
ESPRESSO AADL Digest Report

ESPRESSO Team

April 28, 2011

Foreword

This document is a draft that contains many copy/past from SAE AS5506A [2]. Its pur-
pose is to propose a synthetic view of AADL behavior aspects, asserted by uninterpreted
citations, and related to Polychronous model.

Paragraph formats

The following formats are used:
This is a citation extracted from SAE AS5506A.
This is a property definition.

This is a comment/proposal related to Signal/Polychrony.
This is a short specific comment or question.
Note: the notation “+” represents alternative choice, “opt()” represents optional and

“list()” represents repeatable (repeat at least once).

Contents

1 AADL purpose and organization 5

2 AADL components, packages and annexes 6
2.1 Specification . 6
2.2 Package . 6
2.3 Components . 7

2.3.1 Category of component (AADL 4.3, 4.4) 8
2.3.2 Prototype(4.7, for information) . 9
2.3.3 Component description (AADL 3, 4.3, 4.4) 9
2.3.4 Connections . 11

3 Data 12
3.1 Data component . 12
3.2 Standard properties . 14
3.3 Data component access . 15

1

CONTENTS CONTENTS

3.4 Behavior: critical region . 16
3.5 Data in Polychrony . 16

3.5.1 Data type . 17
3.5.2 Data subcomponent (declared in a subprogram) 18
3.5.3 Protected data (data subcomponent not in a subprogram) 19

4 Subprogram 19
4.1 Subprogram component . 20

4.1.1 Structure . 20
4.1.2 Abstract syntax . 20
4.1.3 Standard properties . 21

4.2 Subprogram call . 22
4.3 Behavior . 22
4.4 Subprogram in Polychrony . 23

5 Subprogram group 24
5.1 Abstract syntax . 24
5.2 Standard properties . 25

6 Thread 25
6.1 Structure . 25
6.2 Abstract syntax . 25
6.3 Standard properties . 27
6.4 Behavior . 28

6.4.1 Predeclared ports . 29
6.4.2 Real time counters . 29
6.4.3 Dispatch Protocol . 29
6.4.4 Thread states and state transition . 31

6.5 Thread in Polychrony . 33
6.5.1 Expressiveness . 33
6.5.2 Uniform view . 34
6.5.3 Remaining questions . 35

7 Thread group 36
7.1 Abstract syntax . 36
7.2 Standard properties . 37

8 Process 37
8.1 Structure . 37
8.2 Abstract syntax . 37
8.3 Standard properties . 38
8.4 Process and Polychrony . 39

2

CONTENTS CONTENTS

9 Execution platform components 39
9.1 Processor . 39

9.1.1 Abstract syntax . 40
9.1.2 Standard properties . 40

9.2 Virtual processor . 41
9.2.1 Abstract syntax . 41
9.2.2 Standard properties . 42

9.3 Memory . 42
9.3.1 Abstract syntax . 43
9.3.2 Standard properties . 43

9.4 Bus . 44
9.4.1 Abstract syntax . 44
9.4.2 Standard properties . 44

9.5 Virtual bus . 45
9.5.1 Abstract syntax . 45
9.5.2 Standard properties . 45

9.6 Device . 46
9.6.1 Abstract syntax . 46
9.6.2 Standard properties . 46

10 System 47
10.1 Abstract syntax . 47
10.2 Standard properties . 48
10.3 Component binding . 49
10.4 System operation mode . 50
10.5 AADL and physical time . 51

10.5.1 Perfect/unperfect real time(5.4.(5,6)) 51
10.5.2 Asynchronous system (5.4.6) . 52

10.6 System and Polychrony . 53

11 Features and shared access 53
11.1 Port . 54

11.1.1 Abstract syntax of Port . 54
11.1.2 Standard properties . 56
11.1.3 In out (common) port behavior . 62
11.1.4 Data port . 64
11.1.5 Event (Event data) port . 73
11.1.6 Port and Polychrony . 87

11.2 Parameter . 87
11.2.1 Abstract syntax of Parameter . 87
11.2.2 Standard properties . 87
11.2.3 Parameter and Polychrony . 87

11.3 Subprogram and subprogram group access 88
11.3.1 Subprogram access . 88

3

CONTENTS CONTENTS

11.3.2 Subprogram group access . 89
11.4 Data access . 89

11.4.1 Abstract syntax of Data access . 89
11.4.2 Standard properties . 90
11.4.3 Data access and Polychrony . 91

11.5 Bus access . 95
11.5.1 Abstract syntax of Bus access . 95
11.5.2 Standard properties . 95
11.5.3 Bus access and Polychrony . 95

11.6 Feature group . 95
11.6.1 Abstract syntax of Feature group 96
11.6.2 Standard properties . 96
11.6.3 Feature group and Polychrony . 96

12 Connection 96
12.1 Port connection . 96

12.1.1 Port connection categories . 97
12.1.2 Legal port connection . 98
12.1.3 Standard properties . 101
12.1.4 Standard behavior . 102
12.1.5 Data port connection and Polychrony 103
12.1.6 Event (event data) port connection and Polychrony 106

12.2 Parameter connection . 107
12.2.1 Abstract syntax of Parameter connection 108
12.2.2 Parameter connection and Polychrony 108

12.3 Feature group connection . 109
12.3.1 Abstract syntax of Feature group connection 109

12.4 Access connection . 110
12.4.1 Abstract syntax of Access connection 110

13 Flows 112
13.1 Abstract syntax . 112
13.2 Standard properties . 113
13.3 Flows and Polychrony . 113

14 Properties 113
14.1 Abstract syntax . 113
14.2 Build in property types . 117
14.3 Scheduling features . 118
14.4 Property and Polychrony . 119

14.4.1 Input Time . 119
14.4.2 Output Time . 120
14.4.3 Access Time . 121
14.4.4 aadlinteger . 121

4

1 AADL PURPOSE AND ORGANIZATION

14.4.5 Time Unit . 122
14.4.6 IO Reference Time . 122
14.4.7 Queue Size . 122
14.4.8 Dequeue Items . 122
14.4.9 Fan Out Policy . 122

15 Modes 124
15.1 Mode declaration . 125

15.1.1 Abstract syntax . 125
15.1.2 Standard properties . 125

15.2 Model life . 126
15.3 Mode behavior . 126

15.3.1 Mode switch within a thread . 127
15.3.2 Mode switch within set of threads 127
15.3.3 Mode switch for thread that are not synchronized 128

16 An AADL abstract syntax 129
16.1 Notations . 129

16.1.1 General AST . 129
16.1.2 AADL AST . 129

16.2 Lexical elements . 129
16.2.1 Word characters . 130
16.2.2 Other characters . 130
16.2.3 Decimal literals . 130
16.2.4 Based literals . 130
16.2.5 String literals . 130
16.2.6 Comments . 130
16.2.7 Identifiers . 130

16.3 Non extensible AADL . 131
16.3.1 Component type . 131
16.3.2 Component implementation . 132

16.4 Annex . 133
16.5 Prototypes . 133
16.6 Extensible AADL . 133

1 AADL purpose and organization

(1.1(1)) The purpose of the AADL is to provide a standard and sufficiently precise (ma-
chine-processable) way of modeling the architecture of an embedded, real-time system,
such as an avionics system or automotive control system, to permit analysis of its proper-
ties, and to support the predictable integration of its implementation...

(1(8))...The standard specifies relevant characteristics of the detailed design and imple-
mentation descriptions, such as source text written in a programming language or hardware

5

2 AADL COMPONENTS, PACKAGES AND ANNEXES

description language, from an external (black box) perspective. These relevant character-
istics are specified as AADL component properties, and as rules of conformance between
the properties and the described components.

(1.1(2)) The AADL describes application software and execution platform components
of a system, and the way in which components are assembled to form a complete system or
subsystem. The language addresses the needs of system developers in that it can describe
common functional (control and data flow) interfacing idioms as well as performance-crit-
ical aspects relating to timing, resource allocation, fault-tolerance, safety and certification.

2 AADL components, packages and annexes

2.1 Specification

(3(2)) An AADL specification consists of global AADL declarations and AADL declara-
tions. The global AADL declarations are comprised of package specifications that contain
globally accessible AADL declarations and property set declarations. AADL declarations
include component types, component implementations, feature group types, and annex li-
braries. AADL declarations can be declared in packages and are therefore accessible to
other packages, or they can be declared directly in an AADL specification and not be ac-
cessible to packages...

Abstract syntax

AADL specification ��� Package spec � Property set

2.2 Package

(4.2(1)) A package provides a way to organize component types, component implemen-
tations, feature group types, and annex libraries into related sets of declarations by intro-
ducing separate namespaces. Package names built using identifiers separated by double
colons (“::) ... In other words, complete sys :: first independent :: fuel flow is distinct from
complete sys ::second independent ::fuel flow. Packages cannot be declared inside other
packages.

(4.1(1)) ...The content of packages, e.g., classifiers, can be referenced from anywhere
by qualifying the classifier reference with the package name. The content of property
sets, i.e., property type, property constant and property definitions, can be referenced from
within anywhere by qualifying the property type, constant, or property reference with the
property set name. Component classifiers, feature group types, and annex libraries that are
declared directly in an AADLspecification are anonymous declarations. They are consid-
ered to reside in a local name space and can only be referenced by another anonymous
declaration.

Abstract syntax

6

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

Package spec ��� packageID � opt�Public package declarations�
� opt�Private package declarations� � opt�list�Property��

Package declarations ��� Package category � list�Name V isibility declaration�
� list�AADL declaration�

Package category ��� �private, public�
Private package declarations ��� Package declarations��Package category � private��
Public package declarations ��� Package declarations��Package category � public��
AADL declaration ��� Classifier declaration �Annex library

Classifier declaration ��� Software �Execution platform �Composite

Software ��� Data � Subprogram � Subprogram group � Thread

� Thread group � Process

Execution platform ��� Memory � Processor �Bus �Device

� V irtual processor � V irtual bus

Composite ��� System

Name V isibility declaration ��� Import declaration �Alias declaration

Import declaration ��� list��Package name � property set ID��
Alias declaration ��� defining ID � Package name

Annex library ��� annexID �Annex spec

Property ��� property name ID �Assignment � In binding

Assignment ��� property value

In binding ��� list�platform component reference�
2.3 Components

(4(2)) A component represents some hardware or software entity that is part of a system
being modeled in AADL. A component has a component type, which defines a functional
interface.

(4.4(1)) ... Every component implementation is associated with a component type. A
component type may have zero or more component implementations declared.

(4(6)) Components can be declared in terms of other components by refining and ex-
tending existing component types and component implementations. This permits partially
complete component type and implementation declarations to act as templates that may
have explicit parameter (prototype) specifications. Such templates can represent a common
basis for the evolution of a family of related component types and implementations.

(4(2)) The component type acts as the specification of a component that other compo-
nents can operate against. It consists of features, flows, and property associations.

(4(3)) A feature models a characteristic of a component that is visible to other compo-
nents. Features are named, externally visible parts of the component type, and are used to

7

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

exchange control and data via connections with other components...
(8(1)) ...The four categories of features are: port, subprogram, parameters, and subcom-

ponent access.
(8.1(1)) Feature groups represent groups of component features or feature groups.
(10(1)) A flow is a logical flow of data and control through a sequence of threads, pro-

cessors, devices, and port connections or data access connections. A component can have
a flow specification, which specifies whether a component is a flow source, i.e., the flow
starts within the component, a flow sink, i.e., the flow ends within the component, or there
exists a flow path through the component, i.e., from one of its incoming ports to one of its
outgoing ports.

(10(2)) The purpose of providing the capability of specifying end-to-end flows is to
support various forms of flow analysis, such as end-to-end timing and latency, reliability,
numerical error propagation, Quality of Service (QoS) and resource management based on
operational flows...

(3(4)) A component implementation specifies an internal structure in terms of sub-
components, connections between the features of those subcomponents, flows across a
sequence of subcomponents, modes to represent operational states, and properties.

(4(4)) ... Component implementations represent variants of a component that adhere
to the same interface, but may have different property values and realizations... Subcom-
ponents are instantiations of component classifiers, i.e., component types and implementa-
tions.

(3(12)) “Features and flow specifications of component types (...) subcomponents, con-
nections, flows, and modes of component implementations may have incomplete specifica-
tions. These (...) act as templates that can be parameterized by specifying prototypes. These
specifications may be later refined in (...) extensions with the completion of classifier refer-
ences and property associations. Component type extensions can also introduce additional
features, flow specifications, and properties. Such extensions can add new subcomponents,
connections, flows, modes, and properties to component implementations.

2.3.1 Category of component (AADL 4.3, 4.4)

• abstract: generic that can be refined into 2...10 (3(2)).

• Software components

1. data: represents static data in source text (3(15))

2. subprogram (- group): represents source text that is executed sequentially
(3(17))

3. thread (- group): models concurrent tasks (3(18))

4. process: models space partition in terms of virtual address spaces (3(20))

• Execution platform components

1. (virtual -) processor (3(22))

8

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

2. memory (3(24))

3. (virtual -) bus (3(25))

4. device (3(27))

• Compositional components system (3(28))

2.3.2 Prototype(4.7, for information)

(1) Prototypes represent parameters for component type, component implementation, and
feature group type declarations. They allow classifiers to be supplied when a component
type, component implementation, or feature group is being extended. The prototypes can
be referenced in place of classifiers in feature declarations, in subcomponent declarations,
and as prototype bindings. The latter allows parameterization via prototype to be propa-
gated down the system hierarchy.

2.3.3 Component description (AADL 3, 4.3, 4.4)

In this document each of the component descriptions contains a structure table that lists the
categories of elements that can belong or not to a component. The property is present in all
components, and thus implicit in those tables.

1. Component type (AADL 3, 4.3)

(4.3(1)) A component type specifies the external interface of a component that its
implementations satisfy.

(4.3(5)) Component types can declare prototypes, i.e., classifier parameters that are
used in features. The prototype bindings are supplied when the component types is
being extended or used in subcomponent declarations.

Component type elements A component type specifies a functional interface in
terms of:

(a) features (3(6)) that can be

i. ports (to support data/control directional flows)
ii. subprograms (synchronous procedure call)

iii. (shared) access to data, subprograms(- group), bus

(b) flow specification (3(32)) (across a sequence of subcomponents)

(c) modes (3(29)) represent operational states of components in the modeled phys-
ical system; a mode change can change the set of active components and con-
nections.

(d) properties (3(9))property has a name, a type and a value

9

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

Syntax to be added

2. Feature group (AADL 8.1, for information)

(8(3)) Feature groups represent groups of component features. Feature groups can
contain feature groups. Feature groups can be used anywhere features can be used.
Within a component, the features of a feature group can be connected to individually.
Outside a component, feature groups can be connected as a single unit.

(8.1(L2))A feature group type can be declared to be the inverse of another feature
group type, as indicated by the reserved words inverse of and the name of a feature
group type.

(8.1(5)) The inverse of reserved words of a feature group type declaration indicate
that the feature group type represents the complement to the referenced feature group
type.

Two feature group types are considered to complement each other if the following
holds:

(8.1(L9)) The number of feature or feature groups contained in the feature group and
its complement must be identical;

(8.1(L10)) Each of the declared features or feature groups in a feature group must
be a pair-wise complement with that in the feature group complement, with pairs
determined by declaration order....

(8.1(L11)) If both feature group types have zero features, then they are considered to
complement each other;

(8.1(L12)) Ports are pair-wise complementary if they have complementary direction
(out / in, in / out, in out / in out), and are of the same port type. In the case of event
data or data ports, the data component classifier reference must be identical;

(8.1(L13)) Access features are pair-wise complementary if they have complementary
access direction (requires / provides, provides / requires), and have matching access
classifiers with the matching criteria being identity.

3. Component implementation(AADL 3, 4.4)

(4(4))...A component implementation specifies the realization of a component vari-
ant, i.e., an internal structure for a component as an assembly of subcomponents.

Syntax to be added

Subcomponent inclusion

(a) Software components
(b) Execution platform components

• (virtual) bus may contain virtual bus.

10

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

Figure 1: Subcomponent inclusion

• Device may contain bus.
• Memory may contain memory, bus.
• Processor may contain virtual processor, memory, (virtual) bus.
• Virtual processor may contain virtual processor, virtual bus.

(c) System may contain data, subprogram (group), process, (virtual) processor,
memory, (virtual) bus, device, system

2.3.4 Connections

(3(31)) AADL connections specify patterns of control and data flow between individual
components at runtime. A semantic connection can be made between

a data component and threads that access the data component for data access connec-
tions,

a subprogram component and threads that require call access to the subprogram,
two threads,
the event port of a thread, device, or processor and a mode transition for mode transition

connections.
a thread and a device or processor for port connections,
a bus component and buses, memory, processor, and device components for bus access

connections,
(3(31)) ...A semantic connection is represented by a set of one or more connection dec-

larations that follow the component hierarchy from the ultimate connection source to the

11

3 DATA

ultimate connection destination.

3 Data

(5.1(1))A data component type represents a data type in source text. The internal structure
of a source text data type, e.g., the instance variables of a class or the fields of a record,
is represented by data subcomponents in a data component implementation. Provides sub-
program access features of a data component type can model the concept of methods on
a class or operations on an abstract data type. If provides subprogram access features are
declared, the data component may only be accessed through the subprograms...

A data component implementation represents the internal structure of a data component
type.

A data subcomponent represents a data instance, i.e., data in the source text that is
potentially sharable between threads and persists across thread dispatches.

(5.1(2)) A data component classifier, i.e., a data component type name or a data com-
ponent type and implementation name pair (separated by a dot .), is used as data type
indicator in port declarations, subprogram parameter declarations, and data subcomponent
declarations.

(5.1(4)) References to data components are modeled through provides and requires data
access. Threads, processes, systems, and subprogram may access data by reference.

3.1 Data component

• Data components classifiers represent data types.

• Data subcomponents represent static data in source text. Only those components that
explicitly declare required data access can access such sharable data subcomponents.
Data subcomponents can be shared within the same process and across processes (if
supported by the runtime system).

• When declared in a subprogram, that data subcomponent represents a local variable.
This data can not be made accessible outside the subprogram through a provides data
access declaration.

• Data subcomponents that are not declared in subprograms can be shared between
threads.

• References to data components are modeled through provides and requires data ac-
cess.

• Data component classifier references are also used to specify the data type for data
(event data) ports as well as subprogram parameters.

12

3.1 Data component 3 DATA

Figure 2: Data component graphical notation

Abstract syntax (5.1(10))A data component type can have zero data implementation.
The table is in contradiction with (L3) A data implementation can contain abstract, data

and subprogram subcomponents, and data property associations.
A data type does not provide data access (to its subcomponents). This point is discussed

in the draft. A port connection can be established between a port P and an element E in a
provided data access DA to P by DA.E.

Figure 3: Data type and implementation

Data ��� Data type �Data implementation

• Data type

Data type ��� dataID � opt�list�Data feature�� � opt�list�Data property��
Data feature ��� Feature group � Provides subprogram access �

Requires subprogram access �Requires subprogram group access

• Data implementation

13

3.2 Standard properties 3 DATA

Data implementation ��� dataID � opt�list�Data subcomponent�� �
opt�list�Connection�� � opt�list�Data property��

Data subcomponent ��� subcomponentID �Data subcomponent reference

� opt�list�Property�� � opt�In modes�
Data subcomponent reference ��� dataID � subprogramID

3.2 Standard properties

This section gives some standard properties that could be applied to data component.

1. Properties related to source text

Type Source Name: aadlstring applies to (data, port, subprogram);
Source Name: aadlstring applies to (data, port, subprogram, parameter);
Source Text: inherit list of aadlstring applies to

(data, port, subprogram, thread, thread group, process, system, memory,
bus, device, processor, parameter, feature group, package);

Source Language: inherit list of Supported Source Languages

2. Properties specifying memory requirements

Source Data Size: Size applies to
(data, thread, thread group, process, system, subprogram, processor, device);

Allowed Memory Binding Class: inherit list of classifier (memory, system, processor)
Allowed Memory Binding: inherit list of reference (memory, system, processor)
Actual Memory Binding: inherit list of reference (memory)
Base Address: aadlinteger 0 .. Max Base Address
Source Code Size: Size

3. Data sharing properties

(a) Access Right. This property specifies the form of access that is permitted for a
component. It could be read only, write only, read write, by method. Default
value is read write.
Access Right : Access Rights� read write applies to

(data, bus, data access, bus acess);
Access Rights : type enumeration (read only, write only,

read write, by method);

(b) Concurrency Control Protocol. This property specifies the concurrency con-
trol protocol used to ensure mutually exclusive access to a shared data compo-
nent.
(5) Shared data may be accessed by multiple threads. Such potential concurrent
access is controlled according to the Concurrency Control Protocol. (PLG not
specified)

14

3.3 Data component access 3 DATA

Concurrency Control Protocol: Supported Concurrency Control Protocols
applies to (data);

Supported Concurrency Control Protocols: type enumeration
(None Specified, @ project-specified A);

Default value is None Specified: no concurrency control protocol.
AADLv2 does not specify the detailed project-specified protocols, but gives

some example concurrency control protocols: Interrupt Masking, Maximum Priority,
Priority Inheritance, Priority Ceiling, Spin Lock and Semaphore. [1] imple-
mented four kinds of concurrency control protocol: NoneSpecified, Lock, BIP,
PCP.

When a thread enters a critical region (when it is accessing a shared data component),
a Get Resource operation is performed on the shared data component. When it exit
from a critical region, a Release Resource operation is performed.

3.3 Data component access

Figure 4: Data component access

c1, c2, c3 are port connections, others are data access connections. It is not clear if con-
necting data elements in a data to requires data access is possible: in the rules one can see
data subcomponent identifier . provides data access identifier, but in the corresponding
table, a data component does not provide data access to its subcomponents..

(6) Input Time and Output Time specify the time range over which a component has
read or write access to a shared data component. The value of a shared data component is
read or written through the use of a data variable that represents the shared data compo-
nent, or through Get Value and Put Value service calls. Write access immediately updates
the shared data component.

(7) Input Rate and Output Rate specify the rate at which a shared data component is
accessed. The input rate specifies read accesses while the output rate specifies write ac-
cesses.

Yue: Input Time and Output Time properties are associated to ports, not to data.
Maybe here the Access Time property should be used, which is associated to data access

15

3.4 Behavior: critical region 3 DATA

and specifies the time range over which a component has access to a shared data compo-
nent. (refer to Section 11.4 for detail)

3.4 Behavior: critical region

(5.1(17)) Concurrent access to shared data is coordinated according to the concurrency
control protocol specified by the Concurrency Control Protocol property value associated
with the data component. A thread is considered to be in a critical region when it is ac-
cessing a shared data component. When a thread enters a critical region a Get Resource
operation is performed on the shared data component. Upon exit from a critical region a
Release Resource operation is performed If multiple data components with concur-
rency control protocols are accessed by a thread, the critical regions may be nested, i.e.,
the Get Resource and Release Resource operations are pair-wise nested for each data com-
ponent. Furthermore, deadlock avoidance among threads accessing the same set of shared
data components is assured by proper nesting of the critical regions across all of the threads.

The Get Resource and Release Resource runtime services represent an abstract inter-
face for functions that perform locking and unlocking of resources according to the speci-
fied concurrency control protocol.

subprogram Get_Resource
features

resource: in parameter <implementation-specific
representation of one or more resources>;

end Get_Resource;

subprogram Release_Resource
features

resource: in parameter <implementation-specific
representation of one or more resources>;

end Release_Resource;

(5.1(30)) The concurrency control protocol can be implemented through a number of
concurrency control mechanisms such as mutex, lock, semaphore, or priority ceiling pro-
tocol. Appropriate concurrency control state is associated with the shared data component
to maintain concurrency control. The protocol implementation must provide appropriate
implementations of the Get Resource and Release Resource operations.

(5.4.3 (42)) The time a thread resides in a critical region in worst case is the duration
of executing one thread dispatch.

Supported Concurrency Control Protocols are not defined by the standard. Examples
are given in AADL A.2. By default there is no control protocol.

3.5 Data in Polychrony

TODO. Clarify semantics of Data� Data event connections

16

3.5 Data in Polychrony 3 DATA

3.5.1 Data type

Data type can be represented by a free clock signal or signal structure containing inner data
as fields. The provides subprogram access features of a data component type can model
the concept of methods on a class of operations on an abstract data type.

For example:

data Message
features

updata_message: provides subprogram access Update_address;
end Message;

data implementation Message.impl
subcomponents

name: data aadlstring;
size: data aadlinteger;
text: data aadlstring;

end Message.impl;

subprogram Update_address
features

message: in parameter Message;
end Update_address;

A corresponding Signal structure:

type Message � struct � string name;
integer size;
string text; �;

Simple data There is no problem to represent data types in Signal: at worst external
types can be used to represent AADL types.

There are two categories of Signal-signals: the free clock1 signals (constants, state
variables and free variables2) and the clocked signals (the use of which can generate clock
constraints). An AADL-data can be represented as a free clock signal.

The problem of multiple accesses during a logical instant exists as for other AADL
features.

In this case:

Let x � �x1, x2, x3� >Data type
where: x1 > dataID

x2 >Data feature

x3 >Data property

17

3.5 Data in Polychrony 3 DATA

DataTranslation�x� � type x�1
x�1 � IDTranslation�x1� � x1

Compound data A data that contains inner data can be represented by a free clock struc-
ture that contains inner data as fields.

In this case:

Let x � �x1, x2, x3� >Data type, y � �y1, y2, y3, y4� >Data omplementation
where: x1 > dataID

x2 >Data feature

x3 >Data property

y1 > dataID

y2 >Data subcomponent

y3 > Connection

y4 >Data property

and: x1 and y1are compatible

DataTranslation�x� � type y�1 � struct�y�2�
y�1 � IDTranslation�y1� � y1

y�2 � DataSubcomponentTranslation�y2�

Let z � �z1, z2, z3, z4� >Data subcomponent
where: z1 > subcomponentID

z2 >Data subcomponent reference

z3 > Property

z4 > In modes

DataSubcomponentTranslation�z� � � DataTranslation�z2� z�1 if z2 > dataID
SubprogramTranslation�z2� z�1, if z2 > subprogramID

z�1 � IDTranslation�z1� � z1

3.5.2 Data subcomponent (declared in a subprogram)

A local data in the subprogram. It could be accessible only inside the subprogram.
A data subcomponent declared in a subprogram could be represented as a local variable

of the subprogram. This local variable contains a type (translated from the corresponding
data type) and a name (comes from the reference name). (refer to Section 4 for detail.)

18

4 SUBPROGRAM

3.5.3 Protected data (data subcomponent not in a subprogram)

A Data that provides subprogram access can be represented by a (see) Signal server when
concurrent access requires asynchronous features.

• A data subcomponent represents static data in the source text. Data in the source text
that is sharable between threads.

• A data that provides subprogram access can be represented by a Signal server when
concurrent access requires asynchronous features.

Data subcomponent declared in a thread or process It could be shared between threads.
Figure 5 gives an example of two threads want to access a shared data. The three compo-
nents are declared in a same process. Thread require data access by feature requires data access,
and Thread2 provides data access by feature provides data access.

Get_Resource

Get_ResourceRelease_Resource

Release_Resource
Thread_1

Thread_2

Data_1

Requires_
data_
access

Provides_
data_
access

Get_Value

Put_Value

Scheduler

Figure 5: Data concurrency control

Two service calls Get Resource and Release Resource are performed to access the
shared data. The scheduler will decide which thread could get the resource. Get Value
service call returns the current value, and Put value updates the data value.

process Get_Resource(? resource; ! boolean return;)
process Release_Resource(? resource; ! boolean return;)
process Get_Value(? component; ! value;)
process Put_Value(? component; value;)

In this case, the data is interpreted as a Signal signal, and a shared resource control (a
scheduler) is added.

4 Subprogram

(5.2-(1)) A subprogram component represents sequentially executed source text that is
called with parameters. A subprogram may not have any state that persists beyond the

19

4.1 Subprogram component 4 SUBPROGRAM

call (static data). Subprograms can have local variables that are represented by data sub-
components in the subprogram implementation.

(8.3(4)) A subprogram that is accessed by more than one component is shared and must
be reentrant. The shared subprogram may be called by multiple threads. This may result in
concurrent access to shared data components.

A subprogram models callable source text that is executed sequentially. A subprogram
may be called by multiple threads or subprograms.

4.1 Subprogram component

(5.2-(6)) A subprogram type declaration specifies all interactions of the subprogram with
other parts of the application source text. Subprogram parameters are specified as features
of a subprogram type This includes in and in out parameters passed into a subprogram
and out and in out parameters returned from a subprogram on a call, events being raised
from within the subprogram through its out event port and out event data port, required
access to static data by the subprogram are specified as part of the features subclause of
a subprogram type declaration, and required access to subprograms that are contained in
another component and are called by this subprogram.

4.1.1 Structure

Figure 6: Subprogram structure

4.1.2 Abstract syntax

Subprogram ��� Subprogram type � Subprogram implementation

20

4.1 Subprogram component 4 SUBPROGRAM

Subprogram type

Subprogram type ��� subprogramID � opt�list�Subprogram feature�� �
opt�list�Flow spec�� � opt�list�Modes��
� opt�list�Subprogram property��

Subprogram feature ��� out event port � out event data port � Feature group

�Requires data access �Requires subprogram access

�Requires subprogram group access � Parameter

Subprogram implementation

Subprogram implementation ��� subprogramID � opt�list�Subprogram subcomponent��
� opt�list�Subprogram call�� � opt�list�Connection��
� opt�list�Flow implementation�� � opt�list�End to end flow��
� opt�list�Modes�� � opt�list�Subprogram property��

Subprogram subcomponent ��� subcomponentID � Subprogram subcomponent reference

� opt�list�Property�� � opt�In modes�
Subprogram subcomponent reference ��� dataID

1. out event port is a Event port whose port direction is out.

2. out event data port is a Event data port whose port direction is out.

4.1.3 Standard properties

• Properties related to source text

Source Name
Source Text
Source Language
Type Source Name

• Properties specifying memory requirements

Source Code Size
Source Data Size
Source Stack Size
Source Heap Size
Allowed Memory Binding Class
Allowed Memory Binding
Actual Memory Binding
Acceptable Array Size

• Execution related properties

Compute Execution Time: Time Range
Compute Deadline: Time
Client Subprogram Execution Time: Time Range

21

4.2 Subprogram call 4 SUBPROGRAM

• Remote subprogram call related properties.

Subprogram Call Type specifies whether the call is to be performed synchronous
or semi-synchronous. In case of a semi-synchronous call, the use of the result is may
be suspended until the result is available.

Subprogram Call Type: enumeration (Synchronous, SemiSynchronous)
� Synchronous applies to (subprogram);

Allowed Subprogram Call Binding: inherit list of reference
(bus, processor, device) applies to (subprogram, thread,
thread group, process, system);

Actual Subprogram Call Binding: inherit list of reference
(bus, processor, memory, device) applies to (subprogram);

• Other properties.

Urgency
Reference Processor: inherit classifier (processor)
Classifier Substitution Rule

4.2 Subprogram call

5.2-(2)) Subprograms can be called from threads and from other subprograms. These calls
are sequential calls local to the virtual address space of the thread. Subprograms can also be
called remotely from threads in other virtual address spaces. A subprogram call sequence is
declared in a thread implementation or in a subprogram implementation. Subprogram call
sequences may be mode-specific. Subprogram calls may be local, i.e., to an instance of the
subprogram in the same process as the caller, or they may be remote, i.e., to subprogram
instances in other processes.

(5.2-(C2)) A subprogram call must reference a subprogram implementation.
(PLG: subprogram calls can be queued)

4.3 Behavior

(2) For parameter connections, data transfer occurs at the time of the subprogram call and
call return. In the case of subprogram calls to remote subprograms, the data is first trans-
ferred to a local proxy and from there passed to the remote subprogram.

(5.2-(14)) Ordering of subprogram calls is by default the order of the subprogram call
declarations. Annex-specific notations, e.g., the Behavior Annex, can be introduced to al-
low for other call order specifications, such as conditional calls and iterations.

(5.2-(15)) The flow of parameter values between subprogram calls as well as to and
from ports of enclosing threads is specified through parameter connection declarations.

(5.2-(L3)) Only one subprogram call sequence can apply to a given mode. In other
words, a mode identifier can be specified in the in modes subclause of at most one subpro-
gram call sequence.

22

4.4 Subprogram in Polychrony 4 SUBPROGRAM

((5.2-(19) A subprogram is executed within the calling AADL-thread or within a called
component while calling AADL-thread is suspended. It is executed within a called com-
ponent when the call refers to:

• Subprogram access to subprogram component in another AADL-thread,

• Subprogram access to a provides subprogram access feature in a device,

• Subprogram access of a processor (operating system),

• Subprogram classifier and the call has a subprogram call binding property that refers
to provides subprogram access in other AADL-thread.

In all other cases execution remains within the calling AADL-thread.

4.4 Subprogram in Polychrony

If there is no recursive call, one can consider a subprogram as a standard aperiodic thread
that has a dispatch event to which all calls are connected.

A subprogram seems to be a standard aperiodic AADL-thread with specific syntactic
synchronous signals named parameters. A subprogram differs from a standard thread in the
computing of C and T and the thread scheduling: when an AADL-thread TH1send values
to a standard AADL-thread TH2, the execution of TH1 code is not necessary stopped. And
TH2 cannot send values to TH1 in the same period. At the opposite, if a thread TH1 send
input parameters to a thread subprogram THS2, those parameters are immediately sent,
TH1 is suspended (with its C remaining equal to 1) awaiting for output parameters from
THS2 in the same period.

A parameter can be seen as a data port; the Input Time of an input parameter is the
dispatch event of THS2, the Output Time of an output parameter is the complete event of
THS2. Parameters are connected by immediate connection.

Multiple calls in the same logical instant are analogous to simultaneous arrivals of
dispatching events in an aperiodic AADL-thread. To guarantee the correct synchronization
of those parameters, the input parameters are grouped in a Signal structure type, and thus
received as a single event data port named InParameter connected to the dispatch port of the
thread. The same is done for out parameters grouped in ReturnResult. In out parameters
are split on InParameter and ReturnResult fields. The InParameter and OutParameter have
the suitable properties. They are connected with respect to expected calling behavior.

To check: is a Subprogram call considered as a dispatch event of the AADL-thread
that provides the Subprogram access ? If not, when is the call executed ?

Finally a subprogram can be implemented as a Signal-procedure if such a feature is
added to Signal.

A subprogram can be considered as a standard aperiodic thread that has a dispatch
event to which all calls are connected.

A parameter can be seen as a data port: the Input Time is dispatch, and Output Time
is complete.

23

5 SUBPROGRAM GROUP

Synchronous call The input parameters are grouped in a Signal structure, named InPa-
rameter, and the out parameters are grouped in ReturnResult. In out parameters are split
on InParameter and ReturnResult fields. Figure 7.

InParameter

ReturnResult

Dispatch

Complete

SP

CM

SubP

out1
out2

in1
in2

Complete

Figure 7: Subprogram

Semi-synchronous call The use of the result is may be suspended until the result is
available. When?

5 Subprogram group

(5.3-(1)) Subprogram groups represent groups of subprogram features, i.e., libraries of sub-
programs. Subprogram groups can be made accessible to other components through sub-
program group access features and subprogram group access connections. This grouping
concept allows the number of connection declarations to be reduced, especially at higher
levels of a system when a number of provided subprograms from one subcomponent and
its contained subcomponents must be connected to requires subprogram access in another
subcomponent and its contained subcomponents. The content of a subprogram group is
declared through a subprogram group type declaration. This declaration is then referenced
when subprogram groups are declared as subcomponents.

A subprogram represents a subprogram library.

5.1 Abstract syntax

Subprogram group ��� Subprogram group type � Subprogram group implementation

24

5.2 Standard properties 6 THREAD

Subprogram group type

Subprogram group type ��� subprogram group ID � opt�list�Subprogram group feature��
� opt�list�Subprogram group property��

Subprogram group feature ��� Feature group � Subprogram access

�Requires subprogram group access

Subprogram group implementation

Subprogram group implementation ��� subprogram group ID

� opt�list�Subprogram group subcomponent�� � opt�list�Connection��
� opt�list�Subprogram group property��

Subprogram group subcomponent ��� subcomponentID

� Subprogram group subcomponent reference

� opt�list�Property�� � opt�In modes�
Subprogram group subcomponent reference ��� subprogramID

5.2 Standard properties

1. Reference Processor: inherit classifier (processor)

6 Thread

(5.4-(1)) A thread represents a sequential flow of control that executes instructions within
a binary image produced from source text. A thread models a schedulable unit that tran-
sitions between various scheduling states. A thread always executes within the virtual ad-
dress space of a process, i.e., the binary images making up the virtual address space must
be loaded before any thread can execute in that virtual address space.

6.1 Structure

(from 5.4-(2)) An AADL-thread contains a predeclared in event port named Dispatch, and
two predeclared out event ports named Complete and Error; those ports cannot be user-
declared (L3). As other ports, they may be connected (or not).

6.2 Abstract syntax

Thread ��� Thread type � Thread implementation

25

6.2 Abstract syntax 6 THREAD

Figure 8: Thread structure

Thread type

Thread type ��� threadID � opt�list�Thread feature�� � opt�list�Flow spec��
� opt�list�Modes�� � opt�list�Thread property��

Thread feature ��� Port � Feature group �Data access

� Subprogram access � Subprogram group access

Thread implementation

Thread implementation ��� threadID � opt�list�Thread subcomponent��
� opt�list�Subprogram call�� � opt�list�Connection��
� opt�list�Flow implementation�� � opt�list�End to end flow��
� opt�list�Modes�� � opt�list�Thread property��
� opt�list�Annex subclause��

Thread subcomponent ��� subcomponentID � Thread subcomponent reference

� opt�list�Property�� � opt�In modes�
Thread subcomponent reference ��� dataID � subprogramID � subprogram group ID

Subprogram call ��� subprogram call ID �Called subprogram

� opt�list�Subprogram call property��
Called subprogram ��� subprogramID � provides subprogram access ID

� requires subprogram access ID

Annex subclause ��� annexID �Annex spec � opt�In modes�

26

6.3 Standard properties 6 THREAD

6.3 Standard properties

This section gives a brief view of standard properties that are related to thread. Some of
them are also available for thread groups.

Properties Thread Thread group

Deployment

Allowed {Processor, Memory, Connection} Binding Class X X
Allowed {Processor, Memory, Connection} Binding X X
Actual {Processor, Memory, Connection} Binding X X
Allowed Subprogram Call Binding X X

Thread

Dispatch Protocol X
Dispatch Trigger X
POSIX Scheduling Policy X X
Priority X X
Criticality X X
Time Slot X X
Resumption Policy X X
Active Thread Handling Protocol X X
Active Thread Queue Handling Protocol X X
Synchronized Component X X

Timing

{Active, Compute, Deactivate} Deadline X
{Active, Compute, Deactivate} Execution Time X
Deadline X X
First Dispatch Time X X
Dispatch Jitter X X
Dispatch Offset X
{Finalize, Initialize, Recover} Deadline X
{Finalize, Initialize, Recover} Execution Time X
Period X X
Reference Processor X X

Memory
Source Code Size X X
Source Data Size X X
Source Heap Size X
Source Stack Size X

Programming

{Activate,Compute, Deactivate} Entrypoint X
{Activate,Compute, Deactivate} Entrypoint Call Sequence X
{Activate,Compute, Deactivate} Entrypoint Source Text X
{Finalize,Initialize, Recover} Entrypoint X
{Finalize,Initialize, Recover} Entrypoint Call Sequence X
{Finalize,Initialize, Recover} Entrypoint Source Text X
Source Language X X
Source Text X X

The table gives all the predeclared thread properties. Some of them will be taken into
account in our translation.

27

6.4 Behavior 6 THREAD

1. Dispatch Protocol specifies the dispatch behavior for a thread.

Dispatch Protocol: Supported Dispatch Protocols

2. Period (mandatory if Dispatch Protocol is periodic or sporadic)

Period: inherit Time applies to
(thread, thread group, process, system, device, virtual processor);

3. Dispatch Offset: Time (only if Dispatch Protocol is periodic)

4. Deadline specifies the maximum amount of time allowed between a thread dispatch
and the time that thread begins waiting for another dispatch.

Deadline: inherit Time Rightarrow Period
applies to (thread, thread group, process, system, device);

5. Priority specifies the priority of the thread that is taken into consideration by some
scheduling protocols in scheduling the execution order of threads.

Priority: inherit aadlinteger applies to
(thread, thread group, process, system, device);

6. Properties specifying execution entrypoints and timing constraints: those properties
are defined for STEP in Initialize, Compute, Activate, Deactivate, Recover, Finalize

STEP Execution Time: Time Range
STEP Deadline: Time
STEP Entrypoint, STEP Entrypoint {Call Sequence, Source Text}

7. Properties related to mode switching and scheduling

Synchronized Component: inherit aadlboolean� true
Active Thread Handling Protocol: inherit

Supported Active Thread Handling Protocols� abort
Active Thread Queue Handling Protocol: inherit enumeration

(flush, hold)� flush
Activation Mode: enumeration (initial, resume)

6.4 Behavior

(5.4-(2))... A thread can be active in a particular mode and inactive in another mode. As a
result a thread may transition between an active and inactive state as part of a mode switch.
Only active threads can be dispatched and scheduled for execution. Threads can be dis-
patched periodically or as the result of explicitly modeled events that arrive at event ports,
event data ports, or at a predeclared in event port called Dispatch. Completion of the exe-
cution of a thread dispatch will result in an event being delivered through the predeclared
Complete event out port if it is connected.

(5.4-(3)) If the thread execution results in a fault that is detected, the source text may
handle the error. If the error is not handled in the source text, the thread is requested to

28

6.4 Behavior 6 THREAD

recover and prepare for the next dispatch. If an error is considered thread unrecoverable,
its occurrence is propagated as an event through the predeclared Error out event data port.

(5.4.3 (39)) A scheduler selects one thread from the set of threads in the ready state to
run on one processor according to a specified scheduling protocol. It ensures that only one
thread is in the running state on a particular processor.

6.4.1 Predeclared ports

• Dispatch: If this port is connected, (ie is a destination in a connection), then the
arrival of an event results in the dispatch of the AADL-thread. Events arriving on
other (data-) event do not dispatch the AADL-process but are queued. (PLG: Dis-
patch event Overflow Handling Protocol cannot be defined ??)

• Complete: If this port is connected, an event is raised when the execution of the
AADL-thread completes. (PLG: no possible overflow)

• Error: If this port is connected, an event is raised when an unrecoverable error is
detected.(PLG: execution is stopped; no possible overflow)

6.4.2 Real time counters

An AADL-thread THREAD holds two timing values: C which is its actual execution time,
and T which is its elapsed time. C and T are times in the reference time of the proces-
sor (PROC) THREAD executes on . The actual execution time is the time accumulating
while THREAD actually runs on PROC; the elapsed time is the time accumulating since
the last dispatch of THREAD. In nominal behavior, C and T are reset to 0 when the AADL-
process is dispatched (C:=0, T:=0 in automata), C continuously increases when THREAD
is computing (δC=1 in automata), T continuously increases until THREAD completion
(δT=1 in automata) (PLG: there is here some personal interpretation concerning T). δX=0
means that X remains unchanged.

6.4.3 Dispatch Protocol

(5.4.1(28)) The Dispatch Protocol property of a thread determines the characteristics of
dispatch requests to the thread. The Enabled function determines when a transition to per-
forming thread computation will occur. The Wait For Dispatch invariant captures the con-
dition under which the Enabled function is evaluated. The consequence of a dispatch is
the execution of the entrypoint source text code sequence Subprogram access at its current
execution position. This position is set to the first step in the code sequence and reset upon
completion.

(5.4.1(16)) ...If a dispatch request is received for a thread while the thread is in the com-
pute state, this dispatch request is handled according to the specified Overflow Handling Protocol
for the event or event data port of the thread.

An AADL-thread THREAD can have one of the following Dispatch Protocols:

29

6.4 Behavior 6 THREAD

1. periodic(29,30): a dispatch request is issued to THREAD at time intervals of the
specified Period property value. THREAD can have a Dispatch Offset property
value, set to 0 by default, that allows user defined alignment of logically synchronous
AADL-threads. Arrival of event (-data) will not result in a dispatch. Events and
event data are accessible (PLG ????) to a periodic AADL-thread. (PLG: clarify
event (-data) queuing).

(a) Enabled is T = Period+Dispatch Offset
(b) Wait For Dispatch is T B Period+Dispatch Offset.
(c) The dispatch occurs at (PLG: immediately after) T = Period+Dispatch Offset.

2. aperiodic(31): a dispatch request is issued to THREAD when a triggering event oc-
curs; there is no constraint on the inter-arrival time of triggering events. A triggering
event occurs when:

(a) an event (-data) arrives at an event (-data) port of THREAD with empty queue
(b) a subprogram call arrives at a provides access feature of THREAD
(c) THREAD raises its complete event and an event is already queued in some of

its event (-data) port features

3. sporadic(32): dispatch requests are the same as in the aperiodic Dispatch Protocol,
but the time interval between successive dispatch requests will never be less than the
associated Period property value.

4. timed(33): dispatch requests are the same as in the aperiodic Dispatch Protocol, but
the time interval between two successive dispatch requests will never be more than
the associated Period property value. Thus an event time-out is raised to Dispatch
if T = Period. The Dispatch Offset property does not apply. (PLG contradiction
with definition of Period p. 268, where Period is not allowed here).

5. hybrid(34): dispatch requests are those of the aperiodic Dispatch Protocol, com-
pleted by those of the periodic Dispatch Protocol, for which a periodic clock Tp is
required; thus a supplementary event is raised to dispatch when Tp � Period. The
Dispatch Offset property does not apply. (PLG contradiction with definition of
Period p. 268, where Period is not allowed here).

6. background(36): the AADL-thread is dispatched immediately upon completion of
its initialization entrypoint execution. A background AADL-thread is Mode insensi-
tive.

(5.4(9)) For periodic threads arrival of events or event data will not result in a dispatch.
Events and event data are accessible to a periodic thread...

(5.4.6??(86)) A method of implementing a system must support the periodic dispatch
protocol. A method of implementation may support only a subset of the other standard dis-
patch protocols. A method of implementation may support additional dispatch protocols
not defined in this standard.

30

6.4 Behavior 6 THREAD

6.4.4 Thread states and state transition

(5.4.1 (15)) When a mode switch is initiated, a thread that is part of the old mode and
not part of the new mode exits the mode by transitioning to the suspended awaiting mode
(SAM) state after performing thread deactivation during the mode change in progress sys-
tem state (see Figure 20). If the thread is periodic and its Synchronized Component prop-
erty is true, then its period is taken into consideration to determine the actual mode switch
time (???? see Sections 12 and 13.3 for detailed timing semantics of a mode switch). If an
aperiodic or a sporadic thread is executing a dispatch when the mode switch is initiated, its
execution is handled according to the Active Thread Handling Protocol property.

A thread that is not part of the old mode and part of the new mode enters the mode
by transitioning to the suspended awaiting dispatch (SAD) state after performing thread
activation.

(5.4.3 (39) A thread initially enters the ready state. A scheduler selects one thread
from the set of threads in the ready state to run on one processor according to a specified
scheduling protocol. It ensures that only one thread is in the running state on a particular
processor.

States and “normal” transitions (assert ignored) let SRC in {AADL-process, vpro-
cessor, processor, system}

• TH: AADL-thread halted(14), (AADL-thread not in a current Mode)

�? loaded�AADL � process� ! dispatch initialization� � T �� 0, TH � �PTI�
�? AADL� threadexit�Mode� - ? AADL� threadenter�Mode�� � TH � TH

• [PTI]: performing AADL-thread initialization, (AADL-thread not in a current Mode)

let initialization completed � �started�system� , ? complete initialization�
δT � 1, δC > �0,1�?

(THREAD is not part of the initial mode , initialization completed): �PTI� �
SAM

(THREAD is part of the initial mode , initialization completed): �PTI�� SAD

PLG: Mode change during initialization?

• SAM: suspended awaiting mode(15) (AADL-thread not in a current Mode)

δT � δC � 0?

�? AADL � thread enter�Mode� , ! dispatch activation� � T �� 0, SAM ��PTA�
�stop�SRC�� � T �� 0, SAM � �PTF �

• �PTF �: performing AADL-thread finalize (AADL-thread not in a current Mode)

δT � 1, δC > �0,1�?

31

6.4 Behavior 6 THREAD

�stopped�AADL � process�� � �PTF �� TH

PLG: Mode change during finalize?

• [PTD]: performing AADL-thread deactivation, (AADL-thread not in a current Mode)

δT � 1, δC > �0,1�?

�? complete deactivation� � �PTD�� SAM

PLG: Mode change during deactivation?

• [PTA]: performing AADL-thread activation, (AADL-thread in current cMode)

δT � 1, δC > �0,1�?

�? complete activation� � �PTA�� SAD

�stop�SRC�� � T �� 0, �PTA�� �PTF �
PLG: exit(cMode) during activation?

• SAD: suspended awaiting dispatch(16) (AADL-thread in current cMode)

δT � δC � 0?

�Enabled�T � , ! dispatch computation� � T �� 0, SAD � �PTC�
�stop�SRC�� � T �� 0, SAD � �PTF �
�?AADL � thread exit�cMode�� � T �� 0, SAD � �PTD�

• [PTC]: performing AADL-thread computation, (AADL-thread in possibly suspended
current cMode)

δT � 1? δC > �0,1��seeinnerstate�
�? complete activation� � �PTA�� SAD

PLG: AADL-thread exit(cMode) during computation in inner transitions

PLG: stop(SRC) during computation ?

• PLG: compute state, used in (5.4.1(16)) is not defined. In (16) we have If a dis-
patch request is received for an AADL-thread while the AADL-thread is in the
compute state, this dispatch request is handled according to the specified Over-
flow Handling Protocol for the event or event data port of the AADL-thread. (???).
Probably means super state performing AADL-thread computation

performing thread computation: inner states and transitions (AADL-thread in pos-
sibly suspended current cMode)

• PTC.ready:

– δC � 0

– ? resume � � PTC.Running

32

6.5 Thread in Polychrony 6 THREAD

• PTC.Running:

– δC � 1

– ? preempt � � PTC.Ready

– ! complete � � null state

– �AADL�thread is background , ? exit�cMode�� �� PTC.Awaiting resume

– ! call server subprogram � � PTC.Awaiting return

– ! Get Resource � � PTC.Awaiting resource

• AADL-thread is background PTC.Awaiting resume

– δC � 0

– ? enter�cMode� � � PTC.ready

• PTC.Awaiting return

– δC � 0

– ? return server subprogram � � PTC.ready

• PTC.Awaiting resource

– δC � 0

– ? Release Resource � � PTC.Awaiting resource

Specific states and “abnormal” transitions (see 5.4)

6.5 Thread in Polychrony

One can propose a uniform view of AADL-threads.

6.5.1 Expressiveness

The preemption mechanism cannot be fully described in Signal, due to possible invis-
ible side effects. All other AADL mechanism can be described in full Signal (ie non
endochronous Signal-processes). One suppose that an AADL-thread is split into atomic
actions that contains no more than one external interaction (value output/input, subpro-
gram call,...). If the source language is Signal, this splitting can be automatic (gray box
construction).

33

6.5 Thread in Polychrony 6 THREAD

6.5.2 Uniform view

A background AADL-thread is considered as an aperiodic AADL-process with one single
dispatch and lowest priority.

An AADL-thread T is translated into a Signal-process P that has the same input/output
as T (ports). This Signal-process P is embedded in a process that provides to P, accurate
synchronizations and communications. One can find below the coarse principles to do it.

1. P is (automatically) structured into atomic components following the gray box prin-
ciples (extended to IO equivalence, refining the I equivalence)

2. P is then nested in a container C P that insures the correct scheduling and data trans-
mission using FIFOs for event(data) ports thanks to a synchronization Signal-process
SP and a communication manager CM. SP and CM communicate (for instance to de-
termine the complete event).

• The synchronization Signal-process SP owns the Signal-signals of P completed
by the (data events or) events found in the (fig.5,6): ? event dispatch, event
complete, event data mode, Get resource, Release resource. It is built thanks
to properties of T (including the dispatch property) and the Polychrony stan-
dard gray box scheduler of P. SP describes the (logical) clock behaviors result-
ing from T and inner features properties. SP has a companion Signal-process
TSP that interfaces logical events and real-time. SP is composed with a com-
panion Signal-process that manages timing constraints (intervals). It builds the
dispatch event according to the dispatch protocol from DispatchEventRequest
and PeriodEvent.

• The communication manager CM interacts with (contains ?) port FIFOs to
schedule event (data) actual delivering taking into account T and port properties
(such as priorities,...). It has its own inner clock. For aperiodic, sporadic, timed,
hybrid AADL-threads, it generates the Boolean Signal-signal DispatchEven-
tRequest at each occurrence of complete event. DispatchEventRequest is false
if all FIFO are empty, true otherwise. It generates the events required by ports
synchronizations.

3. 1.The container C P is used as a component in a real time container RT C P. C P is
composed with the companion Signal-process TSP that interfaces logical events and
real-time:

TSP has the time unit as input (or the time value in the current hyperperiod) and com-
putes C and T (or TSP receives T and computes C,...). TSP generates timed events
resulting from time properties such as DeadlineEvent,... For a periodic, sporadic,
timed, hybrid AADL-process TSP generates an event PeriodEvent.

In Figure 9, a thread is interpreted as a real-time container RT C P. It is composed of
a timing environment TSP and a container C P.

34

6.5 Thread in Polychrony 6 THREAD

RT_C_P

P

Dispatch

output2 (event)

deadline

resume

suspend

P: have the same input/output as thread T

SP: a synchronization process

CM: a communication manager,
interact with port FIFO to schedule event (data) actual delivering

C_P: a container, insure correct scheduling and data transmission

TSP: a timing environment, generate timed events resulting from time properties

RT_C_P: a real-time container

Get_resoure

Release_resource

OutDataPort

tick

running

TSP start

SPinput1 (data)

input2 (event data)
InEventPort

OutEventPort

output1 (data)

CM

DispatchEventRequest

C_P

InDataPort

Complete
Error

Provides_
data_access

Dispatch

Complete

Put_Value

Complete

Dispatch

Figure 9: Thread

• The timing environment TSP handles the time properties, and generates timed events,
such as start and deadline.

• The container C P insures the correct data transmission (SP and CM) and execution
(P).

• SP contains all the in ports and requires (data, bus or subprogram) access feature.

• CM contains all the out ports and provides (data, bus or subprogram) access feature.
For aperiodic, sporadic threads, it generates a boolean signal DispatchEventRequest
at each occurance of complete event.

• P is a synchronous computation process. When it finishes, a Complete event is sent
out. An Error event is generated when an unrecoverable error occurs.

Problem: Thread mode transition.

6.5.3 Remaining questions

1. Errors, event abort

35

7 THREAD GROUP

2. Provides/require access

3. The details of the above description and the combination with other features transla-
tion may raise new problems.

4. Loops in the scheduler due to multiple input/output during the AADL logical time
(i.e. dispatch-complete interval). Sequence type in Signal ?.

5. Define the precisely the morphism that transforms the Signal step gray box sched-
uler into an oversampled scheduler (ie input are cells, a single black box runs in an
oversampled instant, following the initial static graph)

7 Thread group

(1)A thread group represents an organizational component to logically group threads con-
tained in processes. The type of a thread group component specifies the features and re-
quired subcomponent access through which threads contained in a thread group interact
with components outside the thread group. Thread group implementations represent the
contained threads and their connectivity. Thread groups can have multiple modes, each
representing a possibly different configuration of subcomponents, their connections, and
mode-specific property associations. Thread groups can be hierarchically nested.

PLG: An AADL-thread group has properties such as period, deadline,...priority,...
What are the relations of these properties/constraints with the same properties in inner
features ?

A thread group represents an organizational component to logically group thread con-
tained in processes. A thread group does not represent a virtual address space nor does it
represent a unit of execution. It must be directly or indirectly contained within a process.

7.1 Abstract syntax

Thread group ��� Thread group type � Thread group implementation

Thread group type

Thread group type ��� thread group ID � opt�list�Thread group feature��
� opt�list�Flow spec�� � opt�list�Modes�� � opt�list�Thread group property��

Thread group feature ��� Port � Feature group �Data access

� Subprogram access � Subprogram group access

36

7.2 Standard properties 8 PROCESS

Thread group implementation

Thread group implementation ��� thread group ID

� opt�list�Thread group subcomponent�� � opt�list�Connection��
� opt�list�Flow implementation�� � opt�list�End to end flow��
� opt�list�Modes�� � opt�list�Thread group property��

Thread group subcomponent ��� subcomponentID

� Thread group subcomponent reference

� opt�list�Property�� � opt�In modes�
Thread group subcomponent reference ��� dataID � subprogramID

� subprogram group ID � threadID � thread group ID

7.2 Standard properties

The thread group properties could refer to the thread properties.

8 Process

(1)A process represents a virtual address space. The Runtime Protection process property
indicates whether this virtual address space is runtime protected, i.e., it represents a space
partition unit whose boundaries are enforced at runtime. The virtual address space contains
the program formed by the source text associated with the process and its subcomponents.
A complete implementation of a process must contain at least one thread or thread group
subcomponent.

(13)This standard permits dynamic virtual memory management or dynamic library
linking after process loading has completed and thread execution has started. However, a
method for implementing a system must assure that all deadline properties will be satisfied
to the required level of assurance for each thread.

8.1 Structure

8.2 Abstract syntax

A process represents a virtual address space. Threads of a process must be explicitly de-
clared.

Process ��� Process type � Process implementation

37

8.3 Standard properties 8 PROCESS

Figure 10: Process structure

Process type

Process type ��� processID � opt�list�Process feature�� � opt�list�Flow spec��
� opt�list�Modes�� � opt�list�Process property��

Process feature ��� Port � Feature group �Data access

� Subprogram access � Subprogram group access

Process implementation

Process implementation ��� processID � opt�list�Process subcomponent��8
� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��8
� opt�list�Modes�� � opt�list�Process property��

Process subcomponent ��� subcomponentID � Process subcomponent reference8
� opt�list�Property�� � opt�In modes�

Process subcomponent reference ��� dataID � subprogramID

� subprogram group ID � threadID � thread group ID

8.3 Standard properties

• Deployment properties:

Allowed {Processor, Memory, Connection} Binding Class
Allowed {Processor, Memory, Connection} Binding
Actual {Processor, Memory, Connection} Binding
Allowed Subprogram Call Binding
Not Collocated
Collocated

38

8.4 Process and Polychrony 9 EXECUTION PLATFORM COMPONENTS

• Predeclared thread properties.

Priority
Time Slot
Resumption Policy
Active Thread Handling Protocol
Active Thread Queue Handling Protocol
Runtime Protection
Synchronized Component

• Timing properties

Deadline
Load Deadline
Period
Startup Deadline
Startup Execution time
Reference Processor

• Predeclared memory properties.

Source Code Size
Source Data Size

• Predeclared programming properties

Source Language
Source Text

PLG: An AADL-process has properties such as period, deadline,...priority,... What are
the relations of these properties/constraints with the same properties in inner features ?

8.4 Process and Polychrony

Same question as for AADL-thread group concerning inheritance.
A standard Signal-process ? Following AADL definition of an AADL-process (a –

virtual– address space), a notion of Object-process in Signal (or any other name) can cor-
respond to shared variable scopes.

Check period, time-out, ... properties. They might impact connection delay by accu-
mulation.

9 Execution platform components

9.1 Processor

A processor is an abstraction of hardware and software that is responsible for scheduling
and executing threads and virtual processors that are bound to it.

39

9.1 Processor 9 EXECUTION PLATFORM COMPONENTS

9.1.1 Abstract syntax

Processor ��� Processor type � Processor implementation

Processor type

Processor type ��� processorID � opt�list�Processor feature�� � opt�list�Flow type��
� opt�list�Modes�� � opt�list�Processor property��

Processor feature ��� Provides subprogram access

� Provides subprogram group access � Port � Feature group

�Bus access � Feature group

Processor implementation

Processor implementation ��� processorID � opt�list�Processor subcomponent��
� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��
� opt�list�Modes�� � opt�list�Processor property��

Processor subcomponent ��� subcomponentID � Processor subcomponent reference

� opt�list�Property�� � opt�In modes�
Processor subcomponent reference ��� memoryID � busID

� virtual processor ID � virtual bus ID

9.1.2 Standard properties

1. Deployment properties

Allowed Memory Binding Class
Allowed Memory Binding
Actual Memory Binding
Provided Virtual Bus Class
Provided Connection Quality Of Service
Allowed Period
Scheduling Protocol
Preemptive Scheduler
Thread Limit
Priority Map
Priority Mapping
Priority Range

2. Thread properties

Resumption Policy
Deactivation Policy

40

9.2 Virtual processor 9 EXECUTION PLATFORM COMPONENTS

3. Timing properties.

Startup Deadline
Startup Execution Time
Clock Jitter
Clock Period
Clock Period Range
Process Swap Execution Time
Scaling Factor
Scheduler Quantum
Thread Swap Execution Time
Frame Period
Slot Time

4. Memory properties

Assign Time
Source Code Size
Source Data Size
Source Stack Size

5. Programming properties.

Source Language
Source Text
Supported Source Language
Hardware Description Source Text
Hardware Source Language

6. Modeling properties.

Implemented As

9.2 Virtual processor

A virtual processor represents a logical resource that is capable of scheduling and executing
threads and other virtual processors bound to them.

9.2.1 Abstract syntax

V irtual processor ��� V irtual processor type � V irtual processor implementation

Virtual processor type

V irtual processor type ��� virtual System subcomponent referenceprocessor ID

� opt�list�V irtual processor feature�� � opt�list�Flow type��
� opt�list�Modes�� � opt�list�V irtual processor property��

V irtual processor feature ��� Provides subprogram access

� Provides subprogram group access � Port � Feature group

41

9.3 Memory 9 EXECUTION PLATFORM COMPONENTS

Virtual processor implementation

V irtual processor implementation ��� virtual processor ID

� opt�list�V irtual processor subcomponent�� � opt�list�Flow implementation��
� opt�list�End to end flow�� � opt�list�Modes�� � opt�list�V irtual processor property��

V irtual processor subcomponent ��� subcomponentID

� V irtual processor subcomponent reference

� opt�list�Property�� � opt�In modes�
V irtual processor subcomponent reference ��� virtual processor ID

� virtual bus ID

9.2.2 Standard properties

1. Deployment properties

Allowed Processor Binding Class
Allowed Processor Binding
Actual Processor Binding
Provided Virtual Bus Class
Provided Connection Quality Of Service
Scheduling Protocol

2. Thread properties

Time Slot
Deactivation Policy

3. Timing properties.

Execution Time
Period
Startup Deadline
Startup Execution Time
Frame Period
Slot Time

4. Programming properties.

Supported Source Language

5. Modeling properties.

Implemented As

9.3 Memory

A memory represents an execution platform component that stores code and data binaries.

42

9.3 Memory 9 EXECUTION PLATFORM COMPONENTS

9.3.1 Abstract syntax

Memory ��� Memory type �Memory implementation

Memory type

Memory type ��� memoryID � opt�list�Memory feature��
� opt�list�Modes�� � opt�list�Memory property��

Memory feature ��� Bus access � Feature group

Memory implementation

Memory implementation ��� memoryID � opt�list�Memory subcomponent��
� opt�list�Connection�� � opt�list�Modes�� � opt�list�Memory property��

Memory subcomponent ��� subcomponentID �Memory subcomponent reference

� opt�list�Property�� � opt�In modes�
Memory subcomponent reference ��� memoryID � busID

9.3.2 Standard properties

1. Deployment properties.

Provided Virtual Bus Class
Provided Connection Quality Of Service
Memory Protocol

2. Thread properties.

Resumption Policy

3. Predeclared memory properties.

Byte Count
Word Size
Word Space
Write Time

4. Programming properties.

Source Text
Hardware Description Source Text
Hardware Source Language

5. Modeling properties.

Implemented As

43

9.4 Bus 9 EXECUTION PLATFORM COMPONENTS

9.4 Bus

A bus represents an execution platform component that can exchange control and data
between memories, processors and devices.

9.4.1 Abstract syntax

Bus ��� Bus type �Bus implementation

Bus type

Bus type ��� busID � opt�list�Bus feature�� � opt�list�Modes��
� opt�list�Bus property��

Bus feature ��� Requires bus access � Feature group

Bus implementation

Bus implementation ��� busID � opt�list�Bus subcomponent�� � opt�list�Connection��
� opt�list�Modes�� � opt�list�Bus property��

Bus subcomponent ��� subcomponentID �Bus subcomponent reference

� opt�list�Property assocaition�� � opt�In modes�
Bus subcomponent reference ��� virtual bus ID

9.4.2 Standard properties

1. Deployment properties.

Provided Connection Quality Of Service
Allowed Connection Type
Allowed Physical Access Class
Allowed Physical Access

2. Thread properties.

Resumption Policy

3. Communication properties.

Transmission Type
Transmission Time
Latency

4. Memory properties.

Access Right
Allowed Message Size

44

9.5 Virtual bus 9 EXECUTION PLATFORM COMPONENTS

5. Programming properties.

Source Language
Source Text
Hardware Description Source Text
Hardware Source Language

6. Modeling properties

Implemented As

9.5 Virtual bus

A virtual bus represents logical bus abstraction, such as a virtual channel or communication
protocol.

9.5.1 Abstract syntax

V irtual bus ��� V irtual bus type � V irtual bus implementation

Virtual bus type

V irtual bus type ��� virtual bus ID � opt�list�Modes��
� opt�list�V irtual bus property��

Virtual bus implementation

V irtual bus implementation ��� busID � opt�list�V irtual bus subcomponent��
� opt�list�Modes�� � opt�list�V irtual bus property��

V irtual bus subcomponent ��� subcomponentID

� V irtual bus subcomponent reference

� opt�list�Property�� � opt�In modes�
V irtual bus subcomponent reference ��� virtual bus ID

9.5.2 Standard properties

1. Deployment properties.

Allowed Connection Binding Class
Allowed Connection Binding
Actual Connection Binding
Provided Virtual Bus Class
Required Virtual Bus Class
Provided Connection Quality Of Service
Required Connection Quality Of Service

45

9.6 Device 9 EXECUTION PLATFORM COMPONENTS

2. Communication properties.

Transmission Type

3. Modeling properties

Implemented As

9.6 Device

A device represents dedicated hardware within the system, entities in the external environ-
ment, or entities that interface with the external environment.

9.6.1 Abstract syntax

Device ��� Device type �Device implementation

Device type

Device type ��� deviceID � opt�list�Device feature�� � opt�list�Flow spec��
� opt�list�Modes�� � opt�list�Device property��

Device feature ��� Port � Feature group � Provides subprogram access

� Provides subprogram group access �Bus access

Device implementation

Device implementation ��� deviceID � opt�list�Device subcomponent��
� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��
� opt�list�Modes�� � opt�list�Device property��

Device subcomponent ��� subcomponentID �Device subcomponent reference

� opt�list�Property�� � opt�In modes�
Device subcomponent reference ��� busID � virtual bus id

9.6.2 Standard properties

1. Deployment properties.

Allowed {Processor, Memory} Binding Class
Allowed {Processor, Memory} Binding
Actual {Processor, Memory} Binding
Provided Virtual Bus Class
Provided Connection Quality Of Service
Allowed Connection Type

46

10 SYSTEM

2. Thread properties.

Dispatch Trigger
Resumption Policy

3. Timing properties.

Compute Deadline
Compute Execution Time
Deadline
Period

4. Memory properties.

Source Code Size
Source Data Size
Source Stack Size

5. Programming properties.

{Activate, Compute, Deactivate, Finalize, Initialize, Recover} Entrypoint
{Activate, Compute, Deactivate, Finalize, Initialize, Recover} Entrypoint Call Sequence
{Activate, Compute} Entrypoint Source Text
Source Language
Source Text
Hardware Description Source Text
Hardware Source Language

6. Modeling properties.

Implemented As

10 System

(1) A system represents an assembly of interacting application software, execution plat-
form, and system components. Systems can have multiple modes, each representing a pos-
sibly different configuration of components and their connectivity contained in the system.
Systems may require access to data and bus components declared outside the system and
may provide access to data and bus components declared within. Systems may be hierar-
chically nested.

PLG: A system has properties such as period, deadline,... What are the relations of
these properties/constraints with the same properties in inner features ?

A system represents an assembly of interacting application software, execution plat-
form ans system components.

10.1 Abstract syntax

System ��� System type � System implementation (1)

47

10.2 Standard properties 10 SYSTEM

System type

System type ��� systemID � opt�list�System feature�� � opt�list�Flow spec��
� opt�list�Modes�� � opt�list�System property�� (2)

System feature ��� Port � Feature group � Subprogram access

� Subprogram group access �Bus access �Data access (3)

System implementation

System implementation ��� systemID � opt�list�System subcomponent��
� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��
� opt�list�Modes�� � opt�list�System property�� (4)

System subcomponent ��� subcomponentID � System subcomponent reference

� opt�list�Property�� � opt�In modes� (5)

System subcomponent reference ��� dataID � subprogramID

� subprogram group ID � processID � processorID � virtual processor ID

�memoryID � busID � virtual bus ID � deviceID � systemID (6)

10.2 Standard properties

1. Deployment properties:

Allowed {Processor, Memory, Connection} Binding Class
Allowed {Processor, Memory, Connection} Binding
Actual {Processor, Memory, Connection} Binding
Allowed Subprogram Call Binding
Provided Virtual Bus Class
Provided Connection Quality Of Service
Not Collocated
Collocated
Allowed Period

2. Predeclared thread properties.

Priority
Time Slot
Resumption Policy
Active Thread Handling Protocol
Active Thread Queue Handling Protocol
Runtime Protection
Synchronized Component

3. Timing properties

48

10.3 Component binding 10 SYSTEM

Deadline
Load Deadline
Period
Startup Deadline
Startup Execution time
Clock Jitter
Clock Period
Clock Period Range
Reference Processor
Scaling Factor
Thread Swap Execution Time

4. Predeclared memory properties.

Source Code Size
Source Data Size

5. Predeclared programming properties

Source Language
Source Text
Supported Source Language
Hardware Description Source Text
Hardware Source Language

6. Predeclared modeling properties.

Implemented As

10.3 Component binding

(13(3)) A system instance is completely instantiated and bound if all threads are ultimately
bound to a processor, all source text making up process address spaces are bound to mem-
ory, connections are bound to buses if their ultimate source and destinations are bound to
different processors, and subprogram calls are bound to remote subprograms as necessary.

(13(C1))Every mode-specific configuration of a system instance must have a binding
of every process component to a (set of) memory component(s), and a binding of every
thread component to a (set of) processor(s).

(C13(2) In the case of dynamic process loading, the actual binding may change at
runtime. In the case of tightly coupled multi-processor configurations, such as dual core
processors, the actual thread binding may change between members of an actual binding
set of processors as these processors service a common set of thread ready queues.

(C13(4) A software component may be bound to multiple memory components.
(C13(5) A thread must be bound to a one or more processors. If it is bound to multiple

processors, the processors share a ready queue, i.e., the thread execute on one processor at
a time.

(13(C6) Multiple threads can be bound to a single processor.

49

10.4 System operation mode 10 SYSTEM

10.4 System operation mode

(13) The set of all mode transitions specified for all components of a system instance form
a set of concurrent mode transitions, called system operation modes (SOM). The set of pos-
sible SOMs is the cross product of the sets of modes for each component. That is, a SOM is
a set of component modes, one mode for each component of the system. The initial SOM
is the set of initial modes for each component. (PLG: this suggest a Global mode)

(14) The discrete variable Mode denotes a SOM. That is, the variable Mode denotes a
possible discrete state that is defined by the mode hybrid semantic diagrams. Note that the
value of Mode will in general change at various instants of time during system operation,
although not in a continuous time-varying way.

(15) The SOM transition is requested whenever a mode transition in any component
in the system instance is requested by the arrival of an event. A single event can trigger
a mode switch request in one or more components. In a synchronized system, this event
occurs logically simultaneously for all components, i.e., the resulting component mode
switch requests are treated as a single SOM transition request.

(16) A mode transition of a thread internal mode, i.e., a mode declared in the thread or
one of its subprograms, that is triggered by the component itself or is triggered by an event
coming in through an event port of the thread, takes place at the next thread dispatch; if the
event triggers both a mode transition and a dispatch, then the dispatch is considered to be
the next dispatch.

(18) If several events occur logically simultaneously and are semantically connected
to transitions in different components that lead out of their current mode or to different
transitions out of the same mode in one component, then events are considered to have an
implementation-dependent order that determines the mode transition for the mode switch
resulting in the other events being ignored. (PLG: does this mean no queuing of mode

transition triggers ?)
(19) After a SOM transition request has occurred, the actual SOM transition occurs in

zero time, if no periodic threads are part of the old mode, otherwise, it occurs at the hy-
perperiod boundary of the old SOM...During that time, the system continues to operate in
the old SOM and additional events that would result in a SOM transition from the current
SOM are ignored.

(20) ... The hyperperiod is determined by the periods of those periodic threads whose
Synchronzied Component property is true and that are active in a given SOM. If this set of
threads is empty, the mode transition is initiated immediately.

(21) At the time of actual SOM transition, the transition is performed to the new SOM
that contains the destination modes of the requested component mode switch(es). The hy-
perperiod for the mode transition is determined by the set of thread to be active in the new
SOM.

(22) A runtime transition between SOMs requires a non-zero interval of time, during
which the system is said to be in transition between two system modes of operation. While
a system is in transition, excluding the instants of time at the start and end of a transition,
all arriving events that appear in transition edge declarations are ignored and will not cause
any mode change.

50

10.5 AADL and physical time 10 SYSTEM

(23) At the instant of time the mode-transition-in-progress state is entered, connections
that are part of the old SOM and not part of the new SOM are disabled. For data connec-
tions, this means that the data value is not transferred into the in data port variable of the
newly disabled thread.

(24) At the instant of time the mode-transition-in-progress state is entered, data is trans-
ferred logically simultaneously for all connections that are declared to be part of any of the
component mode transitions making up the SOM transition. For data connections, this
means that the data is transferred from the out data port such that its value becomes avail-
able at the first dispatch of the receiving thread.

(25) At the instant of time the mode-transition-in-progress state is entered, connections
that are not part of the old SOM and part of the new SOM are enabled. For data connec-
tions, this means that the data value of a transition connection is transferred into the in data
port variable of the newly enabled thread. If the in data port of the destination thread is not
the destination of a transition connection, the data value of the out data port of the source
thread is transferred into the in data port variable of the newly enabled thread. If the source
thread is also activated as part of the mode transition, its out data port value is transferred
after the thread completes its activate entrypoint execution.

(26) When the mode-transition-in-progress state is entered, thread exit(Mode) is trig-
gered for all threads that are part of the old mode and not part of the new mode. This results
in the execution of deactivation entrypoints for those threads (see Figure 5) as described in
Section 12.

(27) In addition, at the time the mode-transition-in-progress state is entered, thread en-
ter(Mode) is triggered for threads that are part of the new mode and not part of the old
mode. This permits those threads to execute their activation entrypoints (see Figure 5). In
addition, for periodic threads this is immediately followed by their first compute entrypoint
dispatch as described in Section 12.

(29) While the system is in the mode-transition-in-progress state, threads that are part
of the old and new SOM continue to operate normally. SOM transition requests as result-
ing from raise events are ignored while the system instance is in the mode-transition-in-
progress state.

(30) The system instance remains in the mode-transition-in-progress state until the next
hyperperiod. This hyperperiod is determined by new SOM according to the rules stated ear-
lier. At that time, the system instance enters current system operation mode state and starts
responding to new requests for SOM transition. (TG: what does it mean if there is no peri-
odic thread in the new mode and how is it compatible with the protocols to handle threads
that are in the performing computation state at the time instant of actual mode switch? cf.
12 (22))

PLG: what about queues and other pending actions

10.5 AADL and physical time

10.5.1 Perfect/unperfect real time(5.4.(5,6))

(13.3(11), p. 234) In a synchronized system, periodic threads are dispatched simultane-

51

10.5 AADL and physical time 10 SYSTEM

ously with respect to a global clock. The hyperperiod of a set of periodic threads (PLG:
sharing the same time reference) is defined to be the least common multiple of the periods
of those threads.

(5.4.5 (61))...In the concurrent hybrid automata model for the complete system, ST is
a single real-valued variable shared by all threads that is never reset and whose rate is 1 in
all states. ST is called the reference timeline.

(5.4.5 (62)) Two periodic threads are said to be synchronized if, whenever they are
both active in the current system mode of operation, they are logically dispatched simul-
taneously at (...) their hyperperiod. Two threads are logically dispatched simultaneously if
the order in which all exchanges of control and data at that dispatch event are identical to
the order that would occur if those dispatches were exactly dispatched simultaneously in
true and perfect real time

(PLG ??? notion not defined in the standard). If all periodic threads contained in an ap-
plication system are synchronized, then that application system is said to be synchronized.

(5.4.5 (64)) Within a synchronization domain, perfect synchronization may not occur
in a physical system. (...) it is the responsibility of each physical implementation to take
these imperfections into account when providing the synchronization domain for program-
mers (e.g. make sure your message transmission schedule includes enough margin for the
message to get there by the time it is needed, taking into account these various effects in
your particular implementation).

(5.4.6 (68)) Message-passing semantics of communication and thread execution is rep-
resented by aperiodic threads whose dispatch is triggered by arrival of messages and mes-
sage may be queued in the event data port. This communication paradigm is insensitive to
time, thus, not affected by multiple synchronization domains.

(5.4.6 (69)) Sampled data-stream semantics of communication and thread execution is
represented by periodic threads and data ports. In this case the sampling of the input is
sensitive to the reference time. AADL distinguishes between immediate and delayed con-
nections for deterministic sampling, and sampling connections for non-deterministic sam-
pling. Similarly, a periodic thread may non-deterministically sample event ports and event
data ports, e.g., a health monitor sampling an alarm queue. Deterministic communication
minimizes latency jitter, while non-deterministic communication can result in latency jit-
ter in units of the sampling rate, the latter often leading to instability of latency sensitive
applications such as control systems.

(5.4.6 (70)) In general, communication timing of immediate and delayed connections
cannot be guaranteed when the connection crosses synchronization domains. In other words,
those connections become sampling connections.

10.5.2 Asynchronous system (5.4.6)

In this section (???), one found:
(5.4.6(75)) The Await Dispatch runtime service takes a mask and a trigger condition

function as parameter. The mask specifies which ports are being considered in triggering

52

10.6 System and Polychrony 11 FEATURES AND SHARED ACCESS

the next dispatch of a thread. The trigger condition function, if present, is evaluated on the
ports identified in the mask to determine when a dispatch should occur.

subprogram Await_Dispatch
features

PortMask: in parameter; -- List of ports that can trigger a dispatch
ConditionFunction: subprogram;

end Await_Dispatch;

10.6 System and Polychrony

Same question as for AADL-thread group and process concerning inheritance.
Because in Signal, there is no notion of hardware component, a system is a composition

of Signal-processes.
Check period, time-out, ... properties. They might impact connection delay by accumu-

lation.

11 Features and shared access

A feature is a part of a component type definition that specifies how that component inter-
faces with other component.

A feature could be a port, subcomponent access, parameter or feature group.
(3) Port features represent a communication interface for the exchange of data and

events between components.
(4) Subprogram access features represent access to a subprogram to be called from

other components, and the need for a component to call a subprogram instance locally or
to call a subprogram remotely.

(5) Subprogram group access features represent sharing and required access to a sub-
program library.

(6) Parameter features represent data values that can be passed into and out of subpro-
grams.

(7) Data subcomponent access represents communication via shared access to data
components.

(8) Bus subcomponent access represents physical connectivity of processors, memory,
devices, and buses through buses.

(3) Feature groups represent groups of component features. Feature groups can contain
feature groups. Feature groups can be used anywhere features can be used.

Abstract syntax of Feature

Feature ��� Port � Parameter � Subcomponent access � Feature group

Subcomponent access ��� Subprogram access � Subprogram group access

�Data access �Bus access

53

11.1 Port 11 FEATURES AND SHARED ACCESS

11.1 Port

(1) Ports are logical connection points between components that can be used for the trans-
fer of control and data between threads or between a thread and a processor or device.
Ports are directional, i.e., an output port is connected to an input port. Ports can pass data,
events, or both. Data transferred through ports is typed..... Incoming events may trigger
thread dispatch or mode transitions. Properties specify the input and output timing charac-
teristics of ports. Actual event and data transfer may be initiated by the runtime system of
the execution platform or by Send Output runtime service calls in the application source
text.

AADL distinguishes between three port categories: data port, event port and event
data port.

From the perspective of the application source text, data ports are accessible in the
source text as data variables, event ports represent event queues whose size is accessible,
event data ports represent message queues whose content can be retrieved.

An example:

thread threadA
features

portA: in data port {Timing => immediate };
portB: in event port;
portC: out event data port dataA

{Output_Time => (Completion, 0.0ns .. 0.0ns)};
end threadA;

11.1.1 Abstract syntax of Port

Port ��� Event port �Data port �Event data port (7)

Basic port ��� portID � Port direction � opt�list�Port property�� (8)

Event port ��� Basic port (9)

Data OR Eventdata port ��� Port triggering � opt�Data reference� �Basic port
(10)

Data port ���Data OR Eventdata port��Port triggering � no�� (11)

Event data port ���Data OR Eventdata port��Port triggering � on�� (12)

Port direction ��� �in, out,�in out�� (13)

Port triggering ��� �on,no� (14)

Data reference ��� dataID (15)

Note:

1. A Port belongs to three categories: Data port, Event port and Event data port (7).

2. A Event port is specified by a portID, Port direction and an optional list of Port property
(8).

54

11.1 Port 11 FEATURES AND SHARED ACCESS

3. A Data port is a Data OR Eventdata port whose Port triggering is no (11).

4. A Event data port is a Data OR Eventdata port whose Port triggering is on (12).

5. Port direction could be either in, out, or in out (13).

6. portID adheres to the naming rules specified for all identifiers.

7. A Port property could be Input Time, Output Time, Timing, Fan out policy property
association and many others. The following table gives a brief view of properties
that are associated to ports. The property should be applied to the corresponding
port categories. Yue: the properties marked in red have been translated. (We mainly
take into account the properties related to timing aspects and queues.)

Property In port Out port
Event Data Event data Event Data Event data

Input Time X X X
Output Time X X X
Fan Out Policy X X X
Input Rate X X X
Output Rate X X X
Timing X X
Source Name X X X X X X
Source Text X X X X X X
Type Source Name X X X X X X
Device Register Address X X X X X X
Base Address X X X X X X
Allowed Memory Binding Class X X X X
Allowed Memory Binding X X X X
Actual Memory Binding X X X X
Compute Entrypoint X X
Compute Entrypoint Call Sequence X X
Compute Entrypoint Source Text X X
Compute Execution Time X X
Compute Deadline X X
Overflow Handling Protocol X X
Queue Size X X X X
Queue Processing Protocol X X X X
Dequeued Items X X
Dequeue Protocol X X
Urgency X X
Transmission Type X X

The detail of these properties will be explained in next section.

55

11.1 Port 11 FEATURES AND SHARED ACCESS

11.1.2 Standard properties

This section gives an explanation of some of the standard properties listed in the above
table. We are mainly interested in the properties related to temporal specifications and
queuing characteristics. These properties are translated in Signal programs. Other prop-
erties, such as properties related to memory binding and source specifications, are not in-
cluded in the current translation. They could be presented as “pragma” to specify the related
information.

1. Properties related to IO policy. These properties define some communication and
timing related properties. We are interested in them, especially the timing properties.

(a) Input Time property can be used to explicitly specify an input time for ports.
This property could have a list of values, which indicates that input is frozen

multiple times for the execution during one dispatch. The default value is dis-
patch with zero offset.
Input Time: list of IO Time Spec� (Time� Dispatch;

Offset� 0.0 ns .. 0.0 ns;) applies to (port);
IO Time Spec : type record (Offset : TimeRange;

Time : IO Reference Time;);
Each possible value is a pair of Time (possible values: Dispatch Time by de-
fault, Start, Completion and NoIO) and a time range Offset (0.0 ns .. 0.0 ns by
default).
The IO Time Spec property specifies the amount of execution time Offset rela-
tive to a Time at which input or output occurs. The value consists of a reference
point and time range pair.
Input Time possible ReferencePoint:

• Dispatch Time: (the default value) input is frozen at dispatch time; the
time reference is clock time.
T � 0.

• Start: input is frozen at a specified amount of execution time into the
execution. The time is within the specified time range. The time range
must have positive values.
Start T imelow B C B Start T imehigh.

• Completion: input is frozen at a specified amount of execution time rela-
tive to execution completion. The time is within the specified time range.
A negative time range indicates execution time before completion.�Ccomplete�Completion T imelow� B C B �Ccomplete�Completion T imehigh�
where Ccomplete represents the value of c at completion time.

• NoIO: input is not frozen. In other words, the port is excluded from mak-
ing new input available to the source text. This allows users to specify
that a subset of ports to provide input. The property value can be mode

56

11.1 Port 11 FEATURES AND SHARED ACCESS

specific, i.e., a port can be excluded in one mode and included in another
mode.

The content of incoming ports are frozen at a specified time (Yue: Input Time.)
This means that the content of the port that is accessible to the recipient does

not change during the execution of a dispatch (Yue: Input Time, not really
dispatch time) even though the sender may send new values.
Frozen: From the point of Input Time on, any new arrived data (or event, or

event data) is not accessible until the next Input Time (Figure 11).

The inputs arrived after Input_Time1 will be available until
next Input_Time (Input_Time2).
These values could be used during Input_Time2 and Input_Time3,
through Get_Value or Next_Value service call.

Get_Value Next_Value

Input_arrive

Input_accessible

Input_Time

Figure 11: Input frozen

The input of other ports that can trigger dispatch is not frozen. Input of the
remaining ports is frozen according to the specified input time.

In AS5506A v2, p136, “The Input Time can be done for all ports by specify-
ing the property value for the thread”. But the Input Time property is defined
only applies to a port, but not to a thread (p262).

(b) Output Time specifies the amount of execution time until completion at which
output becomes available. This property indicates the time output is transmit-
ted to connected components. The default value is completion with zero offset.
Possible value is a pair of reference time Time (Start, Completion by default,
Deadline and NoIO) and a time range Offset (0.0 ns .. 0.0 ns by default).
Output Time: list of IO Time Spec� (Time� Completion;

Offset� 0.0 ns .. 0.0 ns;) applies to (port);
Output Time possible ReferencePoint:

• Start Time: output is transmitted at a specified amount of execution time
into the execution. The time is within the specified time range. The time
range must have positive values.
Start T imelow B C B Start T imehigh.

• Completion: output is transmitted at a specified amount of execution time
relative to execution completion. The time is within the specified time
range. A negative time range indicates execution time before completion.�Ccomplete�Completion T imelow� B C B �Ccomplete�Completion T imehigh�
where Ccomplete represents the value of c at completion time.

57

11.1 Port 11 FEATURES AND SHARED ACCESS

The default is completion time with a time range of zero, i.e., it occurs at
C � Ccomplete

• Deadline: (the default value) ; output is transmitted at deadline time; the
time reference is clock time.
T �Deadline.

• NoIO: output is not transmitted . In other words, the port is excluded from
making new output from the source text. This allows users to specify that a
subset of ports to provide output. The property value can be mode specific,
i.e., a port can be excluded in one mode and included in another mode.

The output will be transmitted immediately if it is called by a Send output
service call, otherwise it will be sent out at next Output Time. (Figure 12)

Output_Time1 Output_Time2

The outputs generated after Output_Time1 will
be transmitted through a Send_Output service
call, or will be transmitted at next Output_Time
(Output_Time2).

Send_output
Put_Value

Figure 12: Output Time

Input Time and Output Time can have a list of values. Two Signal events
InEvent and OutEvent are used to represent the Input Time and Output Time.
They must be guaranteed in the time range. A Signal process Between() is
provided to ensure this. The details could be refered in Section 14.4.

(c) Input Rate specifies the number of inputs per dispatch or per second of data,
events, event data or subprogram calls. One input per thread dispatch by de-
fault.
Input Rate: Rate Spec� (Value Range� 1.0 .. 1.0;

Rate Unit� PerDispatch; Rate Distribution� Fixed) applies to (port);
Rate Spec : type record (Value Range : aadlreal;

Rate Unit: units (PerSecond, PerDisptach);
Rate Distribution : Supported Distributions;);

(d) Output Rate specifies the number of outputs per dispatch or per second of
data, events, event data or initiations of subprogram calls. One output per
thread dispatch and fixed distribution by default.
Output Rate: Rate Spec� (Value Range� 1.0 .. 1.0;

Rate Unit� PerDispatch; Rate Distribution� Fixed) applies to (port);

(e) Timing property specifies the connection type of a data port.
Timing : enumeration (sampled, immediate, delayed)

� sampled applies to (port);

58

11.1 Port 11 FEATURES AND SHARED ACCESS

i. If Timing is declared as immediate, then Output Time is Completion and
Input Time is Start. The defined Input Time and Output Time are ignored.

ii. If Timing is declared as delayed, then Output Time is Deadline and In-
put Time is Dispatch.

Timing Input Time Output Time
immediate Start Completion
delayed Dispatch Deadline

(f) Fan Out Policy property specifies how the output is distributed to multi-
ple recipients of a port with multiple outgoing connections. Default value is
Broadcast.
Fan Out Policy: enumeration (Broadcast, RoundRobin, Selective, OnDemand)

applies to (port);

The Fan Out Policy property indicates whether the output is passed to all recip-
ients (Broadcast), to the next recipient ready to be dispatched (OnDemand), or
the output is distributed evenly to the recipients (RoundRobin). If the property
is not specified the default is Broadcast. If the fan out policy is OnDemand, a
queue may be associated with the port through the use of the appropriate queue
properties.
PLG: the exact title for these queue properties is In port queue properties ;

more over the complementary wording in 8.2.3 does not mention queues asso-
ciated with output ????. Moreover an AADL-thread can probably wait for dis-
patch coming from several ports; if it is dispatched from one source, it should
cancel the other demands,....???? it’s a very costly protocol

output

OutEvent

The Distributer will decide the output could be sent to which
receiver in port, depending on the Fan_Out_Policy property.

Inputn

Input1Connection1

Connectionn

...
Distributer1

Distributern

...output_accessible

Figure 13: Fan Out Policy

A controler (Distributer) is needed to choose the recipients of an out port. (Fig-
ure 13.) For each connection, a Distributer is added to control that whether the
output will be sent to this connection or not. A set of Distributer are defined
in a library: Distributer Broadcast, Distributer OnDemand,etc. Depending on
the Fan Out Policy, a corresponding Distributer will be used. The details are
specified in Section 14.4.

process Distributer_Broadcast =
{integer Distributer_ID;}
(? i; ! o;)

59

11.1 Port 11 FEATURES AND SHARED ACCESS

(|o := i|);

process Distributer_OnDemand =
{integer Distributer_ID;}
(? i; event demand; ! o;)

(|o := i when demand |);

2. Properties related to external source text (...) These properties do not specify tim-
ing or communication properties. They could be translated as “pragma” or “spec” in
Signal.

Source Name: aadlstring applies to (data, port, subprogram, parameter);
Source Text : inherit list of aadlstring applies to

(data, port, subprogram, thread, thread group, process, system,
memory, bus, device, processor, parameter, feature group, package);

Type Source Name: aadlstring applies to (data, port, subprogram);

The Source Name property specifies a source declaration or source name within the
associated source text that corresponds to a feature defining identifier.

The Source Text property specifies a list of files that contain source text.

The Type Source Name property specifies a source declaration or source name
within the associated source text that corresponds to a feature defining identifier.

3. Properties related to memory space (binding,...) These properties are related to
hardware memory. We will not translate them in Signal.

Device Register Address: aadlinteger applies to (port, feature group);
Allowed Memory Binding Class: inherit list of classifier (memory, system, processor);
Allowed Memory Binding: inherit list of reference (memory, system, processor);
Actual Memory Binding: inherit list of reference (memory);
Base Address: aadlinteger 0 .. Max Base Address;

4. Port specific compute entrypoint properties for event and event data ports:

Compute Entrypoint: classifier (Subprogram Classifier) applies to
(thread, device, provides subprogram access, event port, event data port);

Compute Execution Time: Time Range applies to (thread, device,
subprogram, event port, event data port);

Compute Deadline: Time applies to (thread, device,
subprogram, subprogram access, event port, event data port);

(4) Event (-data) ports may dispatch a port specific Compute Entrypoint. This per-
mits threads with multiple event or event data ports to execute different source text
sequences for events arriving at different event ports (PLG: such an entry is a black
box in a gray box) If specified, the port specific Compute Execution Time and
Compute Deadline takes precedence over those of the containing thread.

Yue: how to translate these properties in Signal?

60

11.1 Port 11 FEATURES AND SHARED ACCESS

5. Properties related to queues. These properties are related to event or event ports.

(a) Queue Processing Protocol. Queues will be serviced according to this prop-
erty, by default in a FIFO order. An event (event data) port could be represented
by a Signal queue, for example: FIFO.
Queue Processing Protocol: Supported Queue Processing Protocols�

FIFO applies to (event port, event data port, subprogram access);

(b) Queue Size. The default port queue size is 1.
Queue Size: aadlinteger 0 .. Max Queue Size� 1 applies to

(event port, event data port, subprogram access);

(c) Dequeue Protocol. This property specifies the dequeuing option to the receiv-
ing application.
Dequeue Protocol: enumeration (OneItem, MultipleItems, AllItems)�

OneItem applies to (event port, event data port);

• OneItem: a single frozen item is dequeued and made available to the
source text unless the queue is empty.

• AllItems: all items that are frozen at input time are dequeued and mad
available to the source text via the port variable.

• MultipleItems: multiple items can be dequeued one at a time from the
frozen queue.

(d) Dequeued Items. This property specifies the maximum number of items that
ate made available to the application when the input is frozen at input time.
Dequeued Items: aadlinteger applies to (event port, event data port);

(e) Overflow Handling Protocol. This property determine the action, when an
event (event data) arrives and the number of queued events is equal to the spec-
ified queue size.
Overflow Handling Protocol: enumeration (DropOldest, DropNewest, Error)�

DropOldest applies to (event port, event data port, subprogram access);

6. Other properties.

Urgency: aadlinteger 0 .. Max Urgency
Transmission Type: enumeration (push, pull);

The Urgency property specifies the urgency with which an event at an in port is to
be serviced relative to other events arriving at or queued at other in ports of the same
thread.

The Transmission Type property specifies whether the transmission across a data
port connection is initiated by the sender (push) or by the receiver (pull).

Yue: how to translate them in Signal?

61

11.1 Port 11 FEATURES AND SHARED ACCESS

11.1.3 In out (common) port behavior

Rate properties (29) The Input Rate and Output Rate properties specify the rate at
which input and output is expected to occur at the port with the associated property. By
default the input and output rate of ports is the rate at which the thread executes. The rate
can be fixed (periodic) or according to a distribution. An input or output rate higher than
the dispatch rate of a thread indicates that multiple inputs or multiple outputs are expected
during a single dispatch. An input or output rate lower than the dispatch rate of a thread
indicates that inputs or outputs are not expected at every dispatch. If an Input Time or Out-
put Time property is specified, then the number of values must be consistent with the rate.
An input or output rate lower than the period indicates that input is not expected at every
dispatch and that output is not expected to be transmitted at every dispatch.

Those rate properties will not generate anything but comments in Signal. The con-
sistence between a (Input/Output) Time list statically defined and a (Input/Output) Rate
given by a distribution is not obvious to understand as such. Moreover, a rate lower than
the rate given by the size of the (Input/Output) Time results in a non-deterministic behav-
ior. Thus, we should assume that (Input/Output) Time list gives the (maximal) number of
(Input/Output) values between 2 dispatches in the current Mode. And we consider Rates
as information for verification tools.

Input ports (13) Data, events, and event data arriving through incoming ports is made
available to the receiving thread, processor, or device at a specified input time. From that
point on any newly arriving data, event, or event data is not available to the receiving com-
ponent until the next dispatch (PLG: Input Time, not really dispatch), i.e., the input is
frozen.

(17) The Input Time property can have a list of values. In this case it indicates that
input is frozen multiple times for the execution of a dispatch.

1. Actual input

(15) The Input Time property can be used to explicitly specify an input time for
ports. This can be done for all ports by specifying the property value for the thread,
or it can be specified separately for each port. (PLG: may some ports inheriting
thread property while others have their own specification?) Yue: The property defi-
nition declares that this property could only apply to a port not to a thread. Then how
to specify it for a thread?

(40) A Receive Input runtime service allows the source text of a thread to explicitly
request port input on its incoming ports to be frozen and made accessible through
the port variables....The Receive Input service takes a mask parameter that specifies
for which ports the input is frozen. (PLG: links with Input Time ???)

(42) A Get Value runtime service shall be provided that allows the source text of a
thread to access the current value of a port variable. The service call returns the data
value. Repeated calls to Get Value result in the same value to be returned, unless the
current value is updated through a Receive Input call or a Next Value call.

62

11.1 Port 11 FEATURES AND SHARED ACCESS

PLG: as far as I understand these rules allow several freezing between two dis-
patches, not only at dispatch time as indicated in (13).

There are some questions concerning the consistency:

• Is it possible to freeze input after completion ? The reasonable answer is prob-
ably that a thread cannot emit complete before all Input Time occurrences. But
in AADL an Input Time may follow the Completion Time !!! How is this pos-
sible if the thread is not running (see (40) below) ??? Does this means that
input freezing is done by some AADL implicit action ??? How this policy can
be made consistent with hidden Receive Input calls.

• Negative time associated with Completion Time is generally not causal !!!

(9.1.4(28)) Arrival of events on event ports can also trigger a mode switch if the
event port is named in a mode transition originating in the current mode (see Section
12). Events that trigger mode transitions are not queued at event ports.

2. Input ports and Polychrony
The input port behavior induces an event Signal-signal InEvent for a port. InEvent
has as many occurrences as given by Input Time list. This occurrences may be dy-
namically generated according to queue size, TimeOffset, ...

Output ports (27) The Output Time property can have a list of values. In this case it
indicates that output is transmitted multiple times as part of the execution of a dispatch.

1. Actual output
(38) A Send Output runtime service allows the source text of a thread to explicitly
cause events, event data, or data to be transmitted through outgoing ports to receiver
ports. The Send Output service takes a mask parameter that specifies for which ports
the transmission is initiated. Send Output is a nonblocking service. (PLG: links with
Output Time ???) Yue: for event (event data) ports, the output could occur anytime
during the execution through a Send Output service call.

(39) A Put Value runtime service allows the source text of a thread to supply a data
value to a port variable. This data value will be transmitted at the next Send Output
call in the source text or by the runtime system at completion time or deadline.

PLG: These rules allow several sending between two dispatches.

There are some questions concerning the consistency:

• Is it possible to send after completion ? The reasonable answer is probably
that a thread cannot emit complete before all Output Time occurrences. But in
AADL an Output Time may follow the Completion Time !!! How is this pos-
sible if the thread is not running (see (40) below) ??? Does this means that
output is achieved by some AADL implicit action ??? How this policy can be
made consistent with hidden Send Output calls.

63

11.1 Port 11 FEATURES AND SHARED ACCESS

• Negative time associated with Completion Time is generally not causal !!!

2. Output ports and Polychrony
The output port behavior induces an event Signal-signal OutEvent for a port. Out-
Event has as many occurrences as given by Output Time list. This occurrences may
be dynamically generated according to queue size, TimeOffset, ... and Fan Out Policy.

A Fan Out Policy that is not the standard Broadcast policy, will generate a Signal-
process in charge of this policy

Since the Fan Out Policy is closely related to its associated connections, a Dis-
tributer is added between the output and each connection. To ease the implemen-
tation, the Distributer is not included in the translated out port process, but inserted
between the output and the connections. (the details translation of Fan Out Policy is
specified in Section 14.4).

Let x > Out port, which could be either an Out data port,

or an Out event port, or an Out event data port

y > Fan Out Policy is x’s property

c � �c1, c2, . . . c n� are the connections whose source is x

PortFanOutTranslation�x, y, c� �
�SPortFanOutTranslation�x, y, c1�
S . . .
SPortFanOutTranslation�x, y, cn�S�

An AADL in out port is translated into a front-end Signal-process depending upon
the port properties to manage directed connections.

11.1.4 Data port

(9) Data ports are intended for transmission of state data such as signals. Therefore, no
queuing is supported for data ports. A thread can determine whether the input buffer of an
in data port has new data at this dispatch by checking the port status trough a Get Count
service call, which is accessible through the port variable through a Get Value service call.
If no new data value has been received the old value is made available.

(9.1(L10))A data port cannot be the destination of more than one semantic port con-
nection unless each semantic port connection is contained in a different mode.

(5.4.6(71))...data port connections across synchronization domains are sampled con-
nections.

1. Aggregate data port
(8.3.1(15))The role of an aggregate data port is to make a collection of data from
multiple outgoing data ports available in a time-consistent manner. Time consistency

64

11.1 Port 11 FEATURES AND SHARED ACCESS

in this context means that if a set of periodic threads is dispatched at the same time
to operate on data, then the recipients of their data see either all old values or all
new values. This is accomplished by declaring a data port, whose data classifier has
an implementation with data components corresponding to the data of the individual
data ports.

The functionality of an aggregate data port can be viewed as a thread whose only
role is to collect the data values from several in data ports and make them available
as an aggregate data record; on the receiving side an equivalent thread takes passes
on the elements of the aggregate data record on to the respective out data ports of
receiving threads....

2. Behavior

It seems that data ports can have multiple output and multiple input during an AADL
thread dispatch. Figure 14 gives an example of one input time during a dispatch. The
in data port could receive multiple values during one dispatch, but these values could
not be accessible immediately. At input time, the latest value is accessible, and this
value would be used during this input time.

dispatch

start

Input_Time

input_arrive

input_accessible

x1 x2 x3 x4 x5

x1 x4

Figure 14: In data port (one input time)

(24) By default, the output time, i.e., the time output is transmitted to connected
components, is the completion time for data ports.

3. Data ports and Polychrony

Data port can be represented using cell Signal-process. A data port is close to a
Signal-signal (several data ports can be synchronous).

An aggregate data port can be implemented as indicated in AADL-8.1(7), as a Signal-
process that builds a struct before sending values, and counterpart one that breaks the
struct before delivering individual flows.

So we need a Signal-process model for input data port and a Signal-process model
for output data port. These models may be a unique common model..

A data port supports only one value. If no new data value has been received, the old
value is made available. A data port could be represented by a buffer, where a data
written to the buffer remains there, until it is overwritten by a new one.

65

11.1 Port 11 FEATURES AND SHARED ACCESS

process buffer=(? i; ! o)
(| interleave(i, o)
| o := current{false}(i, ˆo)
|)

process current =
{boolean v0;}
(? wx; event c; ! rx;)
(| rx := (wx cell c init v0) when c
|)

process interleave =
(? x, sx;)
(| b:= not (b$1 init false)
| x ˆ= when b
| sx ˆ= when (not b)
|) where boolean b; end;

4. In data port and Polychrony

The latest value of in data port buffer is frozen at InEvent time, and this value is
memorized in M.

process M = (? i; ! o)
(| o := AT(i, ˆo)
|)

process AT = (? i; event h; ! o)
(| o := (i cell h) when h
|)

The Frozen data port() copies the latest value of the buffer at specified time instant
(InEvent).

process Frozen_data_port =
(? ii; event InEvent; ! oo;)
(| oo := AT(ii, InEvent) |)

A notation DataPortTranslation��is used to represent the syntax translation
schema for data port, and V �p� is used to represent the value of a property p, and
Count�v� represents the number of elements of value v (if v is a list).

Yue: An in data port could have the following related properties: Input Time, In-
put Rate, Timing, Transmission Type and source related and memory related prop-
erties. Since in this document, we are interested in the timing aspects, so the Timing

66

11.1 Port 11 FEATURES AND SHARED ACCESS

and Input Time property are translated. The Input Rate property is related to In-
put Time, so it is not translated directly. The Transmission Type specifies whether
the data port connection related to this port is sender or receiver initiated, which
could be interpreted in data port connection section. The other properties could be
interpreted later, or implemented as Signal “pragma”.

Let x � �x1, x2,�x3, x4, . . .�� > In data port
where: x1 > portID

x2 >Data reference

x3 > Input T ime

x4 > Timing

The in data port is separated into three cases according to the Timing property:
sampled, immediate and delayed.

(a) V �x4� � Sampled.
The Timing property is specified as sampled or not specified. A sampled data
port could be separated into two cases according to the number of IO Spec Time
values of the Input Time property: Input Time contains only one reference
time value, and Input Time contains several reference time values.

i. Count�V �x3�� � 1. Input Time contains only one value, or Input Time
not specified.

Let x3 � �x31, x32, x33, x34, x35� > Input T ime
where: x31, x33 > integer

x32, x34 > Time Unit

x35 > IO Reference T ime

An input written to the buffer remains there until it is overwritten by a
new arrived input instance. At InEvent (given by Input Time property),
the current element in the buffer is copied (Frozen) to a memory M. The
value in M will be used by Get Value or other service call. The buffer may
be overwritten multiple times before next InEvent occurs.
The InEvent (the actual input time) is under time constraint (Between)
(Figure 15). The InEvent must be in the time range of [ReferenceTime
+ min offset , ReferenceTime+max offset]. ReferenceTime is the refer-
ence time (Specified in the Input Time property, which could be Dis-
patch, Start . . .). Time unit unit1 (resp. unit2) is the unit of time offset
min offset (resp. max offset).

67

11.1 Port 11 FEATURES AND SHARED ACCESS

i_arrive
buffer M

InEvent

i_accessible

Get_Value

Frozen_
data_port

ReferenceTime
Between = {int min_offset, max_offset}
(?Event InEvent, ReferenceTime;
 Event unit1, unit2;)
(|...|)

unit1

unit2

Figure 15: In data port (sampled)

process Between=
{ integer min_offset, max_offset }
(? event InEvent, ReferenceTime, unit1, unit2;)
(|...|)

Let data port x is in the context of a component, for example: a thread. We
use a notation C to present this context. An in data port in a context C is
presented as an instance of a Signal process.

DataPortTranslation�x,C � �

x�1 �� i accessible �� InDataPort�m,n�
�i arrive, InEvent, Reference T ime, unit1, unit2�

where i arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x35� � Dispatch

Start, if V �x35� � Start
Complete, if V �x35� � Complete

m � PropertyTranslation�x31�
n � PropertyTranslation�x33�
x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x32�
unit2 � PropertyTranslation�x34�

The InDataPort process is defined in a library AADL DATAPORT.
process InDataPort =
{ integer min_offset, max_offset;}
(? i_arrive;

event InEvent, ReferenceTime, unit1, unit2;
! i_accessible;)
(| o1 := buffer(i_arrive)
| o2 := Frozen_data_port(o1, InEvent)

68

11.1 Port 11 FEATURES AND SHARED ACCESS

| Between{min_offset, max_offset}
(InEvent, ReferenceTime, unit1, unit2)

| i_accessible := M(o2)
|)
where

o1, o2;
end;

The buffer(), Frozen data port() and M() processes are defined in library
AADL DATAPORT. The translation of ID, Data reference and Port property
will be introduced in later sections in detail. (The detailed Input Time
property translation can be found in Section 14.4.)

ii. Count�V �x3�� � n A 1. Input Time contains a list of values.
For example:
Input Time: list of (Dispatch, 0.0ns .. 1.0ns) (Start, 0.0ns .. 1.0ns) applies
to portA;
This case is left for further study.

(b) V �x4� � Immediate.
If the Timing property is declared as immediate, then the InEvent is Start and
zero Offset (the Input Time value is ignored if it is defined). (Figure 16)

input
buffer M

InEvent (= Start)

input'

in data port (Immediate)

Get_Value

Frozen_
data_port

Figure 16: In data port (immediate)

In this case, the translation is similar to sampled data port (with only one in-
put value). The reference time Reference T ime � Start, offset is 0, and
InEvent � Start (InEvent is generated in another thread control process).

DataPortTranslation�x,C � �

x�1 �� i accessible �� InDataPort�0,0��i arrive, InEvent, Start, true, true�
where i arrive, InEvent, Start come from the context C

(c) V �x4� � Delayed.
If the Timing property is declared as delayed, then the InEvent is Dispatch and
zero Offset (the defined Input Time value is ignored).

69

11.1 Port 11 FEATURES AND SHARED ACCESS

In this case: the translation is similar to sampled data port (with only one input
value). The reference time Reference T ime � Dispatch, offset is 0, and
InEvent �Dispatch (InEvent is generated in another thread control process).

DataPortTranslation�x,C � �

x�1 �� i accessible �� InDataPort�0,0��i arrive, InEvent, Dispatch, true, true�
where i arrive, InEvent, Dispatch come from the context C

5. Out data port and Polychrony
An out data port could specify the following properties: Output Time, Fan Out Policy,
Output Rate, Timing, Transmission Type, source related properties and memory re-
lated properties. The temporal properties are considered in out translation, i.e., Out-
put Time, Fan Out Policy and Timing. The Output Rate is related to Output Time,
it is not translated. And the other properties are not considered yet.

Let x � �x1, x2,�x3, x4, x5 . . .�� > Out data port
where: x1 > portID

x2 >Data reference

x3 � Output T ime > Port property

x4 � Timing > Port property

x5 � Fan Out Policy > Port property

(Figure 17.) The Output is sent out (Send) when OutEvent is true. A Distributer will
select the recipients depending on Fan Out Policy. (To ease the implementation, a
distributer is added between the output and each connection.)

process Send = (? i, OutEvent; ! o;)
(| o := AT(i, OutEvent) |)

o_arrive

o_sent_1

OutEvent

buffer Send

Between = {int min_offset, max_offset}
(? Event OutEvent, ReferenceTime,
 unit1, unit2;)
(|...|)

ReferenceTime

unit1

unit2

o_sent_2

o_sent_n

Distributer{1}()

Distributer{2}()

Distributer{n}()

Figure 17: Out data port (sampled)

The out data port is separated into three categories depending on the Timing prop-
erty: sampled, immediate and delayed.

70

11.1 Port 11 FEATURES AND SHARED ACCESS

(a) Sampled. V �x4� � Sampled.
The Timing property is specified as sampled or not specified (as default value).
The OutEvent is restricted by a constraint Between (or SeveralBetween), de-
pending on the number of reference times the Output Time property specifies.
In case of Output Time specifies only one reference time value,Count�V �x3� �
1�.

Let x3 � �x31, x32, x33, x34, x35� � Output T ime > Port property
where: x31, x33 > aadlintegerinteger

x32, x34 > Time Unit

x35 > IO Reference T ime

The OutEvent must satisfy the time constraints (Between(), the detailed trans-
lation of Output Time is specified in Section 14.4).
Let out data port x is in the context of a component, for example: a thread.
We use a notation C to present this context. An out data port in a context C is
presented as an instance of a Signal process.

DataPortTranslation�x,C � �

x�1 �� o �� OutDataPort�m,n�
�o arrive, OutEvent, Reference T ime, unit1, unit2�

where o arrive, OutEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x35� � Dispatch

Start, if V �x35� � Start
Complete, if V �x35� � Complete

m � PropertyTranslation�x31�
n � PropertyTranslation�x33�
x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x32�
unit2 � PropertyTranslation�x34�

The OutDataPort process is defined in library AADL DATAPORT.

process OutDataPort =
{ integer min_offset, max_offset;}
(? o_arrive; event OutEvent, Reference_Time, unit1, unit2;
! o;)
(| o1 := buffer(o_arrive)
| o := Send(o1, OutEvent)

71

11.1 Port 11 FEATURES AND SHARED ACCESS

| Between{min_offset, max_offset}
(OutEvent, Reference_Time, unit1, unit2)

|)
where

o1;
end;

The Fan Out Policy x5 and related connections will be translated to link the
output and receiving connections (inputs).
In case of Output Time specifies a list of reference time values, n � Count�V �x3� A

1�, for example, it contains two reference time. This case is left for further
study.

(b) Immediate. V �x4� � Immediate.
If the Timing property is declared as immediate, the OutEvent is Completion .
The value of Output Time is ignored.
In this case: the translation is similar to sampled data port (with only one
reference time value). The reference time is Completion, offset is 0, and
OutEvent �� Completion

DataPortTranslation�x,C � �

x�1 �� o �� OutDataPort�0,0��o arrive, OutEvent, Completion, true, true�
where o arrive, OutEvent, Completion come from the context C

x�1 � IDTranslation�x1� � x1

(c) Delayed. V �x4� � Delayed.
Similar as immediate. Output Time is ignored. The OutEvent is Deadline,
OutEvent ��Deadline.

DataPortTranslation�x,C � �

x�1 �� o �� OutDataPort�0,0��o arrive, OutEvent, Deadline, true, true�
where o arrive, OutEvent, Deadline come from the context C

x�1 � IDTranslation�x1� � x1

6. In out data port and Polychrony

In out data port is separated into in and out two ports?

72

11.1 Port 11 FEATURES AND SHARED ACCESS

11.1.5 Event (Event data) port

(10) Event data ports are intended for message transmission.... A receiving thread can get
access to one or more data element in the queue according to the Dequeue Protocol and
Dequeued Items properties. ...Individual element of the queue can be retrieved via the port
variable using the Get Value and Next Value service calls. If the queue is empty the most
recent data value is available.

(11) Event ports are intended for event and alarm transmission.... A receiving thread
can get access to one or more events in the queue according to the Dequeue Items property.

(9.1(16)) The AADL supports n-to-n connectivity for event and event data ports. A port
may have multiple outgoing connections, i.e., its content is transmitted to multiple destina-
tions. This means that each destination port receives an instance of the event, or event data
being transmitted. (PLG claim not consistent with the above fan out policy ????) Simi-
larly, event and event data ports can support multiple incoming connections resulting in
sequencing and possibly queuing of incoming events and event data.

Event and event data ports can have a queue associated with them. By default, the
incoming event (event data) ports of threads, devices and processors have queues.

1. Dispatch event (event data) port
(C1) The ports that trigger the dispatch must have a Input Time property value of
Dispatch Time.

(20) If no event or event data port is explicitly connected to or associated by condi-
tion with the Dispatch port, then any incoming event or event data port can trigger
the dispatch. The input of other ports that can trigger dispatch is not frozen. Input of
the remaining ports is frozen according to the specified input time. ???

(21) If event and event data ports are explicitly connected to the Dispatch port, then
only one of those port will trigger the dispatch. The input of other ports that can trig-
ger dispatch is not frozen (PLG thus simultaneity only occurs for data ports or non
dispatching event). Input of the remaining ports is frozen according to the specified
input time.

(22) If a dispatch condition is specified (PLG: HOW ???, dispatch condition does
not seem to be defined; is it the condition in Await Dispatch runtime? If such, there
is no hope to fully model dispatch in Signal if the condition is not written in Signal)
then the logic expression determines the combination of event and event data ports
that trigger a dispatch, and whose input is frozen as part of the dispatch. The input
of other ports that can trigger dispatch is not frozen. Input of the remaining ports is
frozen according to the specified input time.

(23) If an event port is associated with a component (including thread) containing
modes and mode transition, and the mode transition names the event port, then the
arrival of an event is a mode change request and it is processed according to the mode
switch semantics.

(35) ... If such an incoming port is associated with a thread and the thread does not
contain a mode transition naming the port, then the event or event data arriving at

73

11.1 Port 11 FEATURES AND SHARED ACCESS

this port is added to the queue of the port. If the thread is aperiodic or sporadic and
does not have its Dispatch event connected (PLG: in the current mode) , then each
event and event data arriving and queued at any incoming ports of the thread results
in a separate request for thread dispatch. PLG: what about other threads ?

Dispatch event and Polychrony A Signal-process is dedicated to generate the
dispatch event (only for event driven AADL-threads).

2. Port queue
Queue properties for in event(-data) port:

Overflow Handling Protocol: enumeration (DropOldest, DropNewest, Error)
Urgency: aadlinteger 0 .. value(Max Urgency)
Dequeued Items: aadlinteger
Dequeue Protocol: enumeration (OneItem, MultipleItems, AllItems)

(30) ... If an event arrives and the number of queued events (and any associated data)
is equal to the specified queue size, then the Overflow Handling Protocol property
determines the action. If the Overflow Handling Protocol property value is

• Error, then an error occurs for the thread. ...

• DropNewest and DropOldest, the newly arrived or oldest event in the queue
event is dropped.

(11)The number of queued event (data) elements accessible to a thread can be deter-
mined through the port variable using the Get Count service call.

(31) Queues will be serviced according to the Queue Processing Protocol, (PLG:
not defined in my copy) Yue: Queue Processing Protocol could be one of the Sup-
ported Queue Processing Protocol (which is an enumeration type specifies the set of
queue processing protocols that are supported. By default is FIFO. Other protocols
are project specific). by default in a first-in, first-out order (FIFO). When an event-
driven thread declares multiple in event and event data ports in its type and more
than one of these queues are nonempty, the port with the higher Urgency property
value gets serviced first. If several ports with the same Urgency are non-empty, then
the Queue Processing Protocol is applied across these ports and must be the same for
them. In the case of FIFO the oldest event will be serviced (global FIFO). It is permit-
ted to define and use other algorithms for picking among multiple non-empty queues.
Disciplines other than FIFO may be used for managing each individual queue.

(32) By default, one item is dequeued and made available to the source text through
the port variable. The Dequeue Protocol property specifies different dequeuing op-
tions.

• OneItem: (default) a single frozen item is dequeued and made available to the
source text unless the queue is empty. The Next Value service call has no effect.
Yue: copy only one value at input time.

74

11.1 Port 11 FEATURES AND SHARED ACCESS

• AllItems: all items that are frozen at input time are dequeued and made avail-
able to the source text via the port variable, unless the queue is empty. Indi-
vidual items become accessible as port variable value through the Next Value
service call. (PLG meaning that values remain totally ordered) Yue: copy all
values. Next Value service call is used to access a value.

• MultipleItems: multiple items can be dequeued one at a time from the frozen
queue and made available to the source text via the port variable. One item is
dequeued and its value made available via the port variable with each Next Value
service call. Any items not dequeued remain in the queue and are available
for the next dispatch. Yue: multiple (Dequeue Items) values are copied. Use
Next Value to access one item at a time.

(46, p.143) For each data or event data port declared for a thread, a system imple-
mentation method must provide sufficient buffer space within the associated binary
image to unmarshall the value of the data type. Adequate buffer space must be allo-
cated to store a queue of the specified size for each event data port.

3. Port queue and Polychrony

A Signal-process is dedicated to manage the port queue. The queue could be any
supported processing queue, by default is fist in first out. It is made of a Queue and
a controler defined wrt to port queue rules.

To deliver multiple values, one can use an array with a companion counter (the num-
ber of meaningful values in the array) or introduce a new (?) type (bounded) se-
quence in Signal and associated operators (size, append, next,...)

In the current translation, a FIFO queue is provided (the other Supported Queue Processing Protocol
has not been implemented yet). A FIFO library is defined to: create a FIFO, set mes-
sages to a FIFO, and send out messages from a FIFO, etc. The FIFO management
will be implemented in external C code. Other types of queues could be developed
later.

process CREATE_FIFO =
(? string fifo_name;

integer fifo_size;
Data_type default_msg;

! ID_type fifo_ID;)
pragmas

Comment "create a FIFO"
end pragmas

(| fifo_ID := FIFO_RECORD{}(fifo_name, fifo_size, default_msg)
|);

process FIFO_RECORD =
(? string fifo_name;

integer fifo_size;
Data_type default_msg;

! ID_type fifo_ID;)

75

11.1 Port 11 FEATURES AND SHARED ACCESS

pragmas
C_Code "GLOBAL_FIFO_MANAGER->FIFORecord(&i1,&i2, &i3, &o1)"

end pragmas;

process In_FIFO =
{integer k;}
(? ID_type fifo_ID; [k]Data_type x_in;)
pragmas

Comment "send x_in (k elements) to FIFO"
end pragmas

(| fifo_ID ˆ= x_in
| fifo := FIFO_CHECKID{}(fifo_ID)
| fifo_new := SET_MESSAGE{k}(fifo_ID, fifo, x_in)
|)

where
FIFO_type fifo, fifo_new;

end;

process FIFO_CHECKID =
(? ID_type fifo_ID;
! FIFO_type fifo_out;)

pragmas
C_Code "GLOBAL_FIFO_MANAGER->FIFOCheckID(&i1,&o1)"

end pragmas;

process SET_MESSAGE =
{integer k;}
(? ID_type fifo_ID; FIFO_type fifo; [k]Data_type x_in;
! FIFO_type fifo_new;)
pragmas

Comment "add [k]x_in at the end of fifo_ID "
end pragmas

(| fifo_new.name := fifo.name
| fifo_new.size := fifo.size
| fifo_new.nbmsg := (fifo.nbmsg + k) when ((fifo.nbmsg + k)<=fifo.size)

default fifo.size

| array i to (MAX_QUEUE_SIZE-1) of
fifo_new.fifo_queue[i] := if (i<fifo.nbmsg) then fifo.fifo_queue[i]
else if ((i<fifo.size) and (i<(fifo.nbmsg+k))) then x_in[i-fifo.nbmsg]
else fifo.fifo_queue[i]

end
| FIFO_UPDATE(fifo_ID,fifo_new)
|);

process FIFO_UPDATE =
(? ID_type fifo_ID; FIFO_type fifo;)
pragmas

Comment "update the fifo recored"
C_Code "GLOBAL_FIFO_MANAGER->FIFOUpdate(&i1,&i2)"

end pragmas;

process Out_FIFO =
{integer k; Data_type default_msg;}

76

11.1 Port 11 FEATURES AND SHARED ACCESS

(? ID_type fifo_ID;
! [k]Data_type x_out;)
pragmas

Comment "get k elements (x_out) from FIFO, (suppose that k<fifo.nbmsg)"
end pragmas

(| fifo := FIFO_CHECKID{}(fifo_ID)
| (fifo_new, x_out) := GET_MESSAGE{k, default_msg}(fifo_ID, fifo)
|)

where
FIFO_type fifo, fifo_new;

end;

process GET_MESSAGE =
{integer k; Data_type default_msg;}
(? ID_type fifo_ID; FIFO_type fifo;
! FIFO_type fifo_new; [k]Data_type x_out;)
pragmas

Comment "from fifo_ID, get k elements, return [k]x_out"
end pragmas

(| fifo_new.name := fifo.name
| fifo_new.size := fifo.size
| fifo_new.nbmsg := (fifo.nbmsg - k) when ((fifo.nbmsg - k)>0)

default 0

| array i to (MAX_QUEUE_SIZE-1) of
fifo_new.fifo_queue[i] := if ((i<(fifo.nbmsg-k)) and (fifo.nbmsg>k))
then fifo.fifo_queue[k+i]
else if ((i>=(fifo.nbmsg-k)) and (fifo.nbmsg>k))
then default_msg
else default_msg

end
| array i to k of

x_out[i] := if (i < fifo.nbmsg) then fifo.fifo_queue[i]
else default_msg
end

| FIFO_UPDATE(fifo_ID, fifo_new)
|);

process Move_k_FIFO =
{integer k; Data_type default_msg;}
(? ID_type fifo_send, fifo_receive; event Move_time;
! [k]Data_type x_move;)
pragmas

Comment "at Move_time, move k elements from fifo_send to fifo_receive"
end pragmas

(| x_move := Out_FIFO{k, default_msg}(AT(fifo_send, Move_time))
| In_FIFO{k}(AT(fifo_receive, Move_time),x_move)
|);

process Move_all_FIFO =
{Data_type default_msg;}
(? ID_type fifo_send_ID, fifo_receive_ID; event Move_time;)
pragmas

Comment "at Move_time, move k elements from fifo_send to fifo_receive"

77

11.1 Port 11 FEATURES AND SHARED ACCESS

end pragmas
(| fifo_send := FIFO_CHECKID{}(AT(fifo_send_ID, Move_time))
| fifo_receive := FIFO_CHECKID{}(AT(fifo_receive_ID, Move_time))
| fifo_send_new.name := fifo_send.name
| fifo_send_new.size := fifo_send.size
| fifo_send_new.nbmsg := 0

| array i to (MAX_QUEUE_SIZE-1) of
fifo_send_new.fifo_queue[i] := AT(default_msg, Move_time)

end
| FIFO_UPDATE(fifo_send_ID, fifo_send_new)

| fifo_receive_new.name := fifo_receive.name
| fifo_receive_new.size := fifo_receive.size
| fifo_receive_new.nbmsg := (fifo_receive.nbmsg + fifo_send.nbmsg)

when ((fifo_receive.nbmsg + fifo_send.nbmsg)<fifo_receive.size)
default fifo_receive.size

| array i to (MAX_QUEUE_SIZE-1) of
fifo_receive_new.fifo_queue[i] :=
if (i<fifo_receive.nbmsg)
then AT(fifo_receive.fifo_queue[i], Move_time)
else AT(fifo_send.fifo_queue[i-fifo_receive.nbmsg], Move_time)
end

| FIFO_UPDATE(fifo_receive_ID, fifo_receive_new)
|)

where
FIFO_type fifo_send, fifo_receive, fifo_send_new, fifo_receive_new;

end;

4. In event (event data) port and Polychrony

An event (event data) port could be represented by a pair of QUEUEs (Ex-QUEUE
and Frozen-QUEUE) and a container of constraints. (Figure 18). Ex-QUEUE re-
ceives inputs from other threads (e.g., In FIFO() process). At InEvent (constraint by
Input Time in Between() process), move (Frozen) all the actual elements from Ex-
QUEUE to Frozen-QUEUE (Move all FIFO()). The inputs arrived after the InEvent
will be available at the next InEvent.

A number of elements (this number is determined by the Dequeue Protocol prop-
erty) in Frozen-FIFO will be dequeued (Dequeue() process) into an array (i accessible).
Any items not dequeued remain in the Frozen-QUEUE and are available for the next
InEvent. The elements in i accessible array could be used one at a time through
Next Value service call.

At InEvent, frozen the inputs: copy all elements of Ex-QUEUE into (Frozen-QUEUE),
and dequeue k elements of Frozen-QUEUE. These processes are defined in library
AADL EVENTPORT and AADL EVENTDATAPORT.

process Frozen_event_port =
{Data_type default_msg;}

78

11.1 Port 11 FEATURES AND SHARED ACCESS

Ex-QUEUE Frozen-QUEUEi_arrive

InEvent

i_accessibleFrozen_
event_port

Between =
{min_offset, max_offset}
(? event InEvent, ReferenceTime1;
 event unit1, unit2;)
(|...|)

ReferenceTime

Dequeue

unit1

unit2

Figure 18: In event port

(? ID_type fifo_send_ID, fifo_receive_ID; event Move_time;)
(| Move_all_FIFO{default_msg}(fifo_send_ID, fifo_receive_ID, Move_time)
|);

process Dequeue_event =
{integer dequeue_number; Data_type default_msg;}
(? ID_type fifo_ID;
! [dequeue_number]Data_type dequeue_sequence;)

(| dequeue_sequence := Out_FIFO{dequeue_number,default_msg}(fifo_ID)
|)

where
FIFO_type fifo;

end;

process Frozen_event_data_port =
{Data_type default_msg;}
(? ID_type fifo_send_ID, fifo_receive_ID; event Move_time;)
(| Move_all_FIFO{default_msg}(fifo_send_ID, fifo_receive_ID, Move_time)
|);

process Dequeue_event_data =
{integer dequeue_number; Data_type default_msg;}
(? ID_type fifo_ID;
! [dequeue_number]Data_type dequeue_sequence;)

(| dequeue_sequence := Out_FIFO{dequeue_number,default_msg}(fifo_ID)
|)

where
FIFO_type fifo;

end;

The dequeue number k is decided by Dequeue Protocol and Dequeued Items prop-
erty. The detailed interpretation of these two properties could be found in 14.4.

Dequeue Protocol Dequeue number
AllItems actual elements number of EX-FIFO
MultipleItems value of Dequeued Items
OneItem 1

(a) In event port

79

11.1 Port 11 FEATURES AND SHARED ACCESS

Let x � �x1,�x2, x3, x4, x5, . . .�� > In event port,
where �x1 > portID

x2 � Input T ime > Port property

x3 � Queue Size > Port property

x4 �Dequeue Protocol > Port property

x5 �Dequeue Items > Port property

A notation EventPortTranslation�� represents the translation from AADL
to Signal.
Let data port x is in the context of a component C . An in event port in a context
C is presented as an instance of a Signal process.
In case of Input Time contains only one reference time. Count�V �x2�� �
1.

Let x2 � �x21, x22, x23, x24, x25� > Input T ime
where: x21, x23 > aadlinteger

x22, x24 > Time Unit

x25 > IO Reference T ime

EventPortTranslation�x,C � �

x�1 �� i accessible �� InEventPort�m,n, size, k�
�i arrive, InEvent, Reference T ime, unit1, unit2�

where i arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

x�1 � IDTranslation�x1� � x1

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
k �

¢̈̈̈
¦̈̈̈
¤

size, if V �x4� � AllItems
PropertyTranslation�x5�, if V �x4� � MultiItems

1, if V �x4� � OneItem

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�

80

11.1 Port 11 FEATURES AND SHARED ACCESS

The InEventPort process is defined in library AADL EVENTPORT. (It is not
allowed to have an array of events, we use an array of Data type (integer) in-
stead: whenever a value exists, it represents a corresponding event.)

process InEventPort =
{integer min_offset, max_offset, size, dequeue_number;
Data_type def_msg;}

(? event i_arrive;
event InEvent, ReferenceTime, unit1, unit2; string Port_name;

! [dequeue_number]Data_type i_accessible;)
(| ex_FIFO_ID := CREATE_FIFO("ex_FIFO", size, def_msg)
| frozen_FIFO_ID := CREATE_FIFO("frozen_FIFO", size, def_msg)
| x_in[0] := DEFAULT_MSG when ˆi_arrive
| In_FIFO{1}(ex_FIFO_ID,x_in)
| e1:: Frozen_event_port{def_msg}(ex_FIFO_ID, frozen_FIFO_ID, InEvent)
| Between{min_offset, max_offset}(InEvent, ReferenceTime, unit1, unit2)
| e2:: i_accessible :=

Dequeue_event{dequeue_number, def_msg}(frozen_FIFO_ID)
| e1-->e2
|)

where
ID_type ex_FIFO_ID, frozen_FIFO_ID;
[1]Data_type x_in;
label e1, e2;

end;

The Dequeue Items (x5) and Queue Size (x3) property associations are inter-
preted in the property section 14.4.
In case of Input Time contains a list of reference time. Count�V �x2�� � 1.
This case is not considered yet.

(b) In event data port

Let x � �x1,�x2, x3, x4, x5, . . .�, x6� > In event data port,
where �x1 > portID

x2 � Input T ime > Port property

x3 � Queue Size > Port property

x4 �Dequeue Protocol > Port property

x5 �Dequeue Items > Port property

x6 >Data reference

The event data port interpretation is almost the same as the event port transla-
tion, except that an interpretation of the data type is added, and the management
of data (we could directly use array of data).
A notation EventDataPortTranslation�� represents the translation from
AADL to Signal. Let data port x is in the context of a component C . An
in event port in a context C is presented as an instance of a Signal process.

81

11.1 Port 11 FEATURES AND SHARED ACCESS

In case of Input Time contains only one reference time. Count�V �x2�� �
1.

Let x2 � �x21, x22, x23, x24, x25� > Input T ime
where: x21, x23 > aadlinteger

x22, x24 > Time Unit

x25 > IO Reference T ime

EventDataPortTranslation�x,C � �

x�1 �� i accessible �� InEventPort�m,n, size, k�
�i arrive, InEvent, Reference T ime, unit1, unit2�

where i arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
k �

¢̈̈̈
¦̈̈̈
¤

size, if V �x4� � AllItems
PropertyTranslation�x5�, if V �x4� � MultiItems

1, if V �x4� � OneItem

x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�
Data type � DataReferenceTranslation�x2�

The InEventDataPort process is defined in library AADL EVENTDATAPORT.

process InEventDataPort =
{integer min_offset, max_offset, size, dequeue_number; Data_type def_msg;}
(? Data_type i_arrive;

event InEvent, ReferenceTime, unit1, unit2; string Port_name;
! [dequeue_number]Data_type i_accessible;)

(| ex_FIFO_ID := CREATE_FIFO("ex_FIFO", size, def_msg)
| frozen_FIFO_ID := CREATE_FIFO("frozen_FIFO", size, def_msg)
| x_in[0] := i_arrive
| In_FIFO{1}(ex_FIFO_ID,x_in)
| e1:: Frozen_event_data_port{def_msg}(ex_FIFO_ID, frozen_FIFO_ID, InEvent)
| Between{min_offset, max_offset}(InEvent, ReferenceTime, unit1, unit2)
| e2:: i_accessible :=

Dequeue_event_data{dequeue_number, def_msg}(frozen_FIFO_ID)

82

11.1 Port 11 FEATURES AND SHARED ACCESS

| e1-->e2
|)

where
ID_type ex_FIFO_ID, frozen_FIFO_ID;
[1]Data_type x_in;
label e1, e2;

end;

where data type � IDTranslation�x6�
In case of Input Time contains a list of reference time. Count�V �x2�� � 1. Use
SeveralBetween as time constraint.

5. Out event (event data) port and Polychrony

The Output is stored in a out-QUEUE, and sent out at OutEvent time (Figure 19). The
OutEvent is restricted by a constraint Between (or SeveralBetween). A Distributer
selects the recipients depending on the Fan Out Policy.

QUEUEo_arrive

OutEvent

o_sent_1

Send

ReferenceTime

Between{}()unit1
unit2

o_sent_2

...Distributer{2}()

Distributer{1}()

Distributer{n}()

Figure 19: Out event port

The Send process is defined in library AADL EVENTPORT and AADL EVENTDATAPORT.

process Send_event =
{Data_type def_msg;}
(? ID_type fifo_ID; event OutEvent;
! event o;)
(| x_out:= Out_FIFO{1, def_msg}(AT(fifo_ID,OutEvent))
| o := when ˆx_out[0]
|)

where
[1]Data_type x_out;

end;

process Send_event_data =
{Data_type def_msg;}
(? ID_type fifo_ID; event OutEvent;
! o;)
(| x_out:= Out_FIFO{1, def_msg}(AT(fifo_ID,OutEvent))
| o := x_out[0]

83

11.1 Port 11 FEATURES AND SHARED ACCESS

|)
where
[1]Data_type x_out;

end;

(a) Out event port

Let x � �x1,�x2, x3, x4 . . .�� > Out event port
where:x1 > portID

x2 > Output T ime

x3 > Queue Size

x4 > Fan Out Policy

In case of Output Time contains only one reference time. Count�V �x2�� �
1.

Let x2 � �x21, x22, x23, x24, x25� > Input T ime
where: x21, x23 > aadlinteger

x22, x24 > Time Unit

x25 > IO Reference T ime

EventPortTranslation�x,C � �

x�1 �� OutEventPort�m,n, size�
�o arrive, OutEvent, Reference T ime, unit1, unit2�

where o arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�

The OutEventPort process is defined in library AADL EVENTPORT.

84

11.1 Port 11 FEATURES AND SHARED ACCESS

process OutEventPort =
{ integer min_offset, max_offset, size; Data_type def_msg;}
(? event o_arrive;

event OutEvent, Reference_Time, unit1, unit2; string Port_name;
! event o_accessible;)
(| out_FIFO_ID := CREATE_FIFO("out_FIFO", size, def_msg)
| x_out[0] := DEFAULT_MSG when ˆo_arrive
| In_FIFO{1}(out_FIFO_ID,x_out)
| o_accessible := Send_event{def_msg}(out_FIFO_ID, OutEvent)
| Between{min_offset, max_offset}

(OutEvent, Reference_Time, unit1, unit2)
|)
where
o1;
ID_type out_FIFO_ID;
[1]Data_type x_out;

end;

The Dequeue Items (x5) and Queue Size (x3) property associations are inter-
preted in the property section 14.4.
The Distributers are added to link the out event port and its associated con-
nections. The details interpretation of out port and Fan Out Policy have been
introduced in Section 11.1.3.
In case of Onput Time contains a list of reference time. Count�V �x2�� � 1.
This case is left for further study.

(b) Out event data port

Let x � �x1,�x2, x3, x4, . . .�, x5� > Out event data port
where:x1 > portID

x2 � Output T ime > Port property

x3 � Queue Size > Port property

x4 � Fan Out Policy > Port property

x5 >Data reference

The out event data port interpretation is similar to the out event port translation,
except that an interpretation of the data type is added.

85

11.1 Port 11 FEATURES AND SHARED ACCESS

EventDataPortTranslation�x,C � �

x�1 �� i accessible �� OutEventDataPort�m,n, size�
�o arrive, OutEvent, Reference T ime, unit1, unit2�

where o arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�
data type � IDTranslation�x5�

The process OutEventDataPort() is defined in library AADL EVENTDATAPORT.

process OutEventDataPort =
{ integer min_offset, max_offset, size; Data_type def_msg;}
(? Data_type o_arrive;

event OutEvent, Reference_Time, unit1, unit2;
string Port_name;

! o_accessible;)
(| out_FIFO_ID := CREATE_FIFO("out_FIFO", size, def_msg)
| x_out[0] := o_arrive
| In_FIFO{1}(out_FIFO_ID,x_out)
| o_accessible := Send_event_data{def_msg}(out_FIFO_ID, OutEvent)
| Between{min_offset, max_offset}

(OutEvent, Reference_Time, unit1, unit2)
|)
where
o1;
ID_type out_FIFO_ID;
[1]Data_type x_out;

end;

In case of Output Time contains a list of reference time. Count�V �x2�� �
1. Not considered yet.

6. In out event (event data) port and Polychrony Separated as in and out event (event
data) ports?

86

11.2 Parameter 11 FEATURES AND SHARED ACCESS

11.1.6 Port and Polychrony

An event (data) port differs from a Signal-signal in that a single Event (data) port is trans-
mitted at each dispatch.

Event data ports can be represented by FIFOs (or FIFO pairs, the last FIFO contains
the frozen values) or cell Signal-processes (extended “at” of Yue) following the port queue
property.

Event ports can be represented by counters (?)
The meaning of frozen is not fully clear in my mind.
Persistence of queued events through mode transitions ?

11.2 Parameter

(1) Subprogram parameter declarations represent data values that can be passed into and
out of subprograms. Parameters are typed with a data classifier reference representing the
data type.

11.2.1 Abstract syntax of Parameter

Parameter ��� parameterID � Parameter direction � opt�Data reference�
� opt�list�Parameter property��

Parameter direction ��� �in, out, �in out��
The in out parameter declaration represents a parameter whose value is passed in and

returned by value. Parameters passed by reference are modeled using requires data access.

11.2.2 Standard properties

Property In Parameter Out Parameter
Allowed Connection Binding Class X X
Allowed Connection Binding X X
Actual Connection Binding X X
Required Connection X X
Acceptable Array Size X X

11.2.3 Parameter and Polychrony

A parameter could be modeled as a Signal signal?

Let x � �x1, x2,�x3, x4, . . .�� > Parameter
where x1 > parameterID

x2 >Data reference

�x3, x4, . . .� > Parameter property
87

11.3 Subprogram and subprogram group access11 FEATURES AND SHARED ACCESS

ParameterTranslation�x� � x�2 x
�

1

x�1 � IDTranslation�x2� � x1

x�2 � DataReferenceTranslation�x2�
11.3 Subprogram and subprogram group access

11.3.1 Subprogram access

(8.3(1)) ... Subprogram access is used to model binding of a subprogram call (local or
remote) to the subprogram instance being called.

1. Abstract syntax of Subprogram access

Subprogram access ��� subprogram access ID �Access status�

opt�Subprogram reference� � opt�list�Subprogram access property��
Access status ��� �provides, requires�
Subprogram reference ��� subprogramID

2. Standard properties

Input Rate: Rate Spec
Output Rate: Rate Spec

(8.3-(7)) Input Rate and Output Rate specify the rate at which a subprogram is
called. (PLG: As rate in ports) Yue: in the property definition, Input Rate and
Output Rate could only apply to ports. Maybe the property Subprogram Call Rate
could be used instead.

Property Provides Requires
Allowed Connection Binding Class X X
Allowed Connection Binding X X
Actual Connection Binding X X
Allowed Subprogram Call X X
Actual Subprogram Call X X
Overflow Handling Protocol X
Queue Processing Protocol X X
Queue Size X X
Required Connection X X
Subprogram Call Rate X X
Compute Entrypoint X
Compute Entrypoint Call Sequence X
Compute Entrypoint Source Text X
Acceptable Array Size X X

88

11.4 Data access 11 FEATURES AND SHARED ACCESS

3. Subprogram access and Polychrony

11.3.2 Subprogram group access

1. Abstract syntax of Subprogram group access

Subprogram group access ��� subprogram group access ID �Access status�

opt�Subprogram group reference� � opt�list�Subprogram group access property��
Subprogram group reference ��� subprogram group ID

2. Standard properties
Property Provides Requires
Allowed Connection Binding Class X X
Allowed Connection Binding X X
Actual Connection Binding X X
Required Connection X X
Acceptable Array Size X X

3. Subprogram group access and Polychrony

11.4 Data access

Data access is used to model shared data.
Components can declare that they require access to externally declared data compo-

nents. Components may provide access to their data components.

11.4.1 Abstract syntax of Data access

A requires data access declaration indicates that a component requires access to a compo-
nent declared external to the component. For data components, different forms of required
access, such as read-only access, are specified by a Access Right property.

A provides data access declaration indicates that a subcomponent provides access to a
data component contained in the component.

Shared data may be accessed by multiple threads. Such potential concurrent access is
controlled according to the Concurrency Control Protocol property. This property applies
to data.

Data access ��� data access ID �Access status�

opt�Data reference� � opt�list�Data access property��
Data reference ��� dataID

89

11.4 Data access 11 FEATURES AND SHARED ACCESS

Figure 20 shows two types of data access. Data1 is made accessible outside Thread1
through a provides data access feature declaration of Thread1. It is being accessed by
Thread2 as expressed by a requires data access feature declaration in the thread type of
Thread2.

Figure 20: Data access

thread Thread1
features

Dataset: provides data access Data1;
end Thread1;

thread Thread2
features

Reqdataset: requires data access Data1;
end Thread2;

11.4.2 Standard properties

Property Provides Requires
Access Right X X
Access Time X X
Base Address X X
Acceptable Array Size X X

The Access Time property specifies the time range over which a component has ac-
cess to a shared data component. By default, access is required for the duration of the
component execution. The value of a shared data component is read or written through the
use of a data variable that represents the shared data component, or through Get Value and
Put Value service calls. Write access immediately updates the shared data component.

Access Time : record (First: IO Time Spec; Last: IO Time Spec;)
� (First� (Time� Start; Offset� 0.0ns .. 0.0 ns;);

Last� (Time� Completion; Offset� 0.0ns .. 0.0ns;);)
applies to (data access);

Between First time and Last time, the data component is being accessed. First (Last)
is specified by a reference time and a time offset range. It is modeled as a constraint

90

11.4 Data access 11 FEATURES AND SHARED ACCESS

(Between()).

Access T ime ��� First � Last

F irst ��� IO Time Spec

Last ��� IO Time Spec

IO Time Spec ��� TimeRange � IO Reference T ime

T imeRange ��� Time � Time

T ime ��� aadlinteger � Time Unit

11.4.3 Data access and Polychrony

1. Requires data access

In Figure 21, two constraints are added. They represent the First and Last access time
specified by Access Time property. Each access time is represented by a renference
time (Time) and an Offset.

FirstTime

requires data access

Between{}()

ReferenceTime1

Between{}()
ReferenceTime2

LastTime
Get_Resource

Release_Resource

Get_ValueM

F_unit1
F_unit2

L_unit1
L_unit2

Return_value
access_value

Figure 21: Requires data access

Get Value, Get Resource and Release Resource are three predefined service calls.
At FirstTime, a Get Resource is performed to lock the data resource. At LastTime, a
Release Resource is sent out to unlock the resource.

A Get Value may be sent to the corresponding data resource during the execution
depending on the detailed implementation. The required value is returned (Re-
turn value) and stored in a memory M. The memory is updated when a new Get Value
is performed (a new value is returned). The output access value is the current value
in the memory.

91

11.4 Data access 11 FEATURES AND SHARED ACCESS

Let x � �x1, x2, x3� > Requires data access
where x1 > data access ID

x2 >Data reference

x3 � �x31, x32, x33, x34, x35, x36, x37, x38, x39, x30,� > Access T ime
x31, x33, x36, x38 > aadlinteger

x32, x34, x37, x39 > Time Unit

x35, x310 > IO Reference T ime

RequiresDataAccessTranslation�x,C � �

x�1 �� access value �� RequiresDataAccessFm,Fn,Lm,Ln�FirstT ime,F Reference T ime,F unit1, F unit2,
LastT ime,L Reference T ime,L unit1, L unit2,DataResource�

where FirstT ime,F Reference T ime,F unit1, F unit2, LastT ime,
L Reference T ime,L unit1, L unit2,DataResource come from the context C

Fm � PropertyTranslation�x31�
Fn � PropertyTranslation�x33�
F unit1 � PropertyTranslation�x32�
F unit2 � PropertyTranslation�x34�
F ReferenceT ime � PropertyTranslation�x35�
Lm � PropertyTranslation�x36�
Ln � PropertyTranslation�x38�
L unit1 � PropertyTranslation�x37�
L unit2 � PropertyTranslation�x39�
L ReferenceT ime � PropertyTranslation�x310�
DataResource � IDTranslation�x2�
Datatype � DataReferenceTranslation�x2�

The process RequiresDataAccess() is defined in library AADL DATAACCESS.

process RequiresDataAccess =
{ integer F_min_offset, F_max_offset, L_min_offset, L_max_offset;}
(? event FirstTime, F_Reference_Time, F_unit1, F_unit2;

event LastTime, L_Reference_Time, L_unit1, L_unit2;
DataResource;

! Data_type access_value;)
(| Between{F_min_offset, F_max_offset}

92

11.4 Data access 11 FEATURES AND SHARED ACCESS

(FirstTime, F_Reference_Time, F_unit1, F_unit2)
| Get_Resource(FirstTime, DataResource)
| return_value := Get_Value(DataResource)
| access_value := M(return_value, ˆaccess_value)
| Between{L_min_offset, L_max_offset}

(LastTime, L_Reference_Time, L_unit1, L_unit2)
| Release_Resource(LastTime, DataResource)
|)
where
Data_type return_value

end;

Get Resource(), Release Resource() and Get Value() are defined in a library. Ac-
cess Time property translation is explained in Section 14.4.

process Get_Resource =
(? event time; Resource;)

process Release_Resource =
(? event time; Resource;)

process Get_Value =
(? Resource; ! ReturnValue;)

2. Provides data access

At FirstTime, a Get Resource service call is performed. At LastTime, a Release Resource
service call is performed. A Put Value service call is used to write a value to the data
resource. A memory M receives values from associated thread or process. (Fig-
ure 22)

FirstTime

provides data access

Between{}()

ReferenceTime1

Between{}()
ReferenceTime2

LastTime

Get_Resource
Release_Resource

Put_ValueMii

Figure 22: Provides data access

93

11.4 Data access 11 FEATURES AND SHARED ACCESS

Let x � �x1, x2, x3� > Provides data access
wherex1 > data access ID

x2 >Data reference

x3 � Access T ime >Data access property

ProvidesDataAccessTranslation�x,C � �

x�1 �� RrovidesDataAccessFm,Fn,Lm,Ln�FirstT ime,F Reference T ime,F unit1, F unit2,
LastT ime,L Reference T ime,L unit1, L unit2,DataResource, value�

where FirstT ime,F Reference T ime,F unit1, F unit2, LastT ime,
L Reference T ime,L unit1, L unit2,DataResource, value come from the context C

Fm � PropertyTranslation�x31�
Fn � PropertyTranslation�x33�
F unit1 � PropertyTranslation�x32�
F unit2 � PropertyTranslation�x34�
F ReferenceT ime � PropertyTranslation�x35�
Lm � PropertyTranslation�x36�
Ln � PropertyTranslation�x38�
L unit1 � PropertyTranslation�x37�
L unit2 � PropertyTranslation�x39�
L ReferenceT ime � PropertyTranslation�x310�
DataResource � IDTranslation�x2�
Datatype � DataReferenceTranslation�x2�

The process RrovidesDataAccess() is defined in library AADL DATAACCESS.

process ProvidessDataAccess =
{ integer F_min_offset, F_max_offset, L_min_offset, L_max_offset;}
(? event FirstTime, F_Reference_Time, F_unit1, F_unit2;

event LastTime, L_Reference_Time, L_unit1, L_unit2;
DataResource; Data_type value;)
(| Between{F_min_offset, F_max_offset}

(FirstTime, F_Reference_Time, F_unit1, F_unit2)
| Get_Resource(FirstTime, DataResource)
| Put_Value(DataResource, pvalue)
| pvalue := M(value, ˆpvalue)
| Between{L_min_offset, L_max_offset}

(LastTime, L_Reference_Time, L_unit1, L_unit2)

94

11.5 Bus access 11 FEATURES AND SHARED ACCESS

| Release_Resource(LastTime, DataResource)
|)
where
Data_type pvalue

end;

process Put_Value =
(? Resource; Value;)

11.5 Bus access

Bus components can be made accessible to other components. Components can declare
that they require access to externally declared buses. Components may provide access to
their buses. Bus access is used to model connectivity of execution platform components
through buses.

A requires bus component access declaration indicates that a component requires
access to a component declared external to the component. Required bus accesses are re-
solved to actual bus subcomponents through access connection declarations.

A provides bus access declaration indicates that a subcomponent provides access to a
bus contained in the component. Provided bus accesses can be used to resolve required bus
access.

A bus that is accessed by more than one component is shared. The shared bus is a com-
mon resource through which processor, memory and device components communicate.

11.5.1 Abstract syntax of Bus access

Bus access ��� bus access ID �Access status�

opt�Bus reference� � opt�list�Bus access property��
Bus reference ��� busID

11.5.2 Standard properties

Property Provides Requires
Access Right X X
Acceptable Array Size X X

11.5.3 Bus access and Polychrony

11.6 Feature group

Feature groups represent groups of component features of feature groups.
The content of a feature group is declared through a feature group type declaration.

This declaration is then referenced when feature groups are declared as component fea-
tures.

Within a component, the features of a feature group can be connected to individually.
Outside a component, feature groups can be connected as a single unit.

95

12 CONNECTION

A feature group can be declared to be the inverse of another feature group type.
A feature group of a component can be connected to another component through a

single connection declaration. It represents a connection for each of the feature inside the
feature group.

11.6.1 Abstract syntax of Feature group

Feature group ��� featuregroupID � opt�list�Feature���
opt�Inverse featuregroup reference� � opt�list�Feature group property��

Inverse featuregroup reference ��� featuregroupID

11.6.2 Standard properties

Property Provides Requires
Device Register Address X X
Source Text X X
Acceptable Array Size X X

11.6.3 Feature group and Polychrony

12 Connection

A connection is a linkage between features of two components that represents communi-
cation of data and control between components.

AADL supports connections between abstract features, feature groups connections,
port connections, parameter connections and access connections.

Abstract syntax of Connection

Connection ��� Port connection � Parameter connection�

Access connection � Feature group connection (16)

12.1 Port connection

(9.1(1) Port connections represent transfer of data and control between two concurrently
executing components.... These connections are semantic port connections. A semantic port
connection is determined by a sequence of one or more individual port connection declara-
tions that follow the component containment hierarchy in a fully instantiated system from
an ultimate source to an ultimate destination.

(9.1(2) ... The ultimate source of a semantic port connection is ... an out or in out port
of a thread, processor, or device component. The ultimate destination of a semantic port
connection is an in or in out port of a thread, a processor, or a device component. (4) ...

96

12.1 Port connection 12 CONNECTION

the ultimate source or the ultimate destination of a semantic port connection, but not both,
can be a data component.

(9.1(4) Semantic port connections also represent the sampling of a data component
content by a data or event data port, and updating a data component with the output of a
data or event data port. In other words, the ultimate source or the ultimate destination of a
semantic port connection, but not both, can be a data component.

(9.1(5) Semantic port connections may also route a raised event to a modal component
through a sequence of connection declarations. A mode transition in such a component is
the ultimate destination of the connection, if the mode transition names an in or in out event
port in the enclosing component, or an out or in out event port of one of the subcomponents.

(9.1(3)) ... An individual port connection declaration links a (source) of one subcom-
ponent to a (destination) of another subcomponent, i.e., it connects sibling components at
the highest level in the component hierarchy required for the connection. Alternatively, a
port connection declaration maps a (source) of a subcomponent to an outgoing port of a
containing component or an incoming port of a containing component to a (destination) of
a subcomponent. PLG: names them filiation connections, and sibling connections.

(9.1(6) Semantic port connections may exist between arrays of component instances...

Semantic port connection A semantic port connection is determined by a sequence of
one or more individual port connection declaration that follow the component containment
hierarchy in a fully instantiated system from an ultimate source to an ultimate destination.

An example:

connections
C1: data port port1 -> port2;
C2: event data port port3 -> port4;
C3: event port port5 -> port6;

12.1.1 Port connection categories

(10) A port connection declared with the optional in modes and transitions subclause spec-
ifies whether the connection is part of specific modes or is part of the transition between
two specific modes.

(L11) A semantic (data) connection cannot contain both immediate and delayed con-
nection declarations.

(13) Event port connections may refer to an event source or event destination specifi-
cation (self.eventname) (PLG ???). An event source specification indicates that the com-
ponent itself is the source of an event. In case of a thread this may be due to a Send Output
or Raise Event system call or due to an event raised by the underlying runtime system,
i.e., the processor. In case of incomplete system models it may also represent the fact that
a subcomponent to be specified is the source of an event. An event destination specifica-
tion indicates that the event may be destined for an event port in the execution platform
component(s) the component is bound to, or for a subcomponent yet to be declared in an
incomplete system model. (PLG: To be clarified)

97

12.1 Port connection 12 CONNECTION

12.1.2 Legal port connection

(L1) ...The sources and destinations must be features of an AADL-thread, AADL-thread
group, AADL-process, processor, device, or system component as indicated in the follow-
ing.

Legal port connections
Destination

1 2 3 4
Data, Data access Data port Event data port Event port

Source

1 Data, Data access X X X
2 Data port X X X X
3 Event data port X X X X
4 Event port X

• 1� 2: Content of data component is sampled by data port at the specified input time

• 1 � 3: Content of data component is copied to the event data port when the data
component is written to; the connection destination monitors write operations to
data components (may not be supported by all runtime systems).

• 1 � 4 ??

• (2,3) � 1: Event data (3), data(2) port output is written into data component at the
specified output time.

• 2 � 2: Data port output is transferred and available upon receipt as most recent
value.

• 2 � (3,4): Data port output is transferred and received as event data (3), event (4),
i.e., queued and may result in a dispatch. (PLG: 2 � 4 is not listed as acceptable in
(L5))

• 3� 2: Event data port output is transferred and available upon receipt as most recent
value.

The ultimate source ... must be a feature of a thread, processor, or device.
The ultimate destination ... must be a port of a thread, a processor, a device, or a mode

transition.
(L2) If the ultimate destination ... is a (PLG event port in a ?) mode transition, then

the ultimate source must be an out event port. (L1) ...This mode transition must be declared
in the mode subclause of a thread, thread group, process, system, device, bus, memory, or
processor naming an in event port in one of its mode transitions.

(L3) If a semantic port connection may be active in a particular mode, then the ultimate
source and ultimate destination components must be part of that mode.

(L4) If a semantic port connection may be active in a particular mode transition, then
the ultimate source component must be part of a system mode that includes the old mode
identifier and the ultimate destination component must be part of a system mode that in-
cludes the new mode identifier.

98

12.1 Port connection 12 CONNECTION

(from L7) sibling connection > �out, in out� � �in, in out�
(from L8) filiation connections > �out, in out�2

8 �in, in out�2

(from L9) connection between a data component and a port, then the data component
must have the (correct) access right

(21)... Bi-directional flow between two components is represented by two connections
between the in out ports of two components.

(9.1(L10))A data port cannot be the destination of more than one semantic port con-
nection unless each semantic port connection is contained in a different mode.

N-to-n connectivity is supported for event and event data ports (9.1.2(16)) PLG: What
about other connections (see table above)

(L17) A processor port specification must only be used in event connections within
threads and subprograms. (PLG ???)

(C2) The processor port identifier of a processor port specification (processor.processor port identifier)
must name a port of the processor that the thread is bound to.

(L12) The ultimate source (and destination) of an immediate or delayed port connection
must be a periodic thread or periodic device.

Data type matching(see L13...L15)
(C1) There cannot be cycles of immediate connections between threads, devices, and

processors.
(PLG: strong static rule that does not take mode into account?)

1. Abstract syntax of Port connection

Port conncetion ��� Event event port connection �Data data port connection

�Eventdata Eventdata port connection �Data eventdata port connection

�Data event port connection �Eventdata data port connection

�Eventdata event port connection �DATA Port connection

�DATA access Port connection �Data DATA connection

�Data DATA access connection �Eventdata DATA connection

�Eventdata DATA access connection (17)

A Port connection can either be a Event event port connection, or a Data data port connection
or others (17).

• Event port, data port, event data port, data, data access� event port: port output
or written data is recognized as event and quequed in the event port.

• Event data port, data port, data, data access � event data port: data output or
written data is transferred and received as event data in a queuqed port.

• Data port, event data port, data, data access� data port: data output or writted
data is transferred and available upon receipt as most recent value of a data port
variable: the data port samples data.

99

12.1 Port connection 12 CONNECTION

2. Abstract syntax of Event event port connection

Basic connection ��� opt�connectionID� � Source reference
�Connection direction �Destination reference

� opt�list�Connection property��
� opt�In modes and transitions� (18)

Event event port connection ��� Basic connection

��Source reference � Event port reference�
�Destination reference � Event port reference�� (19)

Event port reference ��� portID (20)

Connection direction ��� �directional, bidirectional� (21)

(a) Basic connection is a basic form for all categories of (port) connection (18).
(b) Event event port connection is a Basic port connection whose Source reference

and Destination reference are both Event port reference (19).
(c) Event port reference is a reference of event port identifier (20).
(d) Connection direction could be directional or bidirectional (21). In case of a

bidirectional port connection, both ports must be in out ports or a data compo-
nent with read write access.

(e) A Connection property is a property related to port connections. The legal port
connection properties are listed in next section.

(f) In modes and transitions is defined in Mode section.

3. Abstract syntax of other port connections The other categories of port connection
take the same form as Basic connection, but with different Source reference and
Destination reference. The following table gives acceptable source and destination
reference for each category.

Connection Source reference Destination reference
Event event port connection Event port reference Event port reference
Data data port connection Data port reference Data port reference
Eventdata eventdata port connection Eventdata port reference Eventdata port reference
Data eventdata port connection Data port reference Eventdata port reference
Data event port connection Data port reference Event port reference
Eventdata data port connection Eventdata port reference Data port reference
Eventdata event port connection Eventdata port reference Event port reference
DATA Port connection Data reference Port reference
DATA access Port connection Provides data access reference Port reference
Data DATA connection Data port reference Data reference
Data DATA access connection Data port reference Requires data access reference
Eventdata DATA connection Eventdata port reference Data reference
Eventdata DATA access connection Eventdata port reference Requires data access reference

100

12.1 Port connection 12 CONNECTION

Event port reference ��� event port ID

Data port reference ��� data port ID

Eventdata port reference ��� eventdata port ID

Port reference ��� port ID

Data reference ��� dataID

Provides data access reference ��� provides data access ID

Requires data access reference ��� requires data access ID

• Data port reference (Eventdata port reference) is a reference of data (event
data) port identifier.

• Port reference refers to a port identifier.

• provides data access ID (requires data access ID) is a data access ID whose
related Access status is provides (requires).

• The data component must have the following access right: as source, the access
right must be read-only or read-write; as destination, the access right must be
write-only or read-write.

12.1.3 Standard properties

This section gives some standard properties that could be applied to port connections. All
the listed properties (except Transmission Type, which is only applied to port connections)
are acceptable for other connections (parameter connection, access connection, . . .).

Property Port connection Other categories of connection
Allowed Connection Binding Class X X
Allowed Connection Binding X X
Actual Connection Binding X X
Required Virtual Bus Class X X
Required Connection Quality Of Service X X
Connection Pattern X X
Connection Set X X
Transmission Type X
Latency X X
Classifier Matching Rule X X

1. Actual Connection Binding. Connections and virtual buses are bound to the bus,
virtual bus, processor, virtual processor, device and memory.

Actual Connection Binding: inherit list of reference (processor,
virtual processor, bus, virtual bus, device, memory) applies to
(feature, connection, thread, thread group, process, system, virtual bus);

101

12.1 Port connection 12 CONNECTION

This property specifies through which bus a connection is transmitted.

2. Transmission Type. The Transmission Type property specifies whether the trans-
mission across a connection is initiated by the sender (push) or by the receiver (pull).
By default the transmission is initiated by the sender. A pull transmission type results
in data being transmitted at the rate of the receiver. In the case of event data port or
event ports, a pull transmission type results in events or event data queued with the
sender to be transmitted upon receiver request.

When associated with a connection, the property represents the transmission type
the connection expects. When associated with a port, the property represents the
transmission type expected by the port. When associated with a bus (or virtual bus),
the property represents the transmission type that is provided by the bus or protocol.

Transmission Type: enumeration (push, pull) applies to
(data port, port connection, bus, virtual bus);

3. Latency. This property specifies the minimum and maximum amount of elapsed
time allowed between the time the data or events enter the connection or flow and
the time it exits. Its numeric value must be positive.

Latency is a time range of transmission time?

Latency: Time Range applies to (flow, connection, bus);

The time that data (or event) exits the connection is some time (this time must be in
a time range of Latency) delayed than it enters. A time constraint is needed to model
this property.

4. Classifier Matching Rule. This property specifies the rule to be applied to mach the
data classifier of a connection source to the data classifier of a connection destination.
Allowed rules: Classifier Match, Equivalence, Subset and Conversion.

Classifier Matching Rule: inherit enumeration (Classifier Match,
Equivalence, Subset, Conversion, Complement) applies to
(connection, component implementation);

12.1.4 Standard behavior

(11) While in a given mode, transmission over a port connection only occurs if the connec-
tion is part of the current mode.

(12) During a mode switch, transmission over a data port connection only occurs at
the actual time of mode switch if the port connection is declared to apply to the transition
between two specific modes. The actual mode switch initiates transmission. This allows
data state to be transferred between threads active in different modes. Similarly, for event
or event data ports it allows for transfer of queue content.

(31) Within a synchronized system, an event arrives logically simultaneously at all ul-
timate connection destinations (see also Section 13.3).

102

12.1 Port connection 12 CONNECTION

12.1.5 Data port connection and Polychrony

(32) A data port connection is declared to be sampling, immediate or delayed. Yue: By
Timing property. In a sampling semantic connection the recipient samples the output of
the sender at dispatch time or as specified by the Input Time property of the recipient port.
In an immediate semantic connection the sender always communicates with the receiver
mid-frame, i.e., in the same dispatch frame. In a delayed semantic connection the sender
always communicates with the recipient phase-delayed, i.e., in the next dispatch frame of
the recipient.

(33) Immediate and delayed connections only apply to semantic data connections whose
end-points are both periodic. They ensure that over- and under-sampling of periodic data
streams occurs deterministically. The alignment of transmission start and end times be-
tween the sending and receiving component is statically known and is not affected by
preemption of thread execution and variation in actual execution time. (PLG: check con-
sistency of this claim)

(34) A semantic data port connection is considered to be delayed if at least one of
the connection declarations is declared to be delayed. A semantic data port connection is
considered to be immediate if at least one of the connection declarations is declared to
be immediate. Otherwise, the semantic data port connection is considered to be sampling.
Typically, an immediate or delayed data connection is specified through the sibling connec-
tion declaration, i.e., the declaration at the top of the containment hierarchy of a semantic
connection.

(35) For immediate data port connections data transfer only occurs when the peri-
ods of the sending and receiving component align, i.e., their dispatch occurs logically
simultaneous (Tsource � 0 , Tdestination � 0). The data transmission is initiated when the
source component completes and enters the suspended state (Csource � Ccomplete,source).
The actual execution of the receiving component is delayed until the sending thread com-
pletes execution (Cdestinationt � 0 ,Csource B Ccomplete,source). The input is received at
that time, i.e., the output time of the source data port is Completion Time with zero range,
and the input time of the receiving port is Start Time with zero range. Note that both the
source and destination must complete their execution by the deadline of the destination, i.e.,
(Csource � Ccomplete,source ,Csource � Ccomplete,source , Tdestination CDeadlinedestination).

This rule is transitive for sequences of immediate semantic connections.
(36) For delayed data port connections data transmission is initiated at the deadline

of the source component (Tsource �Deadlinesource, i.e., the output time of the source
data port is Deadline Time). The input time of the receiving component port is the Dis-
patch Time, i.e., the data is received at the next dispatch of the receiving component fol-
lowing or equal to the source deadline.

(37) For immediate and delayed connections the input time and output time cannot be
explicitly declared by Input Time and Output Time properties.

(39) For delayed data port connections, the data transmission is initiated at the deadline
of the source thread. The data is available at the destination port at the next dispatch of the
destination thread that occurs at or after the source thread deadline. If the source dead-

103

12.1 Port connection 12 CONNECTION

line and the destination dispatch occur at the same logical time instant, the transmission is
considered to occur within the same time instant.

(41) If multiple transmissions occur for a data port connection from the source thread
before the dispatch of the destination thread, then only the most recently transmitted data
is available in the destination port.

(42) If no transmission occurs on an in data port between two dispatches of the des-
tination thread, then the thread receives the same data again, resulting in oversampling of
the transmitted data. A status indicator is accessible to the source text of the thread as part
of the port variable to determine whether the data is fresh.

(46) Deterministic communication expressed by immediate and delayed connections
must be guaranteed by the method of implementation. Even if the transmission is initiated
and completed by explicit send and receive service calls in the source text of the sending
and receiving thread, the send and receive order of the two communicating threads must be
assured.

Data port connection are restricted to 1-n.
The transmission time of a connection is specified by Latency property. In Figure 23,

the output of a connection is sent out at LatencyTime, which is constraint by a time range
(Between()). The LatencyTime should occur between min and max time units after the
input.

Between{}()

input
output

LatencyTime

Conn

ReferenceTime

Connection

Figure 23: Connection

ReferenceTime := when ˆinput

process Conn
(? input, LatencyTime;
! output;)
(| output := input cell LatencyTime when LatencyTime |)

The Output Time of the sender and the Input Time of the the receiver are constraint
by OutEvent of the out port and InEvent of the in port.

104

12.1 Port connection 12 CONNECTION

Let x � �x1, x2, x3, x4, x5, x6� >Data data port connection
where x1 > connectionID

x2, x4 >Data port reference

x3 � directional > Connection direction

x5 � Latency > Connection property

x6 > In modes and transitions

ConnectionTranslation�x� �

process Connection x�1 �

�? x�2 input; event LatencyT ime; ! x�4 output��S output �� Conn�input,LatencyT ime�
S ReferenceT ime �� when ˆinput

S x�5 %LatencyTime is under constraint of Latency property%
S�
where

event ReferenceT ime;
end;

x�1 � IDTranslation�x1�
x�2 � DataPortReferenceTranslation�x2�
x�4 � DataPortReferenceTranslation�x4�
x�5 � PropertyTranslation�x5�

1. Sampling data port connection. The source and destination thread or device must
be periodic. The output of the sender is sent out at its Output Time (OutEvent).
Only the most recently transmitted data is available in the destination port. The re-
ceived data will be sampled (InEvent) on the receiver side (dispatch time by default)
(Figure 24.) The source Distributer determines the output should be sent to which
receiver.

2. Immediate data port connection. Deterministic. The sender and receiver must
be both periodic. The actual execution of the receiver is delayed until the sender
completes execution. The Output Time of the source data port is assumed to be
Completion. The Input Time of the receiver port is assumed to be Start with zero
offset, and any other specified time is ignored.

OutEvent �� Completion; InEvent �� Start;

The scheduler must ensure that the execution of the receiver is aligned with the
completion of the sender.

105

12.1 Port connection 12 CONNECTION

bufferoutput

OutEvent

buffer

InEvent

input'
M

Sender

Between{}()

Distributer

ReferenceTime

Frozen

ReferenceTime

buffer

InEvent

input'
MFrozen

ReferenceTime

Between{}()

Between{}()

Connection

Connection

Figure 24: Sampling data port connection

3. Delayed data port connection. Deterministic. The sender and receiver are both
periodic. The data transmission is initiated at the Deadline of the sender. The input
time of the receiver is the Dispatch time (next dispatch of the receiver following the
sender’s deadline).

OutEvent �� Deadline; InEvent �� Dispatch;

12.1.6 Event (event data) port connection and Polychrony

Event (event data) ports support n-n connectivity. The event (event data) is sent out at
OutEvent which is under constraint of Output Time. The received event (event data) is
available at InEvent. The connection is under constraint of Latency time delay. (Figure 25)

Next_Value
FIFOoutput

OutEvent

Ex-FIFO

InEvent

input'
In-FIFO

Sender

Between{}()

Distributer

ReferenceTime

Frozen

Between{}()

ReferenceTime

Connection

Figure 25: Event (event data) port connection

106

12.2 Parameter connection 12 CONNECTION

Let x � �x1, x2, x3, x4, x5, x6� > Event event port connection
where x1 > connectionID

x2, x4 > Event port reference

x3 � directional > Connection direction

x5 � Latency > Connection property

x6 > In modes and transitions

ConnectionTranslation�x� �

process Connection x�1 �

�? x�2 input; event LatencyT ime; ! x�4 output��S output �� Conn�input,LatencyT ime�
S ReferenceT ime �� when ˆinput

S x�5 %LatencyTime is under constraint of Latency property%
S�
where

event ReferenceT ime;
end;

x�1 � IDTranslation�x1�
x�2 � EventPortReferenceTranslation�x2�
x�4 � EventPortReferenceTranslation�x4�
x�5 � PropertyTranslation�x5�

bidirectional connection?

12.2 Parameter connection

(9.2-(1)) Parameter connections represent flow of data between the parameters of a se-
quence of subprogram calls in a thread.

Acceptable parameter connections include:

107

12.2 Parameter connection 12 CONNECTION

Source Destination
thread port
thread feature group port
thread in complete feature group

call.parameter requires data access
feature group requires data access
call.parameter
data subcomponent

thread port
thread feature group port
requires data access call.parameter
feature group requires data access
data subcomponent
enclosingcall.parameter containedcall.parameter
containedcall.parameter enclosingcall.parameter

(9.2-(1)) ... Parameter connections may be declared from an in data or event data port
or in out data or event data port of the containing thread to a subprogram call in or in out
parameter. Parameter connections also ... follow the containment hierarchy of subprogram
calls nested in other subprograms.

PLG: it seems that a data component (access) cannot be connected to a parameter; the
syntax does not allow it.

(L3) If the parameter connection declaration represents a parameter connection be-
tween sibling components, then the source must be an out or an in out parameter and the
destination must be an in or an in out parameter (PLG: parameter � port forbidden).
Furthermore, the source must be a parameter of a preceding subprogram call in the call
sequence, and the destination must be a parameter of a succeeding subprogram call in the
call sequence.

(PLG: when a subprogram call is in a subprogram are parameter� port connections
forbidden ?)

12.2.1 Abstract syntax of Parameter connection

Parameter connection ��� opt�connectionID� � Source parameter reference
�Destination parameter reference

� opt�list�Parameter connection property��
� opt�In modes and transitions�

Source parameter reference ��� parameterID � dataID � requires data access ID � portID

Dest parameter reference ��� parameterID � dataID � requires data access ID � portID

12.2.2 Parameter connection and Polychrony

The parameter connection is the same as the port connection. The output is LatencyTime
delayed after input, and the LatencyTime is constraint by min and max time range.

108

12.3 Feature group connection 12 CONNECTION

Let x � �x1, x2, x3, x4, x5� > Parameter connection
where x1 > connectionID

x2, x3 > Parameter reference

x4 � Latency > Connection property

x5 > In modes and transitions

ConnectionTranslation�x� �

process Connection x�1 �

�? x�2 input; event LatencyT ime; ! x�3 output��S output �� Conn�input,LatencyT ime�
S ReferenceT ime �� when ˆinput

S x�4 % LatencyTime is under constraint of Latency property%
S�
where

event ReferenceT ime;
end;

x�1 � IDTranslation�x1�
x�2 � ParameterReferenceTranslation�x2�
x�3 � ParameterReferenceTranslation�x3�
x�4 � PropertyTranslation�x4�

12.3 Feature group connection

Feature group connections represent a collection of connections between groups of fea-
tures of different components.

A feature group may have a direction declared, otherwise, it is considered bidirec-
tional.

A feature group connection must be bidirectional or be consistent with the direction
of the source and destination feature.

12.3.1 Abstract syntax of Feature group connection

Feature group connection ��� opt�connectionID� � Source feature group reference
� bidirectional �Destination feature group reference

� opt�list�Feature group connection property�� � opt�In modes and transitions�
Source feature group reference ��� feature group ID

Dest feature group reference ��� feature group ID

109

12.4 Access connection 12 CONNECTION

12.4 Access connection

Access connections represent access to shared data components by concurrently executing
threads or by subprograms executing withing thread.

9.4(2) A semantic access connection is defined by a sequence of one or more individ-
ual access connection declarations that follow the component containment hierarchy from
an ultimate source to an ultimate destination.

9.4(3) In the case of bidirectional connections, either the subcomponent being accessed
or the feature that requires access can be the ultimate source or destination. In the case of
directional data access connections, the ultimate source is the source of the data flow
In the case of partial AADL models, the ultimate source or destination may be a provides
access feature of a component without subcomponents.

(9.3(L1)) The category of the source and the destination of a access connection decla-
ration must be the same...

(9.3(L2)) The ultimate source of a semantic access connection must be data, subpro-
gram, subprogram group, or bus subcomponent (or their respective access feature.)

(9.3(L3))The ultimate destination of a semantic data access connection must be a re-
quires data access feature of a thread or a subprogram call that requires the same data
access.

(9.3(7)) Access connections are restricted to 1-n connectivity...

12.4.1 Abstract syntax of Access connection

9.4(L10) The category of the access connection source and destination must be identical.
If the component category is specified as part of the connection declaration, then it must
be identical to that of the source and destination. Bus, data, subprogram and subprogram
group are acceptable categories.

Access connection ��� Bus access connection � Subprogram access connection

� Subprogram group access connection �Data access connection

1. Bus access connection
A bus access connection represents communication between processors, memory

and devices by accessing a shared bus.

(1) ... Bus access is used to model connectivity of execution platform components
through buses.

Bus access connection ��� opt�connectionID� �Bus access provider reference
�Connection direction �Bus access requirer reference

� opt�list�Bus access connection property�� � opt�In modes and transitions�
Bus access provider reference ��� provides bus access ID � busID

Bus access requirer reference ��� requires bus access ID � busID

110

12.4 Access connection 12 CONNECTION

2. Subprogram access connection

A subprogram access or subprogram group access connection represents access to
subprogram code or a library that calls can be made to.

Subprogram access connection ��� opt�connectionID�
� Subprogram access provider reference �Connection direction

� Subprogram access requirer reference

� opt�list�Subprogram access connection property��
� opt�In modes and transitions�

Subprogram access provider reference ��� subprogramID

� provides subprogram access ID

Subprogram access requirer reference ��� subprogramID

� requires subprogram access ID

3. Subprogram group access connection

Subprogram group access connection ��� opt�connectionID�
� Subprogram group access provider reference �Connection direction

� Subprogram group access requirer reference

� opt�list�Subprogram group access connection property��
� opt�In modes and transitions�

Subprogram group access provider reference ��� subprogram group ID

� provides subprogram group access ID

Subprogram group access requirer reference ��� subprogram group ID

� requires subprogram group access ID

4. Data access connection

9.4(6) A data access connection represents access to a shared data component by
concurrently executing threads or by subprograms executing within thread.

Data access connection ��� opt�connectionID� �Data access provider reference
�Connection direction �Data access requirer reference

� opt�list�Data access connection property�� � opt�In modes and transitions�
Data access provider reference ��� provides data access ID � dataID

Data access requirer reference ��� requires data access ID � dataID

111

13 FLOWS

13 Flows

(1) A flow is a logical flow of data and control through a sequence of threads, processors,
devices, and port connections or data access connections. A component can have a flow
specification, which specifies whether a component is a flow source, i.e., the flow starts
within the component, a flow sink, i.e., the flow ends within the component, or there ex-
ists a flow path through the component, i.e., from one of its incoming ports to one of its
outgoing ports.

A flow is a logical flow of data and control through a sequence of threads, processors,
devices and port connections or data access connections.

13.1 Abstract syntax

Flows are represented by flow specification, flow implementation and end-to-end flow dec-
larations.

Flow ��� Flow spec � Flow implementation �End to end flow

Flow spec

Flow spec ��� Flow source � Flow sink � Flow path (22)

Flow end ��� Terminal � flowID � flow feature ID

� opt�list�Flow property�� � opt�In modes� (23)

Terminal ��� �source, sink� (24)

Flow source ��� Flow end��Terminal � source�� (25)

Flow sink ��� Flow end��Terminal � sink�� (26)

Flow path ��� flowID � in flow feature ID � out flow feature ID

� opt�list�Flow property�� � opt�In modes� (27)

1. Flow source (Flow sink) is a Flow end with its Terminal equals to source (sink).

2. Terminal defines whether a flow specification is a flow source or a flow sink.

3. flow feature ID could be a feature ID.

112

13.2 Standard properties 14 PROPERTIES

Flow implementation

Flow implementation ��� Flow source implementation

� Flow sink implementation � Flow path implementation (28)

Flow source implementation ��� flowID � opt�list�flowID � connectionID��
� out flow feature ID � opt�list�Flow property��
� opt�In modes and transitions� (29)

Flow sink implementation ��� flowID � in flow feature ID

� opt�list�connectionID � flowID�� � opt�list�Flow property��
� opt�In modes and transitions� (30)

Flow path implementation ��� flowID � in flow feature ID

� opt�list�connectionID � flowID�� � out flow feature ID

� opt�list�Flow property�� � opt�In modes and transitions� (31)

End to end flow

End to end flow ��� flowID � start flow ID � opt�list�connectionID � flowID��
� connectionID � end flow ID � opt�list�Flow property��
� opt�In modes and transitions� (32)

start flow ID ��� flowID (33)

end flow ID ��� flowID (34)

13.2 Standard properties

Actual Latency
Latency: Time Range

13.3 Flows and Polychrony

(2) The purpose of providing the capability of specifying end-to-end flows is to support var-
ious forms of flow analysis, such as end-to-end timing and latency, reliability, numerical
error propagation, Quality of Service (QoS) and resource management based on operational
flows.

This purpose does not require specific Signal features. Flows properties can be repre-
sented in comments if necessary.

14 Properties

14.1 Abstract syntax

(1) A property provides information about component types, component implementations,
subcomponents, features, connections, flows, modes, and subprogram calls. A property has

113

14.1 Abstract syntax 14 PROPERTIES

a name, a type, and a value. The property definition declares a name for a given property
along with the AADL components and functionality to which the property applies. The
property type specifies the set of acceptable values for a property. Each property has a
value or list of values that is associated with the named property in a given specification.

(2) A property set contains declarations of property types and property definitions that
may appear in an AADL specification. The two predeclared property sets in this standard
define properties and property types that are applicable to all AADL specifications. Users
may define property sets that are unique to their model, project or toolset. The properties
and property types that are declared in user-defined property sets are accessed using their
qualified name. A property definition declaration within a property set indicates the com-
ponent types, component implementations, subcomponents, features, connections, flows,
modes, and subprogram calls, for which this property applies.

(3) Properties can have associated expressions that are statically typed, and evaluate
to a specific value. The time at which a property expression is evaluated may depend on
the property and on how a specification is processed. For example, some expressions may
be evaluated immediately, some after binding decisions have been made, and some reflect
runtime state information, e.g., the current mode. During analysis, all property expressions
can be evaluated to known values, if necessary, by considering all possible runtime states.
A given property definition may have a default expression.

PLG: look deeper to clearly understand inheritance of time properties.

1. Property set

Property set ��� property set ID � opt�list�Property type declaration��
� opt�list�Property definition declaration�� � opt�list�Property constant��

2. Property type declatarion

114

14.1 Abstract syntax 14 PROPERTIES

Property type declaration ��� property type ID � Property type

Property type ��� aadlboolean � aadlstring �Enumeration type

�Units type �Number type �Range type

�Classifier type �Reference type �Record type

Enumeration type ��� list�enumeration literal ID�
Units type ��� Units list

Units list ��� unitID � opt�list�unitID � numeric literal��
Number type ��� Real � Integer

Real ��� aadlreal � opt�Real range� � opt�Units designator�
Integer ��� aadlinteger � opt�Integer range� � opt�Units designator�
Units designator ��� units property type ID �Units list

Real range ��� Real bound �Real bound

Real bound ��� real literal � constant

Integer range ��� Integer bound � Integer bound

Integer bound ��� integer literalORconstant

Range type ��� Number type � number property type ID

Classifier type ��� list�Classifier category reference�
Reference type ��� list�Reference category�
Record type ��� list�Record field�
Record field ��� fieldID � Property type designator

V alued property ��� Single valued property �Multi valued property

3. Property definition declaration

Property definition declaration ��� property name � V alued property

� list�Property owner�
4. Property constant

115

14.1 Abstract syntax 14 PROPERTIES

Property constant ��� Single valued property constant

�Multi valued property constant

Single valued property ��� Property type designator

� opt�Default property expression�
Multi valued property ��� list�Property type designator�

� list�Default property expression�
Single valued property constant ��� property constant ID

� Property type designator �Constant property expression

Multi valued property constant ��� property constant ID

� Property type designator � list�Constant property expression�

116

14.2 Build in property types 14 PROPERTIES

5. Property expression

Property expression ��� Boolean term �Real term � Integer term

� String term �Enumeration term �Unit term �Real range term

� Integer range term � Property term �Component classifier term

�Reference term �Record term �Computed term

Boolean term ��� boolean value �NOT boolean term �AND boolean term

�OR boolean term

boolean value ��� �true, false�
NOT boolean term ��� NOT �Boolean term

NOT ��� �not�
AND boolean term ��� Boolean term �AND �Boolean term

AND ��� �and�
OR boolean term ��� Boolean term �OR �Boolean term

OR ��� �or�
Real term ��� real literal � constant

Integer term ��� integer literal � constant

String term ��� string literal � string property constant term

Enumeration term ��� enumerationID

� enumeration property constant term

Unit term ��� unitID � unit property constant term

Real range term ��� Real term �Real term � opt�Real term�
Integer range term ��� Integer term � Integer term � opt�Integer term�
Property term ��� property name

Component classifier term ��� Component type reference

�Component implementation reference

Reference term ��� contained model element path

Record term ��� list�record field ID � property value�
Computed term ��� functionID

14.2 Build in property types

1. Property types

• aadlboolean,

• aadlstring

• enumeration type

• units type

117

14.3 Scheduling features 14 PROPERTIES

• number type

• range type

• classifier type

• reference type

• record type

2. Number types

• aadlinteger [integer range] [units units designator]

• aadlreal [real range] [units units designator]

14.3 Scheduling features

• The Data Volume property type specifies a property type for the volume of data per
time unit. The predeclared unit literals are expressed in terms of seconds as time
unit. The numeric value of the property must be positive.

Note: Conversion factor of 1000 consistent with ISO.

Data Volume: type aadlinteger 0 bitsps .. value(Max Aadlinteger)
units (bitsps, Bytesps� bitsps * 8,
Kbytesps� Bytesps � 1000,
Mbytesps� Kbytesps � 1000,
Gbytesps�Mbytesps � 1000);

• The Throughput property specifies the maximum volume of data transferred per time
unit. Its numeric value must be positive.

Throughput: Data Volume applies to (flow, connections);

• The Time property type specifies a property type for time that is expressed as num-
bers with predefined time units. The standard units are ps (picoseconds), ns (nanosec-
onds), us (microseconds), ms (milliseconds), sec (seconds), min (minutes) and hr
(hours).

Time: type aadlinteger 0 ps .. value(Max Time) units Time Units;

• The Tim Range property type specifies a property type for a closed range of time,
i.e., a time span including the lower and upper bound. The property type is Time.

Time Range: type range of Time;

118

14.4 Property and Polychrony 14 PROPERTIES

14.4 Property and Polychrony

14.4.1 Input Time

Input T ime ��� list�IO Time Spec�
IO Time Spec ��� TimeRange � IO Reference T ime

T imeRange ��� Time � Time

T ime ��� aadlinteger � Time Unit

1. If Input Time contains only one value of IO Time Spec:

Let x � ��x1, x2, x3, x4, x5�� > Input T ime
where x1, x3 > aadlinteger

x2, x4 > Time Unit

x5 > IO Reference T ime

PropertyTranslation�x� �

Between�min offset,max offset��InEvent,ReferenceT ime,unit1, unit2�
where min offset � PropertyTranslation�x1�

max offset � PropertyTranslation�x3�
unit1 � PropertyTranslation�x2�
unit2 � PropertyTranslation�x4�
ReferenceT ime � PropertyTranslation�x5�

process Between = {integer min_offset, max_offset}
(? event Controlled_Time, Reference_Time, unit1, unit2;)
(| event1 := when ((unit1 after Reference_Time) = min_offset)
| event2 := when ((unit2 after Reference_Time) = max_offset)
| IN_INTERVAL := INTER_IN_IN(event1, event2, Controlled_Time)
| Controlled_Time ˆ= when IN_INTERVAL
|)
where

event event1, event2;
boolean IN_INTERVAL;

end;

process INTER_IN_IN=
(? event START, FINISH,S;

119

14.4 Property and Polychrony 14 PROPERTIES

! IN_INTERVAL)
pragmas

Comment "Is S present between START and FINISH ?"
" S on START is IN the interval, a S on FINISH is IN also"

end pragmas
(| MEM ˆ= START ˆ+ FINISH ˆ+ S
| MEM := START default not FINISH default ZMEM
| ZMEM := (MEM$ init false)
| IN_INTERVAL := (FINISH default MEM) when S
|)
where

boolean MEM, ZMEM;
end;

2. If Input Time contains more than one values (two for example). This case is left for
further work.

14.4.2 Output Time

Output T ime ��� list�IO Time Spec�
IO Time Spec ��� TimeRange � IO Reference T ime

T imeRange ��� Time � Time

T ime ��� aadlinteger � Time Unit

1. If Output Time contains only one value of IO Time Spec:

Let x � ��x1, x2, x3, x4, x5�� > Output T ime
where x1, x3 > aadlinteger

x2, x4 > Time Unit

x5 > IO Reference T ime

PropertyTranslation�x� �

Between�min offset,max offset��OutEvent,ReferenceT ime, unit1, unit2�
where min offset � PropertyTranslation�x1�

max offset � PropertyTranslation�x3�
unit1 � PropertyTranslation�x2�
unit2 � PropertyTranslation�x4�
ReferenceT ime � PropertyTranslation�x5�

120

14.4 Property and Polychrony 14 PROPERTIES

2. If Output Time contains more than one values (two for example). This case is left
for further work.

14.4.3 Access Time

Access T ime ��� First � Last

F irst ��� IO Time Spec

Last ��� IO Time Spec

Let x � ��x1, x2, x3, x4, x5�,�x6, x7, x8, x9, x10�� > Access T ime
where x1, x3, x6, x8 > aadlinteger

x2, x4, x7, x9 > Time Unit

x5, x10 > IO Reference T ime

PropertyTranslation�x� �

�SBetween�F min offset,F max offset�
�FirstAccess,F ReferenceT ime,F unit1, F unit2�

SBetween�L min offset,L max offset�
�LastAccess,L ReferenceT ime,L unit1, L unit2�S�

where F min offset � PropertyTranslation�x1�
F max offset � PropertyTranslation�x3�
F unit1 � PropertyTranslation�x2�
F unit2 � PropertyTranslation�x4�
F ReferenceT ime � PropertyTranslation�x5�
L min offset � PropertyTranslation�x6�
L max offset � PropertyTranslation�x8�
L unit1 � PropertyTranslation�x7�
L unit2 � PropertyTranslation�x9�
L ReferenceT ime � PropertyTranslation�x1�

14.4.4 aadlinteger

Let x > aadlinteger

PropertyTranslation�x� � V �x�

121

14.4 Property and Polychrony 14 PROPERTIES

14.4.5 Time Unit

Time Unit ��� �ps, ns, us, ms, sec, min, hr�
Let x > Time Unit

PropertyTranslation�x� � event V �x�
where ns ˆ � when ��ps after ns� � 1000�

us ˆ � when ��ps after us� � 1000�
ms ˆ � when ��us after ms� � 1000�
sec ˆ � when ��ms after sec� � 60�
min ˆ � when ��sec after min� � 60�
hr ˆ � when ��min after hr� � 60�

14.4.6 IO Reference Time

IO Reference T ime ��� �Dispatch, Start, Completion, Deadline, NoIO�
Let x > IO Reference T ime

PropertyTranslation�x� � event V �x�
14.4.7 Queue Size

Queue Size �� aadlinteger
Let x > Queue Size, where x > aadlinteger
PropertyTranslation�x� � V �x�

14.4.8 Dequeue Items

Dequeue Items �� aadlinteger
Let x >Dequeue Items, where x > aadlinteger
PropertyTranslation�x� � V �x�

14.4.9 Fan Out Policy

A controler (Distributer) is needed to choose the recipients of an out port. (Figure 26.) For
each connection, a Distributer is added to control that whether the output will be sent to
this connection or not.

A set of Distributer are defined in a library: Distributer Broadcast, Distributer OnDemand,etc.
Depending on the Fan Out Policy, a corresponding Distributer will be used.

122

14.4 Property and Polychrony 14 PROPERTIES

output

OutEvent

The Distributer will decide the output could be sent to which
receiver in port, depending on the Fan_Out_Policy property.

Inputn

Input1Connection1

Connectionn

...
Distributer1

Distributern

...output_accessible

Figure 26: Fan Out Policy

process Distributer_Broadcast =
{integer Distributer_ID;}
(? i; ! o;)

(|o := i|);

process Distributer_OnDemand =
{integer Distributer_ID;}
(? i; event demand; ! o;)

(|o := i when demand |);

process Distributer_Selective =
{integer Distributer_ID;}
(? i; boolean select; ! o;)
(|o := i when select|);

process Selection =
{integer m;}
(? event trigger; ! boolean[m] select;)
(|...|)

process Distributer_RoundRobin =
{integer Distributer_ID;}
(? i; integer RR_ID; ! o;)
(|o := i when (RR_ID = Distributer_ID)
|);

process RoundRobin =
{integer m;}
(? event trigger; ! integer RR_ID;)
(| RR_ID := (zID+1) modulo m when trigger default zID
| zID := RR_ID$1 init 0
|)

where
integer zID;

123

15 MODES

end;

If it is set to be RoundRobin, an extra process RoundRobin is needed to calculate the
sequence. Only the one whose ID equals to the sequence identifier will receive the output
(Figure 27). (Similar for Selective: if it is set to be Selective, an extra process Selection is
added. Only the one who is slected will receive the output.)

output

OutEvent

The Distributer will decide the output could be sent to which
receiver in port, depending on the Fan_Out_Policy property.

Inputn

Input1Connection1

Connectionn

...
Distributer_RR{1}

Distributer_RR{n}

...output_accessible

RoundRobin

RR_ID

Figure 27: Fan Out Policy: RoundRobin

Fan Out Policy ��� �Broadcast, RoundRobin, Selective, OnDemand�
Let x > Fan Out Policy, and y is the Out port,

ck is a connection sourced from y

PropertyTranslation�x, y, ck� �

¢̈̈̈̈
¦̈̈̈̈
¨̈¤

o ��Distributer Broadcast�k��i� if V �x� � Broadcast
o ��Distributer OnDemand�k��i, demand� if V �x� � OnDemand

o ��Distributer Selective�k��i, select� if V �x� � Selective
o ��Distributer RoundRobin�k��i,RR ID� if V �x� � RoundRobin

where � k is the identifier of the corresponding connectionck,

i is the output from the out port y,

demand comes from the connecting in port,

select is generated by a selection process,

RR ID is calculated by a RoundRobin process.

15 Modes

(13)The modes subclause declares a state machine describing the dynamic mode switching
behavior of modes. The states of the state machine represent the different modes and the
transitions specify the event(s) that can trigger a mode switch to the destination mode. Only
one mode alternative represents the current mode at any one time.

124

15.1 Mode declaration 15 MODES

(1) A mode represents an operational mode state, which manifests itself as a configura-
tion of contained components, connections, and mode-specific property value associations
. . .

(2) Mode transitions . . . are triggered by events . . .

15.1 Mode declaration

(L1) A mode or mode transition can be declared in any of the component categories.
(L3) The set of transitions declared within a single component implementation must

define a deterministic transition function. For each mode, there must exist exactly (PLG:
at most ??? see item13) one transition, which can cause transition to another mode. Unless
logical conditions are defined for mode switches, an event port can only be named in one
outgoing transition from the same mode.

A mode represents an operational mode state. Mode transitions model dynamic oper-
ational behavior that represents switching between configurations and changes in compo-
nents internal characteristics.

15.1.1 Abstract syntax

Modes ��� Mode �Mode transition (35)

Mode ��� ModeID � opt�list�Mode property�� (36)

Mode transition ��� opt�Mode transition ID� � source mode ID
� list�Mode transition trigger� � destination mode ID
� opt�list�Mode transition property�� (37)

Mode transition trigger ��� portID (38)

In modes ��� list�modeID� (39)

In modes and transitions ��� list�Mode or transition� (40)

Mode or transition ��� modeID �Mode transition ID (41)

(L2) If a component classifier contains mode declarations, one of those modes must be
declared with the reserved word initial. If the component classifier extends another compo-
nent classifier, the initial mode may have been declared in one of the ancestor component
classifier.

(L4) The unique port identifier must be either an in or in out event port identifier in the
namespace of the associated component type or an out or in out event port in the namespace
of the component type associated with the named subcomponent.

15.1.2 Standard properties

1. Mode properties:

2. Mode transition properties:

Mode Transition Response

125

15.2 Model life 15 MODES

15.2 Model life

(10) The in modes statement is declared as part of subcomponent declarations, subprogram
call sequences, flow implementations, and property associations. It specifies the modes
for which these declarations and property values hold. The mode identifiers refer to mode
declarations in the modes subclause of the component classifier.

(11) The in modes statement declared as part of connection declarations specify the
modes or mode transitions for which these connection declarations hold. The mode identi-
fiers refer to mode declarations in the modes subclause of the component implementation.
If a connection is declared to be part of a mode transition, then the content of the ultimate
source port is transferred to the ultimate destination port at the actual mode switch time. If
the in modes statement contains only mode transitions, then the connection is part of the
specified mode transitions, but not part of any particular mode....

(from 10-11) If the in modes statement is not present, then the subcomponent, subpro-
gram call sequence, flow implementation, property association or connection is part of all
modes.

(from 10-11) If a property association (a connection) has both mode-specific declara-
tions and a declaration without an in modes statement, then the declaration without the in
modes statement applies to those modes not covered by the mode-specific declarations.

15.3 Mode behavior

(3) The mode semantics described here focus on a single mode subclause. A system in-
stance that represents the runtime architecture of an operational system can contain mul-
tiple components with their own mode transitions. The semantics of system-wide mode
switching are discussed in Section 13.3

(5) A mode may represent a runtime configuration of systems, processes, thread groups
and threads and their connections for a given operational state. In this case the modes are
declared in thread groups, processes and systems, and in modes clauses indicate which
subcomponents and connections are active in a given mode. In this case, only the threads
that are part of the current mode are in the suspended awaiting dispatch state responding
to dispatch requests. All other threads are in the suspended awaiting mode state or thread
terminated state.

(9) A component type or component implementation may contain several declared
modes. Exactly one of those modes is the current mode. Initially, the initial mode is the
current mode. On mode activation the Activation Mode property (PLG: p.251: applies to
thread) determines whether the initial mode is entered or the mode from the last deactiva-
tion is resumed.

(13) ... A mode switch is triggered when an event arrives at an event port that is named
in one of the transitions out of the state representing the current mode. If an event is raised
and there is no transition out of the current mode naming the event port through which the
event arrives, the event is ignored. If several events occur logically simultaneously and af-
fect different mode transitions out of the current mode, the order of arrival for the purpose
of determining the mode transition is implementation dependent. If an Urgency property

126

15.3 Mode behavior 15 MODES

is associated with each port named in mode transitions, then the mode transition with the
highest port urgency takes precedence. If several ports have the same urgency then the
mode transition is chosen non-deterministically. (PLG: why not implementation depen-
dent as above ?)

15.3.1 Mode switch within a thread

(15) A mode switch within a thread may logically occur at dispatch time. An external event
through an incoming event port, or an event raised within the thread or will cause the thread
to enter the new mode at the next dispatch. Such an event raised within a thread is declared
as self.eventname, or by a subprogram call with an outgoing event port including a call to
the Send (deprecated Raise Event) service call, and implemented as a service call to Send
(deprecated Raise Event) in the application source text or runtime system.

(16) A mode switch within a thread results in a change of its current mode. The effect
is a change in the subprogram call sequence and mode-specific property values to reflect a
change in source text internal execution behavior...

(17) Similarly, mode switches within an execution platform component occur as a re-
sult of external or internal events. A mode switch within a thread or execution platform
component does not affect the set of active threads, processors, devices, buses, or memo-
ries, nor does it affect the set of active connections.

15.3.2 Mode switch within set of threads

(18) A mode switch within a system, process, or thread group implementation has the effect
of deactivating and activating threads to respond to dispatches, and changing the pattern of
connections between components. Deactivated threads transition to the suspended awaiting
mode state. Background threads that are not part of the new mode suspend performing their
execution. Activated threads transition to the suspended awaiting dispatch state and start
responding to dispatches. Suspended background threads that are part of the new mode
resume performing execution once the transition into the new mode is complete. Threads
that are part of both the old and new mode of a mode transition continue to respond to
dispatches and perform execution. Ports that were connected in the old mode, may not be
connected in the new mode and vice versa.

(19) When a mode switch is requested through the arrival of an event on a mode transi-
tion it may result in activation or deactivation of threads and connections, or in the change
of a threads period, deadline, dispatch protocol, or execution time. In this case the actual
mode switch occurs immediately if no periodic threads are part of the old mode, otherwise
it occurs once these periodic threads in the old mode are synchronized at their hyperperiod.
Only those threads with a Synchronzied Component property value of true are considered
in the determination of the hyperperiod.

(20) Starting with the actual time of mode switch, the component is in a mode transition
in progress state for a limited amount of time. During this time some threads are deacti-
vated, other threads are activated, connections are adjusted, and the active threads in the
new mode start to execute. This time period takes the Synchronized Component property

127

15.3 Mode behavior 15 MODES

into account and is determined at the level of the whole system instance (see Section 13.3).
After that period of time, the component is considered to operate in the new mode.

(21) At the time of the actual mode switch, the deactivate entrypoint is invoked for
the following threads that must be deactivated: periodic threads that are synchronized with
the mode switch; aperiodic or sporadic threads that are in the suspended awaiting dispatch
state...

(25) At the time of the actual mode switch, any threads that were inactive in the old
mode and are active in the new mode execute their activate entrypoint. In the case of peri-
odic threads, this is immediately followed by their first dispatch of the compute entrypoint.
(TG: does it mean they don’t go through the suspended awaiting dispatch state?)

In the case of background threads, the thread resumes execution from where it was
suspended at the last deactivation. (TG: if it is at the time of the actual mode switch, is it
compatible with (18) where it is said once the transition into the new mode is complete?)

(24) Background processes that are only part of the old mode are suspended when the
actual mode switch occurs.

(27) Some property values for a component or its subcomponents may be mode-spe-
cific, for example the period of a periodically dispatched thread may be different in different
modes of operation. It changes at the time of actual mode switch.

15.3.3 Mode switch for thread that are not synchronized

(22) At the time instant of actual mode switch, aperiodic and sporadic threads as well as
periodic threads not synchronized with the mode switch may still be in the perform compu-
tation state. The Active Thread Handling Protocol property specifies for each such thread
what action is to be taken at mode switch. Possible actions are:

• Abort the execution of the thread and permit the thread to recover any state through
execution of its recover entrypoint. This permits the thread to recover to a consistent
state for future activation and dispatch. Upon completion of the recover entrypoint,
execution the thread enters the suspended awaiting mode state; event and event data
port queues of the thread are flushed by default or remain in the queue until the thread
is activated again as specified by the Active Thread Queue Handling Protocol prop-
erty. If the thread was executing a remotely called subprogram, the current dispatch
execution of the calling thread of a call in progress or queued call is also aborted.

• Permit the thread to complete the execution of its current dispatch. Any remaining
queued events, or event data may be flushed by default, or remain in the queue until
the thread is activated again as specified by the Active Thread Queue Handling Protocol
property.

• Permit the thread to finish processing all events or event data in its queues.

(TG: does it possibly include new ones?)

128

16 AN AADL ABSTRACT SYNTAX

16 An AADL abstract syntax

This section is a copy/paste from MyDigest.
We describe the AADL language using the abstract syntax trees defined in this section.

16.1 Notations

16.1.1 General AST

1. Tree set Given a set of labels Λ that contains a special empty label ε, the set of trees
labeled in Λ is the smallest set that satisfies the following rules :

• Y is in ; it denotes the tree that only contains an unlabeled root;ts label is ε; by
definition4 � �Y�;

• if t1, . . . , tn are trees then for all λ in Λ �λ, �t1, . . . , tn�� is a tree labeled λ

2. Tree sets For all subsets of trees SS,SS1, . . . , SSn,

• SS1 � SS2 denotes the set of trees SS1 8 SS2

• �SS1� � SS1 �4

• SS1 �SS2 � � � � �SSn is the set of n tuples of trees; � is defined as associative
(ie �t1, �t2, t3��, ��t1, t2�, t3��, �t1, t2, t3� are not distinguished)

• SS1� is the smallest set of non empty sequences of trees defined by: SS1� �

SS1 � �SS1 � SS1��
• SS1� � �SS1��
• for all λ in Λ, λ � SS is the set of trees �λ, �t1, . . . , tn�� such that �t1, . . . , tn�

is a n-tuple in SS, completed by �λ, Y� when4 is in SS.

3. Tree set variables For an identifier X

• X � SS1 is the definition of X that associates to X the set of trees SS1

• each occurrence of a variable in a tree set expression denotes the set of trees
that is associated to X by its definition.

16.1.2 AADL AST

A SSS is a set of AADL abstract syntax trees;
The set of labels contain the component categories.

16.2 Lexical elements

none statement ��� none

129

16.2 Lexical elements 16 AN AADL ABSTRACT SYNTAX

16.2.1 Word characters

letter or digit ��� identifier letter � digit

identifier letter ��� upper case identifier letter � lower case identifier letter

upper case identifier letter: Any character of Row 00 of ISO 10646 BMP whose name
begins Latin Capital Letter.

lower case identifier letter: Any character of Row 00 of ISO 10646 BMP whose name
begins Latin Small Letter.

Digit: One of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

16.2.2 Other characters

space character: The character of ISO 10646 BMP named Space”.
special character: Any character of the ISO 10646 BMP that is not reserved for a con-

trol function, and is not the space character, an identifier letter, or a digit.
format effector: The control functions of ISO 6429 called character tabulation (HT),

line tabulation (VT), carriage return (CR), line feed (LF), and form feed (FF).
other control function: Any control function, other than a format effector, that is al-

lowed in a comment; the set of other control functions allowed in comments is implemen-
tation defined.

16.2.3 Decimal literals

decimal integer literal ��� numeral�positive exponent�
decimal real literal ��� numeral.numeral�exponent�
numeral ��� digit��underline�digit��
exponent ��� E���numeral �E � numeral

positive exponent ��� E���numeral
16.2.4 Based literals

16.2.5 String literals

16.2.6 Comments

16.2.7 Identifiers

A IDENT is the set of identifiers defined by

identifier ��� identifier letter��underline�letter or digit��
A NAME ��� A IDENT �A IDENT

A LNAME ��� list�A IDENT � �A NAME

130

16.3 Non extensible AADL 16 AN AADL ABSTRACT SYNTAX

package name ��� �package identifier ����package identifier � �A IDENT�

component implementation name ���

component type identifier.component implementation identifier

unique component type reference ��� �package name ���component type identifier
unique component implementation reference ���

�package name ���component implementation name
unique component classifier reference ���

unique component type reference � unique component implementation reference

unique feature group type reference ��� �package name ���feature group type identifier
16.3 Non extensible AADL

16.3.1 Component type

A COMP TY PE ��� A IDENT �A PROTOTY PE �A FEATURE

�A FLOW SPEC � �A MODALITY � �A PROPERTY �AANNEX

A MODALITY ��� A MODE � �A MODE TRANS

A PROPERTY ��� A PROP ASSO �A CONT PROP ASSO

component type ��� component categorydefining component type identifier

� �A IDENT

�prototypes�prototype � Snone statement��
�features�feature � Snone statement��
�flows�flowspec � Snone statement��
�modes�mode �mode transition � Snone statement��
�properties�

component type property associationScontained property association�
Snone statement��
annex subclause�

enddefining component type identifier;

A PROP ASSO � add � �id � A IDENT�� �A PROP V ALUE�

set � �id � A IDENT�� �A PROP V ALUE�

A IN BINDING �A IN MODES

131

16.3 Non extensible AADL 16 AN AADL ABSTRACT SYNTAX

property association ��� � � newvalueforaproperty

�property set identifier ���property name identifier� property value

�in binding� � �A IN BINDINGTOBEDEFINED

�in modes�;� �A IN MODES

16.3.2 Component implementation

A COMP IMPL � A IDENT �A PROTOTY PE �A FEATURE

�A FLOW SPEC �A MODALITY �A PROPERTY �A ANNEX

component implementation ��� component categoryimplementation

defining component implementation name � �ANAME

�prototypes�prototype � Snone statement��
�subcomponents�subcomponent � Snone statement��
�calls�subprogram call sequence � Snone statement��
�connections�connection � Snone statement��
�flows�flow implementationSend to end flow spec � Snone statement��
�modes�mode �mode transition � Snone statement��
�properties�property associationScontained property association�
Snone statement��
annex subclause�

enddefining component implementation name;

subcomponent ��� defining subcomponent identifier � � �AIDENT

��component category
�unique component classifier reference � �AIDENT

�prototype bindings��
�array dimensions��
Sprototype reference�
�subcomponent property associationScontained property association��
�in modes�;� �A IN MODES

132

16.4 Annex 16 AN AADL ABSTRACT SYNTAX

data subcomponent ���

definingsubcomponentidentifier � � �AIDENT

��data�unique component classifier reference � �AIDENT

�prototype binding���
Sprototype reference�

NOTE: The above syntax rule is a variation of the subcomponent syntax rule. The
above syntax rule also applies to the subcomponent refinement syntax.

16.4 Annex

annex subclause ��� annexannex identifier � �A IDENT

���� � annex specific language constructs � ���Snone�;
annex library ��� annexannex identifier � �A IDENT

���� � annex specific reusable constructs � ���Snone�;
16.5 Prototypes

prototype ��� defining prototype identifier � � �A IDENT

component category�unique component classifier reference� � �A IDENT

�property association��;
prototype refinement ��� defining prototype identifier � refinedto � �A IDENT

component category�unique component classifier reference� � �A IDENT

�property association��;
prototype reference ��� prototypeprototype identifier � �A IDENT

prototype bindings ��� �prototype binding�, prototype binding���
prototype binding ���

prototype identifier� � �A IDENT

�component categoryunique component classifier reference
� �A IDENT

�array dimensions��
S�prototypeprototype identifier� � �A IDENT

16.6 Extensible AADL

A EXT COMP TY PE � A IDENT �A REF PROTOTY PE � �A REF FEATURE

�A REF FLOW SPEC � �A MODALITY �A PROPERTY � �A ANNEX�

133

16.6 Extensible AADL 16 AN AADL ABSTRACT SYNTAX

component type extension ���

component categorydefining component type identifier

extendsunique component type reference�prototype bindings� � �A IDENT

�prototypes��prototypeSprototype refinement� � Snone statement��
�features�featureSfeature refinement � Snone statement��
�flows�flow specSflow spec refinement � Snone statement��
�modes�modeSmode refinementSmode transition � Snone statement��
�properties�

component type property associationScontained property association�
Snone statement��

annex subclause�

enddefining component type identifier;

component implementation extension ���

component categoryimplementation

defining component implementation name � �A NAME

extendsunique component implementation reference � �A LNAME

�prototype bindings�
�prototypes��prototypeSprototype refinement� � Snone statement��
�subcomponents

�subcomponentSsubcomponent refinement � Snone statement��
�calls�subprogram call sequence � Snone statement��
�connections

�connectionSconnection refinement � Snone statement��
�flows��flow implementationSflow implementation refinementS
end to end flow specSend to end flow spec refinement��
Snone statement��
�modes��modeSmode refinementSmode transition� � Snone statement��
�properties��property associationScontained property association��
Snone statement��
�annex subclause��

enddefining component implementation name;

134

16.6 Extensible AADL 16 AN AADL ABSTRACT SYNTAX

subcomponent refinement ���

defining subcomponent identifier � refinedto

��component category
�unique component classifier reference� � ��A IDENT �
�prototype bindings�
�array dimensions��
Sprototype reference�

���subcomponent property association
Scontained property association����

�in modes�;� �A IN MODES

array dimensions ��� ���array dimension size����
array dimension size ��� numeral

array selection identifier ��� identifierarray selection

array selection ��� ��range selection���
range selection ��� numeral�..numeral�

feature refinement ���

port refinementSfeature group refinementSsubprogram refinementS
subcomponent access refinementSparameter refinement

feature group type ���

featuregroupdefining identifier

�prototypes��prototype� � Snone statement��
�features�featureSfeature group spec��

�inverseofunique feature group type�
Sinverseofunique feature group type�
�properties��featuregroup property association� � Snone statement��
�annex subclause��
enddefining identifier;

135

REFERENCES REFERENCES

feature group type extension ���

featuregroupdefining identifier

extendsunique feature group type reference�prototype bindings�
� �A IDENT

�prototypes��prototype� � Snone statement��
features

�featureSfeature refinementS
feature group specSfeature group refinement��
�inverseofunique feature group type�
�properties��featuregroup property association� � Snone statement��
�annex subclause��

enddefining identifier;

feature group spec ���

defining feature group identifier � featuregroup

��inverseof�unique feature group type reference�prototype bindings��
� �A IDENT

���featuregroup property association����;

feature group refinement ���

defining feature group identifier � refinedto

featuregroup

��inverseof�unique feature group type reference�prototype bindings��
� �A IDENT

���featuregroup property association����;
References

[1] Erwan Jahier, Nicolas Halbwachs, and P. Raymond. Synchronous Modeling and Vali-
dation of Priority Inheritance Schedulers. In Fundamental Approaches to Software En-
gineering Fundamental Approaches to Software Engineering, Lecture Notes in Com-
puter Science, pages 140–154, York Royaume-Uni, 03 2009. Springer Verlag.

[2] SAE Aerospace. Architecture Analysis and Design Language (AADL). SAE AS5506A,
2009.

136

