
AADL to Signal/SSME Transformation

Yue Ma, ESPRESSO Team, INRIA
Dec 05, 2012

Foreword

The purpose of this document is to provide a global view of our implementation of transformation
from AADLv2 [4, 5] to SSME [8] / Signal [6, 7]. It gives a list of components that we have imple-
mented, and also some technical details of the implementation. The implementation Java code has been
uploaded to Polychrony gforge [1]. A validated example, SDSCS (Simplified Doors and Slides Con-
trol System [12, 11]), has been applied to this implementation. This example contains a subset of AADL
components: system, process, thread, data, device, bus, processor, data port, port connection and some
properties. These components have been (partly) represented in Signal.

version date notes
0.1 13/07/2011 components modeling in Signal
0.2 22/07/2011 process is passed as parameter in the processor Signal process
0.3 29/07/2011 the SDSCS example is referenced as an example
0.4 08/08/2011 bundle is used to simplify the Signal code
0.5 18/08/2011 io signals of process instance are omitted to simplify the Signal code
0.6 18/10/2011 event (event data) port modeling in Signal

event (event data) port connection modeling in Signal
0.7 26/10/2011 port group and port group connection modeling in Signal program architecture
0.8 15/12/2011 a brief introduction of behavior annex and the behavior modeling in Signal

update the modeling of event (event data) port
0.9 16/01/2012 shared data component modeling in Signal
1.0 03/02/2012 bundle for shared data
1.1 28/06/2012 subprogram and subprogram call, requires subprogram, subprogram remote call
1.2 03/10/2012 integration with BA, use .aadl as source model instead of .aaxl model

connect to schedule generator
1.3 29/10/2012 test cases
1.4 05/12/2012 refine and update port modeling

Table 1. Document history

1

Contents

1 Introduction 4
1.1 Global architecture . 4
1.2 Functional architecture . 5
1.3 Meta architecture . 5

2 Signal library 7

3 ASME2SSME Transformation 8
3.1 A global view of the implementation . 8

3.1.1 The implemented components . 8
3.1.2 Transformation principles . 10

3.2 Data . 13
3.3 Subprogram and subprogram call . 18
3.4 Subprogram group . 25
3.5 Thread . 25
3.6 Thread group . 30
3.7 Process . 30
3.8 Processor . 34
3.9 Virtual processor . 36
3.10 Memory . 36
3.11 Bus . 37
3.12 Virtual bus . 37
3.13 Device . 38
3.14 System . 38
3.15 Feature . 42

3.15.1 Port . 42
3.15.2 Parameter . 46
3.15.3 Feature group . 47

3.16 Connection . 48
3.16.1 Port connection . 49
3.16.2 Parameter connection . 51
3.16.3 Access connection . 51
3.16.4 Feature group connection (port group connection) 51

3.17 Flow . 52
3.18 Mode . 53
3.19 Property . 54

4 Behavior Annex transformation 55
4.1 Transition system transformation . 59
4.2 Expression transformation . 59
4.3 Action transformation . 60
4.4 Synchronization protocols transformation . 60

5 Implementation technical notes 61
5.1 Program architecture . 61
5.2 Use of bundles . 62
5.3 Use of implicit signals . 63
5.4 Addition of comments . 63
5.5 Java documentation . 64
5.6 Use of .aadl text file . 64
5.7 Connect to BA plug-in . 64
5.8 Connect to schedule generator . 64

References 65

A Test cases 66
A.1 ProducerConsumer . 67
A.2 APOTA . 67
A.3 Subprogram case study . 67
A.4 Doors management . 69

1 INTRODUCTION
1 Introduction

Architecture Analysis and Design Language (AADL) is gradually adopted in the design of safety-
critical systems. It is based on the component-based paradigm that enables reusability and composi-
tionality. However, its formal verification and validation is always a challenge. In the framework of
European ITEA2 OPEES project [2], we propose to adopt a polychronous model of computation of the
Signal language, to bridge between AADL and its formal temporal analysis.

In our approach, concretely, the AADL components specified with temporal properties are first mod-
eled in Polychrony. Non-functional timing properties of a system are then used for formal timing analysis
based on both logical clock calculus and affine clock relation analysis. Considering durability and inter-
operability, we have developed an AADL2SSME tool chain, with the experimentation on case studies,
to support OPEES processes related to tools maturation, verification and qualification. Our tool chain is
integrated into the framework of Polarsys, an OPEES industry working group.

A rough description of AADL and a brief description of its modeling in Polychrony [10] have been
given in the ESPRESSO AADL Digest Report [9]. In the present document, we mainly focus on the
technical implementation details.

1.1 Global architecture

The global architecture, in the context of Polychrony, is represented in Figure 1.

SSME
model

AADL to SSME
Platform

java

AADL
model

SIGNAL Toolbox
Compilation

Code distribution
Sigali

C,C++

SIGNAL
process

ModelingModeling

GCC

Signal
Library

for AADL

C
communication

library

Syndex

BinariesTest cases VCD files

Analysis
Verification

Analysis
Verification

Scheduling
Distribution

Scheduling
Distribution

SimulationSimulation

TransformationTransformation

Figure 1. Global architecture

4

1.2 Functional architecture 1 INTRODUCTION
1.2 Functional architecture

The functional architecture is described in Figure 2.

ASME models
v2.0

Java MoL API

Ja
v
a
 C

o
L
 A

P
I

SSME models
v4.0

Java MoL API

Ja
v
a
 C

o
L
 A

P
I

Java
Transformation

Figure 2. Functional architecture

� MoL stands for Model (low) Level. The corresponding Java Mol API is generated by Eclipse as
a set of classes providing access to attributes.

� CoL stands for Concept (high) Level. The corresponding Java CoL API is designed to make the
transformation independent of some specific meta-model version.

� SSME: Signal Syntax Model under Eclipse is a full syntax oriented meta-model of Signal. The
SSME Java CoL API is implemented as a partial implementation of the API specified by the
corresponding API in Signal tools, mostly the generative methods (signalTreeAPI).

� ASME: AADL Syntax Model under Eclipse is a full syntax oriented meta-model of AADL
provided by OSATE [3]. The Java Mol API for AADL is developped by OSATE. The Java CoL
API for ASME is built in parallel with the transformation such that all model oriented accesses
are rejected in this API, and this API is designed following the principles of the Java CoL API for
SSME (mostly the “get” methods).

1.3 Meta architecture

The meta architecture is described in Figure 3.

ASME2SSME

ASME CoL API SSME CoL API

ASME MoL API SSME CoL API

AADL Syntax
v2.0

AADL Metamodel
v2.0

Signal Syntax
v4

Signal Metamodel
v4

Figure 3. Meta architecture

1. AADL2SSME is the Java hand written translator. It uses high level APIs to models. This program
should only be sensible to bug corrections, Java deprecation, major AADL or Signal language
evolution.

5

1.3 Meta architecture 1 INTRODUCTION
2. XX CoL/MoL API are the Java high/low level APIs to models (high level APIs are hand written).

They are sensible to bug corrections, Java deprecation, major AADL or Signal language evolution.
They are also sensible to pure syntactic changes in the interfaced language, and to changes in the
model representation.

3. The ASME meta-model and ASME MoL API are provided by OSATE. An AADL Col API is
developed.

6

2 SIGNAL LIBRARY
2 Signal library

We define a Signal library containing the Signal process models representing some AADL concepts.
The following modules are developed and tested. A short comment is given for the processes in the

Signal program:

1. ASME2SSME LIB: uses the following defined modules, so that in the transformation, we can
have a simple use ASME2SSME LIB expression to use all the defined libraries.

module ASME2SSME_LIB =
use AADL_TYPE;
use AADL_PROPERTY;
use AADL_CONNECTION;
use AADL_DATAPORT;
...

end;

2. SIGNALLIB: two memory processes: AT () and Typed AT () (the type is passed as a parameter).

3. AADL TYPE: some predefined types and constants, e.g.:

type Time_Units = enum (ps, ns, us, ms, sec, min, hr);
type Supported_Dispatch_Protocols = enum

(Periodic, Sporadic, Aperiodic, Timed, Hybrid, Background);

4. AADL PROPERTY: predefined property processes. The body of these processes is empty (they
are considered as external processes).

5. AADL CONNECTION: defines a Connection() process that represents the connection behavior
(connection between two processes that are bound to different processors).

6. AADL DATAPORT: defines InDataPort behavior() andOutDataPort behavior() processes,
modeling the in and out data port behaviors.

7. AADL EVENTPORT: InEventPort behavior(), OutEventPort behavior().

8. AADL EVENTDATAPORT: InEventDataPort behavior(),OutEventDataPort behavior().

9. fifoLib: defines two types of fifo (with or without reset): fifo reset(), fifo().

7

3 ASME2SSME TRANSFORMATION
3 ASME2SSME Transformation

The structural translation of AADL (ASME) systems to SSME has been (partly) implemented, ac-
cording to the functional architecture and using the Signal library. In this section, we give a global view
of the components and features that have currently been implemented in our ASME2SSME transforma-
tion. The implementation details of each component (type and implementation) will be given in
the following subsections.

3.1 A global view of the implementation

Fig 4 shows the complete tool chain for modeling, timing analysis and verification of AADL in the
polychronous MoC. The AADL model, which conforms to the AADL metamodel, is captured textually
as AADL textual code in the OSATE toolkit. The timing properties provide detailed timing specifica-
tions related to the AADL components. A model transformation ASME2SSME tool allows to perform
analysis on the ASME models (AADL Syntax Model under Eclipse) and generate Signal models in
SSME (Signal Syntax Model under Eclipse) models. This tool was implemented in Java, as an Eclipse
plugin, and takes as input an AADL model (.aadl2) and generates an SSME model (.ssme), which can
be transformed to Signal text within Polychrony.

Figure 4. AADL to Signal transformation tool chain

An AADL2SIGNAL library provides common Signal processes reducing significantly the transfor-
mation cost. The timing properties represented as Signal clocks are calculated and analyzed in the
compilation of Signal programs. After that, the executable code is generated for simulation. Associated
tools, such as Sigali or SynDEX, can be used for further verification and validation.

3.1.1 The implemented components

Note: the implementation status of each component (or feature) is marked as:

� “fully” (for totally implemented),

8

3.1 A global view of the implementation 3 ASME2SSME TRANSFORMATION
� “partly” (for partly implemented),

� “expected” (for not implemented yet but to be done),

� “open” (for not decided),

� “none” (for not taken into account).

The date of last modification is given below.
The status of ASME2SSME transformation of AADL components are shown in Table 2. For the

reason of recursion (one component may be a sub-component of another component), most of the com-
ponents are marked as “partly”.

composite component System partly 2011-07-22

software component

Process partly 2011-07-22
Thread partly 2011-07-22
Thread group none
Subprogram partly 2012-03-28
Subprogram group none
Data partly 2012-02-03

hardware component

Processor partly 2012-02-03
Virtual processor none
Memory partly 2012-02-03
Bus partly 2011-07-22
Virtual bus none
Device partly 2011-07-22

feature

port partly 2012-02-03
parameter partly 2011-07-22
subprogram access partly 2012-03-29
data access partly 2012-02-02
bus access open
feature group partly 2012-02-03

connection

port connection partly 2011-07-22
parameter connection partly 2011-07-22
access connection none
feature group connection partly 2012-02-03

others
flow none
mode expected
property partly 2012-03-28

Table 2. A global view of ASME2SSME transformation status

Since there are a number of properties predefined in the AADL standard, and also the users can define
their own properties, we will not list all the properties here. We will give the implemented properties in
the corresponding subsection for each considered component.

9

3.1 A global view of the implementation 3 ASME2SSME TRANSFORMATION
3.1.2 Transformation principles

The ASME2SSME transformation is recursive. (The notation T () is used to represent the translation.)
A package k 2 Pkg = < idk; p Pkg; v Pkg; P > which represents the root of an AADL specifica-

tion, is identified by a name id k, and may consist of a public package content p Pkg, a private package
content v Pkg and properties P . (The other possible AADL root, a property set, is not considered in this
document.) It is transformed into one SIGNAL module, which is a root of a SIGNAL program allowing
to describe an application in a modular way, with the help of predefined AADL2SIGNAL libraries.

T (k) ::= module idk = (T (p Pkg)j T (v Pkg)j T (P)j)

The translated SIGNAL module contains the processes that are translated from the AADL components
by the following recursive translation rules.

1. A public package content p Pkg =< c Pkg > declares a package content c Pkg that is visible
outside the package. A private package content v Pkg =< c Pkg > declares a package content
c Pkg that is visible only within the package. In the current implementation, they are translated
the same as the declared package content c Pkg:

T (p Pkg) ::= (T (c Pkg))

T (v Pkg) ::= (T (c Pkg))

2. A package content c Pkg =< TX;X > is composed of component types TX and component
implementations X . In our transformation, we only translate the component implementations X .
The corresponding component type is referenced during the transformation of component imple-
mentation, but not translated directly. A package content c Pkg is represented by a composition
of SIGNAL processes that are translated from the component implementations.

T (c Pkg) ::= (T (x1)j T (x2)j : : :)

where 8xi 2 X; apply the transformation rule T (xi) described below

3. Generally, a AADL component implementation x 2 X is a tuple < idx; F; Y; Cal; C; P;M >,
(the features F of its type is considered as one section of component implementation, and the
flows and modes are not considered yet in our transformation. A component may not include
certain sections depending on the component category.), where:

- idx is the identifier of the component implementation,

- F is the features (mainly the ports) of the corresponding component type that define a func-
tional interface,

10

3.1 A global view of the implementation 3 ASME2SSME TRANSFORMATION
- Y is the subcomponents of x, where 8yi 2 Y is a subcomponent, yi =< idyi ; y

0

i >, which
is composed of an identifier idyi and its component classifier y0

i 2 X which is a component
implementation (in our current version),

- Cal is the subprogram call sequences,

- C = F � F is the connections (mainly the port connections in the cuurent implementation),
which is an explicit relation between features (ports) that enables the directional exchange of
data or event among its features (ports) and subcomponents,

- P is the set of properties,

- M is a transition system that provides the functional behavior.

A SIGNAL process (idx TT where TT is a category of AADL component, e.g., thProducer Thread
for thread thProducer) corresponding to an AADL component implementation x composed of Sig-
nal subprocesses:.

T (x) ::= process idx TT = (T (F))

(jT (Y) j T (Cal) j T (C) j T (P) j T (M)j)

where TT = enumeration fsystem, process, thread, subprogram,

processor, device, memory, device, busg

An example of Signal process that represents the Door.impl subsystem of the SDSCS system is
given below (for space limits, only part of the code is shown):

process Door_imp_System = (! DataA closed1;)
(| Door_imp_System_behavior()%system behavior sub process %
| Door_imp_System_property()%system property sub process %
| L_4 := ClosedSensor_imp_Device{}()
| closed1 := L_4
|)
where

DataA L_4;
process Door_imp_System_behavior =()%Door_imp_System_behavior%;
process Door_imp_System_property =()%Door_imp_System_property%;
process ClosedSensor_imp_Device = (! DataA closed;) (| ...|);

end %Door_imp_System%;

4. The interface of process idx TT contains the input/output signals translated from the features
(ports) F = < fi1; fi2; : : : ; fo1; fo2; � � � > provided by the component type, where an in port
fim 2 F is modeled as an input signal, and an out port fon 2 F is modeled as an output signal,
(Some additional control signals may also be added depends on the component category, e.g.,
Dispatch and Deadline for a thread.):

11

3.1 A global view of the implementation 3 ASME2SSME TRANSFORMATION

T (F) ::= ? T (fi1); T (fi2); : : : ;

! T (fo1); T (fo2); : : : ;

where 8fim 2 F (resp: fon 2 F); apply the transformation rule

T (fim)(resp: T (fon)) in Section 3.15

5. The body is composed of SIGNAL processes that represent:

- subcomponents Y :

T (Y) ::= (jidy1 :: T (y0

1
) j idy2 :: T (y0

2
) j : : : j)

where 8y0

i 2 Y; apply the recursive translation rule T (y0

i)

- subprogram call sequences Cal:

T (Cal) ::= (jT (cal1) j T (cal2) j : : : j)

8cali 2 Cal; apply the translation rule T (cali)

for subprogram call sequence

- connections C = F � F :

T (C) ::= (jT (c1) j T (c2) j : : : j)

8ci 2 C; apply the translation rule T (ci) in Section 3.16

- associated properties P :

T (P) ::= process idx TT property = ()

(jT (p1) j T (p2) j : : : j)

8pi 2 P; T (pi) ::= process pi property = ()()

Each property is represented as a Signal process predefined in the library (only the tim-
ing properties are represented in the current implementation). For example, the property of
Input T ime is implemented as a Signal process, where the actual input time is to be verified
whether it satisfies the timing constraints by providing external C code (to be implemented).

12

3.2 Data 3 ASME2SSME TRANSFORMATION
- transition system M . We define a transition system M to be a tuple < S 0; T 0; s0; C

0; A >,
where S 0 is a set of states, T 0 � S 0 � C 0 � S 0 � A is the set of transitions between states
S 0, triggered by the condition C 0 with functional behavior A, and s0 an initial state (the
transformation details of transition system is to be presented in Section 4.):

T (M) ::= process x TT behavior = ()

(jT (S 0 � C 0 � S 0 � A)j)

We have given the general principles of the transformation in SIGNAL. Certain component may have
some specific transformation. The interpretation details of each component are presented in sections
below.

3.2 Data

A data implementation component, noted x 2 D, is a tuple < idx; P; Y > (the features and connec-
tions are not considered yet) where:

- idx is the identifier of the data implementation,

- P is the set of properties,

- Y is the subcomponents of x, where 8yi =< idyi ; y
0

i >2 Y is a subcomponent, which is composed
of an identifier idyi and its classifier y0

i 2 D[Spwhich is a data implementationD or a subprogram
implementation Sp.

Two cases of context are considered:

� Case 1: a data component type represents a data type in the source text.

� Case 2: a data subcomponent (not declared in subprograms) represents (shared) static data in the
source text.

Case1: data x represents a type

� If x is a predeclared type in Signal, e.g., integer, boolean, the Signal predefined type is used
directly:

T (x) ::= idx

where idx = enumeration finteger, boolean, string, ...g

13

3.2 Data 3 ASME2SSME TRANSFORMATION
� If x is not predeclared and no subcomponents is contained, a new type declaration is created:

T (x) ::= type idx = external;

� If x is not predeclared and x contains data subcomponents, a struct type (— or a bundle type for
more precisly since they are not synchronized —) declaration is created:

T (x) ::= type idx = struct (T (y1); T (y2); : : :)

where 8yi =< idyi ; y
0

i >2 Y ^ y0

i 2 D; T (yi) ::= T (y0

i) idyi

The data implementation status in Signal are given in Table 3.

data type features
feature group none
subprogram access expected
subprogram group access none

data implementation
subcomponents

data partly 2012-02-20
subprogram expected

connection expected

predefined properties

Type Source Name expected
Source Name expected
Source Text expected
Source Language expected
Source Data Size expected
Allowed Memory Binding Class expected
Allowed Memory Binding expected
Actual Memory Binding expected
Base Address expected
Source Code Size expected
Access Right expected
Concurrency Control Protocol expected

Table 3. The data implementation status

For instance, we have two data types, DataA and DataB.imp, in the SDSCS example:

data DataA
end DataA;

data DataB
end DataB;

data implementation DataB.imp
subcomponents

14

3.2 Data 3 ASME2SSME TRANSFORMATION
x: data integer;
y: data DataA;

end DataB.imp;

They are represented as follows in Signal:

type DataA = external;
type DataB = external;
type DataB_imp = struct (integer x; DataA y;);

Case2: data x represents static data shared by the components Data subcomponent (of a process
or a system) represents shared resources . (Data subcomponent declared in a subprogram or a thread
represents a local variable.)

The status of implementation of data subcomponent and data access are given in Table 4.

data subcomponent of
process thread system thread group subprogram data
partly partly none none none partly

2011-12-15 2011-12-15 2012-02-03

Table 4. Data subcomponent

Components can have shared access to data subcomponents. A requires data access declaration indi-
cates that a component requires access to a component declared external to the component. A provides
data access declaration indicates that a subcomponent provides access to a data component contained in
the component. Each required reference to shared data may have its own Access Right property value
(read write by default).

1. Case 2.1: data subcomponent of a process, or a system

Sys1

P1 P2

T1

T2

Data DD

Requires data access DD

Figure 5. AADL requires data access

In Figure 5, data DD is a subcomponent of system Sys1, and two processes P1 and P2 requires
data access of DD.

In Figure 6, Data DD is made accessible outside process P1 through a provides data access, and
it is accessed by process P2 (thread T1 and T2) as expressed by requires data access.

Implementation in Signal:

15

3.2 Data 3 ASME2SSME TRANSFORMATION
Sys1

P1 P2

T1

T2
Data DD

Provides data access DD

Requires data access DD

Figure 6. AADL data access

� The shared data is represented as a Signal process fifo reset() (Figure 7). (fifo reset() is
declared in the library fifoLib.)
(Queue r; Queue cnt) := fifofinteger; 3; 0g (Queue w; Queue reset)

A Signal process call is made in the body of its upper level component (system Sys1 in the
first example, and process p1 in second example). The fifo size, type and initial values are
passed as parameters.

pStart

pStop

PrProdCons_..._Process_property{}thProducer_..._Thread{}

thProducer_..._Thread_behavior{}

Queue_w ::= 3 when e1 %eq4%
Queue_reset ::= when e2

PrProdCons_..._Process_behavior{}

thProdTimer_..._Thread{}

thConsTimer_..._Thread{}

thProducer_..._Thread_property{}

thConsumer_..._Thread{}

thConsumer_..._Thread_behavior{}

z := Queue_r when e3 %eq5%

thConsumer_..._Thread_property{}

(Queue_r, Queue_cnt) := fifo_rest
{integer, 3, 0}(Queue_w, Queue_rest) %eq1%
Queue_w ^= e1 ^+ e4 %eq3%
Queue_r ^= ...
Queue_rest ^= ...
Queue_cnt ^= Qurur_r ^+ Queue_w
 ^+Queue_rest %eq2%

thProdTimer_ctl1

thProdTimer_time1
thConsTimer_ctl1

thConsTimer_time1

thProducer_ctl1

thProducer_time1

thConsumer_ctl1

thConsumer_time1

top

top

top

thProducer_ctl2
thProducer_Alarm

thConsumer_ctl2
thConsumer_Alarm

thProdTimer_ctl2

thConsTimer_ctl2

thProdTimer_Alarm

thConsTimer_Alarm

pProdTimeOut

pConsTimeOut

Figure 7. AADL data access in Signal

� Shared variables Queue w, Queue reset and local variables Queue r;Queue cnt (where
Queue is the name of the data) are declared as local signals of Signal process p, where p is
the Signal process which represents Queue’s upper component.

shared event Queue_reset;
shared integer Queue_w;
integer Queue_r, Queue_cnt;

16

3.2 Data 3 ASME2SSME TRANSFORMATION
For example, in Figure 6, Queue is declared as a subcomponent of process P1, and P1
declares a provides data access Queue, so Queue w;Queue reset;Queue r;Queue cnt
are declared as local variables of upper level Signal process which is composed of P1, P2
and others. If no provides data access Queue is declared in P1, then the variables are
declared in P1, and the data is shared inside P1.

� The data is accessed by different Signal processes in different time instances. To write a data
into the fifo, a partial definition ofQueue w is provided (in the behavior part): Queue w ::=
xx when e1. To read a data, one can direct use: z := Queue r when e3.

� The interface of provides and requires data access is not translated explicitly. For each
component that requires access data Queue, the event that represent the read, write and reset
clock are added in the interface of its Signal process: event x ReadT ime, event x WriteT ime,
eventx ResetT ime. The read (write, reset) clock of data Queue is the union of all such
events, and the clock of count cnt is at least the union of read clock, write and reset clock.

Queue_r ˆ= e3
Queue_w ˆ= e1 ˆ+ e4
Queue_reset ˆ= e2
Queue_cnt ˆ= Queue_r ˆ+ Queue_w ˆ+ Queue_reset

� The data access connection is not translated explicitly. The access of read/write data im-
plicitly indicates their connections.

� A bundle SharedData TIME is used to represent the read/write/reset clock of a shared data.

type SharedData_TIME = bundle (event TRead; event TWrite; event TReset;);

A possible Signal implementation of the first example is given below:

process s1 = (? ... ! ...)
(| (..., DD1) := p1(...)
| (..., DD2) := p2(...)
| (DD_r, DD_cnt) := fifo{integer, 10, 0}(DD_w, DD_reset)
| DD_cnt ˆ= DD_w ˆ+ DD_r ˆ+ DD_reset
| DD_r ˆ= DD1.TRead ˆ+ DD2.TRead
| DD_w ˆ= DD1.TWrite ˆ+ DD2.TWrite
| DD_reset ˆ= DD1.TReset ˆ+ DD2.TReset
| ...
|)
where

shared integer DD_w;
integer DD_r, DD_cnt;
SharedData_TIME DD1, DD2;
...
process p1 = (? ... ! ..., SharedData_TIME DD1;)

(| DD_w ::= 1 when ...
| DD1.TRead := ...
| DD1.TWrite := ...
| DD1.TReset :=

17

3.3 Subprogram and subprogram call 3 ASME2SSME TRANSFORMATION
| ... |);

process p2 = (? ... ! ..., SharedData_TIME DD2;)
(|(..., l3) := T1(...)
|(..., l4) := T2(...)
| DD2.TRead := l3.TRead ˆ+ l4.TRead
| DD2.TWrite := l3.TWrite ˆ+ l4.TWrite
| DD2.TReset := l3.TReset ˆ+ l4.TReset
| ...|)

where
...
process T1 = (?...!..., SharedData_TIME DD3;)
(| DD_w ::= 2 when ...
| DD3.TRead := ...
| DD3.TWrite := ...
| DD3.TReset := ...
|... |);
process T2 = (?...!..., SharedData_TIME DD4;)
(| y:= DD_r when ...
| DD4.TRead := ...
| DD4.TWrite := ...
| DD4.TReset :=
|...|);

end;
end;

2. Case 2.2: data subcomponent of a thread or a subprogram
In this case, the data is implemented as a local Signal variable.

3. Case 2.3: data subcomponent of a thread group (expected)

4. Case 2.4: data subcomponent of a data (expected)

3.3 Subprogram and subprogram call

An AADL subprogram sp component represents sequentially executed source text that is called with
parameters. A subprogram implementation sp 2 Sp is a tuple < idsp; F; Y; Cal; C; P;M > where:

- idsp is the identifier of the subprogram implementation,

- F is the features (ports) of the corresponding subprogram type,

- Y is the subcomponents of sp, where 8yi =< idyi ; y
0

i >2 Y is a data subcomponent, which is
composed of an identifier idyi and its component classifier y0

i 2 D which is component of data D,

- Cal is the subprogram call sequences,

- C is the connections,

- P is the set of properties,

- M is a transition system that provides the functional behavior.

18

3.3 Subprogram and subprogram call 3 ASME2SSME TRANSFORMATION
A subprogram can be a subcomponent of a thread or a subprogram. It can be called by threads or

subprograms locally or remotely. If a thread t1 calls a subprogram sp that is executed in the context of
other thread t2, e.g., sp is a subcomponent of t2, the call is remote, and t1 is suspended (by default).

Subprogram transformation In general, a subprogram xx is implemented as a Signal process. A
Signal struct type xx IN is created for the in parameters (these parameters are supposed to be synchro-
nized). A struct type xx OUT is created for the out parameters and out event (event data) ports. (In this
moment, we suppose that a subprogram’s inputs (outputs) is not null.) An out signal that represents the
component id of which the results will be returned to is added in the interface (type TID predefined in
the library).

The body is composed of xx Subprogram behavior() and xx Subprogram property() process
calls if xx is a subprogram implementation.

type xx_IN = struct(a;b;);
type xx_OUT = struct(c;d;)
process xx_Subprogram = (? xx_IN x; ! xx_OUT y; TID id;)

(| xx_Subprogram_behavior()
| xx_Subprogram_property()
|)

where
process xx_Subprogram_behavior = (? xx_IN x; ! xx_OUT y; TID id;) external;
process xx_Subprogram_property =()(...);

end;

� The status of subprogram representation in Signal is given in Table 5.

subprogram type
features

out event (data) port partly 2012-03-27
feature group none
data access partly 2012-03-28
subprogram access partly 2012-03-28
subprogram group access none
parameter partly 2011-07-22

flow none
mode expected

subprogram implementation
subcomponents data expected
subprogram call partly 2012-03-28
connection partly 2012-03-29
flow none
mode expected

Table 5. The subprogram implementation status

� The standard subprogram properties could be found in the ESPRESSO AADL Digest Report [9],
Section 4.1.3. For the current implementation, they are implemented as process calls in the
xx Subprogram property() process.

process acquire_impl_Subprogram_property = ()(| Source_Name_property() |);

19

3.3 Subprogram and subprogram call 3 ASME2SSME TRANSFORMATION
Subprogram call We mainly consider the case that a thread calls subprograms. The case that a sub-
program calls another subprogram is similar, to be implemented later.

1. Local subprogram call
If the called or required subprogram sp is not a subcomponent of any other threads, then it is
considered as a local subprogram call (Figure 8).

P1

sp1:
subprogram sp

t1

mysp: requires sp;

P1

sp1:
subprogram sp

t1

calls{
mysp:
 subprogram sp;
}

a) requires subprogram access b) calls subprogram

Figure 8. local subprogram access and subprogram call (in the same process)

The subprogram sp is shared by the threads. It is implemented similar as the shared data: only one
instance of sp process is created in the process p1, and the subprogram inputs l x is declared as
shared signal, so that it could be partially defined by different threads. In Figure 9, thread t1 sends
out its clock of subprogram calling mysp. The subprogram input l x is shared by the threads, and
its clock is the merge of subprogram calling clocks: l x := mysp +̂ In thread behavior body
t1 Thread behavior(), the clock of mysp is defined: mysp := when Start, and the input of l x is
partially defined: l x.a ::= aa when mysp, l x.b ::= bb when mysp.

P1

process sp =
(? sp_IN x;
 ! sp_OUT y;
 TID id;)
external;

t1

t1_Thread_property{}()

t1_Thread_behavior{}()

|sp1:: (l_y, l_id) := sp{}(l_x)
| l_x := mysp ^+ ...
| l_y ^= l_x ^= l_id

| mysp := when Start
| l_x.a ::= aa when mysp
| l_x.b ::= bb when mysp
| c := l_y.c when mysp

Figure 9. local subprogram call (access) implemented in Signal

The called subprogram sp in a different process is not implemented yet.

2. Remote subprogram call
If the called subprogram sp is executed in the context of another thread, e.g., sp is a subcomponent
of thread t2, or sp is a subprogram provided by thread t2, then it is a remote call. Figure 10 shows
a remote subprogram call example: thread t1 calls subprogram sp which is provided by thread t2.

20

3.3 Subprogram and subprogram call 3 ASME2SSME TRANSFORMATION
P1

subprogram sp

t1

calls{
mysp: subprogram sp1;
}

t2
features
 sp1: requires subprogram
 access sp;

features
 sp2: provides subprogram
 access sp;

Figure 10. remote subprogram call

The caller thread is by default suspended until the execution of the subprogram completes (syn-
chronous call). The caller thread may issue multiple concurrently executing subprogram calls
and wait for their result when needed (semi-synchronous call). This is indicated by property
Subprogram Call Type. The called subprogram acts as a critical region for all calls.

Subprogram_Call_Type: enumeration (Synchronous, SemiSynchronous) => Synchronous;

The behavior annex introduces more precise communication protocols for remote call. This is
provided by propety Subprogram Call Protocol:

Subprogram_Call_Protocol: enumeration (HSER, LSER, ASER)
=> HSER applies to (subprogram access);

� HSER: Highly Synchronous Execution Request. The caller thread is suspended until
the completion of the corresponding behavior action in the server thread. (The Subpro-
gram Call Type property is set to synchronous.)

� LSER: Loosely Synchronous Execution Request. The caller thread is suspended until the
beginning of the server thread is ready to serve this request. (The Subprogram Call Type
property is set to semi-synchronous. The subprogram cannot have out or in out parameters.)

� ASER: ASynchronous Execution Request. The caller thread is never suspended by the cor-
responding remote call. (The Subprogram Call Type property is set to semi-synchronous.
The subprogram cannot have out or in out parameters.)

Here we only consider the case of synchronous call: the caller thread is suspended until the exe-
cution of the subprogram completes.

Figure 11 shows a possible implementation of the example in Figure 10: a subprogram subcompo-
nent is instantiated in the body of thread t2. The subprogram input l x (declared as a shared signal
in the process p1 body) is shared by other threads. Thread t1 gives out the clock (mysp) of calling
subprogram sp. In the behavior body of t1, the shared subprogram input l x is partially defined.

21

3.3 Subprogram and subprogram call 3 ASME2SSME TRANSFORMATION
P1

t2

t2_Thread_property{}()

t2_Thread_behavior{}()

| l_x ^= mysp ^+ ...
| l_y ^= l_id

| mysp := when ...
| l_x ::= aa when mysp
 when running1
| ft_thread_await(sp)
| call_sp := sp when mysp

t1

t1_Thread_property{}()

t1_Thread_behavior{}()

(| sp2:: (l_y, l_id) := sp{}
 (l_x when bb0
 when running2)
 | ft_thread_return(sp)
 | retun_sp := sp when bb0
 when running2
 |)

Scheduler

dispatch1

dispatch2

running1

running2

call_sp

return_sp

Figure 11. remote subprogram call implemented in Signal

To model the suspend/resume of threads, some synchronisation primitives, (considered as external
function calls, similar as the commands from the FairThreads library) are placed into the behav-
iors, and some control signals, e.g., call sp, rentun sp, that communicate with the scheduler are
presented. For example, a synchronisation primitive command ft thread await() is added in t1. It
represents that t1 requires call sp and waits for the result of sp. A control signal call sp is sent
to the scheduler to inform the scheduler the time that t1 requires remote call of subprogram sp,
and it is suspended then. The scheduler selects thread t2 for execution. When the correspongding
behavior action (that executes the subprogram) completes, a synchronisation primitive operation
ft thread return() is performed, and a return sp signal is sent to to scheduler, so that thread t1 that
requires access of sp is reset to be in the ready state.

Implementation details For the current implementation, we only consider the case that a subprogram
sp is called (or required) by threads that are in a same process p (sp is not called by other processes or
threads in other processes).

1. case 1: sp is a subcomponent of p; (local call)

2. case 2: sp is not a subcomponent of any process and thread; (local call)

3. case 3: sp is a subcomponent of a sub thread t1 (remote call)

The cases that call subprogram across processes are not yet implemented.

22

3.3 Subprogram and subprogram call 3 ASME2SSME TRANSFORMATION
For a process p add into the body of p:

1. case1:

| sp1 : (l_y, l_id) := sp{}(l_x)
| l_x ˆ= e1 ˆ+ ...
| l_y ˆ= l_id ˆ= l_x

where
...
shared sp_IN l_x;
sp_OUT l_y;
TID l_id;
label sp1;

end;

where ei is a local clock that represents a subthread ti that requires or calls subprogram sp.

The related methods:

ASME2SSME ProcessImpl SubSubprograms()

ASME2SSME Create SharedSubprogram()

ASME2SSME SharedSubprogram Call Sync x()

ASME2SSME SharedSubprogram Sync y()

2. case 2:

| (l_y, l_id) := sp{}(l_x)
| l_x ˆ= e1 ˆ+ ...
| l_y ˆ= l_id ˆ= l_x

where
...
shared sp_IN l_x;
sp_OUT l_y;
TID l_id;

end;

ASME2SSME ProcessImpl Instantiate Subprograms()

ASME2SSME Create SharedSubprogram()

ASME2SSME SharedSubprogram Call Sync x()

ASME2SSME SharedSubprogram Sync y()

3. case3:

23

3.3 Subprogram and subprogram call 3 ASME2SSME TRANSFORMATION
| l_x ˆ= e1 ˆ+ ...
| l_y ˆ= l_id ˆ= l_x
where

...
shared sp_IN l_x;
sp_OUT l_y;
TID l_id;

end;

ASME2SSME ProcessImpl SubThread SubSubprograms Clocks()

ASME2SSME SubThread SubSubprogram Call Sync x()

ASME2SSME SubThread SubSubprogram Sync y()

For a sub thread t1 t1 has a subcomponent sp or requires/calls subprogram sp
1) t1 interface:

� t1 requires or calls subprogram in case 1 or 2: t1(? . . . ; ! . . . ; event x;)

ASME2SSME ComponentInterface SubprogramAccesses()

ASME2SSME ComponentInterface CallSubprograms()

� case 3: null

2) t1 body:

� t1 requires or calls subprogram in case 1 or 2: (. . . , x) := t behavior(. . .)

� case 3:

| sp1: (l_y,l_id) := sp{}(l_x)

where
...
process sp = ();

end;

ASME2SSME ThreadImpl SubSubprograms()

3) t1 behavior interface:

� t1 requires or calls subprogram in case 1 or 2: t1 behavior(? . . . ; ! . . . ; event x;)

� case 3: null

4) t1 behavior body:

24

3.4 Subprogram group 3 ASME2SSME TRANSFORMATION
� t1 requires or calls subprogram in case 1 or 2: x := when Start

ASME2SSME RequiresSubprogramAccesses Clock Def()

ASME2SSME SubprogramCalls Clock Def()

Connection 1: a parameter connection from thread t1 to a called subprogram sp1 (if sp is not a
subcomponent of t, case 1 or case 2): a ! sp1.b: L x ::= a when sp1

ASME2SSME ParameterConnection Thread to CalledSubprogram()

Connection 2: a parameter connection from a called subprogram sp1 to thread t1 (if sp is not a
subcomponent of t, case 1 or case 2): sp1.a ! b: b := L y.a when sp1

and remove b from interface of behavior external process.

ASME2SSME ParameterConnection CalledSubprogram to Thread()

� case 3: null

Note: if two (or more) threads share a same subprogram, pay attention to the calling clocks: they
must be exclusive, otherwise, clock constraints will occur.

For a subprogram sp : A subprogram sp can call or require other subprogram sp’.
sp requires or calls subprogram sp’ in case 1 or 2:
1) sp interface: sp(? . . . ; ! . . . ; event x;)
ASME2SSME ComponentInterface SubprogramAccesses()
ASME2SSME ComponentInterface CallSubprograms()
2) sp body: (. . . , x) := sp behavior(. . .)
3) sp behavior interface: sp behavior(? . . . ; ! . . . ; event x;)

3.4 Subprogram group

Not implemented.

3.5 Thread

A thread implementation t 2 T is a tuple < idt; F; Y; Cal; C; P;M > where:

- idt is the identifier of the thread implementation,

- F is the features (ports) of the corresponding thread type,

- Y is the subcomponents of t, where 8yi 2 Y is a subcomponent, yi =< idyi ; y
0

i >, which is
composed of an identifier idyi and its component classifier y0

i 2 D[Sp[Spg which is component
of data D or subprogram Sp or subprogram group Spg,

- Cal is the subprogram call sequences,

- C is the port connections,

25

3.5 Thread 3 ASME2SSME TRANSFORMATION
- P is the set of properties,

- M is a transition system that provides the functional behavior.

x1_Frozen_time_event
x1

l_y1

thread_behavior
InDataPort

InEventPort

OutDataPort

OutEventPort

l_x1

y1

thread

y1_Output_time_event

Dispatch

l_yn
yn

xm

l_xm

thread_property

xm_Frozen_time_event

yn_Output_time_event

Complete

Error

Deadline

StartResume

top
Alarm

bundle

bundle

bundle

ctl1

time1

ctl2

Figure 12. Thread transformation

An AADL thread component is implemented as a Signal process (Figure 12): it is composed of pro-
cesses that represent its behavior, property, ports and subcomponents. Dispatch, Complete and Error
are predeclared ports in AADL. They are represented as input/output signals (Dispatch, Complete,
Error). According to the AADL semantics, the signals Resume and Deadline are added as inputs,
which are generated by the scheduler. Start is represented as the first Resume after Dispatch signal.
It is computed in the xx Thread property subprocess. The event signals (x1 Frozen time event,
y1 Output time event. . .) are represented as input signals, which are produced by the scheduler.

process xx_thread =
(? x1, ... ;

event Dispatch, Resume, Deadline;
event x1_Frozen_time_event, ..., y1_Output_time_event, ...;

! y1, ...; event Complete, Error;)
(| (...) := xx_thread_behavior(..., Dispatch, Start, Resume)
| Start := xx_thread_property(Dispatch, Resume, Deadline)
| x1_InDataPort{...}(...)
| ...
| y1_OutDataPort{...}(...)
| ...
| sxx1()
| ...
|)

where
event Start;
process xx_thread_behavior(...);
process xx_thread_property(?event Dispatch,Resume,Deadline; !Start;);
process x1_InDataPort{...}(...);
process y1_OutDataPort{...}(...);

26

3.5 Thread 3 ASME2SSME TRANSFORMATION
process sxx1();
...

end;

An AADL thread t 2 T is translated to a Signal process idt Thread, (T 1(F) and T 2(F) represent
the transformation of features in different cases):

T (t) ::= process idt Thread =

(T 1(F);

? event top; CTL1 ctl1; idt TIME EV ENT time1;

! CTL2 ctl2; event Alarm;)

(jT 2(F) j T (Y) j T (Cal) j T (C) j T (P) j T (M)j)

1. The interface contains the input/output signals that represent the features F provided by the com-
ponent type, and also some added control signals: top, ctl1, time1, ctl2 and Alarm.

The features F = < f1; f2; � � � > are firstly represented as input/output signals:

T 1(F) ::= T 1(f1); T
1(f2); : : : ;

8fi 2 F; apply the translation rule T (fi) in Section 3.15

2. The body is composed of SIGNAL processes that represent:

- ports F with timing semantics:

T 2(F) ::= (jT 2(f1) j T
2(f2) j : : : j)

8fi 2 F; apply the translation rule T (fi) in Section 3.15

- subcomponents Y :

T (Y) ::= (jidy1 :: T (y0

1
) j idy2 :: T (y0

2
) j : : : j)

8y0

i 2 D; apply the translation rule T (y0

i) in Section 3.2

8y0

j 2 Sp; apply the translation rule T (y0

j) in Section 3.3

8y0

k 2 Spg; apply the translation rule T (y0

k) in Section 3.4

27

3.5 Thread 3 ASME2SSME TRANSFORMATION
- subprogram call sequences Cal:

T (Cal) ::= (jT (cal1) j T (cal2) j : : : j)

8cali 2 Cal; apply the translation rule T (cali) in Section 3.3

- connections C:

T (C) ::= (jT (c1) j T (c2) j : : : j)

8ci 2 C; apply the translation rule T (ci) in Section 3.16

- associated properties P :

T (P) ::= process idx Thread property = ()

(jT (p1) j T (p2) j : : : j)

8pi 2 P; apply the translation rule T (pi) in Section 3.19

- transition system M . We define a transition system M to be a tuple < S 0; T 0; s0; C
0; A >,

where S 0 is a set of states, T 0 � S 0 � C 0 � S 0 � A is the set of transitions between states S 0,
triggered by the condition C 0 with functional behavior A, and s0 an initial state:

T (M) ::= process idx Thread behavior = ()

(jT (S 0 � C 0 � S 0 � A)j)

apply the translation rule T (S 0 � C 0 � S 0 � A) in Section 4

Referring to the SDSCS example, the thread doors mix is as follows:

thread doors_mix
features

cll1: in data port CESAR_behavior::integer;
cll2: in data port CESAR_behavior::integer;
cll: out data port CESAR_behavior::integer;

end doors_mix;

thread implementation doors_mix.imp
properties

Dispatch_Protocol => Periodic;
Period => 50 Ms;

end doors_mix.imp;

28

3.5 Thread 3 ASME2SSME TRANSFORMATION
We get the following Signal code from our transformation (the details for the data port subprocesses

are not given here):

process doors_mix_imp_Thread =
(? integer cll1, cll2; CTL1 ctl1; doors_mix_TIME_EVENT time1; event top;
! integer cll; CTL2 ctl2; boolean Alarm;)

(| l_cll1 := cll1_InDataPort{integer}(time1.cll1_Frozen_time_event,cll1,Start)
| l_cll2 := cll2_InDataPort{integer}(time1.cll2_Frozen_time_event,cll2,Dispatch)
| cll := cll_OutDataPort{integer}(time1.cll_Output_time_event,l_cll,Deadline)
| (l_cll,ctl2) := doors_mix_imp_Thread_behavior{}

(l_cll1,l_cll2,time1.Dispatch,Start,time1.Resume)
| (Start, Alarm) := doors_mix_imp_Thread_property{}(ctl1, top)
|)
where

event Start;
integer l_cll, l_cll2, l_cll1;
process cll1_InDataPort = {...} (? ... ! ...) (|...|)
process cll2_InDataPort = {...} (? ... ! ...) (|...|)
process cll_OutDataPort = {...} (? ... ! ...) (|...|)
process doors_mix_imp_Thread_behavior =
(? integer cll1, cll2; CTL1 ctl1; ! integer cll; CTL2 ctl2;)(|...|);
process doors_mix_imp_Thread_property =
(? CTL1 ctl1; event top; ! event Start; boolean Alarm;)(| ... |);

end;

� The status of thread transformation in Signal is given in Table 6.

thread type
features

port partly 2011-07-22
feature group partly 2012-02-03
data access partly 2012-02-03
subprogram access partly 2012-03-29
subprogram group access none

flow none
mode expected

thread implementation

subcomponents
data partly 2012-02-03
subprogram partly 2011-07-22
subprogram group none

subprogram call partly 2012-03-29
connection partly 2011-07-22
flow none
mode expected

Table 6. The thread transformation

� The thread properties are listed in the ESPRESSO AADL Digest Report [9], Section 6.3. They
are implemented as process calls in the xx Thread property() subprocess. The values of Dis-
patch Protocol, Period and Deadline properties are fetched, and they appear in the process calls
as parameters. Getting values for other properties is left to do.

29

3.6 Thread group 3 ASME2SSME TRANSFORMATION
Some properties, e.g., Dispatch Protocol, are chosen as fixed properties. The default value is used
if it is not specified explicitly in the AADL specification. For example, the properties of the thread
doors mix.impl are implemented as a Signal process. The values of properties Dispatch Protocol
and Period are listed as parameters of the corresponding process call:

process doors_mix_imp_Thread_property =
(? CTL1 ctl1;%control signal of bundle type CTL1 (Dispatch, Resume, Deadline)%

event top;
! event Start; boolean Alarm;)

(| Start := when ((ctl1.Resume from ctl1.Dispatch)=1)
| Alarm := PeriodicDispatch_constraint{50}(top, ctl1.Dispatch)
| Dispatch_Protocol_property{Supported_Dispatch_Protocols#Periodic}()
| Period_property{Time_Units#ms,50}()
|) %doors_mix_imp_Thread_property%;

The six types of threads (periodic, aperiodic, sporadic, timed, hybrid, background) are discrimi-
nated by the dispatch: a dispatch request is periodicly, or is triggered by an event (event data) arriving,
etc.. Therefore, the different threads are implemented in the same way, except the “dispatch” signal is
generated differently.

3.6 Thread group

Not implemented.

3.7 Process

A process implementation x 2 Ps is a tuple < idx; F; C; P; Y;M > where:

- idx is the identifier of the process implementation,

- F is the features (ports) of the corresponding process type that define a functional interface,

- C = F � F is the port connection,

- P is the set of properties,

- Y is the subcomponents of x, where 8yi 2 Y is a subcomponent, yi =< idi; y
0

i >, which is
composed of an identifier idi and its component classifier y0

i 2 D [T [Tg [Sp which can be
type of data D, thread T , thread group Tg or subprogram Sp.

- M is a transition system that provides the functional behavior.

An AADL process component x is implemented as a Signal process model. It is represented by a
process type TT idx Process(), and an implementation in idx Process():

T (x) ::= (jTT idx Process()j idx Process()j)

30

3.7 Process 3 ASME2SSME TRANSFORMATION
For a process model type TT idx Process(), beside the in/out ports declared in the original AADL

process type, the Signal process interface should also include the clock signals for each of its threads ti:

process TT idx Process() =

(T 1(F);

? event top; CTL1 t1 ctl1; TIME1 time1; : : :

! CTL2 t1 ctl2; event t1 Alarm; : : :)

The process implementation idx Process() is composed of sub-processes, i.e.,
idx Process behavior(), idx Process property():

process idx Process() = TT idx Process()

(jT (P) j T (Y) j T (C) j T (M)j)

- associated properties P :

T (P) ::= process idx Process property = ()

(jT (p1) j T (p2) j : : : j)

8pi 2 P; T (pi) ::= process pi property = ()()

Each property 8pi 2 P is represented as a Signal process.

- subcomponents Y :

T (Y) ::= (jidy1 :: T (y0

1
) j idy2 :: T (y0

2
) j : : : j)

For 8yi 2 Y , apply the recursive translation rules for its classifier (component implementation)
T (y0

i).

- connections C = F � F :

T (C) ::= (jT (c1) j T (c2) j : : : j)

where 8ci =< fm; fn >2 C; T (ci) ::= T (fn) := T (fm)

For 8ci 2 C, connects the two signals that represent the source and destination ports.

31

3.7 Process 3 ASME2SSME TRANSFORMATION
- transition system M :

T (M) ::= process idx Process behavior = (:::)(:::)

Referring to the SDSCS example, we have a doors process process which has three threads
(door handler1, door handler2 and door mix) as subcomponents:

process doors_process
features

closed1_1: in data port CESAR_behavior::integer;
closed1_2: in data port CESAR_behavior::integer;
in_flight: in data port CESAR_behavior::integer;
cll: out data port CESAR_behavior::integer;

end doors_process;

process implementation doors_process.imp
subcomponents

door_handler1: thread door_handler.imp;
door_handler2: thread door_handler.imp;
door_mix: thread doors_mix.imp;

connections
conn3: port in_flight -> door_handler1.in_flight;
conn10: port closed1_1 -> door_handler1.closed1;
conn20: port door_handler1.cll -> door_mix.cll1;
conn23: port in_flight -> door_handler2.in_flight;
conn30: port closed1_2 -> door_handler2.closed1;
conn40: port door_handler2.cll -> door_mix.cll2;
conn41: port door_mix.cll -> cll;

end doors_process.imp;

The implemented transformation provides the following Signal code, that contains a process type
(TT doors process imp Process) and a process definition (doors process imp Process):

type process TT_doors_process_imp_Process =
(? event top;

integer closed1_1, closed1_2, in_flight;
CTL1 door_handler1_ctl1;
door_handler_TIME_EVENT door_handler1_time;
CTL1 door_handler2_ctl1;
door_handler_TIME_EVENT door_handler2_time;
CTL1 door_mix_ctl1;
doors_mix_TIME_EVENT door_mix_time;

! integer cll;
CTL2 door_handler1_ctl2;
boolean door_handler1_Alarm;
CTL2 door_handler2_ctl2;
boolean door_handler2_Alarm;
CTL2 door_mix_ctl2;
boolean door_mix_Alarm;) ;

32

3.7 Process 3 ASME2SSME TRANSFORMATION

process doors_process_imp_Process = TT_doors_process_imp_Process
(| doors_process_imp_Process_behavior()
| doors_process_imp_Process_property()
| (L_56,door_handler1_ctl2, door_handler1_Alarm) := door_handler_imp_Thread{}

(L_57, L_58, door_handler1_ctl1, door_handler1_time1, top)
| (L_59,door_handler2_ctl2, door_handler2_Alarm) := door_handler_imp_Thread{}

(L_60, L_61, door_handler2_ctl1, door_handler2_time1, top)
| (L_62,door_mix_ctl2, door_mix_Alarm) := doors_mix_imp_Thread{}

(L_63, L_64, door_mix_ctl1, door_mix_time1, top)
| L_58 := in_flight
| L_57 := closed1_1
| L_63 := L_56
| L_61 := in_flight
| L_60 := closed1_2
| L_64 := L_59
| cll := L_62
|)

where
integer L_62, L_64, L_63, L_59, L_56, L_61, L_60, L_58, L_57;
process doors_process_imp_Process_behavior =();
process doors_process_imp_Process_property =();
process door_handler_imp_Thread = ...
process doors_mix_imp_Thread = ...

end;

� The implementation status of process type features is given in Table 7.

process type
features

port partly 2011-07-22
feature group partly 2012-02-03
data access expected
subprogram access expected
subprogram group access none

flow none
mode expected

process implementation

subcomponents

data partly 2012-02-03
subprogram partly 2012-03-29
thread partly 2011-07-22
thread group none

connection partly 2011-07-22
flow none
mode expected

Table 7. The process implementation status

� All the standard process properties are listed in the ESPRESSO AADL Digest Report [9], Section
8.3. They are implemented as process calls in the xx Process property() process. Only the name
of the property is given. The values are to be fetched.

33

3.8 Processor 3 ASME2SSME TRANSFORMATION
3.8 Processor

An AADL processor is represented as a Signal process (Figure 13): the AADL processes bound to
a processor are provided as parameters of the interface of the processor, e.g., fprocess TT p Process
p Process;g, where TT p Process is the type of the process p Process.

The interface contains the original inputs/outputs of these AADL processes except for the internal
inputs/outputs between these processes of which are defined as internal local signals.

The body is composed of the Signal processes that represent the (AADL) processes and
xx Processor behavior(), xx Processor property() subprocesses. The xx Processor behavior()
subprocess is implemented as a scheduler. It gives all the scheduling signals for each thread, e.g.,
p1 t1 Dispatch (p1: subprocess name, t1: thread name), p2 t2 y2 Output time event. . . In the cur-
rent implementation, it is connected to a static scheduler: the information of timing properties of each
thread is passed to the scheduler, and the scheduling result is automatically generated by the connected
scheduler.

t1_time1

p1_t1_x1 t1_y1

p1_process

t1_yn
p1_t1_xm

p1_process_property

t1_ctl2

t1_Alarm
t1_ctl1

p1_process_behavior

t1_thread

processor_behavior()

p1_t1_y1

p1_t1_yn

p1_t1_Alarm

p1_t1_ctl2 p1_t1_ctl1

p1_t1_time1

processor_property()

processor

top1

Figure 13. Processsor transformation

For example: a process subcomponent p1 (whose type is p, implementation is p.imp) is bound to a
processor subcomponent cpiom1—whose implementation is CPIOM (this information is specified as a
property in the system level). The Signal representation is as follows:

process cpiom1_Processor = {process TT_p_Process P;}
(? event top; p1_t1_x1; p1_t1_xm; ! p1_t1_y1; p1_t1_yn;)
(| (...) := P{}(...)
| cpiom1_behavior{}
| cpiom1_property{}

|)
where

...
process cpiom1_Processor_behavior();

34

3.8 Processor 3 ASME2SSME TRANSFORMATION
process cpiom1_Processor_property();

end;

The process call should be in the following form:

(p1_t1_y1, p1_t1_yn) := cpiom1_Processor{p_imp_Process}(top, p1_t1_x1, p1_t1_xm)

Referring to the SDSCS system example, there are two processors: cpiom1 and cpiom2. Each proces-
sor executes a process. We give part of the generated Signal code for processor cpiom1.

process cpiom1_Processor ={ process TT_doors_process_imp_Process doors_process1; }
(? event top;

integer doors_process1_closed1_1, doors_process1_closed1_2, doors_process1_in_flight;
! integer doors_process1_cll;)

(|(L_114,
doors_process1_door_handler1_ctl2, doors_process1_door_handler1_Alarm,
doors_process1_door_handler2_ctl2, doors_process1_door_handler2_Alarm,
doors_process1_door_mix_ctl2, doors_process1_door_mix_Alarm)
:= doors_process1{}(top, L_91, L_92, L_93,
doors_process1_door_handler1_ctl1, doors_process1_door_handler1_time1,
doors_process1_door_handler2_ctl1, doors_process1_door_handler2_time1,
doors_process1_door_mix_ctl1, doors_process1_door_mix_time1)

| cpiom1_Processor_behavior{}
| cpiom1_Processor_property{}
|)
where

...
process cpiom1_Processor_behavior =
(? event top;

CTL2 doors_process1_door_handler1_ctl2;
boolean doors_process1_door_handler1_Alarm;
CTL2 doors_process1_door_handler2_ctl2;
boolean doors_process1_door_handler2_Alarm;
CTL2 doors_process1_door_mix_ctl2;
boolean doors_process1_door_mix_Alarm;

! CTL1 doors_process1_door_handler1_Dispatch;
door_handler_TIME_EVENT doors_process1_door_handler1_time1;
CTL1 doors_process1_door_handler2_Dispatch;
door_handler_TIME_EVENT doors_process1_door_handler2_time1;
CTL1 doors_process1_door_mix_Dispatch;
door_mix_TIME_EVENT doors_process1_door_mix_time1;)

(|...|);
process cpiom1_Processor_property =()(|...|);

end;

� The implementation status of processor is given in Table 8.

� The standard processor properties are listed in the ESPRESSO AADL Digest Report [9], Section
9.1.2. They are implemented as process calls in the xx Processor property() subprocess. The
values are to be fetched.

35

3.9 Virtual processor 3 ASME2SSME TRANSFORMATION

processor type
features

port partly 2011-07-22
feature group partly 2012-02-03
bus access none
subprogram access none
subprogram group access none

flow none
mode expected

processor implementation

subcomponents

memory partly 2012-02-03
bus partly 2011-07-22
virtual processor none
virtual bus none

connection open
flow none
mode expected

Table 8. The processor implementation status

3.9 Virtual processor

Not implemented.

� The status of virtual processor is given in Table 9.

virtual processor type
features

port none
feature group none
subprogram access none
subprogram group access none

flow none
mode expected

virtual processor implementation
subcomponents

virtual processor none
virtual bus none

flow none
mode expected

Table 9. The virtual processor status

� The standard virtual processor properties are listed in the ESPRESSO AADL Digest Report [9],
Section 9.2.2.

3.10 Memory

Implemented date 2012-02-03
A Signal process skeleton represents a AADL memory.

36

3.11 Bus 3 ASME2SSME TRANSFORMATION

memory type
features

feature group none
bus access none

mode expected

memory implementation
subcomponents

memory none
bus none

connection open
mode expected

Table 10. The memory status

� The status of memory implementation is given in Table 10.

� Standard memory properties are listed in Table 11.

Provided Virtual Bus Class none
Provided Connection QUality Of Service none
Memory Protocol none
Resumption Policy none
Byte Count none
Word Size none
Word Space none
Write Time none
Source Text none
Hardware Description Source Text none
Hardware Source Language none
Implemented As none

Table 11. The standard memory properties

3.11 Bus

An AADL bus component is implemented as a Signal process. A skeleton is provided. It is composed
of xx Bus behavior(), xx Bus property().

� The status of bus implementation is given in Table 12.

� Standard bus properties (Table 13) are represented as process calls in xx Bus property() subpro-
cess (an API is needed to get the property values).

3.12 Virtual bus

Not implemented.

37

3.13 Device 3 ASME2SSME TRANSFORMATION

bus type
features

feature group none
requires bus access none

mode expected

bus implementation
subcomponents virtual bus none
connection open
mode expected

Table 12. The bus status

Provided Connection Quality Of Service partly
Allowed Connection Type partly
Allowed Physical Access Class partly
Allowed Physical Access partly
Resumption Policy partly
Transmission Type partly
Transmission Time partly
Latency partly
Access Right partly
Allowed Message Size partly
Source Language partly
Source Text part
Hardware Description Source Text partly
Hardware Source Language partly
Implemented As partly

Table 13. The standard bus properties

3.13 Device

An AADL device component is represented as a Signal process. A process skeleton is provided. The
interface contains the signals which represent the port features (the other features are not implemented
yet). The body is composed of xx Device behavior() and xx Device property() subprocesses.

� The status of device is given in Table 14.

� The standard device properties are listed in the ESPRESSO AADL Digest Report [9], Section
9.6.2. They are implemented as process calls in the xx Device property() subprocess. The
Device Dispatch Protocol and Period property values are fetched, and represented as parameters
in the corresponding process call.

3.14 System

A system x 2 S =< idx; F; C; P; Y;M > specifies the runtime architecture of an operational physical
system, where:

38

3.14 System 3 ASME2SSME TRANSFORMATION

device type
features

port partly 2011-07-22
feature group none
bus access none
provides subprogram access none
provides subprogram group access none

flow none
mode expected

device implementation

subcomponents
bus none
virtual bus none

connection none
flow none
mode expected

Table 14. The device status

- idx is the identifier of the system implementation,

- F is the features (ports) of the corresponding system type that define a functional interface,

- C = F � F is the port connection,

- P is the set of properties,

- Y is the subcomponents of x, where 8yi 2 Y is a subcomponent, yi =< idi; y
0

i >, which is
composed of an identifier idi and its component classifier y0

i 2 D [Ps [Pr [V pr [Mo [B [
V b [Dv [S which is component of data D, process Ps, processor Pr, virtual processor V pr,
memory Mo, bus B, virtual bus V b, device Dv or system S,

- M is a transition system that provides the functional behavior.

A system x is represented as a Signal process:

T (x) ::= process idx System =

(T 1(F); ? event top;)

(jT (P) j T (Y) j T (C) j T (M)j)

The body is composed of SIGNAL processes that represent:

- associated properties P :

T (P) ::= process idx System property = ()

(jT (p1) j T (p2) j : : : j)

39

3.14 System 3 ASME2SSME TRANSFORMATION
For each property 8pi 2 P , apply the transformation rule in Section 3.19.

- subcomponents Y :

T (Y) ::= (jidy1 :: T (y0

1
) j idy2 :: T (y0

2
) j : : : j)

For 8yi 2 Y , apply the recursive translation rules for its classifier (component implementation)
T (y0

i).

- connections C = F � F :

T (C) ::= (jT (c1) j T (c2) j : : : j)

For 8ci 2 C, apply the transformation rule in Section 3.16.

- transition system M : apply the transformation rule in Section 4.

A system is represented in the following way:

process xx_System = (? ... ; event top1; ! ...)
(| xx_System_behavior()
| xx_System_property()
| (...) := cpiom1_Processor{p_imp_Process}(top1, ...)
| d1_Device()
| ...
| cxx1_Connection()
| ...
|)

where
process xx_Process_behavior();
process xx_Process_property();
type process TT_p_Process = (? ...; ! ...;);
process p_imp_Process = TT_p_Process();
process cpiom1_Processor = {process TT_p_imp_Process P;}(? ...; !...;)();
process d1_Device();
process cxx1_Connection();
...

end;

Referring to the SDSCS example, the top level system component is represented as follows in Signal
(details of subprocesses are not shown here):

process simple_door_management_imp_System =
(? integer in_flight; event top1, top2; ! integer cll1, cll2;)
(| simple_door_management_imp_System_behavior()
| simple_door_management_imp_System_property()
| L_19 := Door_imp_System{}()
| L_20 := Door_imp_System{}()

40

3.14 System 3 ASME2SSME TRANSFORMATION
| L_21 := cpiom1_Processor{doors_process_imp_Process}(top1, L_22, L_23, L_24)
| L_25 := cpiom2_Processor{doors_process_imp_Process}(top2, L_26, L_27, L_28)
| RDC_imp_Device{}()
| RDC_imp_Device{}()
| AFDX_imp_Bus{}()
| L_24 := in_flight
| cll1 := L_21
| L_22 := L_19
| L_23 := L_20
| L_28 := in_flight
| cll2 := L_25
| L_26 := L_19
| L_27 := L_20
|)
where
...

end;

� The status of system is given in Table 15.

system type
features

port partly 2012-02-03
feature group partly 2012-02-03
bus access none
data access none
subprogram access none
subprogram group access none

flow none
mode expected

system implementation

subcomponents

data expected
process partly 2011-07-22
processor partly 2011-07-22
virtual processor none
memory partly 2012-02-03
bus partly 2011-07-22
virtual bus none
device partly 2011-07-22
system partly 2011-07-22

connection partly 2011-07-22
flow none
mode expected

Table 15. The system status

� The standard system properties are listed in the ESPRESSO AADL Digest Report [9], Section
10.2. They are implemented as process calls in the xx System property() subprocess. The values
are to be fetched. The API functions to get values of Actual Processor Processor Binding and
Actual Connection Binding properties have already been implemented.

41

3.15 Feature 3 ASME2SSME TRANSFORMATION
3.15 Feature

3.15.1 Port

In the current implementation, the (in out) direction port has not been implemented. (Table 16).

Data port Event port Event data port

partly partly partly
2011-07-22 2011-10-20 2011-10-21

Table 16. The ports

A port f =< idf ; directionf ; categoryf ; classifierf ; P >2 F is composed of:

- idf is the identifier of the port,

- directionf 2 enumeration fin, out, inoutg is the direction of the port,

- categoryf 2 enumeration fevent, data, event datag is the port category,

- classifierf 2 D is the classifier (type) of data (event data) port, which is a data component,

- P is the set of properties.

In the current implementation, we mainly consider two cases of context: port an an interface, and port
of thread of which timing semantics are considered.

Case 1: port of component as an interface Port is a communication interface for the directional ex-
change of data, events, or both between components. In this case, neither timing semantics nor properties
are considered. It is represented directly as an input or output signal:

� Case 1.1: if categoryf = event:

T (f) ::=

�
? event idf ; if directionf = in
! event idf ; if directionf = out

� Case 1.2: if categoryf = data or categoryf = event data:

T (f) ::=

�
? T (classifierf) idf ; if directionf = in
! T (classifierf) idf ; if directionf = out

42

3.15 Feature 3 ASME2SSME TRANSFORMATION
Case 2: port of thread with timing semantics

� Case 2.1: if categoryf = data

1. Case 2.1.1: if directionf = in

An AADL in data port f is implemented as a Signal process model, composed of
idf InDataPort behavior() and idf InDataPort property() subprocesses:

T (f) ::= process idf InDataPort = ftype item type; g

(? event Frozen time event; item type write flow; event Reference time event;

! item type read flow;)

(j read flow := idf InDataPort behaviorfitem typeg

(Frozen time event; write flow)

j idf InDataPort Propertyfg(Frozen time event; Reference time event)

j)

where

process idf InDataPort behavior = ftype item type; g

(? event Frozen time event; item type write flow; ! item type read flow;)

(j read flow := InDataPort behaviorfitem typeg

(Frozen time event; write flow)j);

process idf InDataPort Property =

(? event Frozen time event; Reference time event;)

(jT (p1) j T (p2) j : : : j);

end;

– The translation of port classifer T (classifierf) is passed as parameter when a process
instance is made in the body of process that represents the thread.

– Process idf InDataPort behavior() calls the InDataPort behavior() process which
is defined in the AADL DATAPORT Signal library.

– Process idf InDataPort property() is composed of processes that represent the prop-
erties 8pi 2 P applying to this port, i.e., Input Time. In the current implementation,
the Input Time property (Output Time for the out data port) is partly implemented:
the property values are completely fetched and provided as parameters, and a
Signal process is defined in the library to verify whether the actual Input Time
(Output Time) signal satifies the constraints (external C code should be provided to
complete this process for the verification), e.g.:
Input T ime propertyfTime Units#ns; T ime Units#ns; 0:0; 0:0g(: : :)
If this property is not explicitly specified in the AADL model, default values are used
for the process call.

43

3.15 Feature 3 ASME2SSME TRANSFORMATION
2. Case 2.1.2: if directionf = out

An AADL out data port f is implemented as a Signal process model, composed of
idf OutDataPort behavior() and idf OutDataPort property() subprocesses:

T (f) ::= process idf OutDataPort = ftype item type; g

(? event Output time event; item type write flow; event Reference time event;

! item type sent flow;)

(j sent flow := idf OutDataPort behaviorfitem typeg

(Output time event; write flow)

j idf OutDataPort Propertyfg(Output time event; Reference time event)

j)

where

process idf OutDataPort behavior = ftype item type; g

(? event Output time event; item type write flow; ! item type sent flow;)

(j sent flow := OutDataPort behaviorfitem typeg

(Output time event; write flow)j);

process idf OutDataPort Property =

(? event Output time event; Reference time event;)

(jT (p1) j T (p2) j : : : j);

end;

The properties associated with a data port have been listed in the ESPRESSO AADL Digest
Report [9]. Since we mainly take into account the properties related to timing aspects, here we
give a list of timing properties that have been implemented in the current version (Table 17).

Property In data port Out data port
Input Time partly (2011-07-22) -
Input Rate none -

Output Time - partly (2011-07-22)
Output Rate - none

Timing partly (2011-07-22) partly (2011-07-22)
Fan Out Policy - partly (2011-07-22)

Table 17. The implemented data port properties

The Input Rate and Output Rate are associated with Input Time and Output Time, respec-
tively. They must conform to the rate of the input (or output) time. Since we have translated the
Input Time and Output Time properties, the two rate properties should be useless. The external C
code should be provided for the verification of Input Time (Output Time) constraint.

44

3.15 Feature 3 ASME2SSME TRANSFORMATION
� Case 2.2: if categoryf = event data or categoryf = event:

Event data ports are intended for message transmission, and event ports are intended for event and
alarm transmission. In this document, we give the transformation details of event data port. The
implementation of event port is similar to event data port.

An event data (or event) port can have a queue associated with it. The default port queue size is 1
and can be changed by explicitly declaring a Queue Size property association for the port. Queues
will be serviced according to the Queue Processing Protocol, by default in a first in first out order
(FIFO).

The properties that should be taken into account are listed in Table 18.

Property In event (event data) port Out event (event data) port
Input Time partly (2011-10-20) -
Input Rate none -

Output Time - partly (2011-10-20)
Output Rate - none

Fan Out Policy - expected
Overflow Handling Protocol total (2011-10-20) -

Queue Size total (2011-10-20) total (2011-10-20)
Queue Processing Protocol total (2011-10-20) total (2011-10-20)

Dequeued Items total (2011-10-20) -
Dequeue Protocol total (2011-10-20) -

Table 18. The properties to be implemented for an event (event data) port

For an in event data (or event) port, the items are frozen and Input Time, and a number of items
(depend on the Dequeue Protocol) are dequeued and made available to the receiving application
through the port variable (implemented as constraint in the property part).

For an out event data (or event) port, the items are stored in a queue, and sent out at Output Time.

– Case 2.2.1: if directionf = in

in_fifo
write_flow

Frozen_time_event

read_flow

xx_InEventDataPort_Property{}()

Reference_time_event

xx_InEventDataPort_Behavior{}()

InEventDataPort_Behavior{}()

xx_InEventDataPort

(| Input_Time_Property{Time_Units#ns, Time_Units#ns, 0.0, 0.0}(...)
 | Queue_Size_Property{1}()
 | ...
 |)

frozen_fifo

Figure 14. In event data port transformation

45

3.15 Feature 3 ASME2SSME TRANSFORMATION
An AADL in event data (or event) port f can be implemented as a Signal process model,
composed of xx InEventDataPort Behavior() and xx InEventDataPort Property()
subprocesses (Figure 14).
xx InEventDataPort Behavior() calls the InEventDataPort Behavior() process
which is defined in the AADL EVENTDATAPORT Signal library. (In the current ver-
sion, only FIFO is implemented. The other queue processing order is expected.) Two FIFOs
are provided: in fifo that storing the receiving in event data and frozen fifo (only one ele-
ment for the current implementation) that is accessible by the thread. At Frozen time event
(Input Time), freeze the actual items of the in fifo: move certain items (move one item for
the current version) to a frozen fifo. The inputs arrived after the Frozen time event will be
available at the next Frozen time event.
The properties are implemented as Signal processes composed in the body of
xx InEventDataPort Property(). External C code should be provided to verify whether
the constraints are satisfied.

– Case 2.2.2: if directionf = out

An AADL out data port xx is implemented as a Signal process model, composed of
xx OutEventDataPort Behavior() and xx OutEventDataPort Property() subpro-
cesses (Figure 15).

fifo
write_flow

Output_time_event

send_flow

xx_OutEventDataPort_Property{}()
(|Output_Time_Property{Time_Units#ns, Time_Units#ns, 0.0, 0.0}(...)
 |Queue_Size_Property{1}()
 | ...
 |)

Reference_time_event

xx_OutEventDataPort_Behavior{}()

outEventDataPort_Behavior{}()

xx_OutEventDataPort

Figure 15. Out event data port transformation

OutEventDataPort Behavior() is defined in the AADL EVENTDATAPORT Signal li-
brary: the output data is stored into a fifo and one element is sent out at Output time event
(Output Time).

3.15.2 Parameter

A subprogram parameter declaration represents data value that can be passed into or out of a subprogram.
A parameter is typed with a data classifier reference representing the data type.

A parameter f =< idf ; directionf ; classifierf ; P >2 F is composed of:

- idf is the identifier of the parameter,

- directionf 2 enumeration fin, out, inoutg is the direction of the parameter,

46

3.15 Feature 3 ASME2SSME TRANSFORMATION
- classifierf 2 D is the classifier (type) of data,

- P is the set of properties.

In the Signal translation, a parameter declaration is represented as a signal declaration. This signal is
typed with the data classifier. The properties are not considered.

T (f) ::=

�
? T (classifierf) idf ; if directionf = in
! T (classifierf) idf ; if directionf = out

In the following example, the subprogram acquire contains an in parameter p1 whose data classifier
is DataA, and an out parameter p2 whose data classifier is DataB.imp:

subprogram acquire
features

p1: in parameter DataA;
p2: out parameter DataB.imp;

end acquire;

These two parameters are represented as input (resp., output) in the interface of the ac-
quire Subprogram() process. Their type is the corresponding data type of the data classifier.

process acquire_Subprogram =(? DataA p1; ! DataB_imp p2;)(| ... |);

3.15.3 Feature group

Port group In AADLv1, a port group represents a collection of ports or other port groups. The content
and structure of a port group are declared through a port group type declaration. A port group can
bundle different port types and directions. A port group type can be declared as the inverse of another
port group type. The ports of the inverted port group must be in the same order as in the referenced port
group, but with the opposite directions.

Referring to the session2 cockpit display exercise example, a port group type declaration and its
inverse port group is given:

port group Page_Processing_Socket
features

New_Page_Content: in data port Page_Content;
New_Page_Request: out data port Page_Request;

end Page_Processing_Socket;

port group Page_Processing_Plug
inverse of Page_Processing_Socket

end Page_Processing_Plug;

For the current state, we take a port group that it represents a collection of ports in consideration. A
port group that consists of other port groups is left for further implementation. Since the ports of a port
group may be in all directions: some in ports and some out ports. We can not simply use a Signal bundle
to represent it. Instead, we may use a pair of bundles: one for the in ports and the other for the out
ports, named as xx BW and xx WB, where xx is the name of the port group, and BW stands for Black
White. (The properties are not considered yet.)

We can have a Signal representation of the port groups declarations of the previous example:

47

3.16 Connection 3 ASME2SSME TRANSFORMATION
type Page_Processing_Socket_BW = bundle (Page_Content New_Page_Content;);
type Page_Processing_Socket_WB= bundle (Page_Request New_Page_Request);
type Page_Processing_Plug_BW = Page_Processing_Socket_WB;
type Page_Processing_Plug_WB = Page_Processing_Socket_BW;

The port group declaration is referenced when it is declared as component features. An example:

device Display
features

ReqOut_ResultIn: port group Page_Processing_Socket;
....

end Display;

Signal input/output that represents the feature group should be added into the interface of Signal
process that represents the AADL process.

process Display_Device =
(? Page_Processing_Socket_BW ReqOut_ResultIn_bw;
! Page_Processing_Socket_WB ReqOut_ResultIn_wb;)

(|...|)

For a port group of a thread, maybe it is more complicated (the ports of a thread). For the moment,
we do not take this case into account.

Feature group Implemented data 2012-02-03
In AADLv2, a feature group represents a group of component features or feature groups. It can be

declared for any kind of feature, for ports, and for access features. For the current implementation, only
the ports are considered. It is implemented the same as the port group (in AADLv1).

3.16 Connection

Table 19 gives the implementation status of connections.

Port connection Parameter connection Access connection Feature group connection
partly partly none partly

2011-07-22 2011-07-22 2012-02-03

Table 19. The implemented connections

The connection properties are listed in Table 20. They are implemented as process calls in the
xx connection property() subprocess. The Latency property is taken into account, and implemented
as a memory for a latency time.

48

3.16 Connection 3 ASME2SSME TRANSFORMATION
Property port conn. param. conn. access conn. feature group

conn.
Allowed Connection Binding Class partly partly none none

(2011-07-22) (2011-07-22) none none
Allowed Connection Binding partly partly none none

(2011-07-22) (2011-07-22) none none
Actual Connection Binding partly partly none none

(2011-07-22) (2011-07-22) none none
Required Virtual Bus Class partly partly none none

(2011-07-22) (2011-07-22) none none
Required Connection Quality Of Service partly partly none none

(2011-07-22) (2011-07-22) none none
Connection Pattern partly partly none none

(2011-07-22) (2011-07-22) none none
Connection Set partly partly none none

(2011-07-22) (2011-07-22) none none
Transmission Type partly - - -

(2011-07-22) - - -
Latency totally totally none none

(2011-07-22) (2011-07-22) none none
Classifier Matching Rule partly partly none none

(2011-07-22) (2011-07-22) none none

Table 20. The standard connection properties

3.16.1 Port connection

A semantic port connection represents a directed flow of data and control between threads, processors
and devices. A port connection x 2 C =< idx; ps; pd; P > (identified by idx) specifies a directed flow
of data between source port ps and destination port pd. The properties P can be associated to x.

1. Case 1: the connected entities belong to the same processor.
One considers that latencies associated with AADL connections are meaningless when connected
entities necessarily belong to the same processor: they are ignored in our implementation. These
connections are represented as direct links between the components.

T (x) ::= T (pd) := T (ps)

For example, t1 and t2 are two thread subcomponents of a same process p1:

port connection: t1.porta ! t2.portb;

This port connection is represented as follows in the body of the Signal process corresponding to
p1:

49

3.16 Connection 3 ASME2SSME TRANSFORMATION
process p1_Process = (? ...; ! ...;)

(| (..., t1_porta) := t1_Thread(...)
| t2_portb := t1_porta
| (...) := t2_Thread(..., t2_portb)
| ...|)

where ... end;

2. Case 2: the connected entities belong to different processors.
Latencies of process connections (of different processors) must be taken into account. Such
a connection is translated as a idx Connection() Signal process, the behavior of which
(idx Connection behavior()) is a memorization of the transmitted value to mimic the latency;
this connection is composed as usual with a idx Connection property().

For example, p1 and p2 are two processes, and they are executed on two different processors:

data port connection: p1.portc -> p2.portd;

This port connection is represented in the upper level system (sys1) process body as:

process sys1_System = (? ...; ! ...;)
(| p2_portd := cxx_Connection{integer}(p1_portc, latency_time_event)
| ...|)
where

...
process cxx_Connection = {type item_type;}

(? item_type write_data; event Latency_time_event; ! item_type read_data;)
(| read_data := xx_Connection_behavior

{item_type}(write_data, Latency_time_event)
| xx_Connection_property(Latency_time_event, Reference_time_event)
| Reference_time_event := when (ˆ write_data)
|)

where
event Reference_time_event;
process xx_Connection_behavior= {type item_type;}

(? item_type write_data; event Latency_time_event; ! item_type read_data;)
(| read_data := Connection{item_type}(write_data,Latency_time_event)
|);

process xx_Connection_property=
(? event Latency_time_event, Reference_time_event;)
(| Latency_property{Time_Units#ms, Time_Units#ms, 2, 5}

(Latency_time_event, Reference_time_event)
| ...|);

end;
...

end;

� The idx Connection behavior() subprocess invokes the Connection() process defined in
the AADL CONNECTION Signal library.

� The idx Connection property() subprocess invokes the processes that represent the prop-
erties that are specified for the connection.

50

3.16 Connection 3 ASME2SSME TRANSFORMATION
3.16.2 Parameter connection

A parameter connection represents a flow of data between the parameters of a sequence of subprogram
calls in a thread. A parameter connection may be declared between a thread and its subprogram or
between subprograms of a thread. We assume that a thread and its subprograms belong to a same
processor, so that the latencies associated with parameter connections are ignored.

A parameter connection definition is represented as a Signal process
(xxx Parameter Connection()). For simple, the output equals directly to the input. A subpro-
cess (xxx Parameter Connection property()) for specifying the properties is composed.

process xxx_Parameter_Connection = { type item_type; }
(? item_type write_data; ! item_type read_data;)
(| xxx_Parameter_Connection_property()
| read_data := write_data |)

where
process xxx_Parameter_Connection_property =();

end;

This process representing the connection is instantiated as a process call in the Signal process body of
the thread implementation.

For example, subp1 is a subprogram subcomponent of thread t, and they have a connection:

pconn1: parameter connection: in1 -> subp1.x1;

This connection is represented as follows in the process body of thread t:

process t_Thread = (? ...; ! ...;)
(| subp1_x1 := pconn1_Parameter_Connection{integer}(l_in1)
| ...|)

where
process pconn1_Parameter_Connection ={}();
...

end;

3.16.3 Access connection

Not implemented. The data access connection is not implemented explicitly, but implicit connection is
provided when accessing shared data.

3.16.4 Feature group connection (port group connection)

� Port group connection
Within a component, elements of a port group in its component type can be individually con-
nected to ports of subcomponents. But elements of a port group of a subcomponent can not be
individually connected to other subcomponents.

An port group connection of session2 cockpit display exercise example is given below:

51

3.17 Flow 3 ASME2SSME TRANSFORMATION
system implementation Flight_System.impl

subcomponents
D: device Display.MFD;
DM: system Display_Manager.impl;
...

connections
D_and_DM_conn: port group D.ReqOut_ResultIn -> DM.ReqIn_ResultOut;
...

end Flight_System.impl;

It can be represented in Signal as two equations that connect the pair of bundles.

process Flight_System_impl_system = (? ... ! ...)
(| l1 := D_device(l0)

| (..., l3) := DM_system(..., l2)
| l2 := l1
| l0 := l3
| ...|)

where
...
Page_Processing_Socket_BW l0;
Page_Processing_Socket_WB l1;
Page_Processing_Plug_BW l2;
Page_Processing_Plug_WB l3;

end;

� Feature group connection
Implemented data 2012-02-03

In the current implementation, only the ports are considered when translating the feature group.
Hence the feature group connection is implemented similar as port group connection.

3.17 Flow

Not yet implemented. (open)
A flow is a logical flow of data and control through a sequence of threads, processors, devices and

port connections or data access connections. A component (type) can have a flow specification, which
specifies whether a component is a flow source, a flow sink or there exists a flow path through the
component. Within a component implementation, a flow implementation specifies how a flow specifi-
cation is realized, and an end-to-end flow is a logical flow through a sequence of system components.
The differences between a flow implementation and an end-to-end flow is that, an end-to-end flow
involves the declaration of a path from a flow source or a flow path to a flow sink or a flow path within
the component.

An example of flow declaration (flow source, flow sink and flow path) is given:

device brake_pedal
features

brake_event: out event data port float_type;

52

3.18 Mode 3 ASME2SSME TRANSFORMATION
flows

Flow1: flow source brake_event;
end brake_pedal;

device throttle_actuator
features

throttle_setting: in data port float_type;
flows

Flow1: flow sink throttle_setting;
end throttle_actuator;

system cruise_control
features

brake_event: in event data port;
throttle_setting: out data port float_type;

flows
brake_flow: flow path brake_event -> throttle_setting;

end cruise_control;

A flow (path) implementation example is given:

system implementation cruise_control.impl
subcomponents

data_in: process interface;
control_laws: process control;

connections
C1: event data port brake_event -> data_in.brake_event;
C3: data port data_in.out_port -> control_laws.in_port;
C5: data port control_laws.out_port -> throttle_setting;

flows
brake_flow: flow path brake_event -> C1 -> data_in.interface_flow1

-> C3 -> control_laws.control_flow1 -> C5 -> throttle_setting;
end cruise_control.impl;

process interface
features

brake_event: in event data port;
out_port: out data port float_type;

flows
interface_flow1: flow path brake_event -> out_port;

end interface;

process control
features

in_port: in data port float_type;
out_port: out data port float_type;

flows
control_flow1: flow path in_port -> out_port;

end control;

3.18 Mode

Not yet implemented. (open)

53

3.19 Property 3 ASME2SSME TRANSFORMATION

flow specification
flow source none
flow sink none
flow path none

flow implementation
flow source none
flow sink none

flow implementation none
end to end flow none

predefined flow property
Latency none

Actual Latency none

Table 21. The status of flow

3.19 Property

A property p =< idp; assignment; in binding >2 P is composed of :

- idp is the identifier of the property,

- assignment ::= property value is the property value,

- in binding is a set of binding components.

A property p 2 P is represented as a SIGNAL process:

T (p) ::= process idp property = ()()

In the current implementation, most of the property processes are empty. For example, the process that
represents the Input Time property, the property values are fetched as process parameters, the actual
input time signal is intended to be verified (external C code should be provided) whether it satisfies the
timing constraints as specified in the property.

54

4 BEHAVIOR ANNEX TRANSFORMATION
4 Behavior Annex transformation

This behavior annex contains the following scopes:

� internal behavior of component implementations.

� extended run-time execution semantics, such as thread dispatch protocols.

� subprogram calls synchronization protocols.

In this document, we mainly focus on the behavior description part. Behavior specifications
annex can be attached to AADL component implementations. (When defined within component type, it
represents behavior common to all the associated implementations.)

The behavioral annex describes a state transition system by three sections (note: [x] represents x is
optional, fxg+ represents x repeats at least once, fxg� represents x repeats zero or several times):

behavior_annex ::=
[variables {behavior_variable}+]
[states {behavior_state}+]
[transitions {behavior_transition}+]

1. The variables section declares local typed identifiers. Types are data classifiers of the AADL
model.

behavior_varialbe ::=
declarator {, declarator}* : data_unique_component_classifier_reference;

declarator ::= id {array_size}*

2. states: declares automaton states. The states can be qualified as initial, final, complete. A
component starts from an initial state, and ends with a final state. It will resume from that state at
next dispatch.

A complete state represents temporary suspension of execution and resumption based on external
trigger conditions. A complete state acts as a suspend/resume state out of which threads and
devices are dispatched. (The complete state is not used in subprograms.)

A state that is qualified as final, and is not at the same time initial or complete, cannot accept
outgoing transitions.

behavior_state ::= id {, id}* : [initial] [complete] [final] state;

No composite state ??

3. transitions: this section could define system transitions from a source state to a destination state,
(the action is related to the transition and not to the states).

A transition out of the initial state is triggered by the initialize action.

A dispatch trigger will result in a transition out of a complete state to zero or one execution state.

A component is suspended if it performs a transition to a complete state, after having executed
the action associated to the transition. The next dispatch will restart the thread from that state.

55

4 BEHAVIOR ANNEX TRANSFORMATION
behavior_transition ::=

[id [[priority]] :] source_state_id {, source_state_id}*
-[behavior_condition]-> dest_state_id [behavior_action_block];

(a) priority
If transitions have been assigned a priority number, then the priority determines the tran-
sition to be taken. If more than one transition out of a state evaluates its condition to true,
and no priority is specified, then one transition is chosen non-deterministically. For mul-
tiple transitions with the same priority value, the selection is also non-deterministic. (No
example has been found yet)

(b) condition
Transitions can be guarded by dispatch conditions or execute conditions.

behavior_condition ::= dispatch_condition | execute_condition

i. Dispatch conditions explicitly specify dispatch conditions out of a complete state. A
dispatch trigger condition can be the arrival of events or event data on ports, calls on
provides subprogram access features, the stop event, and occurrence of dispatch related
and completion related time outs. If not specified, the default dispatch conditions
provided by the core AADL standard apply.
dispatch_condition ::=

on dispatch [dispatch_trigger_condition] [frozen frozen_ports]
dispatch_trigger_condition ::=

dispatch_trigger_logical_exp
| provides_subprogram_access_id
| stop
| timeout behavior_time
| timeout

dispatch_trigger_logical_exp ::=
dispatch_conjuction {or dispatch_conjunction}*

dispatch_conjuction ::= in_port_id {and in_port_id}*
frozen_ports ::= in_port_id {, in_port_id}*

Periodic dispatches are always considered to be implicit unconditional dispatch trig-
gers.
Timeout is a dispatch trigger condition that is raised after the specified amount of time
since the last dispatch or the last completion is expired. For the timed thread, the Time-
out property specifies the timeout value.
Stop events are dispatch triggers to model initiation of finalization and transition from a
complete state to the final state, possibly via one or more execution states.
If the freezing of an input port is specified with the Input Time property, then no freeze
input action must be specified in the corresponding dispatch condition (frozen section)
or behavior actions (>> operator) of the behavior subclause, or the two statements must
be equivalent.

ii. Execute conditions specify transition conditions out of an execution state to another
state.
execute_condition ::= [logical_exp | timeout | otherwise]

56

4 BEHAVIOR ANNEX TRANSFORMATION
For the timed or hybrid thread, the value of the timeout dispatch condition is given by
the Period property.
An otherwise execute condition becomes true when all the other execute conditions
associated with transitions from the same state are false.
An empty execute condition is equivalent to a condition that is always true.

(c) expression
The behavior expression exp includes:

i. variable expression: incoming ports and parameters, local variables, referenced data
subcomponents, and port count, port fresh and port dequeue.
p %returns the data value stored in the port variable. Multiple

reference to p return the same value unless a dequeue
or an input freeze is performed.%

p’count %returns the number of elements available through the port
variable p%

p’fresh %returns whether the port variable p contains a new value%
p? %dequeues an event (event data) on an event (event data)

port variable%

ii. constant expression: true; false; 1; 2; :::
iii. logical expression (operator): or; xor; and; not
iv. relational expression (operator): <; <=; =; >; >=; ! =
v. mathematical expression (operator): +; �; �; =; mod; rem; ��; abs

vi. other expression:
integer_value .. integer_value %integer range%
integer_value unit %time%

(d) action: Actions are built from basic actions, and a minimal set of control structures allowing
action sequences, action sets, conditional and finite loops. Action sequences are executed
in order, while action sets can be executed in any order. Finite loop allow iterations over
finite integer ranges.

behavior_action_block ::= {behavior_actions} [timeout behavior_time]
behavior_actions ::=

behavior_action | behavior_action_sequence | behavior_action_set
behavior_action_sequence ::= behavior_action {; behavior_action}+
behavior_action_set ::= behavior_action {& behavior_action}+

The behavior action includes:

i. assignment:
exp1 := exp2
exp := any ??

ii. communication:
s!(subprogram_parameter_list)

%calls the subprogram s. In action sequences, it represents
synchronous subprogram call, while in action sets, it
represents semi-synchronous call%

p>> %freeze input port p%

57

4 BEHAVIOR ANNEX TRANSFORMATION
p? %dequeues an event on an event port variable%
p?(x) %dequeues an element from port variable p, and assigns it

to the local variable x%
p! %calls Send_Output on an event (event data) port p,

transmission of the message is initiated immediately%
p!(x) %writes data x to the event data port p,

and calls the Send_Output service%
data_id!< %explicit call Get_Resource of shared data%
data_id!> %explicit call Release_Resource of shared data%

*!< %starting time of a time range%

*!> %ending time of a time range%

Note:
If the sending time of an output port is specified with the Output Time property, then no
send output action must be specified in the corresponding behavior actions (! operator)
of the behavior subclause.

iii. timing:
computation(min, max) %use of CPU for a possibly non-deterministic

period of time between min and max%

iv. loop:
for (id : data_unique_component_classifier_reference in element_values)

{behavior_actions;}

forall (id : data_unique_component_classifier_reference in element_values)
{behavior_actions;}

while (exp)
{behavior_actions}

do behavior_actions
until (exp)

v. condition:
if (exp1) behavior_actions

{elseif (exp2) behavior_actions}*
[else behavior_actions]

end if;

vi. action sequence: behavior action ; behavior action

vii. action set: behavior action & behavior action

Synchronization protocols This annex introduces more precise communication protocols:

� HSER for Highly Synchronous Execution Request: the caller thread remains blocked until the
completion of the corresponding behavior action in the server thread.

� LSER for Loosely Synchronous Execution Request: the caller thread remains blocked until the
beginning of the server thread is ready to serve this request.

� ASER for ASynchronous Execution Request:the caller thread thread is never blocked by the cor-
responding remote call.

...

58

4.1 Transition system transformation 4 BEHAVIOR ANNEX TRANSFORMATION
4.1 Transition system transformation

(expected)
The transition system can be represented using Signal automata.
...

4.2 Expression transformation

(expected)
The basic expressions (operators), such as: x; or; and; not; <; <=; =; >; >=; ! =; +; �; �; =,

can be translated to corresponding Signal expressions (operators), listed in Table 22.
The translation of other expressions to be discussed.
Note:
We use S(E) (or S(A)) to represent a AADL expression E (or action A) in Singal.

BA expression Signal expression
identifier x x
constant true, false, 1, 2, ... true, false, 1, 2, ...
logical not E not S(E)

E1 or E2 S(E1) or S(E2)
E1 and E2 S(E1) and S(E2)
E1 xor E2 S(E1) xor S(E2)

relational E1 < E2 S(E1) < S(E2)
E1 <= E2 S(E1) <= S(E2)
E1 = E2 S(E1) == S(E2)
E1 > E2 S(E1) > S(E2)
E1 >= E2 S(E1) >= S(E2)
E1 ! = E2 S(E1) = = S(E2)

mathematics E1 + E2 S(E1) + S(E2)
E1 � E2 S(E1) � S(E2)
E1 � E2 S(E1) � S(E2)
E1 = E2 S(E1) = S(E2)
E1 mod E2 S(E1) modulo S(E2)
E1 rem E2
E1 �� E2 S(E1) �� S(E2)
abs E abs(S(E))

Others p’count read the value of counter
p’fresh
p? read one element from p

Table 22. Expression translation

59

4.3 Action transformation 4 BEHAVIOR ANNEX TRANSFORMATION
4.3 Action transformation

(expected)
Part of the actions possible transformation is listed in Table 23. Actions, such as loop, sequence, set,

are left to be discussed.

BA action Signal action
assignment E1 := E2 S(E1) := S(E2) or S(E1) ::= S(E2) ??

E1 := any ??
communication s!(p1; p2; :::) subprogram process instance:s(p1,p2,...)

?? depends on the protocol
p >> ??
p? p when ...

get one element of p at certain clock
p?(x) x:= p when ...
p! ??
p!(x) ??
d! < ??
d! > ??
�! < ??
�! > ??

timing computation(E1, E2) ??
loop for (x: data ref in element values) fAg ??

forall (x: data ref in element values) fAg ??
while (E) fAg ??
do A until (E) ??

condition if (E1) A1 elseif (E2) A2 else A3 end if; S(A1) when S(E1)
j S(A2) when S(E2) when not S(E1)
j S(A3) when not S(E2) when not S(E1)

sequence A1;A2 ??
set A1;A2 ??

Table 23. Actions translation

4.4 Synchronization protocols transformation

(expected)

60

5 Implementation technical notes

This section gives some technical points on the implementation.

5.1 Program architecture

Implemented date: Oct 21, 2011
The program of ASME2SSME translation is organized as follows. In general, each AADL component

is separated into a java class: ASME2SSME Translate xx. The hierarchy of classes and sub classes is
added.

� ASME2SSME: translations from AADL to SSME.

– ASME2SSME Translate AADLPackage
– ASME2SSME Translate AADLSpec
– ASME2SSME Translate AnnexLibrary
– ASME2SSME Translate Thread

1. ASME2SSME Translate AperiodicThread
2. ASME2SSME Translate BackgroundThread
3. ASME2SSME Translate HybridThread
4. ASME2SSME Translate PeriodicThread
5. ASME2SSME Translate SporadicThread
6. ASME2SSME Translate TimedThread

– ASME2SSME Translate Bus
– ASME2SSME Translate Common
– ASME2SSME Translate Connection

1. ASME2SSME Translate ParameterConnection
2. ASME2SSME Translate PortConnection
3. ASME2SSME Translate PortGroupConnection

– ASME2SSME Translate Data
– ASME2SSME Translate Device
– ASME2SSME Translate Feature

1. ASME2SSME Translate Port
(a) ASME2SSME Translate DataPort
(b) ASME2SSME Translate EventDataPort
(c) ASME2SSME Translate EventPort

2. ASME2SSME Translate PortGroup
– ASME2SSME Translate Flow

5.2 Use of bundles 5 IMPLEMENTATION TECHNICAL NOTES
– ASME2SSME Translate Memory
– ASME2SSME Translate Mode
– ASME2SSME Translate Name
– ASME2SSME Translate Process
– ASME2SSME Translate Processor
– ASME2SSME Translate Property
– ASME2SSME Translate Subprogram
– ASME2SSME Translate System
– ASME2SSME Translate ThreadGroup
– ASME2SSME Simulate Dispatch

� signalTreeAPI: API for SSME setting operations.

� AADLCoLAPI: API for AADL getting operations.

5.2 Use of bundles

Implementation date: Aug 03, 2011
Signal “bundles” (groups of signals) are used to simplify the generated code. The following types of

bundles are added:

1. A bundle type for representing the Dispatch, Resume and Deadline signals. This bundle type is
predefined in the AADL TYPE.SIG Signal library.

type CTL1 = bundle (event Dispatch; event Resume; event Deadline;);

2. A bundle type for representing the Complete and Error signals. This bundle type is predefined in
the library.

type CTL2 = bundle (event Complete; event Error;);

3. A bundle type for representing the time event signals (Frozen time event and Output time event)
of the inputs/outputs. For example, a thread t1 contains an in port in1 and an out port out1. Then
in our implementation, a bundle type named t1 TIME EVENT is created, which is composed of
two event fields: in1 Frozen time event and out1 Output time event.

type t1_TIME_EVENT = bundle (event in1_Frozen_time_event;
event out1_Output_time_event;);

This category of bundle type is generated dynamically during the transformation. Each thread
will have one such bundle type, in which each field is an event signal that represents the input (or
output) time event for an input (or output).

62

5.3 Use of implicit signals 5 IMPLEMENTATION TECHNICAL NOTES
5.3 Use of implicit signals

Implementation date: Aug 16, 2011
To make the Signal code easier to read, we omit the input/output signals of a process instance if the

effective inputs/outputs have the same name as the ones declared in the process definition.
Since the interface of a generated Signal process (e.g., a Signal process that represents an AADL

processor) may contain many inputs and outputs, it makes the reader a bit difficult to search the definition
(for an output) or usage (for an input) in the process body. In order to explicitly inform the inputs/outputs
in the body, we add equations to indicate the usage, xx := l xx for an output xx or l yy := yy for an
input yy, where l xx and l yy are local signals that are used as inputs/outputs of the subprocesses.

5.4 Addition of comments

Implementation date: Aug 17, 2011
A new Signal API function, STree addcomments(), is defined to add comments to a Signal element.

The following comments are added:

� At the very beginning of the generated Signal code, we add comments to identify the Signal
version, the copyright information, the date, etc. These information are generated in the method
Generate F ileComments(). The following messages are given:

%This file has been generated by SSME translator version xx.
Copyright: IRISA / INRIA Rennes - developed by ESPRESSO team.
Source simple_door_management in file simple_door_management.aaxl.
Date 2011/Aug/17 15:00:00
%

� Comments for data type.

type DataB_imp_Data = struct (DataA x; DataA y;);
%data type for AADL data (implementation) DataB.imp %

� Comments for process instance. For example, the comment for a subprocess instance that repre-
sents a device ClosedSensor.imp is added in the Door impl System process body.

process Door_imp_System = (! DataA closed1;)
(| Door_imp_System_behavior()%system behavior sub process %
| Door_imp_System_property()%system property sub process%
| closedsensor1_closed := ClosedSensor_imp_Device{}()

%process instance of AADL device ClosedSensor.imp%
| closed1 := closedsensor1_closed
|)

Some other comments are added. They are not all listed here.

63

5.5 Java documentation 5 IMPLEMENTATION TECHNICAL NOTES
5.5 Java documentation

Implementation date: Feb 03, 2012 .
The implementation of the transformation mainly contains the following Java files (each Java class

contains a set of methods).

1. ASME2SSME Translate xx.java: a Java class for translating AADL elements xx to Signal ele-
ments.

2. AADLCoLAPI.java: a high level Java API for getting methods from AADL components.

3. signalTreeAPI.java: a high level Java API for setting methods of Signal abstract tree.

Java documentation is generated for these Java files. Each method is given a brief comment on its
parameters, return value and function.

5.6 Use of .aadl text file

Implementation date: June, 2012
From OSATEv2, Xtext is used to access the aadl resource. With the help of Xtext,

we can directly access the objects from .aadl text file instead of .aaxl object file. The
method xtextEditor:getDocument():readOnly() is used (details can be found in method
startTransformation() in file ASME2SSME:java).

Important: To access the objects of a text aadl file, this file must be opened in a current view.

5.7 Connect to BA plug-in

Implementation date: June, 2012
The BA plug-in (RAMSES) is installed from souce code. The class BehaviorAnnex of BA extends

the AnnexSubclause class of OSATEv2.
The test code can be found in method ASME2SSME AADLPackage() in file

ASME2SSME Translate AADLPackage:java.

5.8 Connect to schedule generator

Implementation date: September, 2012
An automatic schedule generator based on affine clock is implemented. The code is uploaded to

gforge svn+ ssh : ==username@scm:gforge:inria:fr=svnroot=polychrony=ASME2SSME.
A class ASME2SSME Scheduling is added to connect to the schedule generator. A list of time infor-

mation of each thread is construceted. The schedule generator reads this list, and performs scheduling.
In method ASME2SSME Processor Behavior() in file ASME2SSME Translate Processor.java, two

versions of scheduler are connected: 1) version 1: simulate the dispatch, deadline schedule signals
separately; 2) version 2: connect to schedule generator.

64

References

[1] ASME2SSME Gforge. svn+ssh://username@scm.gforge.inria.fr/svn/
polychrony/ASME2SSME.

[2] OPEES Project. http://www.opees.org/.

[3] OSATE. http://gforge.enseeiht.fr/projects/osate/.

[4] SAE Aerospace. Architecture Analysis and Design Language (AADL). SAE AS5506, 2004.

[5] SAE Aerospace. Aerospace Standard AS5506A: Architecture Analysis and Design Language
(AADL) . SAE AS5506A, 2009.

[6] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous programming with
events and relations: the signal language and its semantics. Science of Computer Programming,
pages 16:103–149, 1991.

[7] Loı̈c Besnard, Thierry Gautier, and Paul Le Guernic. SIGNAL V4-Inria Version: Reference man-
ual, 2011.

[8] ESPRESSO, INRIA. SME, 2011. http://www.irisa.fr/espresso/Polychrony/.

[9] ESPRESSO Team. ESPRESSO AADL Digest Report. Report, April 2011.

[10] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. Polychrony for System Design.
Journal for Circuits, Systems and Computers, 12:261–304, 2002.

[11] Yue Ma. Compositional modeling of globally asynchronous locally synchronous (GALS) architec-
tures in a polychronous model of computation. PhD thesis, University of Rennes1, France, 2010.

[12] Huafeng Yu, Yue Ma, Yann Glouche, Jean-Pierre Talpin, Loı̈c Besnard, Thierry Gautier, Paul Le
Guernic, Andres Toom, and Odile Laurent. System-level Co-simulation of Integrated Avionics
Using Polychrony. In SAC’11, Taiwan, March 2011.

A TEST CASES
A Test cases

Table 24 gives a list of cases that are tested in ASME2SSME (based on the version implemented on
18/05/2012) translation tool. Since there are not many AADLv2 examples published, the cases we used
are mainly modified from their v1 version by hand.

Name Size Main features Not yet implemented
(lines)

ProducerConsumer 170 system, processor, process, thread, behavior annex
shared data, behavior annex (implemented by hand)

APOTA 760 system, processor, process behavior annex
thread, shared data, behavior annex

test sp 240 system, processor, process, thread, call of external
subprogram, subprogram call simulink source code

case1 110 system, process,
processor, thread,
subprogram, subprogram call

case2 125 system, processor, process, thread,
subprogram, subprogram call,
requires subprogram access

case3 100 system, processor, remote subprogram call
process, thread, subprogram

SDSCS 500 system, processor, process, thread bus access
Flight Mgmt 160 system, processor, process, thread call of external c code
Flight Mgmt2* 160 system, processor, call of external c code,

process, sporadic thread (clock constraint)
safetyexample 75 system, processor, process, thread
safetyexample2 70 system, processor, process,

thread (an exception is thrown
when thread type not specified)

securityexample 57 system, processor, process,
periodic thread, aperiodic thread

errormodelexample* 80 system modes, error annex
avionics system 140 system, device flow
flow latency

Avionics System 125 system, device flow

Table 24. Test examples list

All these examples can be translated to Signal programs (maybe with some components not imple-
mented yet) and the generated Signal code can be complied (except for the two marked with *). For
further code execution and simulation, some processes need to be modified or replaced, e.g., the Signal
process that are declared as external should be provided, the behavioral automaton should be added, etc..

The following subsections will give a more precise description for some of the examples.

66

A.1 ProducerConsumer A TEST CASES
A.1 ProducerConsumer

This case study is from C-S Communication and Systems. Four threads share one data Queue in a
process.

The example implements the following components (Table 25):

Components Implemented Not yet implemented
system subcomponents, port connections
processor subcomponents
memory
process subcomponents, port connections
thread event port, share data behavior annex (hand written)

requires data access,
Dispatch Protocol, Period, Deadline

data data shared by threads

Table 25. ProducerConsumer implementation

The associated code (Table 26) is attached in folder ./Examples/ProducerConsumer:

File Description
ProducerConsumer.aadl original AADLv1 text file
ProducerConsumer.aadl2 confirm to AADLv2 version
ProducerConsumer.aaxl2 AADLv2 object file
ProducerConsumer.ssme generated SSME file
CS.SIG generated Signal program
ProducerConsumer.SIG refined Signal program for invoking automata Signal process
automata.SIG hand written automata Signal process
ProducerConsumerSim.SIG simulation code
simuLib.SIG simulation library code

Table 26. ProducerConsumer file

A.2 APOTA

This case study is from C-S Communication and Systems. Twelve data are shared by five threads in a
same process.

The example implements the following components (Table 27):
The associated code (Table 28) is attached in folder ./Examples/APOTA:

A.3 Subprogram case study

This case study is from TELECOM ParisTech (http://eve.enst.fr/aadl/wiki/CaseStudySimulink).

67

A.3 Subprogram case study A TEST CASES
Components Implemented Not yet implemented
system subcomponents
processor subcomponents, Clock Period
memory Read Time
process subcomponents, port connections, data access
thread event port, subcomponents, behavior annex

requires data access,
Dispatch Protocol, Period, Deadline

data data shared by threads

Table 27. APOTA implementation

File Description
ProducerConsumer.aadl original AADLv1 text file
CS APOTA.aadl2 confirm to AADLv2 version
CS APOTA.aaxl2 AADLv2 object file
CS APOTA.ssme generated SSME file
CS APOTA.SIG generated Signal program

Table 28. APOTA files

A graphical view of AADL model is shown in figure 16. Three processes are given: pilot, con-
troller and aircraft. Each process has one thread, and the thread calls a subprogram that is described by
Simulink source code.

Figure 16. AADL model (graphical view)

68

A.4 Doors management A TEST CASES
test sp.SIG is the Signal program generated by our tool. In order to make the program executable,

we add some behavior instead of external process in test sp2.SIG for test and simulation. The code is
attached in folder ./Examples/Subprogram.

Table 29 shows the implementation in this case.

Components Implemented Not yet implemented
system subcomponents, port connections,

actual processor binding
processor requires bus access
bus
process subcomponents, port connections
thread data port,

parameter connections, subprogram call,
Dispatch Protocol, Period

subprogram parameter call of external Simulink code
subprogram call parameter connections

Table 29. Case of subprogram call implementation

A.4 Doors management

Simplified doors and slides control system (SDSCS) is a generic simplified version of the system that
allows managing doors on Airbus series aircrafts. Each passenger door has a software handler, which
achieves the management tasks, such as monitoring door status via doors sensors, controlling flight lock
actuators, etc.. These tasks are implemented with simple logic that determines the status of monitors and
actuators according to the sensor readings. Figure 17 is an overview of SDSCS modeled in AADL.

The implementation status of this example is given in Table 30. The code is attached in folder ./Ex-
amples/Doors.

Components Implemented Not yet implemented
system data ports, port connections, bus access

subcomponents, Actual Processor Binding
processor requires bus access
device data port, requires/provides bus access

Dispatch Protocol, Period
bus
process data ports, port connections,

subcomponents
thread data port,

Dispatch Protocol, Period

Table 30. SDSCS implementation

69

A.4 Doors management A TEST CASES

Figure 17. AADL model of SDSCS

70

