T(corrpl ex) = complex
(b) T(dcorrpl ex) = dcomplex

Denotations of values

A value of complex type is obtained for example in the follogriexpression, the first element of
which is the real part and the second one the imaginary papdct C, sectionVIl-8.1, pagel3l).

1. Examples

(@ 1.0 @(—1.0)

For aComplex-type the default initial value is the pair of default real initi@lues.

V-2. EXTERNAL TYPES 75

V-1.5 Character type

The typecharacter contains the set of the admitted characters in the language.

Denotation of type
1. Types

€) T(Char) = character

Denotations of values
A value of typecharacter is denoted by &haracter-cst (cf. partA, sectionll-2.5, page26).

The default initial value of typeharacter is the character \000’ .

V-1.6 String type

The typestring allows to represent any sequence of admitted characters.vdlbe of the maximal
authorized size for a stringpazString Length, depends of the implementation.

Denotation of type
1. Types
(@) T(string) = string
Denotations of values

A value of typestring is denoted by &tring-cst (cf. partA, sectionll-2.6, page27).
The default initial value of typetring is the empty string " .

V-2 External types

External types make possible the use of signals the type whw not a type of the language.

Denotation of type A

An external type is designated by a name.

1. Context-free syntax

External-type ::= Name-+ype

2. Types

(a) For an external type with namég 7(4) = A
Two external types with distinct names are not comparable.

3. Examples

(a) poi nt er is an external type with nanmmoi nt er .

76 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values

An external constant can be denoted by a name; the value oftamal constant can be defined by
the environment of the program (cf. p&itchapterxll, page203).

For example the identifieril can represent a constant of typei nt er .

For any external typel, it is possible to define a constant that represents the ltd@fdial value of
type A (cf. sectionv—7, page86).

The only operations the semantics of which is defined on eatdype signals are operations of
description of communication graphs (which are polymargperations).

V-3 Enumerated types

Enumerated types allow to represent finite domains of vakm®sented by distinct names. These values
(the enumerated values) are the constants of the type tdwhey belong.

Denotation of types enum (ay, ..., anm)

An enumerated type is defined by the list (considered as areadist) of its values (the enumerated
values) and by its name (cf. sectivq7, page86): t ype A = enum (a1, ..., am);
However, like for the other types, such a name does not nadlgssxist. In that case, the name of the
type is empty.
The definition of an enumerated type declares its enumevaleds.

1. Context-free syntax

ENUMERATED-TYPE ::=

Name-enum-valug |:| Name-enum-valug*

2. Types
(a) The type of the enumerated type is:
T(A = enum (ay, ..., am)):Ax {ai,...,am}
where{a,...,a,} represents the finite set of ordered values. . ., a,,. It means that the

name of an enumerated type (the name that is given in therdéola of the type) is part
of that type. Depending on the implementation, it can be #s® ©r not that synonyms (cf.
sectionV-7, page86) are considered in the definition of the type.

If the enumerated type is not designated by a name, thenpigsigyjust the finite set of its
ordered values.

(b) The type of the enumerated values of an enumerated tythesisnumerated type7.'(a1) =
.=T(am) =7(enum (a1, ..., an))

(c) Two enumerated types are considered to be equal if thegy bath the same name, and
the same set of enumerated valuesthe same orderTwo enumerated types that are not
designated by a name are considered to be equal if they hawsathe set of enumerated
values, in the same order.

3. Semantics
The enumerated values of an enumerated type are orderdddiyrorder of their declaration).
All the values of a given type are distinct; these values anguished by their name.

V4. ARRAY TYPES 77

4. Examples

(@) type color = enum (yellow, orange); andtype fruit = enum (appl e,
or ange) ; are two enumerated types, each one defining an enumeratesinaained “or-
ange”. Both enumerated values named “orange” are distalaes, with different types. The
next paragraph describes the way allowing to distinguisimth

Denotation of values

#a; or A#ta;
whereA is the name of the enumerated type.
Note: the symbo# does not appear in the definition of the type (and its enurménatlues), but only for
the use of an enumerated value.

1. Context-free syntax

ENUM-CST ::=

Name-enum-value

| Name{ype Name-enum-value

2. Semantics

e The notatior#a; can be used to reference an enumerated vglirea context in which there
is no possible ambiguity on the referenced value. If it isthetcase, the notatioA#a,; has
to be used, wherd designates the enumerated type.

e The default initial value of an enumerated type is the firtieaf its declaration.
3. Clocks An enumerated value; (designated byta; or A#a;) is a constant.
@ w(a;)=h
4. Examples

(a) col or #or ange andf r ui t #or ange designate two different enumerated values (of two
different types) with the same name.

With respect to the fact that there are possibly identicahem for different enumerated values in
different enumerated types, the visibility of enumeratatligs is the same as that of the type in which
they are declared (cf. pag, sectionXl-2, pagel87).

V-4 Array types

An array is a structure allowing to group togetlsgnchronouglements of a same type. The description
of such a structure and of the access to its elements usasbespressions that have the general syntax
of signal expressionsS(EXPR).

78 DOMAINS OF VALUES OF THE SIGNALS

Denotation of types [n1, ..., nn]v

An array type is defined by its dimensions and by the type d@léments.
1. Context-free syntax

ARRAY-TYPE ::=

m S-EXPR {D S-EXPR }* SIGNAL-TYPE

2. Types

(a) The elaborated values of ((0(n1)), ...,nm (©(n.,)) are strictly positive integers.
(b) The type of the array is:

T([(n1, ..., nwlv)=([0.0(n1) — 1] x ... x [0..0(n,,) — 1]) — T(v).
(c) When the typer(u) itself is an array typg np,,4+1, ..., 7mp] i, then the type of the
array is:
7'([N1y vv vy Nl 1/) = ([O..g@(nl) —1]x...x [0..g0(nm+p) —1]) — 7'(,u).
3. Clocks The integers:; must be constant expressions.
(@ w(n) =h

4. Properties
(@) The typeg n1, no] vand[nq1] [no] v are the same.
5. Examples

(a) [10, 10] i nt eger is atwo dimensions integer array (the bounds of the arrainbey
plicitly at index O in each dimension).

(b) [n] poi nt er is a vector of values of external typ®i nt er .

Denotations of values

A constant array is defined by a constant expression of acfaypértD, sectionlX-2, pagel59);
the elements that compose a constant array are from the samard

For anARRAY-TYPE , the default initial value is an array of which each elemesd the default
initial value of the type of the elements of the array.

V-5 Tuple types

The SGNAL language allows to define structured types, called in a gen&y tuple types. Two cate-
gories of tuple types, called also tuple types with namedsietan be associated with the objects of the
SIGNAL language in declarations:

e polychronous tuples (designated by the keywiowhdl e);

e monochronous tuples (designated by the keyvadrduct)

V-5. TUPLE TYPES 79

(remark: the objects declared of tuple type can also beccalj@es.

An object declared of type polychronous tuple is in fact engehg of objects (family of objects).
In this way,a polychronous tuple of signals is not a sigrfedr example, in the general case, it has no
clock); it cannot be used as the type of the elements of ag.afMathe opposite, an object declared of
type monochronous tuple can be a signal: it has a clock @feli’by the operatorn and it can be used
as the type of the elements of an array.

A general rule is that operators on signals do not apply oyghobnous tuples, but they are pointwise
extended on the fields of these tuples (cf. @archapterX, pagel79).

The SGNAL language allows also to manipulate gatherings (or tuplespjects with no explicit
declaration of these gatherings. They define in fact tupliés wnnamed fields, the type of which is a
product of types (cf. section—6.2, paragraph “Order on tuples”, pa@e). The operators defined on
signals are pointwise extended to tuples with unnamed figldspart D, chapterX, pagel79. By
extension, it will be possible to refer to the clock of a tupfesignals if all the signals of the tuple have
the same clock.

Denotation of types

struct (pu1 X1 .. pm X))
or
bundle (1 Xi; ... pm Xm:) spec C

A tuple type is defined by a list of typed and named fields; initaatd clock properties can be
specified on the fields of a tuple.

The description of such a type uses lists of declaratione@dfisnce identifierS-DECLARATION
(cf. sectionV-9, page89) for the designation of the fields, and propert@BECIFICATION-OF-
PROPERTIES (cf. partE, sectionX|-6, pagel91) to express the clock properties that must be re-
spected by the signals corresponding to the fields definelebtype. These properties should describe
exclusivelyclock propertieson the fields of the tuple, excluding for instance graph pridge Note that
constraints on values can be specified under the form of intst on clocks.

A tuple type can be multi-clock (polychronous) or mono-&d@monochronous). If it is multi-clock,
it is distinguished by the keyworttdlund| e and it can contain specifications of clock properties apglyi
onitsfields. Ifitis mono-clock, it is distinguished by theykvordst r uct and all its fields are implicitly
synchronous; in this case, it can be used as type of the eterokan array.

1. Context-free syntax

TUPLE-TYPE ::=

struct ENAMED-FIELDS

bundle NAMED-FIELDS
[SPECIFICATION-OF-PROPERTIES]

NAMED-FIELDS ::=
{ S-DECLARATION } *

2. Types

(a) From the point of view of the domains of associated valirespolychronous or monochronous
tuple types with named fields are designated in the same wihysidlocument. The domain
iS @ non associative product (i.e., preserving the strungyof typed named fields.

80 DOMAINS OF VALUES OF THE SIGNALS

() T(struct (s Xi; ... fim Xm)))
= bundle({X1} — T(u1) x ... x {Xm} — T(1m))
(c) T(bundle (p1 Xi; ...; pm Xm;) spec C)
= bundle({X1} — T(u1) x ... x { X} — T(wm))
(d) Atype

bundle({X1} — T(u1) x ... x {Xm} — T(1m))

defines a set of functigﬂns

= {X1, .., X} — (7 (1) such thaB(X;) € 7(ps).

=1
3. Semantics

The tuple types with named fieldst(r uct andbundl e) allow to define structured types as non
associative grouping of typed named fieldszy X1; ...; wm X). The specifications
of propertiesspec C apply on the fields of the tuple. They establish constraimés must be
respected by the signals defined with such a type (space ohsymzation of the values of the
domain).

4. Examples
(@) struct (integer X1, X2;)
is a tuple of two synchronous integers.

(b) bundl e (integer A; boolean B;) spec (| A "# B)
defines a union of types as a tuple the fields of which are myteatlusive.

Denotations of values

A constant tuple is defined by a constant expression of tapl@értD, sectionVIll-1, pagel53).
For aTUPLE-TYPE, the default initial value is recursively the tuple of iaitvalues of its fields.

V-6 Structure of the set of types

A partial order is defined on the types such that there existatral” plunging of a smaller set into
a greater one. The types are organized into domains comésppto theoretical sets (non constrained
by the implementation). In this way, the domain of synchzation values $ynchronization-type)
contains the typesvent andboolean; the domain of integerdriteger-type) contains the typeshort,
integer, andlong; the domain of realsReal-type) contains the typeseal anddreal; the domain of
complex Complex-type) contains the typesomplex anddcomplex.

V-6.1 Set of types

The set of types is composed of the types the expressionsiohwh the SGNAL language, described
in the following summary, are derived from the variaBI&SNAL-TYPE :

V-6. STRUCTURE OF THE SET OF TYPES 81

SIGNAL-TYPE
Scalar-type

Synchronization-type

event| denotes the typevent
boolean| denotes the typ&oolean
Numeric-type

Integer-type
short | denotes the typehort

integer | denotes the typénteger
long | denotes the typkong
Real-type

real | denotes the typeeal
{ ;Iﬁl_ldenotes the typéreal
Complex-type

complex| denotes the typeomplex
{ dcomplex| denotes the typdcomplex

Alphabetic-type
char | denotes the typeharacter

string | denotes the typetring

External-type
Name-type
Generic form of the external typesume
ENUMERATED-TYPE

Name-enum-valug |:| Name-enum-valug *

Generic form of the enumerated types:x {a1,...,am}
ARRAY-TYPE

m S-EXPR{ D S-EXPR}* m SIGNAL-TYPE
Generic form of the array type¢f0..n; — 1] x ... x [0..n,, — 1]) = v
TUPLE-TYPE

struct NAMED-FIELDS
bundle NAMED-FIELDS [SPECIFICATION-OF-PROPERTIES]

Generic form of the tuple types with named fields:
bundle({X1} — p1 X ... X { X} — tm)

V-6.2 Order on types

Order on scalar and external types

The order on scalar and external types of theN&\L language is described in the figute-V.1 A
downward solid arrowﬁ) links a type with a type directly superior from the same dionftvo types
of a same domain aimparablg; the other arrows represent basic conversions, the sanaftvhich
is described below. The other conversions are obtained fmpasition of conversions. The partial order
is denoted_.

The notion of “comparable types” is extended to arrays apbetu

82 DOMAINS OF VALUES OF THE SIGNALS

_— e — =

Figure C-V.1: Order and conversions on scalar and exteypabt

Order on arrays
The order on scalar and external types is extended to arrays:
e ([0.m; —1] x...x[0.my —1]) = £ E ([0.ny — 1] x ... x [0..n; — 1]) — v if and only if

x k=1
x Vi 1<i<k=m;=mn,
x andy C v

Order on tuples

A product of types is a type, called tuple type with unnameldisienvhich preserves the structuring.
There is no syntactic designation of such a type (it is nosjpbs to declare some object of type tuple
with unnamed fields); however, it is possible to manipuldigcts of type tuple with unnamed fields
(product of types). A tuple with unnamed fields with a sindkreent is considered as isomorphic to this
element.

The product of typeg, ..., u, (in this order) is denote@u; x ... X uy,).

The order on the types of signals is extended as follows degup

V-6. STRUCTURE OF THE SET OF TYPES 83

o bundle({X1} — p1 x ... x {Xp} — pn) Cbundle({Y1} — v1 x ... x {Y,} — 1) ifand only
if:
p=n
and i) (X;=Yety; Cv;)

.o X) Cbundle({Y1} — vy x ... x {Y,} — v,) if and only if:
C (v X...X1p)

)

p1 XX i) E (1 X (2 X X)

1 X ..o X i) (11 X ... X 1) ifand only if:
A(V)) (miCwvi)))

or
(k1) ((i<k) = (kTw))
A (g X X) E o)
AN ((E+Tl=n) A (k=p))
or ((k+1<n) A\ (k<p) A ((rr101 X oo X i) E (W1 X oo X 15))))))
Notation

The notationu LI v is used to designate the upper bound of two comparable fypesiv.

V-6.3 Conversions

A conversion is a function for which the image of an objectid typey, of the argument is an object
of the typev required by the context of utilization. The conversion fiimes for the types defined in the
SIGNAL language have the name of the reserved designation of tleetexjtype or in general the name
of the expected type. In this document, these functions emetéd as follows, in order to describe their
semantics:

Cl :p—v

Direct conversion functions are available in the languagen if their semantics is described in terms of
composition of conversions.

3-a Conversions between comparable types

Between two directly comparable types u C v, the two following conversions are defined:

1. the conversio@, from a smaller type: to a greater type lets the values unchanged;

2. the conversiol@;; : v — p which is the inverse of the previous one for the values of fype

The conversion functions are extended to any pair of comparable types:
e if iy CulCun thenCl’le = Ch,o C;f X

e (!, is the identity function.
Implicit conversions

The only implicit conversions are the conversiaisfor which 1 C v. Implicit conversions do not
need to be explicited in the language.

84 DOMAINS OF VALUES OF THE SIGNALS

3-b Conversions toward the domain “Synchronization-type”

The conversions Ct,.,., are defined for each (except ifu is a polychronous tuple); Trivially, they

deliver the single value of typevent.

the conversions C#*

boolean

depend of the implementation while respecting the follainles:

long
boolean

e The conversior® verifies:

— " (0) = false

boolean

— ¢l (1) = true

boolean

e For aScalar-type p distinct fromevent
Clhtean = Coond o C}t

boolean boolean long

3-c Conversions toward the domain “Integer-type”

The conversions c*

short

o CMC9T (1)) = v if v is greater thamnin short and smaller thamaaz short (non strictly in both

depend of the implementation while respecting the foll@inles:

short
cases),
° Ciﬁit = CZL;;%@T © Cérozzléqger
e for aScalar-typeor ENUMERATED-TYPE 4
l
Cf:hort = Cs?:;i]*t © Cﬁ)ng

The conversions c*

integer

depend of the implementation while respecting the follauiules:

o Clomd (v) = v if v is greater thamnin integer and smaller thamnax integer (non strictly in

integer
both cases),
e for a Scalar-type 1 which is not smaller thaimnteger (for the order defined on the types), or for
1 anENUMERATED-TYPE
c = clons ocl

integer integer long

The conversions Cl’j’mg depend of the implementation while respecting the follaiunles:

o the conversiorC/oo.*" is defined by the following rules:

- Cf’ggée“"(false) =0

- Clboogéea"(true) =1

e the value ofo;‘,ng’“Ct”(C) is the numerical value of the code of the character

e the value ofcfo’;f;l(v) is the integer part of v if n is greater thanmin long and smaller than
max long (non strictly in both cases),

e for aScalar-type p which is not smaller thatvng (for the order defined on the types)

o __ (dreal 12
Clong - Clong Ocdreal

e for anENUMERATED-TYPE p equal toA x {ay,...,an}, the conversionfffmg is defined by:
Cﬁ)ng(al) =0,....,Cl' (am) = m—1.

" Ylong

V-6. STRUCTURE OF THE SET OF TYPES 85

3-d Conversions toward the domain “Real-type”

For eachReal-type a given implementation distinguihes tha&fenumbers (in the same sense as in Ada),
which have an exact representation.

The conversions c*

real

depend of the implementation while respecting the follapinles:

e if v, of typedreal, is a safe number in the typeal, C¢ (v) = v

real
e the conversion preserves the order on the real numbersdettlbetween the smallest and the
greatest safe number in the typeul,

e for aScalar-type u

1% _ dreal 1%
Creal - Creal ocdreal

The conversions C/; ., depend on the implementation while respecting the follgwirles:

e the conversion preserves the order on the real numbersdieatlbetween the smallest and the
greatest safe number in the tygecal,

dcomplex . o
o C,o ol F(re@im) = re

complex __ Hdcomplex complex
° Cdreal - Cdreal Ocdcomplex

if v, of typelong, is a safe number in the typleal, C'2"9, (C) = v

dreal

for a Scalar-typedistinct of the previous ones,
Chr = Ch9 0 Clt

dreal dreal long

3-e Conversions toward the domain “Complex-type”

There are no conversions toward the dom@aomplex-type except those internal to that domain. How-
ever, a given implementation can provide such conversiantifons. Note that the conversion of-eal
re into acomplex (respectively, of @real re into adcomplex) can be obtained bye@0.0.

dcomplex
complex

o Cdcomplem(re@im) _ {Cdreal(,re) Cdreal(l'm)}

complex real » Mreal

The conversion C depends on the implementation while respecting the fotigwule:

3-f Conversions toward the typescharacter and string

The conversions c*

character

depend on the implementation while respecting the follgwires:

e the value ofc’?"? _ (v)is the character (if it exists) whose decimal value of itseciequal to

character
vl
e for aScalar-type . C*, — (long o CH

character character long

There is no conversion toward the typeing.

86 DOMAINS OF VALUES OF THE SIGNALS

3-g Conversions of arrays

For any tuple of strictly positive integers, ...,n,,, and any conversio@.,,
the conversionﬂ(([[f))l'_':l1 - i]] o [[g_'.'z;: - 11]])) ~ "is defined by:

([077/ — 1] x ... x[0.npy — 1]) — [o
Clom 1% w1 —n(T) =ChoT

3-h Conversions of tuples

Conversions of tuples with unnamed fields

For any conversion§}}, ...,CL",

the conversionff((l’jll:.‘.‘.'XX V’i)) is defined by:

O X) () = (CE @), OB ()
Conversions of tuples with unnamed fields toward tuples witmamed fields

For any conversion€}}, ...,C/" and any tuple with named fields of type

bundle({X1} — v1 x ... x {X,,} — vy,,) that defines a functiol (cf. sectionV-5, page78),
the conversiorg/*! de(0d o %% (X} — 1y IS defined by:
C(H1><~--><Hn) _':Oc(l‘1><~~-><ﬂn)

bundle({X1} = 1 X ... x{Xm} —vm) — (v1 X ... X vn)

V-7 Denotation of types

A type can be designated by an identifier, declared DE€LARATION-OF-TYPES (it cannot be an
identifier of predefined type). In particular, such a typenidfieer can designate a generic type, which
can represent a type of the language, an external typeyiotual typethat can be “overridden” in its
compilation context.

Denotation of type A
1. Context-free syntax
SIGNAL-TYPE ::=
Name-type
2. Types

(a) The type designated byName-type A is the type associated with in the declaration of the
type A.

Declarations of types

type A = pu; or

type A external; or
type A;

1. Context-free syntax

V—7. DENOTATION OF TYPES 87

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} * E

DEFINITION-OF-TYPE ::=

Name-type
| Name-typeEl DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

TYPE-INITIAL-VALUE :=
Name-constant

2. Types

(@) The declarationype A = u; defines the typel as being equal to the type
7(4) =7(1)

(b) Thedeclaratiohype A = ext ernal ; specifies the typd as an externally defined type.
The actual definition ofd is provided in the environment of the program.
It is possible to specify, in the declaration of an exteryaletA, a constant name (which
must be the name of an external constant of typecf. sectionV-8, page88), that allows
to designate the default initial value of that type.
A given compiler may consider that such a constant name apgeas default initial value
of an external type constitutes an implicit declarationhi$ £xternal constant.

(c) If Ais defined as an external type, then:
T(A)=4
(d) Two external types with distinct namédsand B are considered as different types.

(e) When it appears in the formal parameters of a model (cf.EhasectionXl-5, pagel89), the
declarationt ype A; defines a formal generic type whose actual value is providéurw
the call of the model (cf. sectiovil-1.2, page99).

Otherwise, the declarationype A; that specifiesA as avirtual typein the current con-
text of declaration. It means that is a formal generic type, whose actual value is defined
elsewhere 4 is “overridden”) in the context or is provided in a module. (paartE, section
Xll-1, page203). This actual value can be a type of the language or an extgpa

3. Properties

(a) With the declarationsype A = pu; andtype B = yu;
then7(4) =7(B) = 7(u).
Some implementations may not ensure this property.

4. Examples

(@) type T = [n] integer; declares the typ& as vector of integers, of size

88 DOMAINS OF VALUES OF THE SIGNALS

V-8 Declarations of constant identifiers

constant u Xy =FEq,...,Y;, ..., X, = Ey;

A constant sequence is a sequence each element of whichehsartte value. Such a sequence can
be designated by an identifier.

1. Context-free syntax

DECLARATION-OF-CONSTANTS ::=

SIGNAL-TYPE

DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} * E

DEFINITION-OF-CONSTANT ::=

Name-constant
| Name-constanEl DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

2. Types

@ 9 (T(n)=7(x:))
) o) (T(E)=7(x))
(c) When the constant declaration refers to the externatioot, (for exampleY; = external ;),

it specifiesY; as an externally defined constant. It means that the vali stfiould be pro-
vided in the environment of the program.

(d) When the constant declaration (for example ¥y does not contain an expression, nor the
external notation, it specifies; as avirtual constantin the current context of declaration.
It means that the value df; is provided elsewhereYf is “overridden”) in the context or is
provided in a module (cf. pag, sectionXll-1, page203).

3. Semantics

e Any expression defining a constant must be monochronousueratidnal (without side ef-
fect). With this reserve, the set of expressions admitted bympiler contains the operators
and intrinsic functions and can contain a set of functiornzedeing of a particular environ-
ment.

e The elaboration of the expressidn, in the contextCp of the declarationD, minus the
identifier X;, provides a constant value (determined at compile tim€¥;) = v;

e the declarationD hides any higher declaration df; for the contextCp and the included
contexts;

e in a context wherd is visible, the elaboration of an occurrence of the idemtig provides
the valuep(X;) = v.

V-9. DECLARATIONS OF SEQUENCE IDENTIFIERS 89

4. Clocks An occurrence of use ok; (orY;) is considered as an occurrence of the designated con-

stant.
(@) w(E;)=h
(b) w(X;)=h
© w(v;)=n
5. Examples

(a) The declaration
constant real PI=3.14
defines the identifiePT of typereal and with valuep(3. 14).
(b) The declaration
constant [2,2 real UNIT=[[1.0,0.0],[0.0,1.0]j
defines the identifietNIT as a unit real matrix.
(c) The declaration
const ant RECTANGLE BASE;
whereRECTANGLE is an identifier of external type, defines a constant of thag 1BASE, the
value of which should be provided at code generation.
(d) The declaration
constant i nteger L=M+N;
is incorrect ifM or N does not designate a constant or a parameter; if it is coitatgfines
the identifierL. as being equal to the sum of the constan{st) and ().

V-9 Declarations of sequence identifiers

pw IDy, ..., ID;init V;, ..., ID,;

A sequence of values is provided with a type (the one of itselgs); this type is associated with
an identifier in a declaration. In such a declaration, antiiencan designate a static parameter (formal
“signal”), a signal, or a tuple of signals. Initializatioalues can be associated with signals and tuples of
signals {(D; init Vj)inorder to define their initial value(s) when these initialues are not defined
elsewhere.

1. Context-free syntax

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { |:|DEFINITION-OF-SEQUENCE} * E

DEFINITION-OF-SEQUENCE ::=

Name-signal
| Name-signa S-EXPR
2. Types

(a) The declared names must be mutually distinct. The sapeartfy:) is given to the identifiers
1D+, ...,ID, inthe context of the declaration.

90 DOMAINS OF VALUES OF THE SIGNALS

(b) For a signal expression (*assignment”, passage otgpatiameter or positional identifica-
tion) associating a value with an identifier/ D; declared with type:, we must haver (v)

L p.
(c) The rules applying to initial values are exactly thossatided in the section “Initialization
expression” (cf. sectiokl-3.1, pagel10).

3. Semantics

e 1 IDy, ..., ID,; declares the sequences (signals or paramelévs) ..., ID,. If
1 designates a polychronous tuple type then the identifiérs ..., ID,, designate tuples
of signals (and not, strictly speaking, signals); the dgmepresented by these tuples are,
recursively, the fields of the tuples (the fields can be thérasetuples). For example, if
1 designates a tuple type with named fieldsndl e (1 X1, ... tm Xmi) .
then each tupld D; gathers the signals (or, recursively, the tuples of sigrddsignated by
ID;. Xy, ...,ID;. X,, (cf. partD, sectionVIII-3, pagel54), which have respectively the
typesuy, - .. thm-

e The semantics of an initialization expression specifieddecaration is exactly the same as
that described in the section “Initialization expressigcf. sectionVI-3.1, pagellQ). The
association of an initialization with a signal declaratgpecifies a default initialization for
the corresponding signal. It can be overloaded by the diefindf that signal (in that case, it
iS unnecessary or only partly necessary).

4. Clocks

(a) The relations on the clocks of initialization expressi@re described in the section “Initial-
ization expression” (cf. sectiovil-3.1, pagel10).

5. Examples

(@) The declarationeal X, Y; declares the signal$andY of typereal.
(b) The declaratiofin] i nteger V; declares the vector of integevs of sizen.

V-10 Declarations of shared variables
shared p IDy init Vi, ..., IDj, ..., ID, init Vg

Shared variables are particular cases of signals or tuplsigmals (cf. sectiorvV—9, page89). A
shared variable is defined via partial definitions (cf. sect/l-1.1, paragraphl-c, page96). A shared
variable cannot be declared as input or output of a modelarfgss.

1. Context-free syntax

DECLARATION-OF-SHARED-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} * E

V-11. DECLARATIONS OF STATE VARIABLES 91

2. Types
(a) The declared names must be mutually distinct. The sapeertfy:) is given to the identifiers
IDq,...,ID, inthe context of the declaration.

(b) For a signal expression (partial “assignment” assmgah valuev with an identifier D;
declared with typg:, we must have (v) C .

(c) The rules applying to initial values are exactly thossatided in the section “Initialization
expression” (cf. sectioNI-3.1, pagel10).

3. Semantics

e shared u IDy, ..., ID,; declaresthe shared variable®, ...,ID,,.

e The semantics of an initialization expression specifiedde@aration is exactly the same as
that described in the section “Initialization expressi¢ef. sectionVI-3.1, pagell0).

V-11 Declarations of state variables
statevar p ID; init Vi, ..., ID;, ..., ID, init V,;

A state variable is a typed sequence the elements of whighresent as frequently as necessary (it is
available at a clock which is upper than the upper bound ofltieks of all the signals of the compilation
unit in which it is declared). A state variable is defined véatial definitions the clock of which are well
defined (cf. sectioVI-1.1, paragraphl-d, page97). It keeps its previous value as long as a new one
is defined. It should have an initial value associated wihdéclaration (if it has not, it takes as initial
value the default initial value of its type). A state varialglan be used only in a context which defines
a context clock (the occurrence of a state variable is desdrin sectionvVl-2.3, pagel08). A state
variable cannot be declared as input or output of a modelarfgss.

1. Context-free syntax

DECLARATION-OF-STATE-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} * E

2. Types
(@) The declared names must be mutually distinct. The samaa‘t(/ﬂ) is given to the identifiers
1D+, ...,ID, inthe context of the declaration.

(b) For a signal expression (partial “assignment” assimgaa valuev with an identifier D;
declared with typg:, we must have (v) C .

(c) The rules applying to initial values are exactly thossatlibed in the section “Initialization
expression” (cf. sectiokl-3.1, pagell10).

3. Semantics

e statevar u IDq, ..., ID,; declares the state variablé®, ...,ID,.

92 DOMAINS OF VALUES OF THE SIGNALS

e The semantics of an initialization expression specifieddecaration is exactly the same as
that described in the section “Initialization expressi¢ef. sectionVI-3.1, pagel10).

Note: The INRIA POLYCHRONY environment allows in some cases that the type of a consdant,
sequence identifier, a shared variable or a state variabte grovided explicitly in their declaration (the
correspondindSIGNAL-TYPE is simply omitted). The corresponding type must be deduozu the

context of use of the object.

Chapter VI

Expressions on signals

The values associated with signals are determined by emgatin signals; these equations are built by
composition of sub-systems of equations (named also pesgfrom elementary equations.

This chapter presents the expressions of definition of Bgi®aEXPR). This presentation is pre-
ceded by an introduction to the expressions of compositiatefinitions P-EXPR).

VI-1 Systems of equations on signals

Composition of definitions of signals

The equations of definition of signals can be composed byp)leealx)lm (see chaptevIl, “Ex-
pressions on processes”). An expression on processes
Ei | Es
defines the signals (or, equivalently, has as outputs timalsipdefined in each one of its sub-expressions,
and has as inputs the input signals of each one of these guwbssions which are not outputs of the
other one. The value of an input signal of a sub-expressidn¢hwis defined in the other one, is the
value associated by this definition. As a signal cannot hadeuble complete definition, a given signal
identifier representing a totally defined signal cannot bpwuof two sub-expressions. However, it
is possible to have severgartial definitions,in different sub-expressions, for shared variables (@arti
definitions are syntactically distinguished).

An expression on processes can be parenthesizyon the left and b on the right (note

the presence of the sym).

A given output of an expression on processes can be hiddeaghrthe operat (see chapter
VI, “Expressions on processes”). An expression on processes
El / aq
has as outputs the outputs Bf distinct froma; and for inputs the inputs af.

The signals are defined by explicit elementary equationSEFINITION-OF-SIGNALS , CON-
STRAINT s (cf. sectionvI-5.3, pagel23), or by referring to systems of equations declared as models
of processesINSTANCE-OF-PROCESS).

VI-1.1 Elementary equations

A definition of signals allows to define a signal or a set of algrwith the syntax given below. A
definition of signals is an expression of processes.

94 EXPRESSIONS ON SIGNALS

1-a Equation of definition of a signal
X:=F
1. Context-free syntax
ELEMENTARY-PROCESS ::=
DEFINITION-OF-SIGNALS

DEFINITION-OF-SIGNALS ::=
Name-signaE S-EXPR

2. Profile
An equation of definition of a signal has as output the defiigauas and as inputs the inputs of the
expression® distinct of the output.
e ! (X:=F)={X}
e The inputs ofE are the signal identifiers that have at least one occurrengée i
?x:=E)=?FE) -!(x:=E)
3. Types
(@) 7(E) £ 7(X)

4. Semantics
The signalX is equal to the signal resulting from the evaluatiorEbfAn occurrence ofX in the
expressiorn® builds a recursive definition.

5. Definition in SIGNAL
Though it is the most frequently form of equation used in thenNd\L language X : = £
is not the basic form. The si expresses that the equation is oriented, while in the basic f

(cf. partB, chapterlll, page3l) the sign is used to express the fact that equations are non
oriented (cf. sectioV1-6, pagel25).
It is equal to the following process, where the dependeneemade explicit:

(| X :== FE
| B —> X
)

6. Clocks A signal represented by an identifier and the signal that egfiirare synchronous.
(@) w(x) =w(E)

7. Graph
(@ E—X

8. Examples

(a) if x,y, z designate signals:
X : =y + z defines the signal designated »yequal to the sum of the signals designated
respectively by andz; this expression has as inpytandz and as outpux.

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 95

1-b Equation of multiple definition of signals
(X1,....Xn) :=F

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
Name-signal{ I:l Name-signal}* El S-EXPR

2. Profile
An equation of multiple definition of signals has the inputsl @utputs defined by the following
rules.

e The identifiers of defined signals represent the outputseoétiuation:
P((X1,...X,) :=E)={X1,...,X,,}
e The inputs of the equation are the inputsffvhich are not outputs of the equation:
?2(X1...Xx) :=E)=?E) -!((X1...X,) :=E)
3. Types

@ T((X1,...X)) = (7(x1) x ... x 7(X,))
) 7(E) C (T7(X)) x ... x 7(X,.))

4. Semantics

e X1i,...,X, designate signals or tuples of signals.

e F can be viewed as a tuple ofelements: let F,. .. .E,) this tuple.

e Each signal or tupleX; is respectively equal to the signal or tugle that corresponds to it
positionally as output of.

5. Definition in SIGNAL
(Xi1,....X,) :=E
is equal to the following process:

Ey

(] Xi:

| X, := E,

)

As a particular case, when the defined signal or tuple is @nig¥) : = F is equivalent to:
X:=F
(the syntax without parentheses as describedatan be used wheX is a tuple).

6. Clocks A signalrepresented by an identifier and the sighalthat defines it are synchronous. In
this case, there is:

(@) w(X;) =w(E)
7. Graph
@ Ei—X;

96 EXPRESSIONS ON SIGNALS

8. Examples

(a) ifx,y, z, a designate signals arRla model with one formal parameter, one input and three
outputs:
(x,y,z) : =P{n}(a+5) defines the signals designated>byy andz, equal respectively
to the first, second and third output of the mo&einstantiated with the parametarand
takinga;+5 as input at each occurrenceafthis expression has as inpaand as outputs,
y andz;

(b) if w, v, b also designate signals:
(wx,y,z,v) :=(a,P{n}(a+5),b) definesthe signals,x,y, z andv, equal respectively
to the signak, to the first, the second and the third output of the proBessd to the signal
b; this expression has as inpisandb and as outputsy, X, y, z andv; it is equivalent to
the composition
(I (wv) :=(ab) | (xy.z) :=P{n}(a+5) |);

(c) if x designates a tuple with named fields whose fields are regelgctil andx2, anda, b
designate signals:
(a,b) : =(x.x1x.x2) definesthe signala andb equal respectively to the first and the
second component of the tupte

(d) if x designates a tuple with named fields @db designate signals:
X :=(a,b) defines the tuplex the components of which are respectively equal to the
signalsa andb.

1-c Equation of partial definition of a signal

Equations of partial definition of a signal are a way to avaie $yntactic single assignment rule, even
if semantically, this rule applies. Signals that are defingitig partial definitions should be declared as
shared variables (cf. sectidfr-10, page90). Each one of the partial definitions of a given signal con-
tributes to the overall definition of this signal. These hdefinitions can appear in different syntactic
contexts. All these partial definitions have to be mutuatlynpatible. One default partial definition
can appear for a given signal: it allows to complete the dafimiof the signal by a default value when
the partial definitions do not apply. The overall definitidntlve signal is considered as complete in a
compilation unit.

Equations of partial definition are syntactically distirgied by the use of the special sym.
The use of this symbol is mandatory to allow the presenceftdrdnt syntactic definitions of a given
signal. The syntactic single assignment rule still appléen the assignment sym is used. In
particular, it is not possible to have both complete definithind partial ones for a given signal.

X::=F
X ::=defaultvalueF

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
Name-signa S-EXPR

| Name-signa defaultvalue | S-EXPR

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 97

2. Profile
An equation of partial definition of a signal has as outputghsially defined signal and as inputs
the inputs of the expressiafi distinct of the output.
e I (X::=E)={x}
e ?(X::=E)=?FE-'(X::=E)
e ! (X::=defaul tval ue E) = {X}
e ?(X::=defaultvalueE)=? () — ! (X ::=defaul tval ue E)

3. Types
(@) T(E) £ T(X)

4. Definition in SIGNAL
Let the following composition represent the whole set ofiphdefinitions of a signak in a given
compilation unit:

(| X ::= E
| X ::= E,
| X ::= defaultvalue E,

)

It is semantically equivalent to:

(] X := FE; default X
| X := E, default X
| X := (Epy when (X "= (B, "+ ... ~+ E,))) default X
| X "=E "+ ... "+ E, "+ X
|

)

5. Clocks For the above set of partial definitions of the sigiglany two different expressions;
must have the same value at their common instants if they suasle common instants. The clock
of X is greater than the upper bound of the clocks of the expreséig: = 1,...,n.

@ Vvij=1,...,n CL}(EZA* EJ) = C(}(V\Ihen ((Ez WhenAEj) == (E] WhenAEi)))
b) wX)=w(E, ¥+ ...+ E, "+ X)
(c) Fori=1,...,n, the clock of any expressioh; cannot be a context clock: in particuldy;

cannot be a constant expression or a direct reference tteavatgable.
The clock of £, ;1 can bea context clock.

1-d Equation of partial definition of a state variable

State variables (cf. sectio-11, page91) can be defined exclusively by equations of partial definitio
These equations define thextvalues of a state variable. The last defined value, whiche®tity one
that can be accessed at every instant, is referred to viapéaas notationX? (cf. sectionVI-2.3,

pagel08).

98 EXPRESSIONS ON SIGNALS

X::=F
1. Context-free syntax

The syntax is the same as that of an equation of partial definif a signal.
2. Types
(@) 7(E) = 7(x)

3. Definition in SIGNAL

Let the following composition represent the whole set otiphdefinitions of a state variabl&
in a given compilation unit:
(| X ::= Ey

| X ::= E,
)

It is semantically equivalent to:

(] next_X := E; default next_X

next_ X = E, default next X
X = next X $
[next X

|
|
)

4. Clocks Forthe above set of partial definitions of the state variablany two different expressions
E; must have the same value at their common instants if they swasle common instants.

@) Vi,j w(E > E;)=w(when ((E; when E;) == (E; when"E;)))
(b) The clock of any expressiof; has to be well defined: it cannot be a context clock. In

particular, F; cannot be a constant expression or a non-clocked referenaeother state
variable.

(c) The clock ofX is upper than the upper bound of the clocks of all the sigrfaiseocompila-
tion unit in which X is declared.
1-e Equation of partial multiple definition

(Xq,...X,) ::=F
(X1q,...,X,) i =defaul tval ue £

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

Name-signal{ I:l Name-signal}* S-EXPR
| Name-signal{ |:| Name-signal}* S-EXPR

2. Types
@ T((X1,.... X)) = (7(x1) x ... x 7(X,,))

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 99

) 7(E) C (T7(X)) x ... x 7(X,,))

3. Semantics

e X1,...,X, designate signals or tuples of signals declared as sharedbles, or state vari-
ables
(only signals or tuples of signals forX,...,X,) : : =defaul t val ue £)

e This is the same generalization bicand1-d
(only of 1-cfor (X1,...,X,,) ::=defaul t val ue F) as that ofl-b with respect td.-a

e Each signal, tuple or state variablg is respectively partially defined by the signal or tuple
v; that corresponds to it positionally as outputfof

VI-1.2 Invocation of a model

The invocation of a model of process providesld® TANCE-OF-PROCESS by macro-expansiorf
the text of the model, or by reference to this model if the texthe model is defined externally or is
compiled separately.

Depending on the fact that a model:

e has or not parameters,
e has or not inputs,
e has or not outputs,

the invocation of the model can take different syntactierfer In all cases, the composition with the
context is done positionally, on the inputs and on the ostput

If the model has no outputs, and only in this case, its invonappears as an expression on processes
(ELEMENTARY-PROCESS); in any other case, an invocation of model appears as aessipn on
signals 6-EXPR).

The tableC-VI.1 gives the generic forms of the invocation of a model (which ba either an ex-
pression on processes or an expression on signals).

Positional definition No inputs
of the inputs
Without parameters P(Ey,....E,) P()
With parameters || P{ Vi,....Viu} (E1,....2,) | P{V1,...Viu} ()

Table C-VI.1: Syntactic forms of an invocation of model

The different forms are detailed below.

1. Context-free syntax

ELEMENTARY-PROCESS ::=
INSTANCE-OF-PROCESS

100 EXPRESSIONS ON SIGNALS

2-a Macro-expansion of a model

One has to take care that this basic form is used here to deshe semantics of any invocation of model.
The composition with the context is made by identity of namdewever, this form is not necessarily
available as an external form in the language, except if theesponding model of process does not
have inputs.

P{Vi,....Vn}

The static parameters are parenthesize#@ and ; these parameters are types or constant
expressions mainly used as initial values of signals oryasrzae. Note that parameters can also be
models (cf. parg, sectionX1-8, page200).

1. Context-free syntax

INSTANCE-OF-PROCESS::=
EXPANSION

| Name-mode

EXPANSION ::=

Name-model
{ | S-EXPR-PARAMETER { S-EXPR-PARAMETER }* | }
L]

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE

2. Profile

o | (P{ Vit Vin}) is equal to the set of the names of the outputs of the visibtéadsion of
P, let{Yy,...,Y,}.

o ? (P{ Vit Vin}) is equal to the set of the names of the inputs of the visibléadaion of
P, let{X;,..., X,}.

3. Types

(a) Let, inthis orderpy, ..., P, be the names of the formal parameters of the visible demarat
of P.

(b) The actual parameterS{EXPR-PARAMETER) of the invocation of the model must cor-
respondpositionally to the formal parameters of the declaration of the model peftt E,
sectionXI-5, pagel89. In particular, to the parameter types can only correspgpds
(SIGNAL-TYPE), and to the “constant sequences” parameters can onlyspome expres-
sions on sequenceS-EXPR).

©) (T(V) x...x7(V)) E(T(P) x ... x T(R))

@d) T(P{Vi,...V.}) =7('P)

(cf. partE, sectionX|-5, pagel89

4. Semantics

e P being the name of a model of visible process, the expressipns. ., V,, are the actual
parameters of the expansion, corresponddegitionally to the formal parameters of this

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 101

model. The expansioR{ V1,... V,,} is equivalent to the body of the visible declarationfof
in which each formal parameter has been substituted by thespmnding actual parameter.

e P() isthe expansion aP whenP has no parameters.
5. Clocks The actual parameters of sequentemust be constant expressions.

(@) w(v;) =h

2-b Positional macro-expansion of a model

P{Vi,...Vo}(Ey,....E,) or P(Ey,....B,) withn>1

In the external form of the language, the input signals ase@ated with an instance of model,
respecting their “position”; a list of expressions betwéaa symbol and redefines the input
signals declared in the model respecting the order of theskagtions.

1. Context-free syntax
INSTANCE-OF-PROCESS::=
PRODUCTION
PRODUCTION ::=

MODEL-REFERENCE S-EXPR{D S-EXPR }*

MODEL-REFERENCE ::=

EXPANSION
| Name-model

2. Profile

o ! (P{ Vieeo oV} CEq,. . Ey)) is equal to the set of the names of the outputs of the visible
declaration ofP, let {Y7,...,Y,}.

o 2 (P{Vi,...Vi} (Er,...E)) =7 (B) — {11,.... Y}
i=1

3. Types
(a) Let, in this order,Py, ..., P, be the names of the formal parameters ahd ..., X, the
names of the inputs of the visible declarationftf
®) (T(V) x...xT(Vp,) E(T(P) x ... x T(R))
©) (T(E)) x ... x T(E,)) E (T(X1) x ... x 7(X,))
@) T(P{Vi,... Vi (Br,...) =T(1P)
(cf. partE, sectionX|-5, pagel89

4. Semantics
The formP(E;,...,E,) is used wherP has no parameters.

102 EXPRESSIONS ON SIGNALS

5. Definition in SIGNAL

P{V1,... Viu} (En,.. . E)
is equal to the process defined below in whichX; } is a set of signal names that do not belong

to the inputs of the expressiortg (U ? (EZ)) or to the sets of input or output namesforf

=1
(| (SXy,...,8X,) 1= (B, ..., E)
(] (X1 ..., Xp) 1= (SX1,..., 5X))
| P{Vi, ..., Vi)
DX, ., X,
) 1 SXy, ..., SX,

6. Clocks The actual parameters of sequentemust be constant expressions.

(@ w(vi)=n

2-c Call of a model

(SS51,...,595) :=P{V1,... Vin} (F1,... .Ey)
(the form P{ V1,... Viu} (E1,. .. .Ey,) is used here generically to represent one of the forms defimed
2-aorin 2-b; moreover, it can also appear as argument of any expressisigoals)

1. Context-free syntax

S-EXPR::=
INSTANCE-OF-PROCESS

2. Definition in SIGNAL
(5851,....595,) = P{V,...Vi,} (Ey,... .E), with the model P having the output signals
{Y1,...,Y,}, is equal to the process defined below in whi&lY; } is a set of signal names that do

not belong to the inputs of the expressidais(|_| ? (£:)), or to the sets of input or output names
i=1
of P, or to the se{SSy,...,S55,}.

(| (S8, ...,88) 1= (8Yi,...,SY,)
| (| P{Vi,.... Vi }(En, ..., Eyp)
’ (SYl,...,SYq) :=(Y1,...,Y;1)
D T
)/ SYi, ..., SY,

The tableC—VI.2 gives the different forms of the invocation of a model togetwith the priority of
their arguments (refer to the tabl€s-VI.3 andC-V1.4).

2-d Expressions of type conversion

T(E)

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 103

Scheme Type
Arguments — Result

P{V0,... VY (EY,... E))

P{VP, . VIY() (1 X oo X) X (V1 X oo X vy)
PLVY,. . V) — (p1 X ... X pp)
P(EU,...,Eg) (11 X oo X vy)

P()

Table C-VI.2:INSTANCE-OF-PROCESS E?

e When the input€; are absent, it is a model without input (the tuple,(x ... x v,,)) is then empty);

e When the model has at least one input, the tyges. ., v, being, in this order, those of the declaration of
the inputs ofP, there is
(1 X oo X)) E (v X .o Xy

e The typep; is that of the signal declaration corresponding positilyrialoutput in P.

The conversions of values between distinct effective tyges be explicited as call of a model
(INSTANCE-OF-PROCESYS); the name of this model is the name of the destination typkeo€onver-
sion; the expressions of conversion can only appear asssipns on signals, but not as expressions on

processes.
1. Context-free syntax
S-EXPR::=
CONVERSION
CONVERSION ::=

Type—conversio S—EXPR

Type-conversion::=

Scalar-type
| Name-ype

2. Types

(a) Ifthe conversionﬁ;-(f) exists,
T(7(E)) =7(7)

(b) If the conversiorcz__g)) does not exist]’(F) is incorrect.

3. Semantics

e If v is an element of the sequence of values representdd, liye corresponding element is

T(2), | . - 7(E) .
th tedByE) (if th ts).
CT(T (v) in the sequence represented By FE) (if the converS|orC7_(T) exists)
e If the typeT or the type ofE is an external type, the applied conversion, when it exists,
depends on the environment while respecting the geneed ndncerning conversions (cf.

104 EXPRESSIONS ON SIGNALS

sectionV-6.3, page83).
4. Clocks A conversion is a monochronous expression.
(@ w(T(B))=w(E)
5. Examples

(a) i nt eger (3. 14) has the valug.

VI-1.3 Nesting of expressions on signals

The expressions on signals can be nested in the respect widhnigies of the operators: any expression
with lower priority than the expression of which it is an amgent must be parenthesized. Parenthesizing
is possible but not necessary in the other cases. Non pasintl expressions which contain operators
with the same priority are evaluated from left to right, wslé is explicitly mentioned.

1. Context-free syntax

S-EXPR::=
S-EXPR

2. Profile
The expressionS-EXPR do not return a named output; their inputs are the set olutdigethe
union of the sets of inputs of their operands.

3. Semantics
In the respect of the rules of priority, an equatisn =: T'(F,,...,E,) formed by a function (or
an operator) and sub-expressiadns. . . ,F,, is equal to the composition

e of the equations calculating these expressions in auxiliariables:
(Xis Xim) =0 E;

e of the equationS : =: T(Xy,1,...,.Xnn,) €qual to the equatioss : =: T(Ey,...,E,) in
which has been substituted, to each expressigrhe tuple ; 1,...,X; ,,,) of the auxiliary
variables in which it is evaluated,

e and of the clock equations depending on the context of eaglobiiese expressions.

Priorities and types of the operators on signals The tablesC-VI.3 andC-VI.4 contain a sum-
mary of the properties of expressions on signals. In thédeda

e the priorities are described in the first column (prioritytioé expression) and the second column
(priorities of its arguments) by using’ to describe an expression of prioritythe expressions are
evaluated in the decreasing order of priorities;

e the third column describes the types of the arguments arftkagssult:

— any; represents any type (however, one must refer to the definitiche operators for a
more precise description)
— bool; is the typeboolean or event

— compar; is any type in which there exists a partial order

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS

105

Prio- Scheme Type
rity Arguments — Result
H 12 ‘ 0 event H
E! El next E? (10.11] X .. X [0.mp]) — anyy
([0./m1] X ... X [0.mp]) — anyy — ([0.n1] X ... X [0.np]) — any; U anys a
E? E3: E3 (0.11] % - .. X [0.1p]) — int1™ x
([0m1] X ... X [0.mp]) = anyy — (0] X ... x [0.ra]) — anyy
E3 E3default B4 any; X anys — anyy L anys a
E* E*when E° anyy X booly — anin
E° Ebafter E° event X event — integer
E®fromE®
E® count E°
E° ES™+ ET, ES~— E7 anyi X anys
E7 E" % EB — event
E® [when E3,[: E°,[/:E"] booly
H E? ‘ if E°then E%el se E? ‘ booly X anyi X anys — anyy L anys a H
E"Y EY. E'lstep EM int; x inty X intg — [0..n] — inty Uinty
EY. . plU inty X inty — [0.n] — int; Uints
El E' xor E'2 booli x booly — booly L boolsy
E12 E12 or Eld
Eld Eld and E14
£ not £ booly
EP E ==F1° anyi X anys a
E' «= 10 compary X compare — boolean a
BT E' Op BT any; X anys — boolean a,b
compary X compars a,c
EY E'"+ E8 pIT _ pI8 numi X nums — numi L nums
JoRd H— E18 [0.m1] — anyy X [0.ma] — anys — [0.m1 + ma + 1] — anyy U anys a
B8 EB«EDY EIB] ED numi X nums — numq Unums
EB [« B any, x int; — [0.m] — any;
E™® nmodul o EP inty X ints — intsy
E « EV d
ED E?Y 4% B0 numi X ity — numy
E?Y @ E? realy X realy — cmplxy e
E? + 21— g2l numi; — numj
E var E??init E?? any; X anys — anyy f
var E?? anyi
E?lcell EZinit E? anyy X booly X anys — anyy f
E?lcel | E* anyi X booly
S-EXPR-DYNAMIC C-VI1.6

Table C-VI1.3: Expressions on signals

106 EXPRESSIONS ON SIGNALS
Prio- Scheme Type
rity Arguments — Result
H E? ‘ tr £ ‘ ([0..1] x [0..m]) — any; — ([0..m] x [0..]) — any; ‘ H
H E% ‘ B2\ B# ‘ any; X anys — anyy Ll anys ‘ a H
et e any: | |
E25 <<E0, . ,E0>> [0.m1 — 1] — anyy X ... X [0.my — 1] — anyp — [O.. ﬁ my — 1] — any;
k=1
X...X[OA.ﬁ myg — 1] — anypn
[EO,. . ,EO] anyy X ... X anynp — [0.n — 1] — Iil any; a
INSTANCE-OF-PROCESS C-VI.2
T(EY) any; — T(T) h
E26 E26[EO, . ,EO] (([0.m1] X ... X [0.m,]) — anyy) X (int] X ... X inty,) — any;
([0..11] X ... X [0.lp]) — any; X
([0.m1] x ... x [0.mp]) — inty™ — ([0.m1] X ... x [0.mp]) — any;
E26. XZ bundle({X1} — anyy X ... X {Xm} — anym) — any;
E27 (EO, ,EO) anyy X ... X anyn — (anyy X ... X anyy)
CONSTANT C-VIL5
| d 7(1d) i
(E") 7(E)

Table C-VI1.4: Expressions on signals

[a] fortypes belonging to the same domain

[b] forOp=or/=

[c] for Op <= or >= or < or >, a partial order being defined in the typenpar

[d] matrix products

[e] emplay is of typecomplex if both arguments are of typeeal, it is of typedcomplex otherwise
[f] for anys C any,

[g] Iterative enumeration

[h] Conversion

[i] T(Id) is the type of the declaration of the signal identifier

int; is an integer type (i.e., amongort, integer, long)

real; is a real type (i.e., amonggal, dreal)

cmplz; is a complex type (i.e., amongmplex, dcomplex)

num,; IS a numeric type (i.e., amongt;, real;, cmplxz;);

when, on a same line, two notations of type have the same ,irtder they designate the same
type;

e the last column is a reference to the notes that follow thketdbwercase letter) or a reference to
another table.

VI-2. ELEMENTARY EXPRESSIONS 107

VI-2 Elementary expressions

The expressions of elementary signals are the following:

1. Context-free syntax

S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal
| Label

| Name-state-variabl

VI-2.1 Constant expressions

A constant expression iISSONSTANT, an occurrence of constant identifier, an occurrence ohpeter
identifier, a constant expression of tuple (cf. gaytsectionVIll-1, pagel53), a constant expression of
array (cf. partD, sectionlX-2, pagel59), or one of the following expressions having recursively as
arguments constant expressions:

e anINSTANCE-OF-PROCESS (only if it is the call of a monochronous function with consta
arguments), or CONVERSION,

e amongS-EXPR-TEMPORAL aMERGING or anEXTRACTION ,
e anS-EXPR-BOOLEAN,

e anS-EXPR-ARITHMETIC,

e anS-EXPR-CONDITION.

Clock expressionsS-EXPR-CLOCK) and dynamic expressionS{EXPR-DYNAMIC) cannot be part
of a constant expression.
A constant is a denotation of value oBaalar-type or of anENUMERATED-TYPE :

1. Context-free syntax

CONSTANT =

Boolean-cst
| Integer-cst
| Real-cst
| Character-cst
| String-cst
| ENUM-CST

These syntactic categories are described elsewhere (t# psectionll-2, page25).

1. Profile
A constant and consequently a constant expression havenadmed input, nor named output.

108 EXPRESSIONS ON SIGNALS

2. Types

(a) The type of a constant expression is evaluated in acooedaith the type of th&-EXPR
having the same syntax.

3. Clocks

(a) The clock of a constant expression and of its argumerits is

The tableC-VI1.5 contains a summary of these properties and gives the grafrihe constant lexical
expressions.

[Scheme \ Type |
true event
fal se boolean
Integer-cst Integer-type following its value
Simple-precision-real-cst real
Double-precision-real-cst dreal
Character-cst character
String-cst string

Table C-VI.5: Types of the constanks’”

VI-2.2 Occurrence of signal or tuple identifier

An occurrence of signal identifier has as value the signdldbénes this identifier, as clock, the clock
of this signal and as type the type of its most internal detian; the profile which is associated with it
contains as input this single identifier and does not corgaiamed output.

An occurrence of tuple identifier has as value the tuple obtpgeals that define this identifier.

In the rules describing the context-free syntax of the laigguName-signalcan designate, following
the context, a signal name, a tuple name, or a field name ife tup

The occurrence of a label is more specifically described apt#rVIl, sectionVIl-5, pagel38

VI-2.3 Occurrence of state variable

The notationX ? allows to refer to the last defined value of a state variablef. sectionv-11, page9dl).
State variables can be defined exclusively by equationsroapdefinition, that define the next values of
the state variable (cf. sectidf—1.1, paragrapti-d, page97). For a declared state variablg, the direct
reference toX is not allowed in expressions on signals; the only way torref¢he last defined value of
the state variable is by using the notati&r?. The notationX ? designates the value of the state variable
X at the beginning of the “current step”. Moreover, this notaimust be used in a context in which a
context clock is well defined.

X?
1. Types
(@) 7(x?) =7(x)

VI-3. DYNAMIC EXPRESSIONS 109

2. Definition in SIGNAL
Let H be the context clock oK ?, then, with the definition ofX as it is given in sectioVI-1.1,

paragraphl-d, page97, X ? is equivalent to:
X when H

3. Clocks

(@) The clock ofX?, which is equal to the clock ok, is upper than the upper bound of the
clocks of all the signals of the compilation unit in whighis declared.

VI-3 Dynamic expressions

Dynamic expressions allow the handling of values of sighalging distinct dates. They require the
definition of the value of the signals at their initial instgn

1. Context-free syntax

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

The tableC—-VI.6 gives the different forms of dynamic expressions.

Scheme Type
Arguments — Result

E?"wi ndowE?init E# Al x By x Wy — Wy

E?'wi ndow E?? Al x By — W,
E?1 $ EZinit E® A x Eygx Wy — Ay
E21 $init E% Al x Ay — A
E21 $ E22 Al X E11 — Al
E?’'$ A — Ay

Table C-VI.6:S-EXPR-DYNAMIC E*!

Ay anyy
FE; constantM of Integer-type, strictly positive
Wi [0.M — 2] — A,
Wy [0.M —1] — Ay
E7; signali of Integer-type, positive or zero, bounded by a constant
of implicit value 1
Wi [0.N —1] — As
A A2 C Ay

110 EXPRESSIONS ON SIGNALS

VI-3.1 Initialization expression
Einit V
The initialization expression allows to define the initialue(s) of a signal.

1. Types

(a) FE is asignal of any type.

(b) The type ofl” can be, depending on the context of the initialization:
e atypev such that C 7(E),
e atype [0.n — 1] — v such thaw C 7(E).

2. Semantics

e If V hasatype suchthav C T(E) the value o defines an initial value for the expression
E init V.

e If V has a type [On — 1] — v such thatv C 7(E), then the value of/ definesn initial
values for the expressiofl i nit V:the valuego(V[0]) defines the value of this expres-
sion at its first instant, the valug(V[1]) defines the value of the expression at its second
instant, etc.

If V' defines more values than required by the initialization efeRkpressiort, the extra values
are not taken into account.

If V defines less values than required by the initialization efakpressiort’, the missing values
are defined by the default initial value of type

An initialization expression can be associated with a digitaer in an expression on signals, as it
is the case here, or in the declaration of a signal (cf. se&t®, page89). When both forms of
initialization are defined for a same signal, the one whichtha priority is that appearing in the
expression of definition of the signal. The presence of afliation expression in the definition
of a signal specifies, with the same semantics as abalefaaltinitialization for the signal, when
no initialization is specified in its expression of definitioFor a state variable (cf. sectidfq11,
page9l), it is recommended that its initialization is describeditmdeclaration, and not in its
expressions of definition.

When several initialization expressions are associatéd avsignal in different partial definitions,
they should be compatible.

3. Clocks
@ w(E init V)=w(k)
) w(V)=nh

VI-3.2 Simple delay
E$init)

1. Context-free syntax

SIMPLE-DELAY ::=

S-EXPR [S-EXPR]

VI-3. DYNAMIC EXPRESSIONS 111

2. Types

(a) FE is a signal of any type.
) T(E$init vw)=7(F)
(© 7(w) C 7(E)
3. Semantics
The semantics of the delay is described formally in Bagectionlll-6.2, page41.
The value of the signakl $ i ni t v, is at each instantthe value of the delayed signal at the
instantt — 1. Initially, this value is the value defined by the initialicn (©(vo)).

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null”lva of typeT (£) (which implies that
it is defined for any type, including external c)r@gT(E):

E$=FES$init OT(E)’
except if an initial value is associated with the defined aligim its declaration (cf. sectiovil-3.1,
pagell0).

5. Clocks

@ w(vo) =
) w(E $ init vw)=w(E)

6. Examples

(a) The values taken by for y defined byy : =x $i ni t 0 are described below for the corre-
sponding values of in input:

x =1 2 3 4

N N N N
y = 0 1 2 3

Note that the initial value is the first value pf not that ofx.

VI-3.3 Sliding window
Ew ndowM init TE,

1. Context-free syntax

WINDOW ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) FE is asignal of any type.

(b) The size of the window)/, is an integer constant expression the value of which istgrea
than or equal to 1. If it is equal to 1, the initialization haseffect.

(€) T(Ew ndow M i nit TEy)=[0..0(M) —1] — 7(E)

112 EXPRESSIONS ON SIGNALS

d) 7(TEy) =[0..n — 1] — 1,
wherep, C 7(E), n > (M) —1,andn > 0
(in the particular case Wher,e(M) = 2, the single initialization value can be given by an
element of typer (T Ey) = 1, wherep C 7(E))

3. Semantics
For a signalX defined byX : = Ewi ndowM i nit TEj:

Clriz () S (D ZE () 00

e 1<t+i<(M) = (X[i] =TEo[t-o(M)+i+2])
4. Definition in SIGNAL

X:= EwindowMinit TE,
whose right side c{f:z represents an expression of sliding window, is equal to tbegss defined

as follows, whenp(M) > 1:

(| Xy = FE
Xo $init TE[M — 2]

s
I

Xp—1 o= Xyp—o $init TE()[O]
X = Xpy—1, ..., Xo]
/ 0y ey Xp-a

>

)

5. Definition in SIGNAL
E wi ndow M is equal, whemp(M) > 1, to the following expression on signals:

Ewi ndowM i nit O[O..QO(M) — 2] — 7(F)

6. Definition in SIGNAL
X : = Ewi ndowl is equal to the process defined as follows:

X:=[E]

7. Clocks

(@ w(M)=h

(b) w(TEy) =h

(c) w(E window M init TE)=w(E)
8. Examples

(a) The values taken by for y defined byy : =x wi ndow3init [-1,0] are described
below for the corresponding valuesoin input:

X = 1 2 3 4
y [_17071] [07172] [17273] [27374]

VI-3. DYNAMIC EXPRESSIONS 113

VI-3.4 Generalized delay
ES$Tinit TE

1. Context-free syntax

GENERALIZED-DELAY ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) FE is asignal of any type.

(b) I is a positive or equal to zero integer, with an upper bound.
Let NV be the upper bound (if is an integer constaniy is equal tol).

© T(E$TIinit TE)=T(E)

d) 7(TEy) =[0.n — 1] — 4,
wheren C 7(E),n > (N), andn > 0
(in the particular case wherg(N) = 1, the single initialization value can be given by an
element of typer (T Ey) = u, wherep C 7(E))

3. Definition in SIGNAL
X:=ES$Iinit TE
whose right side o@ represents an expression of generalized delay boundedcebydkimal
value N, is equal to the process defined as follows:

(| TX := E window N+1 init TE,
| X := TX[N-—1I]
)/

~

X

4. Definition in SIGNAL
X:=FE$1I
is equal to the process defined as follws:

(] TX := E wi ndow N+1
| X := TX[N—1]
) / X

~

5. Clocks

(@ w(1) =w(E)

(b) w(TEy) =h

) w(E $ 1)=w(E)
6. Examples

() The values taken by for y defined byy : =x $3init [-2,-1,0] are described
below for the corresponding valuesoin input:

114 EXPRESSIONS ON SIGNALS

x = 1 2 3 4 5 6
y = -2 -1 0 1 2 3

(b) The values taken by for y defined byy : =x $i init [-2,-1,0] are described
below for the corresponding valuesofandi in input:

i = 1 3 3 1 2 1
x =1 2 3 4 5 6
y = 0 -1 0 3 3 5

VI-4 Polychronous expressions

The polychronous expressions are built on signals whicle pagsibly different clocks.
1. Context-free syntax

S-EXPR-TEMPORAL::=

MERGING
| EXTRACTION

| MEMORIZATION
| VARIABLE

| COUNTER

VI-4.1 Merging
E;default B,

1. Context-free syntax

MERGING ::=

S-EXPR S-EXPR

2. Types

(@) 7(E,) andT(E,) are signals of a same domain.
(b) 7(E, def aul t Ey) =7(E)) uT(E,)

3. Semantics
The semantics is described formally in pBrtsectionll—6.3, page42.

4. Clocks

@) w(E, default Ep)=w(E)+ (1 -w(E))«w(E)) ifw(E)#h

(b) w(E, default Ey)=w(B)+ (1 -w(F))*w(E, default Ey))
if W(Ey) =h

5. Graph
WhenT(E, def aul t E) # boolean andT(E; def aul t E,) # event:

(@) E1— Ey defaul t By

VI-4. POLYCHRONOUS EXPRESSIONS 115

1 - w(E
(b) EQ&& defaul t B,

6. Properties

(@) (&p default Ey)default E3=F, defaul t (£y def aul t E3)
(b) Eydefault E; = FE; def aul t (Ey; when not "E; def aul t "E»)
) W(E) «w(E)=0) = (E default Ey=E,default E)
d) (W(E) >w(E))V w(E) =h) = (E default Ey=E))

7. Examples

(a) the values taken by defined byY : = E1 def aul t E2 are described below for the corre-
sponding values dE1 andE2 in input:

El = 1 3 1L 5 7
E2 = 2 4 6 1 8
Y =1 3 6 5 7

VI-4.2 Extraction
Ewhen B

The values of a signal can be produced by extraction of theegabf another signal when the values
of a Boolean signal are equal toue.

1. Context-free syntax

EXTRACTION ::=
S-EXPR S-EXPR

2. Types

(a) FE is asignal of any type.
(b) 7(B) C boolean
(¢) T(Ewhen B) =7(F)

3. Semantics
The semantics is described formally in pBrtsectionll-6.3, page42.

4. Clocks

(@) w(E when B)=w(E)*w(B)*(-1-B) ifw(E)#nh
(b) w(E when B)=w(B)*(-1-B) ifw(E)=n

5. Graph
WhenT (E when B) # boolean andT (E when B) # event:

(a) E—Ewhen B

116 EXPRESSIONS ON SIGNALS

6. Properties

(@ (T(B) =event) = (Bwhen B =DB)
(b) (F when By)when By, = Ewhen (B when Bs)
(c) Ewhen (B when B)=FEwhen B

7. Examples

(a) the values taken by when Care described below for the corresponding values ahdC

in input:
X =1 3 L 5 1 7
c =T 1L T F F T
XwenC = 1 1L 1 1 1 7

VI-4.3 Memorization
Ecell Binit

The memorization allows to memorize a given signal at thekctitefined by the upper bound of the
clock of the signal and the clock defined by the instants atlwhiBoolean signal has the valtte:e.

1. Context-free syntax

MEMORIZATION ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) F is asignal of any type.
(b) 7(B) C boolean
) T(Ecell Binit Vp)=7(E)
@) 7(vo) Cc 7(E)
3. Definition in SIGNAL
X:=Fcell Binit Vj

whose right side represents an expression of memorizatiol'at the instants at which
is true, is equal to the process defined as follows:

(]| X := F default (X $init V)
| X 7= E "+ (when B)
)

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null’lua of typeT(E), OT(E):

Fcell B=FEcell Binit OTE’

except if an initial value is associated with the defined algim its declaration (cf. sectiovil-3.1,
pagellO).

VI-4. POLYCHRONOUS EXPRESSIONS 117

5. Clocks
@ w(E cell Binit Vy)=w(E)+ (1 -w(E))*w(B)x*(-1- B))
6. Examples

(a) the values taken by cell C init 0 are described below for the corresponding values
of XandCin input:

X =113 L L L1 5 1 7
c=TFTTF T 1 T L
Xcell Cinit 0 = 0 1 3 3 1L 3 5 5 7

VI-4.4 Variable clock signal

var EFinit 1,

Thevar operator allows to use a signal at any clock defined by theegtnt

1. Context-free syntax

VARIABLE ::=

S-EXPR [S-EXPR]

2. Types

(a) E is asignal of any type.
(b) T(var Einit V) =7(E)
) (Vo) € 7(E)

3. Definition in SIGNAL
Let:

e [’ an expression on processes containing an occurremceof the expression on signals
var Finit Vg,

e H the context clock obar; in F,

e F'F the expression on processes equal’'tm which X X has been substituted tar;.

F'is then equivalent to:

X = E default (X $ init 1))
XX := X when H

X "=F "+ H

/

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null’lua of typeT(E), OT(E):

var E=var Einit OTE

except if an initial value is associated with the defined algim its declaration (cf. sectiovil-3.1,
pagellO).

118 EXPRESSIONS ON SIGNALS

5. Clocks

(@ w(var E init V)=nh

VI-4.5 Counters
H, modality H, or H;count M

The counter expressionspdalityaf t er orf r om or counter modulocount) allow the number-
ing of the occurrences of a clock.

1. Context-free syntax

COUNTER ::=
S-EXPR|after | S-EXPR
| S-EXPR|from | S-EXPR
| S-EXPR|count|S-EXPR

2. Types

(@) 7(H,) = 7(H>) = event
(b) M is an integer constant expression.
(c) T(Hl modality Hg) =integer
(d) T(H1 count M) =integer
3. Definition in SIGNAL
N:=H;after Hy

whose right side represents an expression of counter of the evAntafter the reinitializa-
tion H, is equal to the process defined as follows:

(| counting_active ::= Hy

| count_state :: = newCount

| newCount := (0 when Hs) default incrementedCount

| incrementedCount : = (count_state? + 1) when counting_active? when H;
| N := (newCount when H;) default (0 when H;)

[) where

statevar bool ean counting active init fal se;
statevar integer count_state init O;
i nt eger newCount, incrementedCount;

The signalN counts the number of occurrences of the sigHal(o;) since the last occurrence

of the signalH> (03); but the occurrences; which are simultaneous to occurrenggsare not
counted.

4. Definition in SIGNAL
N :=H;fromH,

VI-4. POLYCHRONOUS EXPRESSIONS 119

whose right side represents an expression of counter of the evAntsince the reinitializa-
tion Ho, is equal to the process defined as follows:

(| counting_active ::= Hy

| count_state ::= newCount

| newCount := (1 when Hy; when H;) default (0 when Hy) default incrementedCount
| incrementedCount : = (count_state? + 1) when counting_active? when H;

| N := (newCount when H;) default (0 when H;)

|) where

st at evar bool ean counting active init fal se;
statevar integer count_state init O;
i nteger newCount, incrementedCount;

The signalN counts the number of occurrences of the sigHal(o;) since the last occurrence
of the signalH; (07); the occurrences; which are simultaneous to occurrenegsare counted.

5. Definition in SIGNAL
N :=H;count M

whose right side represents an expression of counter of the evBhtsnodulo (1), is
equal to the process defined as follows:

(| N := (0 when ZN >= (M — 1)) default (ZN + 1)
| ZN := N $init (M — 1)

| N "= H

) I ZN

The signalN has 0 as initial value and is incremented by 1, modylkg\7), at each new oc-
currence of the signatf; .

6. Clocks
(a) w(H, modality H,)=w(H;)
(b) w(am)=n
(c) w(H, count M)=w(H;)

7. Examples

(a) the values taken iyl f romE2, E1 af t er E2 andEL count 3 are described below for
the corresponding signal&l andE2 in input:
El =

1l o o e o o 1 e

E2 = e 1 1 e L 1 e L

El fromE2 = 1 1 2 1 2 3 1 1
El after E2 = 1 1 2 0 1 2 1 1
El count 3 = L O 1 2 O 1 1 2

VI-4.6 Other properties of polychronous expressions
See also properties in sectivi-4.1, pagelldand sectiorVi-4.2, pagells.
e (Fy default E;)when B =(F; when B)def aul t (E; when B)

120 EXPRESSIONS ON SIGNALS

o (T(B)) =event) = (Ewhen (B, defaul t By)=(E when B;) def aul t (E when By))

VI-5 Constraints and expressions on clocks

A CONSTRAINT is an expression of processes which contributes to the remtisin of the system of
clock equations of the program. It is the tool for constrgirdgramming. Such an expression can take
as arguments expressions on clocks or expressions onssignal

1. Context-free syntax

ELEMENTARY-PROCESS ::=
CONSTRAINT

VI-5.1 Expressions on clock signals
1-a Clock of a signal
“E
The clock of a signal (of any type) is obtained by applyingdperator to this signal.
1. Context-free syntax
S-EXPR-CLOCK ::=
SIGNAL-CLOCK
SIGNAL-CLOCK ::=

S-EXPR

2. Types
(a) E is asignal of any type.
(b) TCE) = event
3. Definition in SIGNAL
E ==

Remark: this definition uses the operator of relatiea defined on any type (cf. sectiofi—7.2,
pagel2?).

4. Examples

(a) the values taken bX are described below for the corresponding valueX wf input:
X 1 2 3 4
X T T T T

Remark: the expressioi and the conversioavent (E) have the same result.

VI-5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 121

1-b Clock extraction
when B or [: B] or [/:B]
The extraction of thérue values of a Boolean condition are obtained by applying trexatpr unary

when on the condition; the extraction of théulse values of a Boolean condition are obtained by
applying the operator unamhen on the negation of the condition:

1. Context-free syntax
S-EXPR-CLOCK ::=
CLOCK-EXTRACTION

CLOCK-EXTRACTION ::=
@ S-EXPR

E S-EXPRIIl

E S-EXPRIIl

2. Types

(@) 7(B) C boolean
(b) T(when B) = event
3. Definition in SIGNAL

when B, or equivalently| : B], is equal to:
“Bwhen B

4. Definition in SIGNAL
[/: B] isequal to:
“Bwhen not B

5. Clocks

(@) w(when B)=w(B)* (-1 - B)
(b) w(l: B])=w(B)* (-1 - B)
() w([/:Bl)=w(B)*(1-B)

6. Examples

(a) the values taken Hy: C] (orwhen C) and[/ : C] are described below for the correspond-
ing values ofCin input:

C =
when C = [: (]
[/:Q

e
e
==
=
44

122 EXPRESSIONS ON SIGNALS

1-c Empty clock

0
The empty clock is the clock that does not “contain” any insta

1. Context-free syntax
S-EXPR-CLOCK ::=
2. Types
(@) 7(0) = event

3. Definition in SIGNAL
"0 is the lexical expression of the empty clock; it is equah@®golution of the following equation:
when not ("0) "="0

4. Clocks
(a) w("0)=0

VI-5.2 Operators of clock lattice
El Aop E2
1. Context-free syntax

S-EXPR-CLOCK ::=

S-EXPR[| S-EXPR
| S-EXPR[—|S-EXPR
| S-EXPR| ™ | S-EXPR

2. Types

(a) E1 andEs are signals of any types.
(b) T(E1 “Op Eg) = event

3. Definition in SIGNAL
X:=FE 4+ E,
defines a signal equal to the upper bound of the clocks of gmas F, and E»; this expression is
equal to the process defined as follows:

(| X = AEl def aul t AEQ
)

VI-5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 123

4. Definition in SIGNAL
X :=F % Ey
defines a signal equal to the lower bound of the clocks of teeds £, and E; this expression is
equal to the process defined as follows:

(] X := "E; when "E,
b

5. Definition in SIGNAL
X .=F; — FEy
defines a signal equal to the complementary clockpfx E5 in"FEq; this expression is equal to
the process defined as follows:

(] X := when ((not TEy) default "E)
)

6. Clocks

@ w(Br ~+ Ep)=w(E) + (1 - w(Er)) * w(E))
b) w(Br ~x B)=w(E) «w(Ey)
© w(Br ~— E)=w(E) — (W(E1) » w(Ey))

7. Properties

(@) Ex "+ (B + E3) = (Br + E2) + E3

(b) Eix "+ Exy=Ey + B4

(c) E4+0="F

(d) B~y E="E

(€) By (B2 E3) = (Eh " Eg) x Ej

() By Ex =FEy x F;

(9 Ex0=0

(h) Ex E="FE

() (Br " Eo) + E3 = (B "+ E3) ™ (B2 + E3)
() (BEr ™+ E2) ™ E3 = (Ey "* E3) + (B2 * Ej)

VI-5.3 Relations on clocks
E1 AOp E2

The following expressions are expressions on processesiliag constraints between clocks of
signals.

1. Context-free syntax

124 EXPRESSIONS ON SIGNALS

CONSTRAINT ::=
S-EXPR {E| S-EXPR ¥
| S—EXPR{ S-EXPR }*
| S—EXPR{ S-EXPR ¥

| S-EXPR { S-EXPR ¥

2. Profile
A relation on clocks of signals is a process with no output\aith:
?(E "Op ... "Op E,)=J? (&)
=1
3. Types

(a) The argument&’; are signals of any types, possibly distinct.

4. Definition in SIGNAL
E1 Aop E2 Aop EFE
(where Op is one of the operators=,” <,” > and #, and whereF E is an expression on clocks
or recursively a relation on clocks), builds the compositid the expressiong; ~Op Ej, for
any pair of distinct indexesand;j, and thus expresses the conjunction of the associatetrsat
It is recursively defined by the composition of the followiegpressions of processes:

(| E1 "Op E,
| E, “Op EE
| E, “Op EE
)

5. Definition in SIGNAL
Ey T = Es
constrains the clock of the expression on signéjsto be equal to that of’s; this expression,
whenH, ¢ ? (El T = EQ), is equal to the process with no output defined as follows:

(I Hy = (TE) == (" E)
) | H;

6. Definition in SIGNAL
Ey T < Ey
constrains the clock of the expression on sigial$o be smaller than (or equal to) thatB$; this
expression is equal to the process with no output definedlas/&
El/\: El x E2

7. Definition in SIGNAL
Ey > FEs
constrains the clock of the expression on sigialgo be greater than (or equal to) thatef; this
expression is equal to the process with no output definedlas/
E\"=E"+E

VI-6. IDENTITY EQUATIONS 125

8. Definition in SIGNAL
E, ~# E, specifies the mutual exclusion of the clocks of the expressan signalst; and
E»; hencew(E,)+w(E,) = 0. This expression is equal to the process with no output dibfise

follows:
AO = El X E2
VI-6 ldentity equations not yet
imple-
E .= Ey mented

Identity equations are expressions on processes degcaqumality constraints between the sequences
of values (and clocks) of two expressions.

1. Context-free syntax

CONSTRAINT ::=

S-EXPR S-EXPR

2. Profile
An identity equation is a process with no output and with:

2E = E)=?E)U? ().

(a) E1 andEs; are of comparable types.

4. Semantics
If £ andFE5 can be viewed respectively as tup(eB1,. . . ,F1,) and(Esq,...,Es,) , the identity
equation; : =: FEs constrains the sequences of values of the expresdipnand Es; to be
respectively equal.
An equationF; : =: Fs is the basic identity equation between signals in the laggef. parB,
chapterll, page3l). Itis a non oriented equation, that does not induce depemdchetweerd;
andFEs.

5. Clocks
If F1; and Ey; designatesignals,they are synchronous. In this case:
@) w(Er;) = w(Bx)
6. Properties

(@) E1:=: Ey
is equal to the following process:
(| (when (B == Eo1)) ~ = En

| (when By == Ea)) "= Eun
)

126 EXPRESSIONS ON SIGNALS

VI-7 Boolean synchronous expressions

The Boolean expressions are synchronous expressions malssigrhe operators defining such expres-
sions are the standard operators on Boolean elements egtémdequences of elements. The Boolean
expressions (or expressions with Boolean result) arereitkigressions of the Boolean lattice, or rela-
tions.

VI-7.1 Expressions on Booleans
1-a Negation
not E;

1. Context-free syntax

S-EXPR-BOOLEAN ::=

S-EXPR

2. Types

@) 7(E;) E boolean
(b) T(not E;) = boolean

3. Semantics
The operator of negation has, on the occurrences of sigtsisual semantics.

4. Clocks

€) W(not El) = W(El)

1-b Operators of Boolean lattice
E, Op Es
1. Context-free syntax
S-EXPR-BOOLEAN ::=
S-EXPR|or |S-EXPR

| S-EXPR|and|S-EXPR
| S-EXPR|xor |S-EXPR

2. Types

@) T7(E,) C boolean

(b) 7(E>) C boolean

(c) T (E1 Op Eg) = boolean
3. Semantics

The expressions on Boolean signals have, on the synchrawausrences of these signals, their
usual semantics; however, they are not primitive operaibtise SGNAL language.

VI-7. BOOLEAN SYNCHRONOUS EXPRESSIONS 127

4. Definition in SIGNAL
X :=F;and Ey
is equal to the process defined as follows:

(| X := (E; when E,) default (not "Ey)
| E1 T = Ey
)

5. Definition in SIGNAL
X:=FE o0r Ey
is equal to the process defined as follows:

(| X := (E; when not E,) default TE;

|

| By T = Ej

D)

6. Definition in SIGNAL

X .= Ey xor Ey
is equal to the process defined as follows:

(] X :=not (E; == Ey)
b

7. Clocks

@ w(Er) =w(E)
(b) wW(Er Op Ep)=w(E)

VI-7.2 Boolean relations

The Boolean relations are equality, difference, and samct non strict greater and lower relations.
Two classes of relation operators are distinguished asuptd their denotation:

e the operators which have a pointwise extension on elemdnasrays (cf. partD, chapterx

pagel79), denoted respectively= | - EF L'_[et\i[for example, the operat
vector of Boo

applied on two vectors has as result eans;

e the operators which have a Boolean result, whatever is the ¢y thesignalson which they are
applied; in this class are only defined the operator of etwaiénote and the operator of

inferior or equal relation order, denoted <= | (these operators are pointwise extendef@dinilies
of signals:polychronous tuples with named fields and tuples with unrbfiedds).

FEy Op FEs
1. Context-free syntax

S-EXPR-BOOLEAN ::=
RELATION

128 EXPRESSIONS ON SIGNALS

RELATION ::=
S-EXPR|[= | S-EXPR
| S-EXPR|/ =/ S-EXPR
| SEXPR[> |S-EXPR
| SEXPR[>—| S-EXPR
| SEXPR| < |S-EXPR
| S-EEXPR|<=| S-EXPR
| S-EXPR|=— S-EXPR
| SEXPR[<<=]|S-EXPR

2. Types

(a) T(E1 Op Eg) = boolean
(b) ForEy == Exs:
FE, and E, aresignalsof a same domain, which is any domain.
(c) ForE; = EsandE, /= FEs:
E, and E, are signals of a same doméaicalar-type or ENUMERATED-TYPE .
(d) ForE; <<= Es:
FE, and E, are signals of a same domdagtalar-type (other than a&Complex-type), or of

ENUMERATED-TYPE , or of a same type for which the environment defines this dpera
while respecting the properties enounced in this section.

(e) ForEy > FEs, By >= FEs, E1 < By, andE; <= Es:
E, and E,, are signals of a same doma8talar-type (other than e&Complex-type), or of
ENUMERATED-TYPE .

3. Semantics

e Two objects of array types are equal if and only if both arragge the same dimension, are
of comparable types and the elements of same index are tesheequal.

e Two objects of monochronous tuple types are equal if and ibblgth objects are of compa-
rable types and the elements of corresponding fields arectggly equal.

¢ In the order defined on the values of tylja@lean, false is lower thantrue.

e The order defined on the values of tygewracter is the order on the decimal values of their
encoding.

e The order defined on the values of tygeing is the corresponding lexicographic order.
e The order defined on the values of BNUMERATED-TYPE is the syntactic order of their
declaration in the definition of the type (cf. sect/dr3, page76).

With these precisions, the operators of relation have thmial semantics. The operat and

denote the relation of equality; the operators<= | and[<—| denote the relation inferior or
equal.
The comparisons are made in the greatest type (of a same mjori&ien ifv, is an element of
the sequence of values representedrhyand if v, is the corresponding element in the sequence

VI-8. SYNCHRONOUS EXPRESSIONS ON NUMERIC SIGNALS 129

of values represented Wy,
the corresponding elementis Op FE» in the sequence representediBy Op FEs.

4. Definition in SIGNAL
The expressiotty; / = Fs is equal to the following expression:
not (E; = E»)

5. Definition in SIGNAL
The expressiorty; < E, is equal to the following expression:
(not (E1 = Ey)) and (E; <= E»)

6. Definition in SIGNAL
The expressiorty; >= FEs is equal to the following expression:
Ey <= Ey

7. Definition in SIGNAL
The expressiorty; > F, is equal to the following expression:
Ey < Ej

8. Clocks
(@) w(E) =w(k)
(b) w(E; Op E»)=w(E1)

9. Graph
When theF; are not of a domaisynchronization-type

(@ E1—E; Op Es
(b) Ea—FE; Op E»
10. Properties
The relatio is an order relation on all the types of signals for which dédined:; it has all
the properties of an order relation:
(a) reflexivity
(b) transitivity
(c) anti-symmetry: (£ «= E)) A\ (Ey «= Ey)) = (Ey == E»)
11. Properties
The reIatio is an order relation on the domains of values on which it isneefj it is:
(a) reflexive,
(b) transitive,
(c) anti-symmetric: (/1 <= E2) A\ (B2 <= E1)) = (F; = E»)

VI-8 Synchronous expressions on numeric signals

The synchronous expressions on numeric signals are defingaibtwise extension of the standard
arithmetic operators on sequences of elements.

130 EXPRESSIONS ON SIGNALS

VI-8.1 Binary expressions on numeric signals
Ey Op Es
1. Context-free syntax

S-EXPR-ARITHMETIC ::=
S-EXPR| + |S-EXPR
| S-EXPR Z| S-EXPR
| S-EXPR E| S-EXPR
| S-EXPR Z| S-EXPR

| S-EXPR|modulo|S-EXPR

| S-EXPRElS-EXPR
| DENOTATION-OF-COMPLEX

2. Semantics
If the result of an expression cannot be represented in fietyof this expression, its value is a
value of typeu depending on the implementation.

If v1 is an element of the sequence of values representefl; gnd if v, is the corresponding
element of the sequence of values representefipyhe corresponding element in the sequence
represented by, Op FE,is:

U1 Op V9

3. Clocks

(@ w(Er) =w(k)
(b) w(Er Op E»)=w(E)

4. Graph
(@ E1—E; Op Es
(b) BEa—FE1 Op E»
Operators + —, %,/ E; Op E»
1. Types

(a) 7(E,) andT(E,) are of anyNumeric-type in a same domain,
(b) T(E1 Op E»)=7(E1) UT(E)

2. Semantics
When an expression of division is of domairieger-type, the division is the integer division.

VI-8. SYNCHRONOUS EXPRESSIONS ON NUMERIC SIGNALS 131

Operator nodul o E; nodul o Es
1. Types

(@) 7(E,) andT(E,) are of domairinteger-type.
In addition, 5, must be a constrained integer (strictly positive and witlupper bound).

(b) 7(E, modul o Ey) =T7(E,)

2. Semantics
If ris defined by : =a nodul o b,
then at each instant, the following property is true:
(Hanintegery) ((a=bxq+r) A(0 < r < b))
Operator xx FE; xx E,
1. Types

(a) 7(E,) is aNumeric-type.
(b) 7(E,) is aninteger-type.
© T(Er »+ Ey)=7(Ey)

Operator @ FE;@F-

A pair of synchronous elements Beal-typedefines a signal of domai@omplex-type

1. Context-free syntax

DENOTATION-OF-COMPLEX ::=

S-EXPR S-EXPR

2. Types

(a) T(E,) is aReal-type,
(b) 7(E>) is aReal-type,
() if 7(E1) U T(Ey) = real, thenT (E,@F,) = complex
it 7(E1) U T(E2) = dreal, thenT (E,@F») = dcomplex

3. Examples

(@) 1.0 @ (—1.0) defines a complex constant.

VI-8.2 Unary operators
Op E;
1. Context-free syntax

S-EXPR-ARITHMETIC ::=

S-EXPR
| [—|S-EXPR

132 EXPRESSIONS ON SIGNALS

2. Types

(a) 7(E,) is aNumeric-type.
(b) 7(0p E1)=7(E)

3. Semantics
If the result of an expression cannot be represented in e tyof this expression, its value is a
value of typeu depending on the implementation.

If v1 Is an element of the sequence of values representédd by
the corresponding element in the sequence represent®g by, is:
Op v

4. Clocks

(@) w(Op £1) =w(£)
5. Graph

(@) E1—0Op Ey

VI-9 Synchronous condition

if Bthen Ejel se Ey

The synchronous condition is an expression on signals aitiesclock.

1. Context-free syntax

S-EXPR-CONDITION ::=

S-EXPR S-EXPR S-EXPR

2. Types

(@) T7(B) C boolean
(b) E; and E; are signals of a same doméatalar-type, External-type or ENUMERATED-
TYPE.
() 7(i f Bthen E; el se Ey) =7(E;) UT(FE>)
3. Definition in SIGNAL
X:=if Bthen Ej el se b,

whose right side represents an expression of synchronous condition, id emtree process
defined as follows:

(| X := (E; when B) default Ej
| B "= E "= B
b

4. Clocks

(@ w(Er) =w(E)

VI-9. SYNCHRONOUS CONDITION 133

(b) w(B) =w(E1)
) w(if B then E; else E,)=w(E)

Chapter VII

Expressions on processes

The expressions on processes allow to compose systems afi@guon signals with the following
syntax:

1. Context-free syntax
P-EXPR ::=

ELEMENTARY-PROCESS
| HIDING
| LABELLED-PROCESS
| GENERAL-PROCESS

GENERAL-PROCESS::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS
| ASSERTION-PROCESS

VIl-1 Elementary processes

An elementary process is an instance of process (cf. sé¢tieh2, page99), a definition of signals (cf.
sectionVI-1.1, page93), a constraint on clocks (cf. sectidafi-5, pagel20 or on values (cf. section
VI-6, pagel25), or an expression of dependence (cf. f@rsectionXl—6.2, pagel9?).

VII-2 Composition

The composition of two processé} and P, produces a process for which each execution observed on
the variables of?, (respectively,) is an execution of; (respectively,P,). This composition is similar

to the aggregation of two systems of equations in a single one

P | P

1. Context-free syntax

COMPOSITION ::=

[(]t PEXPR{[| |P-EXPR} 1[]) |

136 EXPRESSIONS ON PROCESSES

2. Profile

o ! (Pl ’ Pg)z! (Pl)U! (PQ)
° f) (P1 | Pg) = (f) (Pl) — ' (PQ)) U (? (Pg) — I (Pl))
3. Types
(a) If their names are identical, an outpubf P; (respectively,») and an input: of P, (respec-
tively, P;) have also the same type.
(b) If their names are identical, an inpubf P; and an input: of P, have also the same type.
4. Semantics
A signal, input of P; (respectively,,), having as name the name of a signal, outpuofrespec-
tively, ;) and totally defined in it, has as definition ity (respectively, inP) its definition in P,
(respectively, inP;).
If the definitions of such a signal are partial definitions,Anand in P2, its resulting definition

is the combination of both partial definitions, as it is sfiediin sectionVIl-1.1, paragraphl-c,
page9s.

5. Clocks

(a) If their names are identical, an outpuof P; (respectively,,) and an input: of P, (respec-
tively, P;) have also the same clock.

(b) If their names are identical, an inpubf P; and an input: of P, have also the same clock.

VII-3 Hiding

The hiding is an expression that modifies the profile of anesgion of processes by hiding some of its
outputs.

Pl A, ..., A,
1. Context-free syntax

HIDING ::=
GENERAL—PROCESS Name-signal{ D Name-signal}*
| HIDING Name-signal{lleame-signal}*

2. Profile
e ?2((P 1 A, ..., A)=7(P)
el (P17 A, ..., 4)=1(P)—{A,. .., A}

3. Semantics
The hiding operation allows to hide outputs of the procBsshe outputs of the resulting process
are the outputs of which do not appeain the listA;, ..., A,.
The A; can be names of tuples: in that case, the hiding applies ljfairathe tuples.

VII-4. CONFINING WITH LOCAL DECLARATIONS 137

4. Examples
Let P be a process witA, B andC as inputs an andY as outputs.

(@ P / Y hasonlyXas output;
(b) P/ Z isequal toP.

VIl-4 Confining with local declarations
Local declarations can be associated with any expressiproogsses.
1. Context-free syntax

CONFINED-PROCESS::=
GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

{ DECLARATION } +

The DECLARATION s are local to th€ONFINED-PROCESS, they are described in paf sec-
tion XI-2, pagel87 (chapter “Models of processes”).

Local declarations of sequences

The signals (or tuples) that appear in a lisSeBDECLARATION s associated with an expression of
processes are hidden in output of tBI®NFINED-PROCESS.

P where u Ay, ..., Anso oo pm A, .., Ay, ... end
The namesAy, ..., A4,,, ..., A1, ..., Ay, mustbe mutually distinct.
1. Profile
e ?(P where uy A, ..., An; ... pm AL, ..., A, ... end)=?(P)
e ! (P where pi A1, ..., Au; . pm A, ..., A,, ... end)=
L(P) —{A1,...,An, ..., AL, A)
2. Types
The expression
P where p; Ay, ..., A oo b Al ., A, end

establishes a new syntactic contextraf

The declarations

where uy Ay, ..., Any oo Mm A, ..., Ay, end
are called “local declarations” fap.

(a) In this context, the type(y;) is that associated with the signals, ..., A,,,, in accordance
with the rules defined in pa@, chapteV, “Domains of values of the signals”.

138

EXPRESSIONS ON PROCESSES

3.

Definition in SIGNAL

Pl Ay, ..., Ay oo, AL oo, A,
with, in the context ofP, the associations of types defined above.

The following rules help to specify the context of visilyliéstablished by the local declarations of a
confined process (see also in paysectionXI-2, pagel87).

e An identifier of sequenc& (or an identifier of constant, or an identifier of type) usedimnex-

pression on processes that does not contain a declaratiriso$aid external to this expression of
processes.

An identifier of sequence (or of constant, or of typ€)local to an expression of processEs
or external toP and declared in a list cDECLARATION s D, is local to theCONFINED-
PROCESSP where D end.

An identifier of sequence (or of constant, or of typé)external to an expression of processgs
and not declared in a list @ECLARATION s D, is external to theCONFINED-PROCESS P
where D end.

Let A be an identifier of input signal of an expression of proceg3éssed but not defined iR),
then A must be external t&.

Let B be an identifier of output signal of a mod&l, then B must be an output signal defined
(at least partially) in the expression of processes assotiaith M/, external to this expression of
processes.

Any sequence used inMODEL but not declared in the interface of tMlODEL must be either
local to the associated expression of processes, or ektertitee MODEL (visible in a syntactic
context that includes it). In the same way, any constantme tgientifier used in MODEL must
be either local to the associated expression of processestesnal to thaMODEL .

VII-5 Labelled processes

It is possible to label an expression of processes:

XX

1.

o P

Context-free syntax

LABELLED-PROCESS ::=
Label E P-EXPR

Label ::=

Name

The labelled proces& X : : P has the same semantics as the pro¢gdsut the labelX X defines
a context clock for the proceds, and implicit signals are added to the graph.

VIl-6. CHOICE PROCESSES 139

The label X X associated withP can be used to designate the procEss some expressions (de-

pendences, for example).

In particular, the labeK X can be used to define or to reference a characteristic clogk tifetick

of P. For that purpose, the label is considered as a signal ofaggpe label, for which it is always

possible to reference its clock (in the usual ways:X for example).

This clock of the labelX X (thetick of the process) is recursively defined as the upper bound of the

ticks of the components of the process.
Thetick of an equationX : = I is the clock ofX.
Thetick of an equationX : : = F is the clock ofFE.

Thetick of the invocation of a process model is tiek of this process model. There is a particular

case when the called process model is an external process:mod

e In that case, if the (external) process model is declaredeagytan action (cf. parE, section
XI-1.2, pagel86), thetick of its invocation is fixed through the closest label of theoigation: it is

equal to the clock of this label (which can be fixed by expkgjtiations, for instance). This clock

must be greater than the upper bound of the clocks of thesfquiputs of the action.

e Otherwise (if the external process model is not declarechaton), theick of its invocation is
equal to the upper bound of the clocks of its inputs/outputs.

The clock of the labeX X represents the context clock Bt

The other effect of labelling a process is to add the two ¥alhgy signals to the graph: let us denote
them respectively? XX and! XX, although these notations are not available in the syntakef

language.

Both? XX and! XX have the clock’ XX as their common clock. The implicit signal. X X is
a signal that precedes all the nodes of the graph of the mdeeghere is a dependence frotnX X
to each one of the signals designated?inSymmetrically, the implicit signal X X is a signal which
is preceded by all the nodes of the graphfaf there is a dependence from each one of the sig
designated irP to the signal X X.

This feature is used to specify explicit dependences betwweacesses (cf. paH, sectionX|-6.2,

pagel9?).

nals

The labels declared in a model of process (cf. parthapterXl, pagel83) are visible (i.e., can be
referenced) everywhere in this model, but not in its inctudedels of processes: a label is in some way

local to a model.

In one model, a label cannot have the same name as anothge dbject (signal, parameter, con-

stant, type, model).

VII-6 Choice processes

A choice process is an expression of processes that alloa@mpose definitions according to the d
ferent values of a signal
case X in

{(ig, - Vit 0 Py

ot yet implemented in ®.YCHRONY: intervals of values.

not yet
fully

if- imple-

mented

140 EXPRESSIONS ON PROCESSES

{Vm71, ey mem} . Pm
el se P,
end

The “else” part is optional.

Other forms of enumeration of values can also be used in ffereht branches of the choice process.
They are described below.

1. Context-free syntax

CHOICE-PROCESS ::=

Name-signa{ CASE }* [ELSE-CASE |

CASE ::=
ENUMERATION-OF-VALUES DGENERAL—PROCESS

ELSE-CASE ::=
GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=

S-EXPR {D S-EXPR }*
[[[SEXPR] D [S-EXPR]
I [S-EXPR] D [S-EXPR] E
I [S-EXPR] D [S-EXPR]
I [S-EXPR] D [S-EXPR] E

I

2. Profile

? (P)={eir,- .- eip}
V(P) ={si1,- - Siq}
?ase X in ... end)={X}uJ? () - |J! (@)

)

I'(case X in ... end)={]J!(P)

3. Types

(a) X has aScalar-typeor ENUMERATED-TYPE and
Vi, j T(Vi ;) C 7(X)

4. Semantics
EachENUMERATION-OF-VALUES enumerates some subset of constant values which are in
the same domain as the sign¥l signal on which the choice is based, and which are possible
values ofX.
All the enumerations of values of the different branchee (tduard” values of the choice) must
be mutually exclusive. When there is an “else” part, theetdéht sub-types corresponding to the

VIl-6. CHOICE PROCESSES 141

guard values of the different branches form a partition eftiipe ofX.

The enumerations of values can take the form of explicit eemations (used for the description
below), or of intervals. The four possible forms of intessate usable only if the values of the type
of X are totally ordered: they define intervals of values thatlmrfor both sides of the interval,
opened or closed. The bounds of an interval are optional ¢bttee two must be present): if the
lower bound is absent, the interval represents all the sao®ller than the upper bound (included
or not); if the upper bound is absent, the interval represahtithe values greater than the lower
bound (included or not).

5. Definition in SIGNAL
In each branch, the guard of the choice (i.e., the conditimasenting the instants at which the
signal X on which the choice is based takes as value one of the valuesesated in the consid-
ered branch) defines a context clotkwhich provides dick (cf. sectionVIl-5, pagel38) for the
process defined by the corresponding branch: in this prpnesgsible clock can be greater than
this context clock. For this branch, the inputs of the predésare filtered by this guard. Then the
above choice process is equivalent to:

142 EXPRESSIONS ON PROCESSES

(| (] By :=when ((X =Vi1) or ... or (X = Viy))
| 6/1’1 L= €11 when Bj
| €, = e1p When By
| 1 i
(| P1 [6/171/ €11y - 6/17171/ el,pl]
| b T =B
b
) | Bi, €1, ooy €y,
|
| (| Bm :=when ((X = Vy,1) or ... or (X = Vyun))
| ema = em1 When By,
| e;mpm L= emp, When B,
-
(I P Lemplemy, -0 €yt €mp,]
‘ lm T = Bm
b
|) / Bm’ e;ml, ey e;mpm
| (| Bmy1 :=when ((X /= Eyy) and ... and (X /= Eyp,,))
| emi11 - = ems11 When By
| eQnH’M“ DT emtlpny, When By,
| g 0
(| Pnn [€;n+171/ Cm+1,1s ey e;n—i—l,pm+1/ em+17117m+1]
| lm—i—l — Bm+1
b
) | Bmi1s €ni11s o0 Coiipn
)
whereP; [e; 1/ein, ..., €, lei,] represents the procegs in which new identifiers:; ; are sub-

stituted to the identifiers; ; which are inputs of;.

For all the processes;, the new identifiersg,j are mutually distinct and do not appear elsewhere.
Note that it is possible that a given shared variable or stieble be defined in different branches
of the choice process. In this case, corresponding eqsati@ay appear as partial definitions.

6. Clocks The values/; ; are constant expressions:

@ w(vij)=h

VIl-6. CHOICE PROCESSES 143

Example

The statechart:

_ J
may be described by the following program (process modelsnaodules are described respectively in
chapterXl, pagel83and chapteKll, page203):

nodul e P_statechart =

type P_states = enum (Q R, 9S);
type QL _states = enum (U, V);
type @ _states = enum (X, Y, 2);

process P_chart =
(? event Tick;
event a, b, i, j, m n;
| P_states P_current State;
Ql_states QL _current St ate;
Q2_states 2_current St at e;

)

(] (| case P_currentState in
{#Q: (| P_nextState ::
{#R}: (| P_nextState ::
{#S}: (| P_nextState ::
nd
next State ::= defaultvalue P_currentState
urrentState := P nextState $ init #Q
urrentState "= Tick

(#R when a) default (#S when b) |)
#S when b |)
#Q when a |)

e
| P
| P
| P

O 0

1)
clk_Qchart := when (P_currentState = #0Q

start_Q chart := when (P_nextState = #Q when (P_currentState /= #Q
QL State "= @2 _State "= clk_Qchart ~+ start_Q chart
(| case Ql_State in

{#U}: (| Ql_newState ::= #V when i |)
{#V}: (| Ql_newState ::= #U when j |)
end
QL newState ::= defaultvalue QL _State

QL newState "= QL_State

QL nextState := (#U when start_Q chart) default QL newState
QL State := Ql_nextState $ init #U

QL currentState := QL_State when clk_Q chart

144 EXPRESSIONS ON PROCESSES

[)
| (] case @@_State in

{#X}: (| Q@_newState ::= #Y when m|)
{#Y}: (| Q@_newState ::= #Z when n |)
{#Z}: (| Q@_newState ::= #X when j |)
end
@ _newState ::= defaultvalue @2_State

I
| Q@ _newState "= @_State

| @ _nextState := (#X when start_Q chart) default 2_newState
| @ _State := @@ _nextState $ init #X

| @ _currentState := @_State when clk_Q chart

1)

[)
wher e

shared P_states P_next State;
shared Ql_states QL newStat e;
shared 2_states 2 newSt at e;
event clk _Q chart, start_Q chart;
QL states QL _State, QL _next State;
Q@ _states 2 _State, Q2_nextState;
end;
end;

(note that the program could be better structured usingakpmcess models).

VII-7 Assertion processes

An assertion process is a process with no output which spe@fisumed properties in a model. It can be
used in particular to specify assumptions on inputs of thdehor guarantees on outputs. The assertions
are expressed as constraints.

assert (| P | ... | P,
1. Context-free syntax

ASSERTION-PROCESS::=

[asser{[(| |[CONSTRAINT{ [| |CONSTRAINT}*][|) |

2. Profile
el!l(assert (| P | ... | P]))=0
e 2f@ssert (| P |... | P,]))=?F)u...u? (@)

3. Definition in SIGNAL

assert (| P | ... | P,
is equivalent to:

VIl-7. ASSERTION PROCESSES 145

(] assert (] A |

| assert (| B, |)

)

We distinguish the different sorts of constraint equatiahsck relations (cf. sectiow-5.3, pagel23)
and identity equations (cf. sectiMi—6, pagel25).

VII-7.1 Assertions of clock relations
e assert (| £y "Op E2 "Op EE |)

(where Op is one of the operators=,” <,” > and #) is recursively defined by:

1. Definition in SIGNAL

(] assert (| E1 "Op Es |)
| assert (| £y "Op EFE |)
| assert (| E2 "Op EFE |)
)

In the following definitions, we use@ ock_assert process which is defined below (cf. section
VII-7.3, pageld?). Note that this process is not provided in the syntax of dmgliage.

e assert (| By "= Ey |)
asserts that the clock of the expression on sighals equal to that ofzs.

1. Definition in SIGNAL

cl ock_assert (Eq, E»)

Example The following example adds an assumption of clock equivaden

process two_oversanpling =
(? integer ul, u2;
I bool ean bl, b2;
)

(] bl := oversanpling(ul)
| b2 := oversanpling(u2)
| assert (| when bl ~= when b2 |)
1)

wher e

process oversanmpling =
(? integer u;
! bool ean b;

(] z :=u default v

146 EXPRESSIONS ON PROCESSES

| v:=(z$init 1) - 1
| b:=v <=0
| u = when b
)
wher e
i nteger z, v;
end

end

e assert (| By ~< Ey |)
asserts that the clock of the expression on sighals smaller than (or equal to) that &k.

1. Definition in SIGNAL

cl ock_assert (FEq, E1 7 E»)

e assert (| By ~> Ey |)
asserts that the clock of the expression on sighalis greater than (or equal to) that &%.

1. Definition in SIGNAL

cl ock_assert (E, E1 "+ E»)

e assert (| By “# E |)
asserts that the clocks of the expressions on sigiaknd > are mutually exclusive.

1. Definition in SIGNAL

clock_assert (70,FE; * E»)

VII-7.2 Assertions of identity equations

assert (| By :=: E3 |)
asserts that: 1/ the clocks of the expressions on sigiialnd F» are equal; 2/ at this common clock,
the values of these expressions are equal.

1. Definition in SIGNAL

VIl-7. ASSERTION PROCESSES 147

(| clock_assert(E;, E»)
| assert(FE; == Ejy)
)
This definition uses the assertion on Boolean signal whideised below (cf. sectioW11-7.3,
pagel4?).

VII-7.3 Assertion on Boolean signal

The syntax of atNSTANCE-OF-PROCESS(cf. sectionVI-1.2, page99) is used to assert that a given
Boolean signal must have the valtie.c each time it is present. It is a process with no output (it has t
syntax of a process call with no output).

assert (D)

1. Context-free syntax

INSTANCE-OF-PROCESS::=
S-EXPR

2. Profile

o ! (assert(B))=0
e ?(@ssert(B))=?(B)

3. Types
(@) 7(B) = boolean

4. Semantics
A property specified by an assertion can be assumed by thie cédculus.

5. Definition in SIGNAL
assert (B)
is equal to the process defined as follows:

(| B ~= when B
)

6. Examples

(a) The process
assert(A<b5)
expresses that the valuestofust be always lower than 5 (wharns present).

e The procesassert (hl = h2) does not specify that the clocks (signals of typent) h1 and
h2 are equal. In the same way, the procassert (xx y =70) does not specify that the signals
x andy are exclusive.

148 EXPRESSIONS ON PROCESSES

This is the reason why we introduced the process (or “macriock _asser t , which is defined

as follows:
process clock _assert = (? event hi, h2; !)
(| 1 := h1l default not (hi ~+ h2)
| b2 := h2 default not (hl ~+ h2)

| assert(bl = b2)

)

wher e bool ean b1, b2;
end;

Using thel ef t _tt process (cf. sectioKlll-3, page210), an equivalent definition is the follow-

ing:
process clock _assert = (? event hi, h2; !)
(| bt :=left_tt(ht, h2)

| b2 :=left_tt(h2, hi)

| assert(bl = b2)
D)
wher e bool ean b1, b2;
end;

Using this process, for instanagl, ock_assert (&1, h2), the equality of the clocks1 andh?2
can be assumed by the clock calculus.

Again, note that the procesd ock assert is not provided in the syntax of the language: it is
only used as intermediate macro for the definition of assegirocesses.

e The keywordassert may be used in two different contexts:

— in anASSERTION-PROCESS it takes a composition dEONSTRAINTS as argument,
— in anINSTANCE-OF-PROCESS, it takes a Boolean signal as argument.

Example

The following example uses the intrinsic processf i ne_sanpl e defined in sectionXlll-2,
page207 and, given general properties of affine relations such atigeencoded in the assertion,
allows to synchronize resulting clocks, even if the clockulus does not implement the corresponding
synchronisability rules.

process affine_relations =
{ integer nl, n2, n3, phil, phi2, phi3; }
(? integer e;
! integer s;

af fine_sanple {phil, nl} (e)
af fine_sanple {phi2, n2} (e)
af fine_sanple {phi 3, n3} (s2)
= sl + s3
| b :=7sl default not (sl "+ s3)
| bb := "s3 default not (sl ~+ s3)
| assert ((b = bb) when (n2xphi 3+phi 2 = phil) when (nl = n2+n3))
I

n un
ERAEN
noon

VIl-7. ASSERTION PROCESSES

149

wher e
i nteger s1, s2, s3;
bool ean b, bb;

end

Part D

THE COMPOSITE SIGNALS

Chapter VIII

Tuples of signals

An expression of tuple is an enumeration of elements of fugrla designation of field.

1. Context-free syntax

S-EXPR-TUPLE::=

TUPLE-ENUMERATION
| TUPLE-FIELD

VIlII-1 Constant expressions

A constant expression of tuple is &EXPR-TUPLEwhich has recursively as arguments constant ex-
pressions, or any expression defining a tuple the elementhioh are constants.

VIlII-2 Enumeration of tuple elements

A tuple represents a list (finite sequence) of signals oetipl

(Er, ..., Ep)
1. Context-free syntax

TUPLE-ENUMERATION ::=

S-EXPR{D S-EXPR }*

2. Types
@ 7((EL,E,)) =(T(E) x ... x T(E,))

3. Semantics
The tuple(E1, ..., E,) is equal to< vy,...,v, > where< vy,...,v, > is the sequence of
signals or tuples resulting from the evaluation of the esgi@nsEq, ..., E,.
The semantics is described formally in pBrtsectionlll-7.1, page44.

154 TUPLES OF SIGNALS

VIII-3 Denotation of field

X. X;
1. Context-free syntax

TUPLE-FIELD ::=
S-EXPRD Name-field

2. Types

(@) 7(X) =bundle({X1} — p1 X ... x {Xm} = fim)
(b) 7(X. X;) = pi
3. Semantics

If X is a tuple with named fieldX, ..., X,,, X. X; designates the signal or the tuple corre-
sponding to the field with nam&;.

In particular, the denotation of field may apply onlAS S TANCE-OFPROCESSwhen the output
of the corresponding model is a tuple with named fields. It mdag apply on an array element if
the elements of the array are monochronous tuples with néieidd.

The semantics is described formally in pBrtsectionlll-7.1, page44.

VIll-4 Destructuration of tuple

The syntax of anNSTANCE-OF-PROCESSis used to denote the call of predefined functions of de-
structuration of tuples:

e tuple(X)
— If X is a tuple with named fields of typgemdle({ X1} — p1 X ... X { X} — tm),
t upl e(X) isthe corresponding tuple with unnamed fieldX};, ..., X,,) , of type(uy X ... X)

— If X is a tuple with unnamed fields, the components of which arénigorder, X1, ..., X,
t upl e(X) is the tuple with unnamed fields upl e(X1),...,tupl e(X,,))

— If X is not of tuple type, thehupl e(X) is equal toX.
° rtupl e(X)

— If X is a tuple with named fields of tygemdle({ X1} — p1 X ... X { X} — tm),
rtupl e(X) is the tuple with unnamed fields
(rtuple(Xy),...,rtuple(X,))

— If X is a tuple with unnamed fields, the components of which arénigorder, X1, ..., X.,,
rtupl e(X) is the tuple with unnamed fields
(rtuple(Xy),...,rtuple(X,.))

— If X is not of tuple type, thent upl e(X) is equal toX.

VIII-5. EQUATION OF DEFINITION OF TUPLE COMPONENT 155

VIII-5 Equation of definition of tuple component

A tuple can be defined component by component. An equatiorefiriidon of component of tuple is
an expression of processes the syntax of which extend3ErNITION-OF-SIGNALS given in part

C, sectionVI-1.1, page93. The general form can contain both definitions of componehtaples and

global definitions of tuples and signals.

(Xl. Al, R, ¢ An) =F
1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
COMPONENT E S-EXPR
| COMPONENT [::=] S-EXPR

| COMPONENT S-EXPR

| COMPONENT { DCOMPONENT}* ElS-EXPR

| COMPONENT { DCOMPONENT}* S-EXPR

| COMPONENT { DCOMPONENT}*

S-EXPR
COMPONENT ::=

Name-signal
| Name-signaD COMPONENT

2. Types
(@) 7-((Xq. AL X AY)) = (T(Xl. Al) X ... X T(Xn An))
) 7(E) C (T(X1. A) x ... x T(X,. 4,))

3. Semantics

e Xi. Ay, ..., X,. A, designate signals or tuples of signals, respectively compis of the
tuplesXy, ..., X,.

e Each signal or tupleX;. A; is respectively equal to the signal or tuplgethat corresponds
positionally to it in output ofF.

4. Clocks A signaland the signal; that defines it are synchronous. In that case:

(@) w(Xi. 4;)=w(v)

Chapter IX

Spatial processing

Spatial processing is obtained by manipulations of arrays.
The following operators are provided:

e operators of definition by enumeration
(ARRAY-ENUMERATION , CONCATENATION , ITERATIVE-ENUMERATION);

e an operator of definition of indicetNDEX);
e operators of access to elements of arrdBRAY-ELEMENT , SUB-ARRAY);
e an operator of array restructuratioARRAY-RESTRUCTURATION);

e operators of sequential definition
(SEQUENTIAL-DEFINITION , ITERATIVE-ENUMERATION);

e global operators on matrices such as transposiffGdANSPOSITION) and productsARRAY-
PRODUCT).

Moreover, structures of iteration are also defined on psEe$TERATION-OF-PROCESSES),
with an associated operator of definition of multiple ingigglULTI-INDEX).

1. Context-free syntax

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
| CONCATENATION

| ITERATIVE-ENUMERATION
| INDEX

| ARRAY-ELEMENT

| SUB-ARRAY

| ARRAY-RESTRUCTURATION
| MULTI-INDEX

| SEQUENTIAL-DEFINITION

| TRANSPOSITION

| ARRAY-PRODUCT

| REFERENCE-SEQUENCE

158 SPATIAL PROCESSING

IX—1 Dimensions of arrays and bounded values

Dimensions of arrays

The syntax of alNSTANCE-OF-PROCESSis used to denote the call of predefined functions with
constant result giving the dimension of an array and thedizedimension:

e dim7)
If 7" has atypd[0..ny — 1] x ... x [0..n,, — 1]) — v wherev is aScalar-type or External-type
or ENUMERATED-TYPE ,

then(di m(T)) = m.
If T has a type’ wherev is aScalar-type or External-type or ENUMERATED-TYPE ,

then(di m(T)) = 0.
e size(T,I)
If 7" has atypd[0..ny — 1] x ... x [0..n,, — 1]) — v wherev is aScalar-type or External-type
or ENUMERATED-TYPE ,
and if1 < o(I) < m,
then(si ze(T.,1)) = ny,
elsegp(si ze(T,I)) is not defined: it is an error in the program.
e size(T) is, by definition, equivalent to
size(T,1)

Bounded values

The syntax of anNSTANCE-OF-PROCESS s used to denote the call of a predefined function
used to deliver bounded values.

bounds(Ei, Es, Es3)

The values ofr, are compelled to evolve between thatfof and Es.

1. Types
(a) E1, E», and E5 are signals of a same domdacalar-type (other than a&Complex-type), or
ENUMERATED-TYPE .
(b) T(bounds(E, Es, E3)) = 7(E) U T(Es) UT(FEs)
(c) The pointwise extension is described in dgaytthapterX, pagel79.

2. Definition in SIGNAL

X :=bounds(Ey, Es, E3)
whose right side c{f:: represents an expression of bounded values, is equal todbess defined

as follows:

(| X :=1if Ey < Ey then E; else if F; > E3 then E; el se E;
b

3. Clocks
(@) w(Er) = w(Ey)

IX—2. CONSTANT EXPRESSIONS 159

(b) w(Er) = w(Es)
(c) w(bounds(Ey, E,, Es))=w(E)

IX—2 Constant expressions

A constant expression of array is 8 EXPR-ARRAY which has recursively as arguments constant
expressions, or any expression defining an array the elsménthich are constants.

IX—3 Enumeration

The enumeration of the elements of an array defines a vectirebyrdered list of its elements.

[By, .o B
1. Context-free syntax
ARRAY-ENUMERATION ::=
[[] S-EEXPR{[, |S-EXPR¥
2. Profile .
?(E,....E])=1J7? ®)
i=1

3. Types
@ T([Er,....E]) =[0.n—1] — | |r(E))
i=1

4. Semantics
[F1, ..., E,] designates the vector thhecomponents of which are, in this ordé#,, ..., E, (cf.
partB, sectionlll-7.2, page46).

5. Clocks
@ w(E, ..., El)=w(BE) Vi=1,...,n
6. Examples

(@ With M1: =[[M11,M12,M13 ,[M21,M22,M23],
M1[0] is equal t M11,M12,M1]3 .

IX—4 Concatenation

The concatenation allows to concatenate arrays along itcfitts¢ dimension.

Ey |+ B

1. Context-free syntax

160 SPATIAL PROCESSING

CONCATENATION ::=

S-EXPR S-EXPR

2. Types

@ 7(E1)=[0.m1 — 1] — 11
(b) T(E:) =[0.mg — 1] — o
©) T(E1 [+ E2) =[0.m1 +ma — 1] — i1 U pio

3. Definition in SIGNAL
X : = Ep |+ Esis equal to the process defined as follows:

X =[E[Q,....,E [my—1],E5[Q],...,Es[mo—1]]

4. Clocks

(@ w(Er) =w(E,)
b) W(E: [+ Bp)=w(E)

IX—=5 Repetition
The repetition is a simple form of iterative enumeration ebhallows the finite repetition of a value.

E|x N
1. Context-free syntax

ITERATIVE-ENUMERATION ::=

S-EXPR S-EXPR

2. Types

@ 7(E)=p
(b) N is a positive integer expression, with a strictly positiyger boundN,,.q. .
©) T(E [« N)=[0.Npaw — 1] — 1
3. Semantics
At a given instant, all the elements of the vector defined:by N have the same value, which is
the value ofE.
The semantics is described formally in pBrtsectionlll-7.2, page46, using the “iterative enu-

meration of array”. The maximum number of iterations is givey /V, and the iteration function
which is used here is the identity function with first value tlalueF itself.

4. Clocks

(@) w(E) =w(N)
) w(E |« N)=w(E)

IX—6. DEFINITION OF INDEX 161

IX—6 Definition of index
FEyi.. FEystep Es
1. Context-free syntax

INDEX ::=
S-EXPREl S-EXPR [S-EXPR]

2. Types

(a) E1 andE5 are bounded integers such that the differeAge- E5 has always the same sign
(at every instant)vt, Eq; < Ey; orVt, Ey, > FEo.
lower_bound(E?1), upper_bound(E,), lower_bound(Ey) andupper_bound(E2) will de-
note respectively the lower bounds and upper bounds, &nd E>.

(b) Ejsis an integer constant different from 0, such that
if Vt, By, < Ey, then(Fs3) >0
and ifvt, E1, > By, thenp(E3) < 0.
When the step expressioftg, is omitted, its value is implicitly equal to 1.
(©) If p(£3) >0,
T(El FEs step Eg) =
upper bound(Eg) — lower_bound(E1))/@(E3) +1) — 1] — 7(E) uT(Ey)

If E3
él) St ep F3) =
((upper_bound(E;) — lower_bound(Ey))/(—p(E3)) +1) — 1] — 7(F;) U T(E2)
In any case, the size of the vector must be strictly positive.

3. Semantics
The vector of integers defined Wdy,. . E'5 st ep E3 has as successive elements the valligs
E1, + ©(E3), E1, + (2 ©(E3)), etc., up to the last value betweéh, and Es, (included).
The semantics is described formally in pBrtsectionlll-7.2, page46, using the “iterative enu-
meration of array”.
The iteration function is the functiofi such thatf () = = + ©(E3). The first value is?; .
If o(F3) > 0, the maximum number of iterations is given by
N=(FE, — Ey)/ (,O(Eg) +1.
If o(F3) < 0, the maximum number of iterations is given by
N=(B — B/ (—p(Bs)) + 1.

4. Clocks

(a) W(El) :CU(EQ) :C(}(El. . Ey step E3)
(b) w(Es)=h

IX—7 Array element

An array element is obtained by indexing following the syntd the first rule below. Every index of
array must be a positive bounded integer, whose upper bausttictly inferior to the sizex of the

162 SPATIAL PROCESSING

considered dimension; the second rule provides a syntalocél‘recovery” which defines the value of
the expression for the values of index outside the segment{01].

1. Context-free syntax

ARRAY-ELEMENT ::=

S-EXPRIIl S-EXPR {D S-EXPR ¥ m

| S-EXPRIIl S-EXPR{D S-EXPR }* m ARRAY-RECOVERY

ARRAY-RECOVERY ::=

S-EXPR

IX—7.1 Access without recovery
T[Ei,...,Ep]

1. Profile .
?@E,....Ex])=?@)uJ? E)
i=1

2. Types

(a) For alli, E; is a positive (or zero) integer, with an upper bound. kgthe value of its upper
bound.

() 7(T) = ([0.n1 — 1] x ... x [0.2, — 1]) — 1
(remark: ;. can be an array type.)

© T(T[EL,En]) =1

3. Semantics
If v1, ..., v, represent respectively the self-corresponding elemeantise sequences of values
represented by, ..., E,,, the corresponding element in the sequence representéd By,
o Ep] isT(< v, .. v >).
The semantics is described formally in pBrtsectionlll-7.2, page46.

4. Clocks
(@ w(E) =w(1),...,w(E,) =w(T)
) W(TLE, ..., Enl)=w(T)

5. Properties

(@ (Ey,...,E, oftypeintegey = (T[Ey,...,E,] =T[E1] ...[En])

IX—7.2 Access with recovery
T[E1,....,En] \\V
1. Types
@) 7(T) = ([0.n1 — 1] X ... X [0..0p, — 1]) — 111

IX-8. EXTRACTION OF SUB-ARRAY 163

(b) Foralli=1,...,m, 7(E;)isaninteger-type.
© (V) =2
d) 7(T[Ex, ..., En] \\V) = g1 U o
2. Definition in SIGNAL
X:=T[Ei, ...,Ex] \\V

whose right side oﬁ:z represents an expression of access to an array elementewdbery, is
equal to the process defined as follows:

(| Xy :=T[FE; modulo ny, ..., E, nmodulo ng,]
| By := (0 <= Ey) and (B <= (m — 1))

| B := (0 <= E,) and (En <= (n, — 1))
| B := (B and ... and B,) when "T

| Xy :=V when °T

| X := (X; when B) default X,

) /

) Xl! XQ; B, Bl, C e ey Bm

3. Clocks
(@) w(E)=w(1),...,w(E,) =w(T)
(b) w(v)=w(7)
©) w(TlE, ..., En]\\V)=w(T)

IX—8 Extraction of sub-array

The expression of extraction of sub-array is a generatinativith the same syntax, of the expression of
access to an array element (cf. sectigr7, pagel6l). Only the form where the accesses are obtained
via “generalized indices” (represented as arrays of imgge given here; when they are integers, the
description of the corresponding expression is giverxisr.

T[N, ..., 1]

1. Context-free syntax

SUB-ARRAY ::=

S-EXPRIIl S-EXPR {D S-EXPR }* m

2. Types
@ 7(n)=... =7(1,) = ([0.b1] x ... x [0.b,]) — v
with v an integer type, and the basic integer values ofithare positive or zero.
(b) More generally, the list of indiceg, ..., I,, can be specified by any expression denoting a
function ([0..b1] x ... x [0..b,]) — v™ (with v an integer type).

©) 7(7) = ([0..a1] x ... x [0..a,]) — p
(u can be an array type).

164 SPATIAL PROCESSING

@) 7(T[Ih, ..., I,]) = ([0.01] x ... x [0.B,])) — p

3. Semantics
T[I, ...,1,] extracts some sub-array from
The semantics is described formally in pBrtsectionlll-7.2, page46 (non defined values, repre-
sented bynil in the semantics, are any values of correct type).

If T has at least dimensions (and has the basic typéor the elements corresponding to these
first dimensions), it can be traversed using jointlyndices!y, ..., I, (one per dimension), that
allow to extract elements of type

Each one of the indices is an array with the same number ofrdiioes, lefp.

The result, letX, has the same number of dimensions as the indices, whichitsbasic elements
have the type: (type of the extracted elements).

With each “position”(ji, ..., jp) in X, it is associated the element Bfthe position of which is
given by the value of the indices in(ji, ..., j,), i.€., in the position
(Il drs-esdplse oo Inl g1y gpl) INT.

4. Clocks
(@) w(n) =w(7),...,w(I,) =w(T)
®) w(rrn, ..., L])=w(1)
5. Properties

(a) If V is a vector of type [On — 1] — p and if I is an index defined by : = 0. . n—1, then
the expression¥ andV[I] are equivalent.

6. Examples

(@ ([[10,20],[30,40]]1)[1,0] \valueis30.
(b) (0..10)[2..4] valueis[2, 3, 4] .
(c) if Mis an x n matrix, thenM 0. . n—1, 0. . n—1] is the vector containing its diagonal.

IX—9 Array restructuration

The array restructuration allows to define partially (in tfeneral case) an array, by defining some
indices-defined coordinate points of this array. Non defiveddes are any values of correct type. This
operator is the “reverse” of the operator of extraction di-amray (cf. sectioriX-8, pagel63) in the
following informal way: letT be the result of 13,....,[,,) : S; if the indices are such that each element
of S is used only once by the definition, théif 11, ...,I,] valueisS.

(I, 00y) = S
1. Context-free syntax

ARRAY-RESTRUCTURATION ::=
S-EXPREl S-EXPR

IX-9. ARRAY RESTRUCTURATION 165

2. Types
Depending o4, .. ., I, being integers or arrays of integers, one of the following sérelations
on types applies:

(@) e Foranyk, T(Ik) is a positive or null integer, with an upper bound. kgtthis upper

bound.
° T(S) =p
e 7((I1,....1) : S)=([0..a1] x ... x [0..a,]) — p
) o 7(1)=...=7(1,)=([0.b1] x ... x[0.b,)]) = v
with v an integer type, and far < i < n, min L(K)>0

KeDom(1;)
e More generally, the tuple of indicesly,. .. [,) can be specified by any expression
denoting a functior{[0..b;] x ... x [0..b,]) — v™ (with v an integer type).

o 7(8)=([0..c1] x ... x[0.¢,]) — p

with ¢; >bi,...,cp 20y
o T((I1,....1,) : S)=([0..a1] x ... % [0..a,]) — p
withforl <i<n,a;= max [;(K)
KeDom(I;)

3. Semantics
(Iy,....0,) : S specifies a partial definition of array, using the coordinaiets defined by the
tuple of “generalized indices(I, ..., I,,) and the values ob obtained by skimming through
these coordinates.
The semantics is described formally in pBrtsectionlll-7.2, page46 (non defined values, repre-
sented bynil in the semantics, are any values of correct type).

Let7 be the array defined by the expressfan,.. . [,,) : S. Ifthe indices!y, ..., I, are such that
they allow to scan exactly the arrdy(each position is visited only once using these indicegn th
the restructuratio” : = (I1,...,[,,) : S defines the arra§’ such that the extraction of sub-array
T[I, ...,1,] (cf. sectionlX-8, pagel63) is equal toS.

In other words [I1[k1,... kpl , ... Il kvye oo kp) 1 = SR K] -

If (L[ki,.oo kpls. .o Inl k1, ..., kp]) defines the same position for several distinct values of
(k1,...,kp), itis the element corresponding to timaxof the (&, . .. , k,) (in lexicographic order)
which is used.

4. Clocks
(@) w(n)=w(s),...,w(r,)=w(s)
) w((I, ..., L) : S)=w(s)
5. Examples

(@2 : 1 isavectof any, any, 1].
whereany represents any well-typed valuei(in the semantics).
Its type is [0.2] — integer since the maximal value of 2 is 2.

() (1,2) : 3 isamatriX] [any, any, any], [any, any, 3]] .
Its type is([0..1] x [0..2]) — integer.

166 SPATIAL PROCESSING

©121: [[12],[3,4]] is a 3-dimensions array

[[[any, any], [any, any]], [[1,2],[3,4]]].
Its type is([0..1] x [0..1] x [0..1]) — integer.

(d)[3,6] : [2,4] is a vecto any, any, any, 2, any, any, 4] .
(e)([0,1],[2,1]) : [4,5] is a matrix[[any, any, 4], [any, 5, any]] .

IX—10 Generalized indices

The syntax of anNSTANCE-OF-PROCESSis used to denote the call of a predefined function that
delivers generalized “unit” indices. Such indices can lelfsr standard array traversal in extraction of
sub-array (cf. sectiotX-8, pagel63) or array restructuration (cf. sectidd—9, pagel64).

i ndi ces(ai,...an)

Let the expressionndi ces(aq,... a,) define jointlyn indicesiy, ..., I,:
(I,....[,) :=indices(a,...an)
1. Types

(a) The elaborated values @f (©(a1)), .. .,a, (©(a,)) are strictly positive integers.
(b) Forallj=1,...,n,

7(1;) = ([0..0(a1) — 1] x ... x [0.0(a,) —1]) = v

wherev is aninteger-type.

2. Semantics
Forallj=1,...,n,
for all k; such thad < k& < ¢(a;) — 1,

3. Definition in SIGNAL

(I,....I,) :=indices(ay,...a,)
may be obtained by the process defined as follows:

(| (II,...,II,) := <0..a; — 1,...,0..a, — 1>
| iterate (IL,...,II,) of
(L[IL, ..., IL,), ..., LJIL,...,IL)]) := (II, ..., II,)
end
N /[IL, ..., II,

(cf. sectionIX-12, pagel67 and sectionX—13, pagel68).
4. Clocks
@ w(a)=h,...,w(a,) =1
(b) w(indices(ai,...,a,))=h
5. Examples

(a) ifMis a4 x 5 matrix, thenM i ndi ces(3, 4)] isthe3 x 4 submatrix ofM that contains
the three first lines and the four first columns of the matrix

IX—11. EXTENDED SYNTAX OF EQUATIONS OF DEFINITION 167

IX—11 Extended syntax of equations of definition not yet
fully

The following syntax extends the syntax @EFINITION-OF-SIGNALS given inVIII-5, pagel55: imp|te'd
mente

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
DEFINED-ELEMENT ElS-EXPR
| DEFINED-ELEMENT S-EXPR

| DEFINED-ELEMENT defaultvalue| S-EXPR
| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *

S-EXPR

| DEFINED-ELEMENT { |:|DEFINED-ELEMENT} *
S-EXPR
| DEFINED-ELEMENT { DDEFINED-ELEMENT} *

DEFINED-ELEMENT ::=
COMPONENT

| COMPONENT [[| S-EXPR{[, |S-EXPR ¥

An equation
X[L, ..I,] :=FE
is another way to write:
X:=(L,...In : E

The definition is similar when the symb is used.

If one equation defines only partially an array, this arrag ba defined using several equations,
defining different parts or elements of this array.

Independently of non defined elements (representedibin the semantics), like any signal, a given
element cannot be defined by distinct values at a same instant

All the elements of an array have the same clock, which isldekof the array. In particular, if some
element is undefined at a given instant at which other elesrastdefined, this element is considered to
have any well-typed value.

IX—12 Cartesian product

The cartesian product is used mainly to define jointly inglide be used in the provided structure of
iteration of processes (cf. sectitd—13, pagel69). Intuitively, the sequence of iteration is represented
by the first dimension of the indices (which are vectors). g lius different from the generalized indices
used in extraction of sub-array (cf. sectibf-8, pagel63) or array restructuration (cf. sectiok-9,
pagel64), which are, in the more general case, multi-dimensiordits.

<y, ..o >

Inot yet implemented in ®.YcHRONY: multiple partial definitions for different elements of amay.

168 SPATIAL PROCESSING

1. Context-free syntax

MULTI-INDEX =

S-EXPR{D S-EXPR ¥

2. Types

(@) Vk, 7(I;) = [0.mp, — 1] — pe

b) T(<ly, .. L) = (0] [me — 11 = pa x o x O] [e — 1] = pm
k=1 k=1

3. Semantics
The cartesian produet, ..., I,,>> defines a tuple of, vectorsi I, ..., II,, the size of which
is equal to the product of the sizes of the vecthrs.. ., I,,. These vectorgly, ...,I1, are such
that the tuples obtained by their elements of same indexidessuccessively the respective values
of the elements ofy, ..., I, in embedded loops such that the most external one enumdhates
elements off; and the most internal one enumerates the elemertis. of
The semantics is described formally in pBrtsectionlll-7.2, page46.

4. Clocks

(@) w(n)=...=w(1,)
(b) Each one of the defineld;, has the same clock ds.

IX—13 Iterations of processes notyet
ully

Structures of iteration are provided as process expression imple-

mented

1. Context-free syntax

GENERAL-PROCESS::=
ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=
array | ARRAY-INDEX P-EXPR[ITERATION-INIT]
iterate | ITERATION-INDEX P-EXPR[ITERATION-INIT]

ARRAY-INDEX ::=

Name S-EXPR

ITERATION-INDEX ::=

DEFINED-ELEMENT
| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *

| SSEXPR

Znot yet implemented in ®LYCHRONY: creation of the implicit added dimension when necessanyitiple associated
indices.

IX—13. ITERATIONS OF PROCESSES 169

ITERATION-INIT ==

P-EXPR

REFERENCE-SEQUENCE ::=
S-EXPRIIlIIl

The structure of array is used in thecBIAL language to represent a notion of iteration.

The signals which are defined iteratively have a virtual galol first dimension (with respect to
their declaration), the size of which is the number of itiers. Moreover, a virtual index 1 in this first
dimension is used to represent the initial value of the atmsid signal, at the beginning of the iterations.
The current value of the signal at a given iteration step n&w lunction of its value at the previous
iteration step.

Note that this representation of bounded iterations usmgdditional spatial dimension is only a
means to represent simply such iterations within the exgstemantic contextin practice, this added
dimension has not necessarily to be created.

Let us first consider the following form:

iterate(/y,....I,) of Pwith P;,; end

whereP is a process expression with equations that may contairotlogvfng occurrences of signal
expressions:

e in the left hand side:
X[f(Iy,...,1p)] (orjustX)

e in the right hand side:
X[g(I1,...,1,)] (orjustX)
and:
X[?][h(11,...,1Ip)] (orjustX[?])

Pt is also a process expression with equations that may cosigial expressions of the form
X[u({ly,...,1p)] (orjustX) in the left hand side.

The equations which are under the scope of a structure atftider (“iteration of processes”) in a
given unit of compilation are rewritten as a new system obgigus according to the context of rewritting
established by the embedding of iteration structures. Aeximg function (which can be represented as
some list of indexes) corresponds to such a context. Theimgléunction is a function:

Z: [0.(ng *...%n,) —1] — [0.ny — 1] x ... x [0..n, — 1] (Where then; are integer constants).
For simplicity, let this function be represented here byttipte of indexed, ..., I, (in this order): each
index has a size equal tg * ... * n,. We notem = ny * ... xn,.

Let us consider also the following “generic” forms of eqoas in P;;,;;:

X[u(ly,...,Ip)] :=FE

and inP:

X[f(L,..,)] c=kX[? [h(,....00] . Y[o9, . Lp)] -)

(X, Y represent any variable¥-may be X— defined in the iteration, the functions g, h, u... on
indexes can represent tuples. . . ; note that besides theseryation of the iteration in an added dimension
for the signals, each defined element has several defindilong the iteration.)

Considering this iteration context, the equations afi@tte this context are rewritten in the follow-
ing way (“expanded”, in some way), as a composition of eguati(X X, YY... are new variables,
corresponding to the variables defined in the iteratiorh wie same type as the corresponding variable,
but with an additional first dimension of size 4 1):

170 SPATIAL PROCESSING

e initialization equations:
X[u(ly,...,Ip)] :=FE
is rewritten as the composition of equations:
Vir, ..., ip, YO(L[1)), ..., o(LLip)),
XX[-1 [u(@(nli]),....o(LLi])] - =E
where—1 refers to the virtual first index of the added dimension.

e equations of the body:
X[f(Iy o L)) s = R(XL21 [N L] YT 9 D])
is rewritten as the composition of equations:
Vi=0,...,m—1,

= XX[OLA(LLO . L)) 2=
RXXTL=1][R(L0D . U, YYD [g(nld .. L)Y)

- Vi#F S, L),
XX [g] = XX[1-1][J]

e final results:
X =XX[m—1]

This rewritting is some sort of preprocessing. In partigulae typing of a program has to be consid-
ered on the rewritten program.

As mentioned above, the iteration indexes can be reprasasteome list of indexes. A particular
case is to have such a list defined as a tuple resulting frontdhtesian product of indexes. More
generally, the iteration indexes can be specified by anyessjmn denoting a function
[0..(n1 *...%ny) — 1] — [0.n1 — 1] x ... x [0..n, — 1] (Where then; are integer constants).

For a given set of equations, the context of iteration iskdistaed, in some unit of compilation,
by the whole embedding structure of the iterations comgirthese equations. As it will be easier to
understand it in a regular context, let us consider as typixample the embedding of two structures of
iteration, the indexing functions of them, taken sepayatale given by cartesian products of indexes:
let <1y, ..., I,>> for the most external one, ane [, 1, ..., I,;,> for the inner one. Then, for
the equations which are under the scope of both structuréeration, the indexing function (which
determines the rewritting) is given by the following caid@sproduct: <1y, ..., I,+,>. This rule is
generalized following the same principle for any indexingdtion and for any embedding of structures
of iteration.

Particular case. In order to allow “incomplete” iterations (for instance tvisome iteration index de-
pending on the value of another iteration index), it may benad to define only partially, for a given
iteration, indexes used as iterators. In that case, the tiefined” values are not considered for the re-
sulting indexing functiorf: more precisely, tuplegi,... i,) where at least ong, is “non defined” are
not considered. In that case, = n *. .. *n, iS not the actual size of iteration but only its upper bound.

The “array” notation is a special case of the “iterate” ombgrited from the previous version of the
SIGNAL language.
array ItoNof Pwith P,; end
whereN is an expression defining a constant integer (and for whishs not to be declared)
is equal to the process defined as follows:
(] I :=0..N
| iterate I of P with P,; end
N /I

IX-13. ITERATIONS OF PROCESSES 171

Examples

earray I to N-1 of
array J to N-1 of
Ul,J] :=if 1=J then 1 else O
end
end definesU as a unit matrix.

earray | to N-1 of
array J to N-1 of
T[I1,J] :=if J>=I then | +J else O
end
end
definesT as a triangular matrix.

earray I to N-1 of
DIl :=MI,1]
end
definesD as a vector equal to the diagonal of matvix

earray I to N-1 of
T[I] :=if I=Kthen Aelse (T$)[I]
end
defines the vector which at each instant keeps the values it had at the previstarit, except in
Kwhere it takes the values 8f(K andA can be signals).

earray | to N-1 of
VII] :=T[I] + V[?][I—-1]\\O
end
defines the vectov in which each element, of indéxcontains the sum of the firselements of a
vectorT.

earray | to N-1 of
R:=op(T[I],R7?])
with R:= vO0
end
defines inR the scalar obtained by theductionof the vectorT by the operatoop (vO is the
initial value).

earray | to N-1 of
Y[I] := FILTER(Y[?][I —1] \\X)
end
defines a cascade df processe$| LTER connected in series. The process mdeleLTER is
declared with one input and one output of some basic type.h Hgaut of an instance of the
procesd-| LTERIs supplied by the output of the previous procEs& TER (the signalX provides
the input of the first procedsl LTER). The vectorY is delivered as output.

172 SPATIAL PROCESSING

earray I to N of
F:=if 1=0 then 1 else |=xF[?]
end
defines inF the factorial ofN. Note that hereNis a constant.
It is also possible (in a different way) to specify in theGBAL language the computation of
factorial for an “unbounded” integer signidlby “inserting instants” between consecutive instants
of the input signaN (oversampling).

earray | to N-1 of
FOUND : = if FOUND[?] /= -1
t hen FOUND[?]
else if ELEM = TABLE[I]
t hen |
el se FOUND[?]
with FOUND : = —1
end
specifies the research of the elemEbhEMin an unsorted ABLE.

e With f ul | add a model of function defined as follows (cf. chapxr, pagel83):
function fulladd =

(? boolean cin, x, y; ! boolean cout, s;)

(] s :=x xor y xor cin
| cout := (x and y) or (y and cin) or (cin and x)
|

)

then the following model of function defines an unsigned lagtder:
function byte adder =
(? [8] boolean X, Y; !' [8] boolean S; bool ean overflow,)
(] array i to 7 of
(overflow, §[i]) := fulladd (overflow ?], Xi], Y[i])
with overflow:= fal se
end

1)

e Using the model of functioexchg:
function exchg =
(? integer a, v; ! integer aa, w)
(]| aa :=v | w:=a

|
1)

then the following model of function (cf. chapt&t, pagel83) defines inWa circular permutation
of V:
function Rotate =
{ integer n; } (? [n] integer V; ! [n] integer W)
(] array i to n-1 of
(aa, Wi]) := exchg (aa[?], Vil])
with aa := V[n-1]
end

IX-13. ITERATIONS OF PROCESSES 173

1)

where integer aa; ... end

e The following model of function sorts the vectarin increasing order iff:
function Sort =
{ integer n; } (? [n] integer A, ! [n] integer T;)
(] array j to n-2 of
array i to (n-2)-j of

(I T:=T7]
next (i : if T[?][i] > T[?][i+1]
then T[?][i1+1] else T[?][i])
next (i+1 : if T[?][i] > T[?][i+1]
then T[?][i] else T[?][i+1])
1)
end
with T := A

end

1)

(the sequential expression is defined in sect}Al4, pagel74).

It can be written as follows, usingt er at e:
function Sort =
{ integer n; } (? [n] integer A, ! [n] integer T;)
(] j :=0..n-2
| iterate j of

(] i :=0..(n-2)-j
| iterate i of
(] T:=T7]
next (i : if T[?][i] > T[?][i +1]
then T[?][i+1] else T[?][i])
next (i+1 : if T[?][i] > T[?][i+1]
then T[?][1] else T[?][1+1])
1)
end
1)
with T := A
end
1)
where [n-1] integer j, i;

end;
(note that this is an example with “incomplete” iteratians)

Some other examples are given in the definition of operatorsatrices (cf. sectiolX—16, pagel75).

174 SPATIAL PROCESSING

IX—14 Sequential definition

The sequential definition is used mainly for the redefinitidelements of arrays.

Ty next 15

1. Context-free syntax

SEQUENTIAL-DEFINITION ::=
S-EXPR S-EXPR

2. Types

@ 7(71) = ([0..c1] x ... x [0.¢,]) — g

(b) 7(7%) = ([0..51] x ... x [0..b,]) — 12
with ¢; > bq,...,¢, > b, andpy andy, are comparable types
(Ty andT; are, in the general case, arrays with the same number of diamex) but on each

of them,T> may be smaller thaif)
(©) 7(T1 next Ty) = ([0..c1] x ... x [0..¢,]) — p1 U pao

3. Semantics
T, next 75 defines, in the general case, the array which takes the vélilg at each point at

whichT5 is defined (i.e., is semantically different fromil), and the value of; elsewhere.
The semantics is described formally in pBrtsectionlll-7.2, page46.

4. Clocks

(@) w(T1) =w(Ty)
(b) C(}(Tl next TQ):CL}(Tl)
5. Examples

@T:=T$ next K: A
defines the vectol which at each instant keeps the values it had at the previwiant,
except inK where it takes the values 8f(K andA can be signals).

IX—-15 Sequential enumeration

The sequential enumeration is a form of iterative enumandhat allows to define arrays using sequential
multi-dimensional iterations.

1. Context-free syntax

ITERATIVE-ENUMERATION ::=

m ITERATION { D PARTIAL-DEFINITION } *

PARTIAL-DEFINITION

DEFINITION-OF-ELEMENT
| ITERATION

IX—-16. OPERATORS ON MATRICES 175

DEFINITION-OF-ELEMENT ::=
m S-EXPR{D S-EXPR }* ElS-EXPR

ITERATION ::=
PARTIAL-ITERATION { I:l PARTIAL-ITERATION } *
DEFINITION-OF-ELEMENT
| PARTIAL-ITERATION { I:lPARTIAL-ITERATION} *

E| S-EXPR

PARTIAL-ITERATION =
[Name][[in|S-EXPR] [[to] S-EXPR][[step| S-EXPR]

Let us consider the following definition of an arrayby sequential enumeration:
T:=[Dy, ..., Dy]
(note: this is not an enumeration such as described in sdiied, pagels9).

This definition is equivalent to:
T :=Djnext ...next D,,
whereD; should be a complete definition of the array.

Let us now consider the following general form of a giveg:
{ininbitocystepd,...,ipinbytoc,stepdy} i [flir,...,ip)] 1 E

It can be considered that the definitionof is obtained by the following composition:

(| il::bl--cl step d1
| iterate i; of

(...
([ip 1= by .c, Step d,
|iterate i, of Dg[f(i1,...,ip)] = E end
)
)
end
DA
If the denotation of the indice$,f (i1, . . . ,4,)] , is omitted, it is equivalent tp(iy,... jp)] .

If the lower bound of an index is omitted, it is by default elgiee0. An upper bound can be omitted
if it corresponds without ambiguity to the upper bound of tberesponding dimension of the array. If a
step is omitted, it is by default equal to 1. The name of anrm be omitted if it has not to be used
explicitly.

A D, with the simple form:
[I] : FE
can be considered as being defined by the equation:
Dy[I]l :=F

IX—16 Operators on matrices

IX—-16.1 Transposition

1. Context-free syntax

176 SPATIAL PROCESSING

TRANSPOSITION ::=

S-EXPR

Transposition on matrix

tr £
1. Types

(@) 7(E) = ([0.1 — 1] x [0.m —1]) — p
() 7(tr E)=([0.m —1] x[0.1—1]) — p

2. Definition in SIGNAL
X:=tr FE
whose right side represents an expression of transposition of matrix, isleqithe process
defined as follows:

arrayitom — 1of
array jtol— 1of
X[ig] 1= E[]
end
end

3. Clocks
(@ w(tr E)=w(F)

Transposition on vector

To create a matrix-column, it is possible to create a mditnx-and then to transpose it as follows:
tr [V]

IX—16.2 Matrix products

1. Context-free syntax

ARRAY-PRODUCT ::=

S-EXPR S-EXPR

2. Types

(a) The elements of the operands of an expression of mattust have a basic type which is
aNumeric-type.

3. Clocks

(a) The operators of matrix product are synchronous.

IX—-16. OPERATORS ON MATRICES 177

2-a Product of matrices
El *. E2
1. Types

(@) 7(E1) = ([0.1 — 1] x [0.m — 1]) — 1y
(b) 7(E;) = ([0.m — 1] x [0.n. — 1]) — pg
©) T(Ey % Ey) = ([0.0 — 1] x [0.n — 1]) — g1 L pao

2. Definition in SIGNAL
X :=F . By
whose right side oEl represents an expression of product of matrices, is equbktprocess
defined as follows:

arrayitol— 1of
array jton — lof
array ktom — 1lof
X[yl = X[?] [0] + Erlik] = Eof k.j]
withX[ij] :=0
end
end
end

2-b Matrix—vector product
El *. E2
1. Types

@) 7(E) = (0.1 — 1] x [0.m — 1]) — 1
(b) T(B2) =[0.m —1] — s
©) T(Ey % Ey) =[0.0 — 1] — g1 U pao

2. Definition in SIGNAL
X :=F1 . By
whose right side o represents an expression of matrix—vector product, isléguiae process
defined as follows:

arrayitol— 1of
array ktom — 1of
X[- =X[?1[4 + Exli.k] = Ea[K]
withX[i :=0
end
end

178 SPATIAL PROCESSING

2-c Vector—matrix product
El X, E2
1. Types
(@) 7(E) =[0.1-1] — 1y
(b) 7(E;) = ([0..0 —1] x [0..m — 1]) — po
©) T(Ey % Ey) =[0.m — 1] — 1y U po
2. Definition in SIGNAL
X :=F . By

whose right side represents an expression of vector—-matrix product, isléqiae process
defined as follows:

array jtom — lof
array ktol — 1of
X[l - =X[?21[J] + Erl k] = Esl k,j]
withX[j] :=0
end
end

2-d Scalar product
El *. E2
1. Types
@ 7(E)=[0.1-1] - m
(b) T(B2) =[0.1 —1] — ps
(©) T(El *. Eg) =1 U e
2. Definition in SIGNAL

X :=FE % FEy
whose right side represents an expression of scalar product, is equal taticegs defined
as follows:

arrayitol— 1of

X =X[?] + Eq[i] * E5[1]
withX:=0
end

Chapter X

Extensions of the operators

X-1 Rules of extension ”]?lj”yyet
The operators defined in the@JAL language are termwise extended to arrays and tuples, pobthct r:gﬂltzd
there is no possible ambiguity between the new operatottirggdrom the extension and some other
operation.

The extension of a given operator defines a new operatorasteitmwise extension may be applied
recursively.

The semantics of the extension on tuples is described fiynmapart B, sectionlll-7.1, page44.
The semantics of the extension on arrays is described ftyringbart B, sectionlll-7.2, page46.

Instances of processes and conversions follow the sanmgeafiextension than operators.

A given extension is either an extension on tuples, or amsidga on arrays. Mixed extensions are
not defined. If the types of the arguments of an operator atk that both extension on tuples and
extension on arrays can be applied, the extension on tupjges first.

When an extension is applied, the rules associated withpbeator (type relations, clock relations. . .)
apply element by element. Moreover, for the arrays, thetcains that all the elements have the same
clock has to be respected.

For tuples, there are different categories of tuples: mbrwwus tuples, which are signals, and
polychronous tuples, which are gatherings of signals (tm@ye not, in general, one proper clock).
Monochronous tuples are tuples with named fields and padyus tuples may be tuples with named or
unnamed fields. Whatever is the type of the arguments, tlhtsasxf an extension on tuples are always
tuples withunnamedields (remind that a tuple with unnamed fields can always biasd to a tuple
with named fields with a compatible type). Moreover, if theemsion applies on tuples with named
fields, the operator applies on the elements of these tupléspendently of their names in the consid-
ered tuples. In other words, X is such a tuple with named fields on which the extension appifes
extension applies effectively drupl e(X) .

The possibly existing extensions for the operators of theN&L language are deduced from the
examination of authorized types for the arguments of thpegaiors.

For example, the operat% is defined orsignalsof any types (in particular, on arrays and on

monochronous tuples with named fields) and has always a Booésult. Thus the extension on
arrays or on monochronous tuples with named fields has ne@gergOn the other hand, this extension
is defined on polychronous tuples (in that case, the resalp@ychronous tuple with unnamed fields of
Booleans).

*not yet implemented in ®LYCHRONY: extensions to tuples; some extensions to arrays.

180 EXTENSIONS OF THE OPERATORS

Concerning the other equality opera, it is defined only on signals of scalar types. Thus the
extension on arrays (for example) can apply and in this dhgeresult is an array of Booleans. The
extension on tuples (monochronous or polychronous) epfiie.

The extension of the operatehen on polychronous tuples applies, on the first argument asasell
on the second one. But the extension on arrays is not defirtbeé ieneral case on the second argument
since the resulting array would have elements with diffectocks.

X-2 Examples

e If V1 andV2 are two vectors, the expressivh * V2 defines the termwise product of the vectors
V1 andV2.

e If Kis a scalar and/ a vector, the expressidd * V defines the vector each element of which is
equal to the product df with the corresponding element gf

e If ML and M2 are two matrices, the expressitdl « M2 defines the termwise product of the
matricesML andM2.

¢ If P designates a process model which defines two oudpatedY,
the expressio?() when Cdefines the signal¥ when CandY when C.

e If P designates a process model with two inputs,
the expressio® ((A B) when C) specifies a subsampling by the conditi@ion each one of
the inputs ofP.

Part E

THE MODULARITY

Chapter Xl

Models of processes

The language allows to describe signals (synchronizedesegs of typed values) and relations between
signals by equations; these equations can be grouped #&ogetparameterized models of systems of
equations: themodels of processesThe call of a model in a system is, in principle (when the cor-
responding model is not compiled separately), equivalerthé direct writing of the equations of this
model.

XI-1 Classes of process models

A process model establishes a designation between a name setdbf parameterized equations; any
reference to this name is formally replaced by the designeggiations.

The set of equations may be simply defined by the keywaitder nal (cf. sectionXll-1, page203).

In that case, it is aexternalprocess model (or model of external process). Its definiglowuld be pro-
vided in the environment of the program.

The set of equations may also be empty. In that case, ivig@al process modellt means that
its actual definition is defined elsewhere (the virtual psscenodel is “overridden”) in the context or is
provided in a module (cf. paH, sectionXll-1, page203).

If the process model is external, or if the considered malebmpiled separately, the replacement
of a reference to this model by its equations remains pafiath a partial replacement is limited to the
EXTERNAL-GRAPH of the called process (cf. sectidit—6, pagel91). The result of the invocation of
a model of external process or of a separately compiled psat@del (which could be not in accordance
with its description) can be only theoretically describ@dhe tick characteristic clock of the invocation
of an external process model is described in QagectionVIl-5, pagel38

For a model of external process, its graph properties aabledted by theeEXTERNAL-GRAPH .
For a described process model, the graph properties at#isistal by the composition of tHEEXTERNAL-
GRAPH and the body of the model. A good situation is that ETERNAL-GRAPH verifies the
properties deduced from the body of the model.

The following classes of processes are distinguished:

e A process is saidafeif it is an iteration of function(on the inputs), such as highlighted in pBrt
sectionlll-8.1, page52.

It does not make any “side effect”:

184

MODELS OF PROCESSES

(I i o= f(X) | Ya:= /X)) = (I i:=/X) | Ya:=M1|)

Two different instantiations of aafeprocess with the same input values will provide the same
results. Such a process is memoryless. It cannot call ettpracesses that are not safe.

A process is saidleterministic automaters-or more shortlydeterministie—(or memory safg if
it is a function of sequences, from initial states, trajeew of the inputs and trajectories of the
clocks of the outputs (considered, in some sense, as injnits)rajectories of the outputs.

This corresponds to the notion deterministic procesgon the inputs), highlighted in paR,
sectionlll-8.3, page52.

Its only possible “side effects” are changes to its privatmary.

Two different instantiations of deterministic automatoprocess with the same sequences of input
values (and output clocks), and in the same initial condiijavill provide the same sequences of
outputs. It cannot call external processes that are not safe

Any safeprocess igleterministic automaton.

A process isinsafein all other cases.
Two different calls of amunsafeprocess are never supposed to return the same results.
The following SGNAL processes are examplesunfsafeprocesses:

- X := aor X

— (] x :=a default ((x$1 init 0)+1) | b:= x when 7b |)/X

The class of the process described by a process model magdisqat by a specific keyword in the
EXTERNAL-GRAPH of the model.

In addition, it is possible to specify non normalized compdaitary informations (cf. sectiodl-7,
pagel9s) in the DIRECTIVES .

Besides the above characterization of processes, diffel&sses of process models are syntactically
distinguished. These are models of:

processes,
actions,
procedures,
nodes,
functions,

automata.

Any process model called in the program must have a dedaratsible in the syntactic context of
the call.
A processMODEL is defined according to the following syntax:

1.

Context-free syntax

XI-1. CLASSES OF PROCESS MODELS 185

MODEL ::=

PROCESS
| ACTION

| PROCEDURE
| NODE

| FUNCTION

| AUTOMATON

PROCESS::=

process Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

ACTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

PROCEDURE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

NODE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

FUNCTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

AUTOMATON ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

BODY ::=
DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

XI-1.1 Processes

A procesqdescribed by a model of process) belongs to the most getlass of processes.

There are no required particular relations regarding da@skwell as dependences. It is the job of the
compilation (clock calculus, dependence calculus) tolmsize these relations.

A process may bsafe, deterministic automatoor, unsafe.This may be specified in tHeEXTERNAL-

186 MODELS OF PROCESSES

GRAPH. By default, unless it can be proved different, it is consdeasunsafe.

XI-1.2 Actions

Actions are processes that are called (activated) at afspelcick, that may be designated via a label,
which is thetick of the action (cf. parC, sectionVII-5, pagel38). Syntactically, the invocation (or
activation) of an action has to be under the scope of suched, liaba labelled process.

An action (described by a model of action) has to respect some refategarding its clocks and
dependences:

e lts tick is the clock designated by the label under the scope of wiiehattion call is. If the
action is not an external one, thisk is also equal, as usual, to the upper bound ofities of its
components.

Thetick of the action is not necessarily available through the fater of the model of the action.

e For the dependence relation, each input of an action preceaeh output of that action at the
product (intersection) of their clocks.

An action may beafe, deterministic automatoor, unsafe.This may be specified in tHEXTERNAL-
GRAPH. By default, unless it can be proved different, it is consdeasunsafe.

XI-1.3 Procedures

Procedures are special cases of actions. fidkeof a procedure is defined as the upper bound of the
clocks of its inputs and outputs (the procedure is calletliatitk).
A procedure must have at least one input or one output.

not yet
X1-1.4 Nodes fully
Nodes are essentialgndochronouprocesses (cf. paB, sectionlll-8.2, page52). r:1me$1|ti-d
Roughly speaking, an endochronous process knows when itohasad its inputs, thus it is au=

tonomous when run in a given environment.

It may be shown that if the clock relations associated witliacgss can be organized as a tree of
clocks, the root of the tree representing thest frequentlock (which is the single greatest clock) of the
system, then this process is endochronous.

Besides the property that it is endochronousode (described by a model of node) has to respect
some relations regarding its clocks and dependences:

e lts tick (cf. partC, sectionVIl-5, pagel38) is necessarily the clock of an input or output of the
node.

e For the dependence relation, each input of a node precede®egput of that node at the product
(intersection) of their clocks.

A model of node must provide an abstraction (cf. seckdn6, pagel9l) of its interface clock
functional hierarchy.

A node must have at least one output.

A node may beafeor deterministic automatorT his may be specified in tHeXTERNAL-GRAPH .
By default, unless it can be provedfe,it is considered adeterministic automaton.

XI-2. LOCAL DECLARATIONS OF A PROCESS MODEL 187

XI-1.5 Functions

A function is a process that specifies iggration of functionsuch as defined in paB, sectionlll-8.1,
page52.

A function (described by a model of function) is a sec-automatapdatictase of node and has to
respect all the relations respected by a node regardindpitkscand dependences (cf. sectiir-1.4,
pagel86). In addition, all the inputs and outputs of a function mustdrthe same clock.

A function must have at least one output.

A function is constant on time and does not produce any sigetefin particular, it cannot contain
delay operators (or other operators derived from delag}, define some memory.

Note that it is nevertheless possible to specify some asseron the input signals (for instance) of
a function. For example, the equatien = when (z > 0) specifies that when it is presentmust be
positive.

A function is necessarilgafe(this has not to be specified in tEeXTERNAL-GRAPH).

XI-1.6 Automata
TO BE COMPLETED

XI-2 Local declarations of a process model

The local declarations of a process model may be declarmtbrsignals (or tuples), declarations of
shared variables, declarations of state variables, dgias of constants, declarations of types, decla-
rations of labels, declarations of references to signalk wxtended visibility, or declarations of local
models.

1. Context-free syntax

DECLARATION ::=

S-DECLARATION
| DECLARATION-OF-SHARED-VARIABLES
| DECLARATION-OF-STATE-VARIABLES

| DECLARATION-OF-CONSTANTS

| DECLARATION-OF-TYPES

| DECLARATION-OF-LABELS

| REFERENCES

| MODEL

A given zone of local declarations constitutes a gil@rel of declarations; this level is that of the
process expression that defines this zone. When this eiqrésshe expression that defines the process
model, this zone is said the zone of the local declarationfhi@fimodel. When this expression is the
expression that defines the external graph of the modelzadhnis is said the zone of the local declarations
of the external graph.

The zones of declaration of the formal parameters and ofnjat$s and outputs of a process model
constitute a samievelof declarations, the one of the model.

The levels of declarations are ordered in the following way:

e the level of a model is greater than the level of the localat@tions of the external graph;

188 MODELS OF PROCESSES

the level of the local declarations of the external graphréatgr than the level of the local decla-
rations of the model;

the level of a model is greater than the level of any sub-esgioe of this model,

the level of an expression is greater than the level of anyesyibession of this expression;

the level of a model is greater than the level of any local rhddelared in this model.

A local declaration of a model in a given level is visible (atmdis, this model can be called as
INSTANCE-OF-PROCESY) in this whole level and in all lower levels, everywhere itist hidden by
a declaration with the same name in a lower level. In padic@d model) declared in the zone of the
local declarations of a modét can be called in the expression associated witlnd in the expressions
associated with the other sub-modelsfaf For these expressions, it possibly hides a model with the
same name that, without it, would be visible.

The set of sub-models declared in a moffatannot contain two models with the same name. More
generally, any two objects (models, types, signals, etedladed in a same level of declaration cannot
have the same name (see below).

The parameters declared in a process model are visible lfasdrmay be referenced) in this whole
process model (in particular, the other parameters, thesmgnd outputs, etc.) and in all the embedded
process models, everywhere they are not hidden by a dectamith the same name in a lower level.

The constants declared in a given level are visible in thislevkevel and in all lower levels, every-
where they are not hidden by a declaration with the same naméower level.

The types declared in a given level are visible in this whelel and in all lower levels, everywhere
they are not hidden by a declaration with the same name in erlmwvel.

The declaration of labels and their visibility obey to sfieaiules, which are more detailed in section
X1-3, pagel88

As a general rule, the local declarations of signals (oresiptincluding shared variables—and
state variables correspond to the confining of these obfettpartC, sectionVll-4, pagel37) to the
corresponding level and the lower ones. However, the Vitsilof signals, tuples and state variables obey
to specific rules, which are more detailed in sectkdn4, pagel89.

The names of declared objects (models, signals or tuplet sariables, parameters, constants,
types, labels) can mutually mask themselves. In a given,lévere cannot have two such identical
names.

Note that the scope of the declarations is statically deflmethe syntax: it does not depend on
instantiations of process models.

A given compiler may adapt the visibility rules for some skes of objects in the following way:
in the level where it is declared, a given object can be usédiora syntactic position thdbllows its
declaration (in this case, the order of declarations isistgmt). The rules for names redefinitions may
be adapted accordingly.

XI-3 Declarations of labels

1. Context-free syntax

DECLARATION-OF-LABELS ::=

Namedabel{ |:| Namedabel}* El

XlI-4. REFERENCES TO SIGNALS WITH EXTENDED VISIBILITY 189

The labels declared in a process model, at any declaratieh d¢ this model, are visible (and can

be referenced) anywhere in this model, except in its interfgparameters, inputs and outputs, external
graph). The labels declared in the external graph of a psateslel are visible (and can be referenced)

anywhere in this model.

However, the labels declared in a process model are notevisitthe sub-models of that model.

A label declared in a model cannot have the same name as amyotilect declared in that model (it
cannot be masked).

XI-4 References to signals with extended visibility

1. Context-free syntax

not yet
imple-
mented

REFERENCES::=

Name-signal{ I:l Name-signal}* El

The rules for the visibility of signals in the previous venss of SGNAL were that this visibility was
always limited to the process model in which the signal wadadled, excluding the sub-models of tha
model.

t

This version offers the possibility to extend the visilyilitf signals (or tuples) and state variables,
with the same rules as for most of the other objects of theuage. In that case, a signal (or tuple, or
state variable) declared in a given level is visible in thisole level and in all lower levels, everywhere

it is not hidden by a declaration with the same name in a loesll A signal with extended visibility
is assimilated to a shared variable (cf. sectibii0, page90) with at most one definition (but it can be
declared in the interface of a process model).

However, some freedom is left to the compilers to accept ar(possibly according to specific
options) signals with extended visibility. The three faliag cases may be distinguished:

1. Signals with extended visibility are not allowed.

2. Signals with extended visibility are allowed, but the o§such a signal must be explicitly refer-
enced as such when it crosses a frontier of process modetegipiect to its declaration.

Such a use is pointed by a “ref” declaration, under the scoépénich is the considered use (with
the general scoping rules, restricted here to the consiqemzess model).

A signal with extended visibility cannot be used if it hashé&dden by the declaration of another

object with the same name.
A “ref” declaration cannot mask some object with the sameaam

3. Signals with extended visibility are allowed, and theseumay be explicitly referenced (previous

case), though it is not mandatory.

XI-5 Interface of a model

The interface of a model contains an optional descriptioitsdfiormal static parameters, followed by a
description of its visible part. This one is composed of ths|(possibly empty) of its input and output

signals, and an optional description of the external belanfithe model.

1. Context-free syntax

190

MODELS OF PROCESSES

DEFINITION-OF-INTERFACE ::=
INTERFACE
INTERFACE ::=
[PARAMETERS] INPUTS OUTPUTS EXTERNAL-GRAPH

PARAMETERS ::=

[{ FORMAL-PARAMETER } *]

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=
[{ S-DECLARATION } +]

OUTPUTS ::=
m[{ S-DECLARATION } *]

The formal parameters of the interface of a model can coypim parameters. These type param-
eters necessarily appear under the form of names of typd®mwtiaDESCRIPTION-OF-TYPE
definition (cf. partC, sectionv-7, page86).

. Types

The list of inputs (respectively, outputs) declared in thieiface of a process model namgd
constitutes a tuple the type of which is denotel®P) (respectively; (! P)).

The type of the tuple of inputs and the type of the tuple of otgfre tuples with unnamed fields.
Thus:

(a) if the inputs and outputs of a process maBelppear as
(? w By i By ! v St ... VnSn;)
(to simplify the presentation, we consider that each design of type qualifies one single
name of signal or tuple; the generalization to the case vgth bf names is trivial)
then
T7(?P) = (T(111) x ... x T(1m))
7('P) = (7(1) x ... x T(vp))

. Semantics

A model must have at least one input, or one output, or one aorization with non null clock
with some external process.

The names of parameters, input signals and output signadslmeumutually distinct.

The declarations of the input signalNPUTS) and the output signalOQUTPUTS) of a model
are declarations of sequences. The declarations of foramahpetersFARAMETERS) can con-
tain declarations of parameter typ&HCLARATION-OF-TYPES) and declarations of constant
sequencesS-DECLARATION). In particular, the declarations of sequences can cotigias of
parameters or signals. The declaration of a model sets uptexton which:

XI-6. GRAPH OF A MODEL 191

e the parameter types define formal types, in a way similar ¢odtclarations of types de-
scribed in partC, chapteV, “Domains of values of the signals”;

e a type is associated with the declared parameters, inpoalsigand output signals, in a
similar way to the association of a type to local signals ofracpss (cf. parC, chapter
VII, “Expressions on processes”), according to the rules définehe chapter “Domains of
values of the signals”.

The invocation of a model sets up an expansion context intwhic

e an effective type is associated with the parameter types similar way to the definition of
type obtained by ®ESCRIPTION-OF-TYPE (cf. partC, sectionV-7, page86): if u is
the effective parameter corresponding, positionallyhtoformal parameter typgeype A;
then the typeA is defined as being equal to the typen the context of this invocation of
model;

e a value (or a tuple of values) is associated with each identifi formal parameter, and a
signal (or a tuple of signals) is associated with each nanmgpat or output signal (or tuple).

The declaration of a process model induces the existencgieéa order on the parameters (what-
ever they are parameter types or not), an order on the inguélsi of the model, and an order on
its output signals. Each one of these orders is the orderegfifsgation of the objects of the con-
sidered class (parameter, input or output) in the interfAcs positional invocation of the model
is made respectively to these orders.

Example: a process modglthe interface of which is specified as

{yi, ... Y} (? Ay ... Ay ! By, ... By)
can be called such as
(BBy, ..., BB,) = P{YYy, ..., YY} (AA, ..., AA)

where each signal or paramef€rX; corresponds to the signal or paramekgr

XI-6 Graph of a model

The EXTERNAL-GRAPH of a model allows to specify clock and graph properties ofitfzglel, such

as the properties necessary and sufficient to be able to iggmdldel after a separate compilation. These
properties may be provided by the designer or calculatetidgompiler. They refer to input and output
signals of the model.

1. Context-free syntax
EXTERNAL-GRAPH ::=
[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES |

PROCESS-ATTRIBUTE ::=

safe
deterministic
unsafe

SPECIFICATION-OF-PROPERTIES ::=

GENERAL-PROCESS

192 MODELS OF PROCESSES

The PROCESS-ATTRIBUTE allows to qualify the corresponding model sefe(keywordsaf e),
deterministic automatorikeyword det er mi ni sti c), or unsafe(keyword unsaf e)—cf. section
XI-1, pagel83 It must be in accordance with the syntactic class of the mode

The SPECIFICATION-OF-PROPERTIES of an EXTERNAL-GRAPH uses a process expres-
sion that can make reference to the formal parameters antlamg output signals of ttdODEL . Any
other identifier used in this expression is that of a locakob{signal, process model, etc.), that must
have a declaration in this expression.

When theEXTERNAL-GRAPH is that of a described process model, the process definedeby th
model is obtained, at the semantic level, by the composifdhe process defined by tHESXTERNAL-
GRAPH and of the process defined by the body of this model. By coctsny the process defined by
theEXTERNAL-GRAPH is thus an abstraction of the process defined by composkelfvtgh the one
of the body of the process model. A particular case may beribefar which the properties established
by the EXTERNAL-GRAPH are deduced from the properties verified by the body of theain@e.,
the process defined by tlEEXTERNAL-GRAPH is an abstraction of the process defined by the body
of the model).

When theEXTERNAL-GRAPH s that of an external process model, the properties it duscr
establish the properties of the model for any invocatiorhis mnodel.

In that case, the invocatiol {17, ..., V;} of anexternal process model
process X = {F; ... I}
(? Ei; ... Epy
LSy s S)
spec C
is equal to the process defined as follows:
(I X{V, ..., W}
| C

)

If C; is the syntactic context of expansion established by thecition of the model of external
process by the association of a value with each identifieowh&l parameter, and by the association of
a signal with each input or output signal name, then, thedation of this model results in the context
of expansiorCy equal toC; enriched by the equations (in particular, clock equatiars dependences)
resulting from the construction of tHEEXTERNAL-GRAPH .

XI-6.1 Specification of properties

The SPECIFICATION-OF-PROPERTIES is described by a usual process expression, the elementary
expressions of which are typically an instance of processcfvmay be, in that case, an instance of a
model of synchronization), a definition of signals, a clogki&ion, or an expression of dependence.

XI-6.2 Dependences

An expression of expliciDEPENDENCES may appear in thEXTERNAL-GRAPH of a MODEL ,

but also in its body. The purpose of a specification of depecete in the external graph is to make
explicit dependences between input and output signalsahibdel, or to establish these dependences in
the case of a model of external process. The explicit depemedebetween signals are defined with the
following syntax:

XI-6. GRAPH OF A MODEL 193

1. Context-free syntax

ELEMENTARY-PROCESS ::=
DEPENDENCES

DEPENDENCES::=
SIGNALS { SIGNALS }

| SIGNALS SIGNALS S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
| ELEMENTARY-SIGNAL { DELEMENTARY—SIGNAL} *

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label

We distinguish first the case where some of the “signals” fbiclv dependences are specified are
labels (cf. parC, sectionVIl-5, pagel38). In that case, for a labeY X, the designated signal is either
I X X (that is preceded by all the signals that are defined in theggsolabelled by X), or? X X (that
precedes all the signals that are defined in the procesdddlist X X), depending thak X appears at
the left side or at the right side of the dependence arrowhédrfallowing,! XX and? X X are only
notations used to designate the corresponding signals.

If XX is alabel:

e XX —> F

1. Definition in SIGNAL

I XX —> F
o F ——> XX
1. Definition in SIGNAL

E ——> 7?7 XX
Then, with the designated signals:
e Ky —> FEy ——> FEj

1. Definition in SIGNAL

(| B —> E
| FEy ——> FEj
)
Note that for the particular case where a lal§eX appears as
EF —> XX ——> Ej
this expression is equivalent to:

194 MODELS OF PROCESSES

(| By ——> ? XX
| XX ——> [y
b
e {X1, ..., X} ——> E

1. Definition in SIGNAL

(| Xy —> FE

| X, —> FE
D)
e K —>{Y, ..., Y,}
1. Definition in SIGNAL

(‘ EF ——> Y

| E —> Y,
D)

e {F —>{Yy, ..., Y,}} when B
1. Definition in SIGNAL

(| {E ——> Y1} when B

| {.E ——> Y} when B
)

e {X ——> Y} when B

1. Types
(@) T7(B) C boolean
2. Semantics
The result of the expression { X ——> Y} when B

is to add to the dependence graph a dependence XdmY labelled by the conditiorB,
representing the clock at whidh has the valuérue.

The semantics of such a dependence is described formalgrii psectionlV-3.1, page62.

3. Graph
@x L2y
4. Examples
(@ (] S1 :: ERASE (X
| S2 :: DISPLAY (X)

| S1 ——> S2 |)
allows to sequentialize the actioBRASE andDl SPLAY.

XI-7. DIRECTIVES 195

XI-7 Directives

The DIRECTIVES allow to associate specific informations,pagmaswith the objects of a program.
These informations may be used by a compiler or another tool.

A PRAGMA contains &Name, the list of the designations of objects with which it is asated, and
a Pragma-statement

PR {X1, ..., Xn} "YYY"

1. Context-free syntax

DIRECTIVES ::=
[pragmas]PRAGHA * [ond][pragmad]
PRAGMA ::=
Name-pragma

[[{ | PRAGMA-OBJECT{ [, |PRAGMA-OBJECT}* [} |1
[Pragma-statement]
PRAGMA-OBJECT ::=

Label
| Name

Pragma-statement::=

String-cst

2. Semantics
The pragma with nam& R and with (optional) statemehtY' Y Y™ is associated with each one of
the objects designated by, ..., X,,.
The designations (that should reference objects whichiailgler at the level of the model, model
type or module) can be:

e labels (in that case, the designated object is a procesessipn),
e names of signals, parameters, constants, types, etc.dtigndted object is the correspond-
ing signal, parameter, constant, type, etc.).

By default (when there is no designated object), the pragnaasociated with the current process
model (cf. sectiorXl-1, pagel83), model type (cf. sectioXl-8, page200) or module (cf. section
Xll-1, page203).

A pragma has no semantic effect. It can be ignored by a compitet can trigger a specific
processing.

3. Examples
The following pragmas are recognized in the INRIAIR CHRONY environment:
(a) General information
e Conment :
— Associated with the current model.
— Comment on this model.

196 MODELS OF PROCESSES

e Not e:
— Associated with the current model.
— Comment (note) on this model.

(b) Compilation directives

e Unexpanded:

— Associated with the current model (used for traceability ande generation pur-
pose).

— Means that the model is not expanded when it is called. Thesponding process
must be endochronous, its greatest clock must be the cloak ofput signal, and
every output signal is preceded by every input signal. Meggaf the model has
inner memorization or static parameters, then no more thanrestance is allowed
in its nesting process. If the model refers to outer sharedhias or state variables,
then no more than one instance can be active at each insiahts icase, the actual
greatest clocks of two instances of the same unexpandedgzotust be exclusive.

e Defi nedC ockHi erarchy:

— Associated with the current model.

— Means that the corresponding process is endochronouspwithock constraints,
and that its clock hierarchy is explicit (it may be the resila previous compila-
tion). When itis compiled, its clock hierarchy can be retawithout clock synthesis.

(c) Partitioning information

e RunOn:

— Associated with the current modéd?, or with a list of labels of labelled processes
partitioning the subprocesses of this model.

— The statement of this pragma is a string representing aaunisiteger value.

— If the pragma is associated with the current malgéach “node” (or vertex) of the
internal representation d? (this internal representation is a graph) is attributed by
the value;.

If the pragma is associated with a list of labels, each “ndde’vertex) of the in-
ternal representation of the processes labelled by onesétlabels is attributed by
the valuei.
When a partitioning based on the use of the pragtmaOn is applied on an appli-
cation, the global graph of the application is partitionedaading to the: different
values of the pragmdgunOn so as to obtaim sub-graphs, correspondingnasub-
models. The tree of clocks and the interface of these suketmoaday be completed
in such a way that they represent endochronous processes.

e Topol ogy:

— Associated with a list of input or output signals.

— The statement of this pragma is a string representing aaaiisteger value. This
value must be a value used also in a pradtnaOn.

— Read or write “nodes” (or vertices), corresponding to thestaered input or output
signals, of the internal representation of the process h{tds internal representa-
tion is a graph) are attributed by the value
This pragma may be used when a partitioning based on the tise pfagmd&unOn
is applied on an application.

XI-7. DIRECTIVES 197

(d) Separate compilation

e Bl ackBox:

— Associated with the current model.

— Qualifies the “black box” abstraction of a model (may be thsailteof a compilation).
Only the interface of the model, including its external drap represented: its body
is empty.

e (& eyBox:

— Associated with the current model.

— Qualifies a “grey box” abstraction of a model. It contains atemal graph that
represents clock and dependence relations of the inteffatalso a restructuring
of the model intoclusterstogether with a representation of teehedulingof these
clusters (clock and dependence relations between theseerdy Each cluster is
represented as a “black box” abstraction which is such tinairgout of the cluster
precedes any of its outputs.

e Cluster:
— Associated with the current model.

— Qualifies the “black box” abstraction of a model. It may beexdtb theBl ack Box
pragma to represent the fact that the abstracted model isloster in a “grey box”
abstraction.

e Del ayCl uster:

— Associated with the current model.

— May qualify one of the clusters of a “grey box” abstractionemltode generation is
expected from this abstraction: in that case, one of thaasisisthe “delay cluster”
(represented, like the other ones, by its “black box” aletima), groups together
the delay operations of the model and is preceded by eachfdhe other clusters
(in the generated code, memories will be updated at the eadevinstant).

(e) Code generation directives

The pragma&_Code, CPP_Code, Java_Code are specific to code generation.
They are associated with the current model.
Their statement is a “parameterized” string representipieee of code in the considered
implementation language. Each call of the model is traedldy this string in the gener-
ated code, after substitution of the encoded parameterkebgdrresponding signals in the
considered call. See below for the description of pararaeter

e C Code: is used for C code generation.

e CPP_Code: is used for C++ code generation.

e Java_Code: is used for Java code generation.

(f) Distribution
e Target:

— Associated with the current model.

— The statement of this pragma is a string representing somencmication system
(for example," MPI ™).

— When distributed code is generated, the corresponding eommation system is
used.

198 MODELS OF PROCESSES

e Envi ronnent :

— Associated with an input or output signal, which corresmotodan input or output
of the application.

— The statement of this pragma is a string representing adbtg.

— The logical tag represents the channel used for the comiaioricwith the environ-
ment when distributed code is generated.

e Recei ving:

— Associated with an input signat, of the current process modéh; . This input has
to be received from another process modgl,of the application.

— The statement of this pragma is a string constant composesoosubstrings: the
first one, say s1", represents a logical tag; the second one,"s8/' , is the name
of the process modéb,.

— When distributed code is generated, the component comdapp to the process
model P, receives the signal from the component naméd 2" , using the channel
represented by the logical tdg 1" .

e Sendi ng:

— Associated with an output signal, of the current process modée?;. This output
has to be sent to another process moftel,of the application.

— The statement of this pragma is a string constant composesdoosubstrings: the
first one, say s1", represents a logical tag; the second one,"s&8/' , is the name
of the process mode?,.

— When distributed code is generated, the component comedsmp to the process
model P, sends the signal to the component nametds2", using the channel
represented by the logical tdg 1" .

(g) Profiling directives
e Mor phi sm
— Associated with the current model (“operator”).

— This pragma is used to describe homomorphisms of prograri®ei@GNAL lan-
guage. An homomorphism associates a new program initheA: language with
an original one. A typical example is profiling for perforncarevaluation, for which
the homomorphic program represents time evaluation footlggnal program. A
new signal is associated with each original signal and a rgmvator is associated
with each original operator. For example, an opera@s't Pl us” can be associ-
ated with the operator+”.

Associated with a model represented as an “operator”, tgnpalVbr phi smspec-
ifies the homomorphic image of eaokferenceto this operator. The statement of
the pragma is a “parameterized” string representing thagien See below for the
description of parameters.

Note

Although they do not belong to the official syntax of thesSAL language, operators
may be described as follows:

MODEL ::=
OPERATOR

XI-7. DIRECTIVES 199

OPERATOR ::=

Operator-nameEl

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

Operator-name::= Name+nodel
| Operator-symbol

whereOperator-symbol represents reserved words or symbols of operators.
e Processor Type:
— Associated with the current model.

— The statement of this pragma is a string representing a famexample," DSP" ,
that should be the name of a flSP. LI B containing a module that defines the cost
of each operator by particular models.

— When profiling (performance evaluation) is required on aegiprogram imple-
mented on some processor represented as a model witRrtheessor Type
pragma, a morphism of this program is applied, that definemsaaprogram repre-
senting cost evaluation of the original program. The imagd® original program
by this morphism uses the library designated by the pragmatéopret the cost
evaluation operators.

(h) Link with the SIGALI prover
e Sigali:
— Associated with the current model.

— The statement of this pragma is a “parameterized” stringrttay represent the way
a call of this model has to be viewed by the SIGALI prover. Sekw for the
description of parameters.

— This pragma is used for referring to models contained in aipdibrary dedicated
to the SIGALI prover. The calls of these models are exteralis¢hat are inter-
preted when translated into the SIGALI representation.s€hae models used for
verification purpose or for controller synthesis.

Parameters of pragmas

The statements of some of the pragmas (for example, codeagemedirectives, profiling
directives, link with the SIGALI prover) are strings that ynbe “parameterized”. Gener-
ally, such a string describes a model of translation in wiparameters serve to transmit the
names of designated objects. In this case, the pragma isia&sbwith a model (process
model, “operator”) and describes the translation that bdsetassociated with eadall of
this model (i.e., with each reference to this model). Thelteg translation is obtained after
substitution of the encoded parameters by the correspgrudijects in the considered call.

The following encoded parameters are recognized:

— &pj (Wherej is a constant integer value) represents;ttieparameter of the call;

— & j (wherej is a constant integer value) represents;tfi@nput signal of the call;

— &o0j (Wherej is a constant integer value) represents;ttieoutput signal of the call;

— &n represents the name of the model,

— &mrepresents the name of the higher level model which is theeisicompilation unit.

200 MODELS OF PROCESSES

A few parameters are followed by other parameters to whiel #pply:
— &t represents the type of the considered object (for exar8pl&i 1 represents the type
of the first input signal of the call);
— &b represents the scalar basic type for an object which is ay;arr

— &l exp represents a list of objects (for exampd,exp&o represents the list of output
signals of the call);

— &ck represents the clock of the considered object;

— &h represents the image of the considered object in the carsit®momorphism when
the translation describes an homomorphism (for exanfd&i 1 represents the first
input signal of the image of the call in the homomorphic peogy;

— &hck represents the clock of the image of the considered objdtieironsidered ho-
momorphism when the translation describes an homomorphism

XI-8 Models as types and parameters

The notion of type presented so far is enriched with the natfonodel typethat represents the interface
of a process model. Then model types can be used to speaifafprocess models as formal parameters
of process models: a process model with the correspondiniginype as interface must then be provided
as effective parameter.

Model types

A model type is an interface of process model.

The following rules for aDEFINITION-OF-TYPE extend those given in paff, sectionV—7,
page86 (these rules do not concern formal parameters, which arzited below).

Pragmas may be associated with the objects of a model type isaime way they can be associated
with the objects of a model (cf. sectiofi-7, pagel95. When there is no designated object for a pragma
specified in a model type, it is by default associated withcithresidered model type.

The rule for aDEFINITION-OF-INTERFACE extends those given in sectigi-5, pagel89.

process T =1
(the correspondin@ECLARATION-OF-TYPE is:type process T = I;),
oraction T = I, etc.

1. Context-free syntax

DEFINITION-OF-TYPE ::=

process Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]
action NameJmodel-typE DEFINITION-OF-INTERFACE [DIRECTIVES]
procedure‘ Name-model-typgl DEFINITION-OF-INTERFACE [DIRECTIVES]
node Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES |
function Namemodel—typa DEFINITION-OF-INTERFACE [DIRECTIVES]
@ Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

XI-8. MODELS AS TYPES AND PARAMETERS 201

DEFINITION-OF-INTERFACE ::=

Name-mnodel-type

2. Types

(@) The declaratiomnype process 1 = I; defines the model type with namiéas being
equal to the interface qfrocesanodell.
Let us denote this equality:
7(T) = interfacgocess (1)

(b) When a named interface (model type) is used for a procesehdeclaration, both classes
of process models (function, node, action or process) maisbherent.

3. Semantics

e The same scoping rules as for other types apply to model.types
4. Properties

(a) With the declarations
type process A = I
andt ype process B = I
thenT(A) = 7(B) = interfacg rocess (1)-
Some implementations may not ensure this property.
On the opposite, the declarations
type process A = I;
andtype function B = [I; (forinstance)
define distinct model types.

5. Examples
(@) type process T = (? integer a; ! integer b;); declares the pro-
cess model typé.

(b) type process TT = T; declares the process model typ€ which is equal tar.

(c) process PP =
T

(s

declares the process modRf with its interface specified by.

Models as parameters

The following rules for #ORMAL-PARAMETER extend those given in sectiofl-5, pagel89.
The rule forS-EXPR-PARAMETER extends those given in pat; section2-a, pagel00.

1. Context-free syntax

FORMAL-PARAMETER ::=
FORMAL-MODEL

202 MODELS OF PROCESSES

FORMAL-MODEL ::=

proces% Name-mnodel-typeName-nodel
action| Name-model-typeName-model

procedure‘ Name-model-typeName-model

node| Name-model-typedName-model
function | Name+nodel-typeName+nodel
automaton| Name-+nodel-typeName-model

S-EXPR-PARAMETER ::=

Name-model

The formal parameters of the interface of a maoBalan contain model parameters, that appear as
a formal name of model, sa¥, typed with a model type, sa¥, which is visible in the current
syntactic context: typicallypr ocess T Q.

2. Semantics
To complete the description that was given in seck®r5, pagel89, the declaration of a model
sets up a context in which the model parameters define forrodels, that is to say, models for
which only the interface (described by a model type) is kngamalogous to model of external
processes).
The same scoping rules as for other parameters apply to rpadaheters.
In the body of the process modEl the formal model) is invoked using the usual syntax for the
invocation of models.

The invocation of a model sets up an expansion context intwaiceffective model, designated
by its name (which must be the name of a process model visiliteesi context of this invocation),
is associated with each model (positional association]ikesother parameters).

3. Examples

(a) process P =

{ process T Q }

(2?20)

(.. x:=Qy) ... |);
declares the process modelwich has a model paramet€ the interface of which is de-
scribed by the model typ€ (in that case, it has, for instance one input and one output).
The modeP must be called with a visible process model as effectiverpater; the interface
of this process model must be equallio
Forexample. .. P{PP}(...)...

Chapter XII

Modules

Xll-1 Declaration and use of modules

A module is a named set of declarations of constants, typdsnmadels.

The syntax oDECLARATION-OF-CONSTANTS , DECLARATION-OF-TYPES , PROCESS
ACTION , NODE and FUNCTION given below extends the syntax of these declarations sude-as
fined in partC, sectionV-8, page88, partC, sectionV-7, page86 and partE, sectionXl-1, pagel83
The presence of thpri vat e attribute is reserved to declarations which are in a modiilee syn-
tax of EXTERNAL-NOTATION may be used as well for BESCRIPTION-OF-CONSTANT, a
DESCRIPTION-OF-TYPE or aDESCRIPTION-OF-MODEL , either they appear in a model or in
a module. Itis provided in this section.

The importation of objects of a module in another module @rimodel is done viaase importation
command that may be found in a listDECLARATION s. Then, the syntax @ECLARATION given
below extends that defined in p&isectionXl-2, pagel87.

1. Context-free syntax

MODULE ::=

Namemodulﬁ
[DIRECTIVES] { DECLARATION} E

DECLARATION-OF-CONSTANTS ::=
‘ private H constant‘ SIGNAL-TYPE
DEFINITION-OF-CONSTANT { I:lDEFINITION-OF-CONSTANT} * m

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} * E

204 MODULES

PROCESS::=
‘ private H procesq Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] II|

ACTION ::=
‘ private H action ‘ Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] II|

NODE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES][BODY] E

FUNCTION ::=
‘ private H function ‘ Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] II|

EXTERNAL-NOTATION ::=

[String-cst]

DECLARATION ::=
IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=
IMPORTED-OBJECTS { DIMPORTED-OBJECTS}* E

IMPORTED-OBJECTS ::=

Name-module

Pragmas may be associated with the objects of a module imthe way they can be associated with
the objects of a model (cf. sectiofi-7, pagel95. When there is no designated object for a pragma
specified in a module, it is by default associated with theemirmodule.

The set of declarations of a module constitutes a same |éwdsabarations: the level of a module.
The level of a module is greater than the level of any moddbded in this module. With the usual rule,
there cannot be two objects with the same name declared irdaleno

The visibility of the objects declared in a module may berret&d to this module using the attribute
privat e: when a declaration of constants, types or model is precégetthe keywordpri vat e
(private constant ...,private type ...,private process ...,etc.),thenthe vis-
ibility of the corresponding objects is confined to the medilat contains thairivate declaration, even
if this module is referenced byuws e command.

In a moduleM, but also in a model, the description of a constant, a typerapdel can be given
by an expression of theiSNAL language, or it can be described as external by usingthesr nal

XII-1. DECLARATION AND USE OF MODULES 205

attribute, or it can be specified as virtual by the absencestrtion.

The objects declared in a module can be totally or partiatiyarted from a model or another module
thanks to theuse command. Such a module provides a context of definition faresof the objects
described as virtual in the model or the module containiegue command (and visible at this level).
These virtual objects anedefined(or overridder) in this way if they are imported (as corresponding
objects with the same name) fronusedmodule, or transitively, from a module imported in an impdrt
module. The overridden constants must have a smaller typeésame one) as that appearing in their
declaration as virtual (or an overriding of this type if idvirtual type). In the same way, the overridden
models must have compatible interfaces.

More generally, any object described as virtual in some zoindeclarationsL may inherit a
(re)definition from any context, visible in, that provides such a definition.

Though it is not mandatory, it may be a good policy to systezally declare as virtual in a module
M the objects referenced i/, but imported by aise command from another module. However, in
this case, they should be used only as virtual objects: famge, if some signal is declared with a
virtual type, only polymorphic operators could be appliedtt

A model or a module are eompilation unitwhen all the objects they use (except predefined or
intrinsic ones) have a declaration (which may be that ofairobject) in this entity, taking into account
theuse commands contained in it. In any case, a module necessanbtitutes a compilation unit.

Note that for code generation purpose, it may be necessarglttihe virtual objects of a compilation
unit have been overridden.

The objects whose definitions or redefinitions are impontea imodel or modulé” by ause com-
mand situated in a zone of local declarationsFoéire made visible at the level of the expression con-
taining these local declarations and at all lower levelsh(the usual scoping rules, everywhere another
object with the same name is not declared at such a level)e Mi@cisely, aise command inside the
local declarations of an expression establishes a new ¢éddclaration which is just greater than that
of the expression. For example, an expression
FE where L; use M; end
may be considered, from the point of view of the scoping rudssequivalent to the following one:

(E where L; end) where Decl (M) end
whereDecl(M) represents the declarations /af. This equivalence holds wherever thee command
is located in the local declarations.

A similar rule also applies for ase command located in the declarations of a module.

The importable objects of a module are the objects of thisuleothat are not declared gsivate.
The objects imported by ase command are all the importable objects of the module.

When severalise commands appear at a same level of declaration, their simtader determines
a corresponding nesting of the importations, thus avoidingfiple definitions of a same object at a given
level. For example, to:

E where L; use M;; ...; use M,; end

corresponds the following nesting:

(((E where L; end) where Decl (M,) end) ...) where Decl (M;) end
(the declarations aof/; are visible in)M,,, but the converse is not true).

In this way, if several objects with the same name are impairiea given context from different
modules, the single one which is effectively visible is thme drom the last module containing it in the
ordered list of thaise commands. Note that the rule applies differently for virigjects since virtual
definitions are overridden by corresponding non virtualsone

206 MODULES

The nesting of declarations also allows to override, in s@rag, declarations of imported modules
(libraries) by local declarations, since the local onesshaority.

When several modules are specified in a saree command, the corresponding declarations are
imported at the same level. For example,

E where L; use M, ..., M, end
would correspond to:
(E where L; end) where Decl (M;) ... Decl (M,) end

In this case, there is a potential risk of conflicts of the deations imported from different modules.

In a given compilation unit, when an object is described #siai, then:
e either itis defined in an imported module,
e or itis defined in the context in which this compilation ursitused.

In a given compilation unit, when an object is described dsraal (using theext er nal nota-
tion), then it means that it is externally defined, in anotheguage for instance, in the implementation
environment of the compilation unit.

The description of an object as external may be followed btriags such aext ernal " X",
which is an attribute allowing to describe specific chandsties of the implementation of this object:
implementation language, for instance (this is indeed & stwation for a specific pragma).

The nameM used in a commanduse M; " is the name of a module visible in the design
environment. The way this module is made available is natiadized.

As an example, in the INRIA ®LYCHRONY environment, there is an environment variable,
SIGNAL_LIBRARY_PATH,
which defines the paths at which library files may be found endhsign environment. Such a file has
the name “M”, with the suffixe “.LIB” or “.SIG” (i.e., “M.LIB” or “M.SIG"), and contains the definition
of a module named/, in SIGNAL.

Examples

e nndul e Stack =
use ny_elem
type el em
type stack = external;
process initst = (! stack p;);

process push = (? stack p; elemx; ! event except;)
spec (| x ~> except | x --> except |);
process pop = (? stack p; ! elemx; ! event except;)

spec (| x "# except |);

end;

Chapter XII|

Intrinsic processes

Intrinsic process models constitute libraries of procesbat may be used iniSNAL programs. These
models have not to be declared. The names of the intrinsiepsomodels are not reserved words of the
SIGNAL language.

XlllI-1 Minimal clock not yet
imple-
The intrinsic procesgi n_cl ock is a process with no output which is used to fix the clock of aaig mented

in the current compilation unit. When the considered cloak kome freedom, which is expressed by
a recursive definition of this clock, a solution of the eqoiatis chosen, which is the non null minimal
clock.

m n_cl ock(X)
1. Types
(a) X is a signal of any type.

2. Semantics
A call to the intrinsic process model
process mn_clock = (?2 x; !);
expresses a directive for the clock calculus.

Usingm n_cl ock(X) , the clock of the signakX is replaced by the non null minimal solution
of the system of equations that defines it.

In this way, ifw(X) = Q * w(X) + R, the solutionw(X) = R is chosen.

XIll-2 Affine transformations

Consider(n, ¢, d) such that,d € N*, the set of strictly positive integers, and= Z, the set of integers.
Given some proces®, an (n, ¢, d)-affine transformation from a clock; to a clockc, may be
obtained through the following steps:

1. Construct a new clocK as the union of the set of instants @fwith the set of instants obtained
by introducingn — 1 fictive instants between any two successive instants ¢gand —¢ fictive
instants before the first instant of wheng is negative).

208 INTRINSIC PROCESSES

2. Define the cloclke; as the set of instant&it + ¢|t € ¢}, with ¢ = {t|t € N}: in other words,
counting everyl instant, starting with the instagt of ¢’ (or with the first instant of’ when¢ is
negative).

Clockse; ande, are then said to be in a@m, ¢, d)-affine relation:cle%M)cz.

It can be expressed as follows: cloeksandc, are in an(n, ¢, d)-affine relation if there exists a clock
¢ such that; andc; can be respectively expressed using the affine functigng + ¢) and\.(dt+ ¢2),
with ¢2 — ¢1 = ¢, with respect to the time indices of: ¢ = {t|t € N}, c; = {nt + ¢1]t € '},
co = {dt + ¢oft € '}.

A particular case of affine relation ’Rﬁ@,d), with ¢ > 0. In this case, the reIationgL’d)’d)@ in
a processP can be denoted; = [c1](4,q) 1O express that, is a subsampling of positive phageand
strictly positive periodi onc;.

The clock calculus may implement synchronisability rulesdd on properties of affine relations,
against which synchronization constraints can be assessed

The followingaf fi ne_sanpl e,af fine_cl ock_rel ati onandaf fi ne_unsanpl e pro-

cesses are defined as intrinsic process models.

Affine sample process

The processaf fi ne_sanpl e is defined as follows:

process affine_sanple =
{ integer phi, d; }

(?x;

Ly

)

(] v *=x

| v :=(d-1) when (zv=0) default (zv-1)
| zv :=v $ init phi
| v := x when (zv=0)
1)
wher e

i nteger v, zv;
end

The signaly is defined as an affine subsampling of phgise and periodi on the signak.
The phasephi is a positive integerg()(phi) > 0) and the periodi is a strictly positive integer

(p(a) > 1).

The following affine relation holds between the clocksa@ndy:

W) = W6 o ons). o(a),
Affine clock relation process

The processf fi ne_cl ock_rel ati onis defined as follows:

process affine_clock relation =
{ integer n, phi, d; }

XIlI-2. AFFINE TRANSFORMATIONS 209

(?2x v)

(| clk_x := affine_sanple {max(0,-phi), n} (clk_i)
| clk y := affine_sanmple {nmax(0, phi), d} (clk_i)
| clk_x ~=x
| clk_y "=y
)

wher e

event clk x, clk_y, clk_i;
function max =
(? long x1, x2; ! long y;)
(] v:=1if (x1 >= x2) then x1 else x2 |);
end

There is an(n, phi, d)-affine relation between thelocksof x andy: w(X)Rgl,phi,d)w(Y)' The

process does not constrain the values ahdy.

The values of andd are strictly positive integersg(n) > 1, ©(d) > 1) and the value ofhi is an
integer.

The clockclk_i is a clock defined by the process, such that the following affelations hold
betweenclk i and the clocks ok andy:

W(X) = [W(Clk—i)](max(o,—go(phi)),SO(n))
W(Y) = [W(C1k—i)](max(o,gp(phi)),@(d))

Affine unsample process

The procesaf fi ne_unsanpl e is defined as follows:

process affine_unsanple =
{ integer n, phi; }

(? x1, x2;
Ly,
)
(| affine_clock relation {n, phi, 1} (x1, vy)

|
| v := (x1 when *y) default x2
| x2 "=y

|)

The signaly is defined as an oversampling from the signal The signak2 provides thevaluesof
y whenx1 is not present; note that though is an input signal o&f f i ne_unsanpl e, its clock has
not to be defined as input of this process: it is internallyraefias equal to the clock of the output.

The value of is a strictly positive integerg(n) > 1) and the value ophi is an integer.

The clockclk_i is a clock defined by the process, such that the following affelations hold
betweenclk i and the clocks ok1 andy:

Wet) = WL 5)] o o(oni)) (o))
w(y) = [W(Clk—l)](max(o,go(phi)),l)

The clocks ofx2 andy are equal:
w(y) = w(x2)

210 INTRINSIC PROCESSES

XIll-3 “Left true” process

The followingl ef t _tt process is defined as intrinsic process model:
process left tt = (? boolean bl, b2; ! boolean c;)

(] ¢ := bl default false when "b2 |)

It may be used to define some clock (represented bythe values of a Booleam1) at an other
clock (the upper bound of the clockswf andb2): with respect to this upper bound, the.e values of
b1 are retained, th¢alse values are retained, and the absence is represent&d asvalues.

XIll-4 Mathematical functions

The following mathematical functions are defined as initipsocess models. They correspond to func-
tions of the “math.h” library of the language C. A full desation of them may be found in the documen-
tation of this library.

e arc cosine function:
function acos = (? dreal x; ! dreal y;);

e arc sine function:
function asin = (? dreal x; ! dreal y;);

e arc tangent function:
function atan = (? dreal x; ! dreal y;);

e arc tangent function of two variables:
function atan2 = (? dreal x1;, dreal x2 ! dreal y;);

e cosine function:

function cos = (? dreal x; ! dreal y;);
e sine function:

function sin = (? dreal x; ! dreal y;);
e tangent function:

function tan = (? dreal x; ! dreal y;);

e hyperbolic cosine function:
function cosh = (? dreal x; ! dreal y;);

e hyperbolic sine function:
function sinh = (? dreal x; ! dreal y;);

e hyperbolic tangent function:
function tanh = (? dreal x; ! dreal y;);

e exponential function:
function exp = (? dreal x; !' dreal y;);

e multiply floating-point number by integral power of 2:
function ldexp = (? dreal x; integer i ! dreal y;);

XIlI-5. COMPLEX FUNCTIONS

211

e |ogarithmic function:
function log = (? dreal x; !

e base-10 logarithmic function:
function logl0 = (? dreal x;

e power function:
function pow = (? dreal x1;

e square root function:
function sgqrt = (? dreal Xx;

e smallest integral value not less than x:
function ceil = (? dreal Xx;

e absolute value of an integer:
function abs = (? integer x;

e absolute value of floating-point number:
function fabs = (? dreal x;

e largest integral value not greater than x:
function floor = (? dreal x;

e floating-point remainder function:

dreal vy;);

dreal vy;

dreal x2; !

dreal v;

dreal v;

i nt eger

dreal v;

dreal vy;

function fnmod = (? dreal x1; dreal x2; !

)

dr eal

),

)

yi

),

)

dr eal

)

e convert floating-point number to fractional and integrainpmnents:

function frexp = (? dreal x;

e extract signed integral and fractional values from floafoint number:

function nodf = (? dreal x;

XllI-5 Complex functions

dreal y1;

dreal y1; dreal

The following complex functions are defined as intrinsicqess models.

e conjugate of a complex:

function conj = (? conplex x;

and

function conjd = (? dconpl ex x;

e module of a complex:

function nodu = (? conpl ex x;

and

function nodud = (? dconpl ex Xx;

e argument of a complex:
function arg = (? conplex x;
and

function argd = (? dconpl ex Xx;

conmpl ex v;

),

I dcompl ex y;

real v;

I dreal

real v;

I dreal

)

yi

)

yi

)

)

Ys

y;

y2;

),

),

)

i nteger y2;

),

212 INTRINSIC PROCESSES

e real part of a complex:

function rpart = (? conplex x; ! real y;);
and
function rpartd = (? dconplex x; ! dreal y;);

e imaginary part of a complex:

function ipart = (? conplex x; ! real y;);
and
function ipartd = (? dconmplex x; ! dreal y;);

XIll-6 Input-output functions

The following input-output functions are defined as inticrmocess models of the INRIAGLYCHRONY
environment. They allow to read and write signals of bagie$yon standard input and output.

Ther ead andwr i t e processes below are described with no explicit type for tipeiti or output
signalx: it means that they are polymorphic processes for which tieeteve type of the considered
argument is provided by the type of the corresponding sigmile call of the process.

e process read = (? string nessage; ! X)
spec (| nessage = x | nessage --> X |);

A message is displayed and a value is read for
A standard read function is used in the generated code fofollmving possible types ok:
boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.

e process wite = (? string nessage; x; !)
spec (| nessage "= x |);
A nessage is displayed and the value gfis written.
A standard write function is used in the generated code ferfoliowing possible types of:
boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.
e process witeString = (? string nessage; !);

A message is displayed on the standard output.

Part F

ANNEX

Chapter XIV

Grammar of the SIGNAL language

XIV=1 Lexical units

XIV-=1.1 Characters

Character ::= character | CharacterCode

Sets of characters

character::= name-char | mark | delimitor | separator | other-character
name-char::= letter-char | numeral-char | I:l
letter-char ::=

upper-case-letter-char | lower-case-letter-char| other-letter-char

upper-case-letter-char::=

=]
ol
El

E]I]

kil
2]
ol

A

e] NJro]i P[]l [R]

S]] v wl gy iz
lower-case-letter-char::=

[e]l
[]l
| [w]i

=]
EEE
BEE
BEE
BBE
<= 1]

E

B

216 GRAMMAR OF THE SIGNAL LANGUAGE

other-letter-char ::=

AlAN[AN AN Al [A][] [c] | E]
el el el e
(o] rofilo]ilo]i[e]i[e]i|u]i{u] o]
Loy Jrfe]i[s]i[a]ifa]i[a]i[a]i[a]
L& [l el el [eli[e]i[e]i[v]r]]
][] [o]l[e]i[e]I[8]l[e]
[[e] | [u]l]a LA [y]I[e]l

[=][=]~

numeral-char ::

B D RS S E

E
E
E
E
B
B
E
E
E

defimitor == [(]I]I []I[L]I[T]
NN

separator::= |\x20
| long-separator
long-separator::= |\x9
| | \XA
| | \xC
| | \xD

Encodings of characters

CharacterCode::= OctalCode | HexadecimalCode
| escape-code

OctalCode::= octal-char [octal-char [octal-char]]

XIV=1. LEXICAL UNITS

217

octal-char:= [o] | [1]/[2]I[3]I[4]I[5]I[6]l

HexadecimalCode:= hexadecimal-char [hexadecimal-char]

hexadecimal-char::= numeral-char

[[a]r[Bli[c]i[o]I[E]I[F]
] rlegife]rfafi[e]i]]

XIV-=1.2 Vocabulary

prefix-mark ::=

Names

Name::= begin-name-char [{ name-char}"]

begin-name-char::= { name-char\ numeral-char }

Boolean constants

Boolean-cst:= | [false]

Integer constants

Integer-cst::= {numeral-char }*

218 GRAMMAR OF THE SIGNAL LANGUAGE

Real constants

Real-cst::= Simple-precision-real-cst
| Double-precision-real-cst

Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
| Integer-cstlzl Integer-cst [Simple-precision-exponent |

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
| Integer—cstD Integer-cst Double-precision-exponent

Simple-precision-exponent:= E|Relative-cst | Relative-cst
Double-precision-exponent.= ElRelative-cst | @Relative-cst

Relative-cst::= Integer-cst

| Integer-cst
| E| Integer-cst

Character constants
Character-cst::= El Character-cstCharacterEl
Character-cstCharacter::= { Character \ character-spec-char}
character-spec-char.:=

| long-separator

String constants
String-cst::= E| [{ String-cstCharacter } 7] E|
String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char::=
| long-separator

XIV-2. DOMAINS OF VALUES OF THE SIGNALS

219

Comments

Comment::= [{ CommentCharacter }*]

CommentCharacter::= { Character \ comment-spec-char }

comment-spec-char:= |%

XIV=2 Domains of values of the signals

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

XIV=2.1 Scalar types

Scalar-type::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ::= Integer-type
| Real-type
| Complex-type

Alphabetic-type ::= |char

string

220 GRAMMAR OF THE SIGNAL LANGUAGE

Synchronization types

Synchronization-type::= |event

even|
boolean

Integer types

Integer-type ::= |short

integer

I

| |long

Real types

Real-type::= |real
| |dreal

Complex types

Complex-type::=

| | dcomplex

XIV=2.2 External types

External-type ::= Name-+ype

XIV-2. DOMAINS OF VALUES OF THE SIGNALS 221

XIV=2.3 Enumerated types

ENUMERATED-TYPE ::=

Name-enum-valug I:l Name-enum-valug*

ENUM-CST ::=

Name-enum-value

| Name-type Name-enum-value

XIV=2.4 Array types

ARRAY-TYPE ::=

m S-EXPR {D S-EXPR }* SIGNAL-TYPE

XIV=2.5 Tuple types

TUPLE-TYPE ::=

struct ENAMED-FIELDS

bundle NAMED-FIELDS
[SPECIFICATION-OF-PROPERTIES]

NAMED-FIELDS ::=
{ S-DECLARATION } *

222 GRAMMAR OF THE SIGNAL LANGUAGE

XIV-=2.6 Denotation of types

SIGNAL-TYPE ::=
Name-type

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} * E

DEFINITION-OF-TYPE ::=

Name-type
| Name-typeEl DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

XIV=2.7 Declarations of constant identifiers

DECLARATION-OF-CONSTANTS ::=

SIGNAL-TYPE

DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} * E

DEFINITION-OF-CONSTANT ::=

Name-constant
| Name-constant = | DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

XIV-=2.8 Declarations of sequence identifiers

XIV=3. EXPRESSIONS ON SIGNALS 223

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} * E

DEFINITION-OF-SEQUENCE ::=

Name-signal
| Name-signa S-EXPR

XIV=2.9 Declarations of shared variables

DECLARATION-OF-SHARED-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} * E

XIV=2.10 Declarations of state variables

DECLARATION-OF-STATE-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { DDEFINITION-OF-SEQUENCE} * E

XIV=3 Expressions on signals

XIV=3.1 Systems of equations on signals

Elementary equations

ELEMENTARY-PROCESS ::=
DEFINITION-OF-SIGNALS

224 GRAMMAR OF THE SIGNAL LANGUAGE

DEFINITION-OF-SIGNALS ::=
Name-signaE S-EXPR

DEFINITION-OF-SIGNALS =

Name-signal{ I:l Name-signal}* El S-EXPR

DEFINITION-OF-SIGNALS ::=
Name-signa S-EXPR

| Name-signa defaultvalue| S-EXPR

DEFINITION-OF-SIGNALS ::=

Name-signal{ D Name-signal}* S-EXPR
| Name-signal{ I:l Name-signal}* S-EXPR

Invocation of a model

ELEMENTARY-PROCESS ::=
INSTANCE-OF-PROCESS

INSTANCE-OF-PROCESS::=
EXPANSION

| Name-mode

EXPANSION ::=

Name-nodel

S-EXPR-PARAMETER { DS-EXPR-PARAMETER }*

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE

XIV=3. EXPRESSIONS ON SIGNALS 225

INSTANCE-OF-PROCESS::=
PRODUCTION

PRODUCTION ::=
MODEL-REFERENCE S—EXPR{D S-EXPR }*

MODEL-REFERENCE ::=

EXPANSION
| Name-model

S-EXPR::=
INSTANCE-OF-PROCESS

S-EXPR::=
CONVERSION
CONVERSION ::=

Type-conversio S-EXPR

Type-conversion::=

Scalar-type
| Name-ype

Nesting of expressions on signals

S-EXPR::=

S-EXPR

XIV=3.2 Elementary expressions

226

GRAMMAR OF THE SIGNAL LANGUAGE

S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal
| Label

| Name-state-variabl

Constant expressions

CONSTANT =

Boolean-cst
| Integer-cst
| Real-cst
| Character-cst
| String-cst
| ENUM-CST

XIV=3.3 Dynamic expressions

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

Simple delay
SIMPLE-DELAY ::=
S-EXPR [S-EXPR]
Sliding window

WINDOW ::=

S-EXPR S-EXPR [S-EXPR]

XIV=3. EXPRESSIONS ON SIGNALS 227

Generalized delay

GENERALIZED-DELAY ::=

S-EXPR S-EXPR [S-EXPR]

XIV=3.4 Polychronous expressions

S-EXPR-TEMPORAL::=

MERGING
| EXTRACTION
| MEMORIZATION
| VARIABLE
| COUNTER
Merging
MERGING ::=
S-EXPR S-EXPR
Extraction
EXTRACTION ::=

S-EXPR S-EXPR

Memorization

MEMORIZATION ::=

S-EXPR S-EXPR [S-EXPR]

228 GRAMMAR OF THE SIGNAL LANGUAGE

Variable clock signal

VARIABLE ::=

S-EXPR [S-EXPR]

Counters

COUNTER ::=
S-EXPR|after | S-EXPR
| S-EXPR|from | S-EXPR
| S-EXPR|count|S-EXPR

XIV=3.5 Constraints and expressions on clocks

ELEMENTARY-PROCESS ::=
CONSTRAINT

Expressions on clock signals

S-EXPR-CLOCK ::=
SIGNAL-CLOCK
SIGNAL-CLOCK ::=

S-EXPR

S-EXPR-CLOCK ::=
CLOCK-EXTRACTION

XIV=-3. EXPRESSIONS ON SIGNALS 229

CLOCK-EXTRACTION ::=
@ S-EXPR

E S-EXPRIIl

E S-EXPRIIl

S-EXPR-CLOCK ::=

Operators of clock lattice

S-EXPR-CLOCK ::=

S-EXPR[+|S-EXPR
| S-EXPR[—|S-EXPR
| S-EXPR| ™ |S-EXPR

Relations on clocks

CONSTRAINT ::=
S-EXPR {E| S-EXPR ¥

| S-EXPR{ S-EXPR ¥
| S—EXPR{ S-EXPR }*
| S—EXPR{ S-EXPR ¥

XIV=3.6 Constraints on signals

CONSTRAINT ::=

S-EXPR S-EXPR

230 GRAMMAR OF THE SIGNAL LANGUAGE

XIV=3.7 Boolean synchronous expressions

Expressions on Booleans

S-EXPR-BOOLEAN::

S-EXPR

S-EXPR-BOOLEAN ::
S-EXPR| or |S-EXPR

| S-EXPR|and|S-EXPR

| S-EXPR|xor |S-EXPR

Boolean relations

S-EXPR-BOOLEAN ::=

RELATION
RELATION ::=
S-EXPR|[= | S-EXPR
| S-EXPR|/ =/ S-EXPR
| SEXPR[> |S-EXPR
| S-EXPR[>=| S-EXPR
| SEXPR| < |S-EXPR
| S-EXPR[<=| S-EXPR
| S-EXPR[—| S-EXPR
| S-EEXPR[<<=|S-EXPR

XIV=3.8 Synchronous expressions on numeric signals

Binary expressions on numeric signals

XIV-4. EXPRESSIONS ON PROCESSES 231

S-EXPR-ARITHMETIC ::=
S-EXPRE S-EXPR
| S-EXPR| — | S-EXPR
| S-EXPR| |S-EXPR
| S-EXPR| / |S-EXPR

| S-EXPR|modulo|S-EXPR

| S-EXPR[++] S-EXPR
| DENOTATION-OF-COMPLEX

DENOTATION-OF-COMPLEX ::=

S-EXPR S-EXPR

Unary operators

S-EXPR-ARITHMETIC ::=

S-EXPR
| E S-EXPR

XIV=3.9 Synchronous condition

S-EXPR-CONDITION::=

S-EXPR S-EXPR S-EXPR

XIV-4 Expressions on processes

P-EXPR::=

ELEMENTARY-PROCESS
| HIDING

| LABELLED-PROCESS

| GENERAL-PROCESS

232 GRAMMAR OF THE SIGNAL LANGUAGE

GENERAL-PROCESS::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS
| ASSERTION-PROCESS

XIV-=4.1 Composition

COMPOSITION ::=

[(] P-EXPR{[| [P-EXPR}" 1[]) |

XIV=4.2 Hiding

HIDING ::=
GEN ERAL-PROCESS Name-signal D Name-signal}*
| HIDING Namesignal{lleamesignal}*

XIV=4.3 Confining with local declarations

CONFINED-PROCESS::=
GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

{ DECLARATION } +

XIV-4. EXPRESSIONS ON PROCESSES 233

XIV-4.4 Labelled processes

LABELLED-PROCESS ::=
Label E P-EXPR

Label ::=

Name

XIV-=4.5 Choice processes

CHOICE-PROCESS ::=

Namesigna{ CASE }* [ELSE-CASE]

CASE ::=
ENUMERATION-OF-VALUES ElGENERAL-PROCESS

ELSE-CASE ::=
GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=

S-EXPR{D S-EXPR ¥
| _[S-EXPR]D[S-EXPR]
| I[S-EXPR]D[S-EXPR]E
| E[S-EXPR]D[S-EXPR]
| I[S-EXPR]D[S-EXPR]E

I

XIV-4.6 Assertion processes

ASSERTION-PROCESS::=

[asser{[(| |[CONSTRAINT{ [| |CONSTRAINT}*][) |

234 GRAMMAR OF THE SIGNAL LANGUAGE

Assertion on Boolean signal

INSTANCE-OF-PROCESS::=

XIV=5 Tuples of signals

S-EXPR-TUPLE::=

TUPLE-ENUMERATION
| TUPLE-FIELD

XIV=5.1 Enumeration of tuple elements

TUPLE-ENUMERATION ::=

S-EXPR{D S-EXPR }*

XIV=5.2 Denotation of field

TUPLE-FIELD ::=
S-EXPREl Name-ield

XIV-6. SPATIAL PROCESSING 235

XIV=5.3 Equation of definition of tuple component

DEFINITION-OF-SIGNALS ::=
COMPONENT E S-EXPR
| COMPONENT [::=]S-EXPR

| COMPONENT S-EXPR

| COMPONENT { DCOMPONENT}* ElS-EXPR

| COMPONENT { DCOMPONENT}* S-EXPR

| COMPONENT { DCOMPONENT}*

S-EXPR
COMPONENT ::=

Name-signal
| Name-signaD COMPONENT

XIV-6 Spatial processing

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION

| CONCATENATION

| ITERATIVE-ENUMERATION
| INDEX

| ARRAY-ELEMENT

| SUB-ARRAY

| ARRAY-RESTRUCTURATION
| MULTI-INDEX

| SEQUENTIAL-DEFINITION
| TRANSPOSITION

| ARRAY-PRODUCT

| REFERENCE-SEQUENCE

XIV-6.1 Enumeration

236 GRAMMAR OF THE SIGNAL LANGUAGE

ARRAY-ENUMERATION ::=

m S-EXPR{D S-EXPR }*

XIV-6.2 Concatenation

CONCATENATION ::=

S-EXPR S-EXPR

XIV-6.3 Repetition

ITERATIVE-ENUMERATION ::=

S-EXPR S-EXPR

XIV-6.4 Definition of index

INDEX ::=

S-EXPREl S-EXPR [S-EXPR]

XIV-6.5 Array element

ARRAY-ELEMENT ::=

S-EXPRIIl S-EXPR {D S-EXPR ¥* m

| S-EXPRIIl S—EXPR{D S-EXPR }* m ARRAY-RECOVERY

XIV-6. SPATIAL PROCESSING

237

ARRAY-RECOVERY ::=

S-EXPR

XIV-6.6 Extraction of sub-array

SUB-ARRAY ::=

S-EXPRIIl S-EXPR {D S-EXPR ¥* m

XIV=6.7 Array restructuration

ARRAY-RESTRUCTURATION ::=
S-EXPREl S-EXPR

XIV-6.8 Extended syntax of equations of definition

DEFINITION-OF-SIGNALS ::=
DEFINED-ELEMENT ElS-EXPR
| DEFINED-ELEMENT [::=|S-EXPR

| DEFINED-ELEMENT S-EXPR

| DEFINED-ELEMENT{ | , | DEFINED-ELEMENT} *
ElS-EXPR

| DEFINED-ELEMENT { | , | DEFINED-ELEMENT } *
S-EXPR

| DEFINED-ELEMENT { | , | DEFINED-ELEMENT } *

238 GRAMMAR OF THE SIGNAL LANGUAGE

DEFINED-ELEMENT ::=
COMPONENT

| COMPONENT [[| S-EXPR{[, |S-EXPR¥

XIV-6.9 Cartesian product

MULTI-INDEX ::=

S-EXPR{[, |S-EXPR ¥

XIV-6.10 Iterations of processes

GENERAL-PROCESS::=
ITERATION-OF-PROCESSES
ITERATION-OF-PROCESSES ::=

array | ARRAY-INDEX P-EXPR[ITERATION-INIT]
iterate | ITERATION-INDEX P-EXPR[ITERATION-INIT]

ARRAY-INDEX ::=

| Name S-EXPR

ITERATION-INDEX ::=

DEFINED-ELEMENT
| [(] DEFINED-ELEMENT{ [, | DEFINED-ELEMENT } *

| SSEXPR

ITERATION-INIT =

P-EXPR

REFERENCE-SEQUENCE::=

S-EXPRII||I|

XIV-6. SPATIAL PROCESSING

239

XIV-6.11 Sequential definition
SEQUENTIAL-DEFINITION ::=

S-EXPR S-EXPR

XIV-6.12 Sequential enumeration

ITERATIVE-ENUMERATION ::=

m ITERATION { D PARTIAL-DEFINITION } *

PARTIAL-DEFINITION ::=

DEFINITION-OF-ELEMENT
| ITERATION

DEFINITION-OF-ELEMENT ::=

m S-EXPR {D S-EXPR ¥ E S-EXPR

ITERATION ::=

PARTIAL-ITERATION { I:lPARTIAL-ITERATION} *

E| DEFINITION-OF-ELEMENT

| PARTIAL-ITERATION { I:lPARTIAL-ITERATION} *

E| S-EXPR

PARTIAL-ITERATION =

[Name] [S-EXPR] [S-EXPR] [S-EXPR]

XIV-6.13 Operators on matrices

Transposition

240 GRAMMAR OF THE SIGNAL LANGUAGE

TRANSPOSITION ::=

S-EXPR

Matrix products

ARRAY-PRODUCT ::=

S-EXPR S-EXPR

XIV=7 Models of processes

XIV=7.1 Classes of process models

MODEL ::=

PROCESS
| ACTION
| NODE
| FUNCTION

PROCESS::=

process Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

ACTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

PROCEDURE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

NODE ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

FUNCTION ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

XIV=7. MODELS OF PROCESSES 241

AUTOMATON ::=

Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

BODY ::=
DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

XIV=7.2 Local declarations of a process model

DECLARATION ::=

S-DECLARATION

| DECLARATION-OF-SHARED-VARIABLES
| DECLARATION-OF-STATE-VARIABLES

| DECLARATION-OF-CONSTANTS

| DECLARATION-OF-TYPES

| DECLARATION-OF-LABELS

| REFERENCES

| MODEL

XIV-=7.3 Declarations of labels

DECLARATION-OF-LABELS ::=

Name-abel{ |:| Name-abel}* E

XIV=7.4 References to signals with extended visibility

REFERENCES::=

Name-signal{ D Name-signal}* II|

242 GRAMMAR OF THE SIGNAL LANGUAGE

XIV=7.5 Interface of a model

DEFINITION-OF-INTERFACE ::=
INTERFACE

INTERFACE ::=
[PARAMETERS] INPUTS OUTPUTS EXTERNAL-GRAPH

PARAMETERS ::=

[{ FORMAL-PARAMETER } *]

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=
[{ S-DECLARATION } +]

OUTPUTS ::=
m[{ S-DECLARATION } +]

XIV=7.6 Graph of a model

EXTERNAL-GRAPH ::=
[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES]

PROCESS-ATTRIBUTE ::=

safe
deterministic
unsafe

SPECIFICATION-OF-PROPERTIES ::=

GENERAL-PROCESS

XIV=7. MODELS OF PROCESSES 243

Dependences

ELEMENTARY-PROCESS ::=
DEPENDENCES
DEPENDENCES::=
SIGNALS { SIGNALS 3

| SIGNALS SIGNALS S-EXPR

SIGNALS ::=
ELEMENTARY-SIGNAL
| ELEMENTARY-SIGNAL { I:lELEMENTARY-SIGNAL} *
ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label

XIV=7.7 Directives

DIRECTIVES ::=
[pregmes PRAGHA) * [en]ragras|
PRAGMA .=

Name-pragma[PRAGMA-OBJECT { I:lPRAGMA-OBJECT} *]
[Pragma-statement]

PRAGMA-OBJECT ::=

Label
| Name

Pragma-statement::=

String-cst

XIV=7.8 Models as types and parameters

244 GRAMMAR OF THE SIGNAL LANGUAGE

DEFINITION-OF-TYPE ::=

process Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]
action NameJmodel-typE DEFINITION-OF-INTERFACE [DIRECTIVES]
procedure‘ Name-model-typgl DEFINITION-OF-INTERFACE [DIRECTIVES]
node Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES |
function Namemodel—typa DEFINITION-OF-INTERFACE [DIRECTIVES]
@ Name-model-typE DEFINITION-OF-INTERFACE [DIRECTIVES]

DEFINITION-OF-INTERFACE ::=

Name-mnodel-type

FORMAL-PARAMETER ::=
FORMAL-MODEL

FORMAL-MODEL ::=

m Name-mnodel-typeName-nodel

action| Name-model-typdName-model

procedure‘ Name-model-typeName-model

node| Name-model-typedName-model
function | Name+nodel-typeName+nodel

automaton| Name-+model-typeName-model

S-EXPR-PARAMETER ::=

Name-nodel

XIV-8 Modules

XIV=8.1 Declaration and use of modules

MODULE ::=

Namemodulﬁ
[DIRECTIVES] { DECLARATION} E

XIV-8. MODULES 245

DECLARATION-OF-CONSTANTS ::=
‘ private H constant‘ SIGNAL-TYPE
DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} * E

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} * m

PROCESS::=
‘ private H process{ NameJmodeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] [|

ACTION ::=

‘ private H action ‘ NamemodeE
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] [| |

NODE ::=

NamemodeE

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E|

FUNCTION ::=
‘ private H function ‘ NamemodeE
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] [|

EXTERNAL-NOTATION ::=

[String-cst]

DECLARATION ::=
IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=
IMPORTED-OBJECTS { DIMPORTED-OBJECTS}* E

IMPORTED-OBJECTS ::=

Name-module

246 GRAMMAR OF THE SIGNAL LANGUAGE

List of figures

B-lIl.1
B-IIl.2

B-IV.1
B-IV.2

C-vi1

f11Twith f1(0) =0, f1(1) =3, f1(2) =4, f1(3) =5... 36
Two flows of the compositiondf1andpP2 44
Formal meaning of the dependence statement. 62
Micro automatonofe: =: y$init v o 67
Order and conversions on scalar and external types 82

List of tables

C-Vi.1
C-VI.2
C-VI.3
C-Vi4
C-VI5
C-VI.6

Syntactic forms of an invocationofmodel. 99
INSTANCE-OF-PROCESSE? ittt e e 103
Expressionsonsignals. e 105
Expressionsonsignals. e 106
Types of the constanf82” 108

S-EXPR-DYNAMIC E*!

Index

Lexis

Alphabetic-type,71, 219
def,71, 219
begin-name-chag5s, 217
def,25, 217
Boolean-cst]107, 226
def,25, 217
Character27, 218 219
def,21, 215
character21, 215
def,21, 215
Character-cst107, 226
def,27,218
Character-cstCharactet?, 218
def,27,218
character-spec-chazy, 218
def,27,218
CharacterCode21, 215
def,24, 216
Comment
def,27,219
comment-spec-cha??, 219
def,27,219
CommentCharacte2?7, 219
def,27,219
Complex-type,/1, 219
def,74, 220
delimitor, 21, 215
def,23, 216

Double-precision-exponerig, 218

def,26, 218
Double-precision-real-cs6

def,26, 218
ENUM-CST, 107
escape-code24, 216

def,24, 217
External-type,71, 219

def, 75, 220
hexadecimal-chag4, 217

def,24, 217

HexadecimalCode24, 216
def,24, 217
Integer-cst26, 107, 218, 226
def,26, 217
Integer-type,71, 219
def,72, 220
Label,107, 138 193 195, 226, 233 243
def,138 233
letter-char21, 215
def,21, 215
long-separator23, 27, 216, 218
def,23, 216
lower-case-letter-cha2l, 215
def,22, 215
mark, 21, 215
def,23, 216
Name,25, 75-77, 81, 86-89, 94-96, 98, 100,
101, 103 107, 136, 138 140, 154, 155
168 175, 185 188 189 195 199-204,
220-226, 232235, 238-241, 243-245
def,25, 217
name-char2l, 25, 215, 217
def,21, 215
numeral-char2l, 24-26, 215, 217
def,22, 216
Numeric-type,71, 219
def,71, 219
octal-char24, 216
def,24, 217
OctalCode24, 216
def,24, 216
Operator-namel 99
def, 199
Operator-symbol199
other-charactei21, 215
other-letter-char?21, 215
def,22, 216
Pragma-statement95, 243
def,195, 243
prefix-mark

252 INDEX
def,25, 217 225,234, 235,237, 238 242
Real-cst 107, 226), 23, 76, 79, 95, 98, 100, 101, 103, 104, 147,
def,26, 218 153 155 167, 168 190, 216, 221, 224,
Real-type,71, 219 225,234, 235, 237, 238 242
def, 73,220 ., 23,26, 154, 155, 216, 218 234, 235
Relative-cst26, 218 .., 161, 236
def,26, 218 .J, 140, 233
Scalar-typey1, 103 219 225 /, 136, 232
def,71, 219 5, 23,140,164, 175 216, 233 237,239
separator?2l, 215 .5, 138 233
def,23, 216 1:=, 96, 98, 155, 167, 224, 235, 237
signalkw :=, 94, 95, 155 167, 224, 235, 237
def,28 :=:, 125 229

Simple-precision-exponers, 218
def,26, 218

Simple-precision-real-csp6
def,26, 218

String-cst, 107, 195, 204, 226, 243, 245
def,27, 218

String-cstCharacteg?7, 218
def,27, 218

string-spec-chai7, 218
def,27, 218

Synchronization-type/71, 219
def,72, 220

Type-conversion103, 225
def,103 225

upper-case-letter-cha2], 215
def,21, 215

Symbol

x, 23, 130, 216, 231

x%x, 130, 231

x., 176, 240

+, 23, 26,130, 131, 216, 218, 231

—,23,26,73,130,131, 216,218 231

——>,193 243

/, 23,130,216, 231

/ =,128 230

<, 23,128 216, 230

<<=,128 230

<=,128 230

=, 23,128 216, 230

==,128 230

>, 23,128 216, 230

>=,128 230

(, 23,76, 79, 95, 98, 100, 101, 103 104, 147,
153 155 167, 168, 190, 216, 221, 224,

. 23, 87-91, 185, 188, 189, 199, 203, 204,
216, 222, 223, 240, 241, 244, 245

=, 87, 88, 185, 199, 200, 203, 204, 222, 240,
241, 244, 245

2,23, 107, 169, 190, 216, 226, 238, 242

[, 23, 78, 159 162, 163 167, 169, 174, 175,
216, 221, 236-239

[, 140, 233

[/:, 121, 229

[, 121, 229

#,23, 77,216,221

$,23, 110, 113 216, 226, 227

%, 23, 27, 216, 219

\, 24, 25, 216, 217

\X, 24, 217

{, 23,100, 140, 175, 190, 193 195, 216, 224,
233, 239, 242, 243

}, 23, 100, 140, 190, 193 195, 216, 224, 233
242, 243

], 23, 78, 121, 159, 162, 163 167, 169, 174,
175, 216, 221, 229, 236-239

\\, 162, 237

“x, 122, 229

~t, 122,229

~ 122,229

0, 122, 229

~<, 124,229

~=, 124,229

~>, 124,229

~, 23,120, 216, 228

4, 124, 229

, 23,76, 78, 81, 87-91, 95, 98, 100, 101, 136,
140, 153 155, 159, 162, 163 167, 168
174, 175, 188 189, 193 195, 203 204,
216, 221-225, 232-239, 241, 243, 245

INDEX

253

@, 23,131, 216, 231
|+, 160, 236
D, 26, 218
d, 26,218
" 23,27,216,218
E, 26,218
e, 26,218
1, 23,190, 216, 242
>>,168 238
<<, 168 238
(], 135, 144, 232, 233
|, 23,135 144, 216, 232, 233
|*, 160, 236
), 135, 144, 232 233
', 23,27, 216,218
_,21,215
Syntax
ACTION, 185, 240
def,185 204, 240, 245
ARRAY-ELEMENT, 157, 235
def,162 236
ARRAY-ENUMERATION, 157, 235
def,159 236
ARRAY-INDEX, 168 238
def,168 238
ARRAY-PRODUCT,157, 235
def,176, 240
ARRAY-RECOVERY,162 236
def,162 237
ARRAY-RESTRUCTURATION,157, 235
def,164, 237
ARRAY-TYPE, 71, 219
def, 78,221
ASSERTION-PROCESS3.35 232
def,144, 233
AUTOMATON, 185
def,185 241
BODY, 185, 199, 204, 240, 241, 245
def,185 241
CASE, 140, 233
def,140, 233
CHOICE-PROCESSL35, 232
def,140, 233
CLOCK-EXTRACTION,121, 228
def,121, 229
COMPONENT,155, 167, 235, 238
def,155 235
COMPOSITION,135 232

def,135 232
CONCATENATION, 157, 235
def,160, 236
CONFINED-PROCESSL35, 232
def,137, 232
CONSTANT, 107, 226
def,107, 226
CONSTRAINT,120, 144, 228, 233
def,124, 125 229
CONVERSION,103 225
def,103 225
COUNTER,114 227
def,118 228
DECLARATION, 137, 203 232 244
def,187, 204, 241, 245
DECLARATION-BLOCK, 137, 232
def,137, 232
DECLARATION-OF-CONSTANTS, 187,
241
def,88, 203 222 245
DECLARATION-OF-LABELS,187, 241
def,188 241
DECLARATION-OF-SHARED-
VARIABLES, 187, 241
def,90, 223
DECLARATION-OF-STATE-VARIABLES,
187,241
def,91, 223
DECLARATION-OF-TYPES,187, 190, 241,
242
def,87, 203 222, 245
DEFINED-ELEMENT, 167, 168, 193 237,
238,243
def,167, 238
DEFINITION-OF-CONSTANTS8S, 203, 222,
245
def,88, 222
DEFINITION-OF-ELEMENT,175, 239
def,175 239
DEFINITION-OF-INTERFACE, 185 199,
200, 204, 240, 241, 244 245
def,190, 201, 242 244
DEFINITION-OF-SEQUENCE89-91, 223
def,89, 223
DEFINITION-OF-SIGNALS,94, 223
def,94-96, 98, 155, 167, 224, 235, 237
DEFINITION-OF-TYPE,87, 203, 222, 245
def,87, 200, 222, 244

254

INDEX

DENOTATION-OF-COMPLEX,130, 231
def,131, 231
DEPENDENCES
def,193 243
DESCRIPTION-OF-CONSTANTSS, 222
def,88, 222
DESCRIPTION-OF-MODEL185, 241
def,185 241
DESCRIPTION-OF-TYPES7, 222
def,87, 222
DIRECTIVES, 185, 199, 200 203, 204, 240,
241, 244, 245
def,195 243
ELEMENTARY-PROCESS] 35, 231
def,94, 99, 120, 193 223 224, 228 243
ELEMENTARY-SIGNAL, 193 243
def,193 243
ELSE-CASE 140 233
def,140, 233
ENUM-CST,226
def, 77,221
ENUMERATED-TYPE,71, 219
def,76, 221
ENUMERATION-OF-VALUES, 140, 233
def,140, 233
EXPANSION, 100, 101, 224, 225
def,100, 224
EXTERNAL-GRAPH,190, 242
def,191, 242
EXTERNAL-NOTATION, 87, 88, 185 222,
241
def,204, 245
EXTRACTION, 114, 227
def,115 227
FORMAL-MODEL
def,202, 244
FORMAL-PARAMETER,190, 242
def,190, 201, 242 244
FUNCTION, 185, 240
def,185 204, 240, 245
GENERAL-PROCESS135-137, 140, 185
191, 231233 241, 242
def,135 168, 232, 238
GENERALIZED-DELAY, 109, 226
def,113 227
HIDING, 135, 136, 231, 232
def,136, 232
IMPORT-OF-MODULES 204, 245

def,204, 245
IMPORTED-OBJECTS204, 245
def,204, 245
INDEX, 157, 235
def,161, 236
INPUTS,190 242
def,190, 242
INSTANCE-OF-PROCESS9, 102, 224, 225
def,100, 101, 147, 224, 225, 234
INTERFACE, 190, 242
def,190, 242
ITERATION, 174, 239
def,175 239
ITERATION-INDEX, 168, 238
def,168 238
ITERATION-INIT, 168, 238
def,169, 238
ITERATION-OF-PROCESSEJ,68, 238
def,168 238
ITERATIVE-ENUMERATION, 157, 235
def,160, 174, 236, 239
LABELLED-PROCESS135, 231
def,138 233
MEMORIZATION, 114, 227
def,116, 227
MERGING, 114, 227
def,114, 227
MODEL, 187, 241
def,185 198 240
MODEL-REFERENCE]0], 225
def,101, 225
MODULE
def,203 244
MULTI-INDEX, 157, 235
def,168 238
NAMED-FIELDS, 79, 221
def, 79, 221
NODE, 185, 240
def,185 204, 240, 245
OPERATOR198
def,199
OUTPUTS,190 242
def,190, 242
P-EXPR,135, 138 168, 169, 232, 233 238
def,135 231
PARAMETERS,190, 242
def,190, 242
PARTIAL-DEFINITION, 174, 239

INDEX 255

def,174, 239 126, 128 130-132, 140, 147, 153-155

PARTIAL-ITERATION, 175, 239 159-164, 167-169, 174-176, 193 221-
def,175 239 231, 233-240, 243

PRAGMA, 195, 243 SEQUENTIAL-DEFINITION, 157, 235
def,195 243 def,174, 239

PRAGMA-OBJECTJ195 243 SIGNAL-CLOCK, 120, 228
def,195 243 def,120, 228

PROCEDURE]185 SIGNAL-TYPE, 78, 87-91, 100, 203 221-
def,185 240 224, 245

PROCESS]85 240 def,71, 86, 219, 222

def,185 204, 240, 245
PROCESS-ATTRIBUTE]9], 242

def,191, 242
PRODUCTION,101, 225

def,101, 225
REFERENCE-SEQUENCHS57, 235

def,169, 238
REFERENCES]87, 241

def,189, 241
RELATION, 127, 230

def,128 230
S-DECLARATION, 79, 187, 190, 221, 241,

242

def,89, 223
S-EXPR

def,102-104, 225
S-EXPR-PARAMETERL00Q, 224

def,100, 202 224, 244
S-EXPRARITHMETIC

def,130, 131, 231
S-EXPRARRAY

def,157, 235
S-EXPRBOOLEAN

def,126, 127, 230
S-EXPRCLOCK

def,120-122, 228, 229
S-EXPRCONDITION

def,132 231
S-EXPRDYNAMIC

def,109, 226
S-EXPRELEMENTARY

def,107, 226
S-EXPRTEMPORAL

def,114, 227
S-EXPRTUPLE

def,153 234
S-EXPR,78, 88, 89, 94-96, 98, 100, 101, 103,

104, 110, 111, 113-118 120-122, 124~

SIGNALS, 193 243
def,193 243
SIMPLE-DELAY, 109, 226
def,110, 226
SPECIFICATION-OF-PROPERTIES, 79,
191, 221, 242
def,191, 242
SUB-ARRAY, 157, 235
def,163 237
TRANSPOSITION157, 235
def,176, 240
TUPLE-ENUMERATION,153 234
def,153 234
TUPLE-FIELD, 153 234
def,154, 234
TUPLE-TYPE,71, 219
def,79, 221
TYPE-INITIAL-VALUE, 87, 222
def,87
VARIABLE, 114, 227
def,117, 228
WINDOW, 109, 226
def,111, 226

Terminal

action, 28, 185, 200, 202, 204, 240, 244, 245
after,28, 118 228

and,28, 126, 230

array,28, 168 238

assert28, 144, 147, 233, 234
automaton185, 200, 202, 241, 244
boolean28, 72, 220

bundle,28, 79, 221

case28, 140 233

cell, 28, 116, 227

char,28, 71, 219

@,28, 74,220

constant28, 88, 203 222 245

256

INDEX

count,28, 118 228

dcomplex,28, 74, 220

default,28, 114, 227

defaultvalue,28, 96, 98, 155, 167, 224, 235,
237

deterministic,28, 191, 242

dreal,28, 73, 220

else,28, 132 140, 231, 233

end, 28, 137, 140, 168, 195 203 232 233
238 243 244

enum,28, 76, 221

event,28, 72, 220

external,28, 204, 245

false,25, 28, 217

from, 28, 118, 228

function, 28, 185, 200, 202, 204, 240, 244, 245

if, 28, 132, 231

in, 28, 140, 175, 233 239

init, 28, 87, 89, 110 111, 113 116, 117, 223,
226-228

integer,28, 72, 220

iterate,28, 168 238

label, 28, 188 241

long, 28, 72, 220

module,28, 203 244

modulo,28, 130, 231

next,28, 174, 239

node,28, 185 200, 202, 204, 240, 244, 245

not, 28, 126, 230

of, 28, 168 238

operator28, 199

or, 28, 126, 230

pragmas28, 195 243

private,28, 203 204, 245

procedure185, 200, 202, 240, 244

process28, 185, 200, 202, 204, 240, 244, 245

real,28, 73, 220

ref, 28, 189, 241

safe,28, 191, 242

shared28, 90, 223

short,28, 72, 220

spec,28, 191, 242

statevar28, 91, 223

step,28, 161, 175, 236, 239

string, 28, 71, 219

struct,28, 79, 221

then,28, 132 231

to, 28, 168, 175, 238,239

tr, 28, 176, 240

true, 25, 28, 217

type, 28, 87, 203 222, 245
unsafe 28, 191, 242
use,28, 204, 245

var, 28,117, 228
when,28, 115,121, 193 227, 229, 243
where,28, 137, 232
window, 28, 111, 226
with, 28, 169, 238

xor, 28, 126, 230

	A INTRODUCTION
	Introduction
	Main features of the language
	Signals
	Events
	Models
	Modules

	Model of sequences
	Static semantics
	Causality
	Explicit definitions

	Subject of the reference
	Form of the presentation

	Lexical units
	Characters
	Sets of characters
	Encodings of characters

	Vocabulary
	Names
	Boolean constants
	Integer Constants
	Real constants
	Character constants
	String constants
	Comments

	Reserved words

	B THE KERNEL LANGUAGE
	Semantic model of traces
	Syntax
	Configurations
	Traces
	Definition
	Partial observation of a trace
	Prefix order on traces
	Product of traces
	Reduced trace

	Flows
	Equivalence of traces
	Partial flow
	Flow-equivalence

	Processes
	Definition
	Partial observation of a process
	Composition of processes
	Order on processes

	Semantics of basic Signal terms
	Declarations
	Monochronous processes
	Static monochronous processes
	Dynamic monochronous processes: the delay

	Polychronous processes
	Sub-signals
	Merging of signals

	Composition of processes
	Restriction

	Composite signals
	Tuples
	Arrays

	Classes of processes
	Iterations of functions
	Endochronous processes
	Deterministic processes
	Reactive processes

	Composition properties
	Asynchronous composition of processes
	Flow-invariance
	Endo-isochrony

	Clock system and implementation relation
	Transformation of programs

	Calculus of synchronizations and dependences
	Clocks
	Clock homomorphism
	Monochronous definitions
	Polychronous definitions
	Hiding
	Composition

	Verification
	Clock calculus
	Monochronous definitions
	Polychronous definitions
	Hiding
	Composition
	Static and dynamic clock calculus

	Context clock
	Dependences
	Formal definition of dependences
	Implicit dependences
	Monochronous definitions
	Polychronous definitions

	Micro automata
	Definition of micro automata
	Construction of basic micro automata

	C THE SIGNALS
	Domains of values of the signals
	Scalar types
	Synchronization types
	Integer types
	Real types
	Complex types
	Character type
	String type

	External types
	Enumerated types
	Array types
	Tuple types
	Structure of the set of types
	Set of types
	Order on types
	Conversions
	Conversions between comparable types
	Conversions toward the domain ``Synchronization-type''
	Conversions toward the domain ``Integer-type''
	Conversions toward the domain ``Real-type''
	Conversions toward the domain ``Complex-type''
	Conversions toward the types character and string
	Conversions of arrays
	Conversions of tuples

	Denotation of types
	Declarations of constant identifiers
	Declarations of sequence identifiers
	Declarations of shared variables
	Declarations of state variables

	Expressions on signals
	Systems of equations on signals
	Elementary equations
	Equation of definition of a signal
	Equation of multiple definition of signals
	Equation of partial definition of a signal
	Equation of partial definition of a state variable
	Equation of partial multiple definition

	Invocation of a model
	Macro-expansion of a model
	Positional macro-expansion of a model
	Call of a model
	Expressions of type conversion

	Nesting of expressions on signals

	Elementary expressions
	Constant expressions
	Occurrence of signal or tuple identifier
	Occurrence of state variable

	Dynamic expressions
	Initialization expression
	Simple delay
	Sliding window
	Generalized delay

	Polychronous expressions
	Merging
	Extraction
	Memorization
	Variable clock signal
	Counters
	Other properties of polychronous expressions

	Constraints and expressions on clocks
	Expressions on clock signals
	Clock of a signal
	Clock extraction
	Empty clock

	Operators of clock lattice
	Relations on clocks

	Identity equations
	Boolean synchronous expressions
	Expressions on Booleans
	Negation
	Operators of Boolean lattice

	Boolean relations

	Synchronous expressions on numeric signals
	Binary expressions on numeric signals
	Unary operators

	Synchronous condition

	Expressions on processes
	Elementary processes
	Composition
	Hiding
	Confining with local declarations
	Labelled processes
	Choice processes
	Assertion processes
	Assertions of clock relations
	Assertions of identity equations
	Assertion on Boolean signal

	D THE COMPOSITE SIGNALS
	Tuples of signals
	Constant expressions
	Enumeration of tuple elements
	Denotation of field
	Destructuration of tuple
	Equation of definition of tuple component

	Spatial processing
	Dimensions of arrays and bounded values
	Constant expressions
	Enumeration
	Concatenation
	Repetition
	Definition of index
	Array element
	Access without recovery
	Access with recovery

	Extraction of sub-array
	Array restructuration
	Generalized indices
	Extended syntax of equations of definition
	Cartesian product
	Iterations of processes
	Sequential definition
	Sequential enumeration
	Operators on matrices
	Transposition
	Matrix products
	Product of matrices
	Matrix--vector product
	Vector--matrix product
	Scalar product

	Extensions of the operators
	Rules of extension
	Examples

	E THE MODULARITY
	Models of processes
	Classes of process models
	Processes
	Actions
	Procedures
	Nodes
	Functions
	Automata

	Local declarations of a process model
	Declarations of labels
	References to signals with extended visibility
	Interface of a model
	Graph of a model
	Specification of properties
	Dependences

	Directives
	Models as types and parameters

	Modules
	Declaration and use of modules

	Intrinsic processes
	Minimal clock
	Affine transformations
	``Left true'' process
	Mathematical functions
	Complex functions
	Input-output functions

	F ANNEX
	Grammar of the SIGNAL language
	Lexical units
	Characters
	Vocabulary

	Domains of values of the signals
	Scalar types
	External types
	Enumerated types
	Array types
	Tuple types
	Denotation of types
	Declarations of constant identifiers
	Declarations of sequence identifiers
	Declarations of shared variables
	Declarations of state variables

	Expressions on signals
	Systems of equations on signals
	Elementary expressions
	Dynamic expressions
	Polychronous expressions
	Constraints and expressions on clocks
	Constraints on signals
	Boolean synchronous expressions
	Synchronous expressions on numeric signals
	Synchronous condition

	Expressions on processes
	Composition
	Hiding
	Confining with local declarations
	Labelled processes
	Choice processes
	Assertion processes

	Tuples of signals
	Enumeration of tuple elements
	Denotation of field
	Equation of definition of tuple component

	Spatial processing
	Enumeration
	Concatenation
	Repetition
	Definition of index
	Array element
	Extraction of sub-array
	Array restructuration
	Extended syntax of equations of definition
	Cartesian product
	Iterations of processes
	Sequential definition
	Sequential enumeration
	Operators on matrices

	Models of processes
	Classes of process models
	Local declarations of a process model
	Declarations of labels
	References to signals with extended visibility
	Interface of a model
	Graph of a model
	Directives
	Models as types and parameters

	Modules
	Declaration and use of modules

	List of figures
	List of tables
	Index

