
11.4 Data access 11 FEATURES AND SHARED ACCESS

3. Subprogram access and Polychrony

11.3.2 Subprogram group access

1. Abstract syntax of Subprogram group access

Subprogram group access ��� subprogram group access ID �Access status�

opt�Subprogram group reference� � opt�list�Subprogram group access property��
Subprogram group reference ��� subprogram group ID

2. Standard properties
Property Provides Requires
Allowed Connection Binding Class X X
Allowed Connection Binding X X
Actual Connection Binding X X
Required Connection X X
Acceptable Array Size X X

3. Subprogram group access and Polychrony

11.4 Data access

Data access is used to model shared data.
Components can declare that they require access to externally declared data compo-

nents. Components may provide access to their data components.

11.4.1 Abstract syntax of Data access

A requires data access declaration indicates that a component requires access to a compo-
nent declared external to the component. For data components, different forms of required
access, such as read-only access, are specified by a Access Right property.

A provides data access declaration indicates that a subcomponent provides access to a
data component contained in the component.

Shared data may be accessed by multiple threads. Such potential concurrent access is
controlled according to the Concurrency Control Protocol property. This property applies
to data.

Data access ��� data access ID �Access status�

opt�Data reference� � opt�list�Data access property��
Data reference ��� dataID

89



11.4 Data access 11 FEATURES AND SHARED ACCESS

Figure 20 shows two types of data access. Data1 is made accessible outside Thread1
through a provides data access feature declaration of Thread1. It is being accessed by
Thread2 as expressed by a requires data access feature declaration in the thread type of
Thread2.

Figure 20: Data access

thread Thread1
features

Dataset: provides data access Data1;
end Thread1;

thread Thread2
features

Reqdataset: requires data access Data1;
end Thread2;

11.4.2 Standard properties

Property Provides Requires
Access Right X X
Access Time X X
Base Address X X
Acceptable Array Size X X

The Access Time property specifies the time range over which a component has ac-
cess to a shared data component. By default, access is required for the duration of the
component execution. The value of a shared data component is read or written through the
use of a data variable that represents the shared data component, or through Get Value and
Put Value service calls. Write access immediately updates the shared data component.

Access Time : record (First: IO Time Spec; Last: IO Time Spec;)
� (First� (Time� Start; Offset� 0.0ns .. 0.0 ns;);

Last� (Time� Completion; Offset� 0.0ns .. 0.0ns;);)
applies to (data access);

Between First time and Last time, the data component is being accessed. First (Last)
is specified by a reference time and a time offset range. It is modeled as a constraint

90



11.4 Data access 11 FEATURES AND SHARED ACCESS

(Between()).

Access T ime ��� First � Last

F irst ��� IO Time Spec

Last ��� IO Time Spec

IO Time Spec ��� TimeRange � IO Reference T ime

T imeRange ��� Time � Time

T ime ��� aadlinteger � Time Unit

11.4.3 Data access and Polychrony

1. Requires data access

In Figure 21, two constraints are added. They represent the First and Last access time
specified by Access Time property. Each access time is represented by a renference
time (Time) and an Offset.

FirstTime

requires data access

Between{}()

ReferenceTime1

Between{}()
ReferenceTime2

LastTime
Get_Resource

Release_Resource

Get_ValueM

F_unit1
F_unit2

L_unit1
L_unit2

Return_value
access_value

Figure 21: Requires data access

Get Value, Get Resource and Release Resource are three predefined service calls.
At FirstTime, a Get Resource is performed to lock the data resource. At LastTime, a
Release Resource is sent out to unlock the resource.

A Get Value may be sent to the corresponding data resource during the execution
depending on the detailed implementation. The required value is returned (Re-
turn value) and stored in a memory M. The memory is updated when a new Get Value
is performed (a new value is returned). The output access value is the current value
in the memory.

91



11.4 Data access 11 FEATURES AND SHARED ACCESS

Let x � �x1, x2, x3� > Requires data access
where x1 > data access ID

x2 >Data reference

x3 � �x31, x32, x33, x34, x35, x36, x37, x38, x39, x30,� > Access T ime
x31, x33, x36, x38 > aadlinteger

x32, x34, x37, x39 > Time Unit

x35, x310 > IO Reference T ime

RequiresDataAccessTranslation�x,C � �

x�1 �� access value �� RequiresDataAccessFm,Fn,Lm,Ln�FirstT ime,F Reference T ime,F unit1, F unit2,
LastT ime,L Reference T ime,L unit1, L unit2,DataResource�

where FirstT ime,F Reference T ime,F unit1, F unit2, LastT ime,
L Reference T ime,L unit1, L unit2,DataResource come from the context C

Fm � PropertyTranslation�x31�
Fn � PropertyTranslation�x33�
F unit1 � PropertyTranslation�x32�
F unit2 � PropertyTranslation�x34�
F ReferenceT ime � PropertyTranslation�x35�
Lm � PropertyTranslation�x36�
Ln � PropertyTranslation�x38�
L unit1 � PropertyTranslation�x37�
L unit2 � PropertyTranslation�x39�
L ReferenceT ime � PropertyTranslation�x310�
DataResource � IDTranslation�x2�
Datatype � DataReferenceTranslation�x2�

The process RequiresDataAccess() is defined in library AADL DATAACCESS.

process RequiresDataAccess =
{ integer F_min_offset, F_max_offset, L_min_offset, L_max_offset;}
(? event FirstTime, F_Reference_Time, F_unit1, F_unit2;

event LastTime, L_Reference_Time, L_unit1, L_unit2;
DataResource;

! Data_type access_value;)
(| Between{F_min_offset, F_max_offset}

92



11.4 Data access 11 FEATURES AND SHARED ACCESS

(FirstTime, F_Reference_Time, F_unit1, F_unit2)
| Get_Resource(FirstTime, DataResource)
| return_value := Get_Value(DataResource)
| access_value := M(return_value, ˆaccess_value)
| Between{L_min_offset, L_max_offset}

(LastTime, L_Reference_Time, L_unit1, L_unit2)
| Release_Resource(LastTime, DataResource)
| )
where
Data_type return_value

end;

Get Resource(), Release Resource() and Get Value() are defined in a library. Ac-
cess Time property translation is explained in Section 14.4.

process Get_Resource =
(? event time; Resource;)

process Release_Resource =
(? event time; Resource;)

process Get_Value =
(? Resource; ! ReturnValue;)

2. Provides data access

At FirstTime, a Get Resource service call is performed. At LastTime, a Release Resource
service call is performed. A Put Value service call is used to write a value to the data
resource. A memory M receives values from associated thread or process. (Fig-
ure 22)

FirstTime

provides data access

Between{}()

ReferenceTime1

Between{}()
ReferenceTime2

LastTime

Get_Resource
Release_Resource

Put_ValueMii

Figure 22: Provides data access

93



11.4 Data access 11 FEATURES AND SHARED ACCESS

Let x � �x1, x2, x3� > Provides data access
wherex1 > data access ID

x2 >Data reference

x3 � Access T ime >Data access property

ProvidesDataAccessTranslation�x,C � �

x�1 �� RrovidesDataAccessFm,Fn,Lm,Ln�FirstT ime,F Reference T ime,F unit1, F unit2,
LastT ime,L Reference T ime,L unit1, L unit2,DataResource, value�

where FirstT ime,F Reference T ime,F unit1, F unit2, LastT ime,
L Reference T ime,L unit1, L unit2,DataResource, value come from the context C

Fm � PropertyTranslation�x31�
Fn � PropertyTranslation�x33�
F unit1 � PropertyTranslation�x32�
F unit2 � PropertyTranslation�x34�
F ReferenceT ime � PropertyTranslation�x35�
Lm � PropertyTranslation�x36�
Ln � PropertyTranslation�x38�
L unit1 � PropertyTranslation�x37�
L unit2 � PropertyTranslation�x39�
L ReferenceT ime � PropertyTranslation�x310�
DataResource � IDTranslation�x2�
Datatype � DataReferenceTranslation�x2�

The process RrovidesDataAccess() is defined in library AADL DATAACCESS.

process ProvidessDataAccess =
{ integer F_min_offset, F_max_offset, L_min_offset, L_max_offset;}
(? event FirstTime, F_Reference_Time, F_unit1, F_unit2;

event LastTime, L_Reference_Time, L_unit1, L_unit2;
DataResource; Data_type value;)
(| Between{F_min_offset, F_max_offset}

(FirstTime, F_Reference_Time, F_unit1, F_unit2)
| Get_Resource(FirstTime, DataResource)
| Put_Value(DataResource, pvalue)
| pvalue := M(value, ˆpvalue)
| Between{L_min_offset, L_max_offset}

(LastTime, L_Reference_Time, L_unit1, L_unit2)

94



11.5 Bus access 11 FEATURES AND SHARED ACCESS

| Release_Resource(LastTime, DataResource)
| )
where
Data_type pvalue

end;

process Put_Value =
(? Resource; Value;)

11.5 Bus access

Bus components can be made accessible to other components. Components can declare
that they require access to externally declared buses. Components may provide access to
their buses. Bus access is used to model connectivity of execution platform components
through buses.

A requires bus component access declaration indicates that a component requires
access to a component declared external to the component. Required bus accesses are re-
solved to actual bus subcomponents through access connection declarations.

A provides bus access declaration indicates that a subcomponent provides access to a
bus contained in the component. Provided bus accesses can be used to resolve required bus
access.

A bus that is accessed by more than one component is shared. The shared bus is a com-
mon resource through which processor, memory and device components communicate.

11.5.1 Abstract syntax of Bus access

Bus access ��� bus access ID �Access status�

opt�Bus reference� � opt�list�Bus access property��
Bus reference ��� busID

11.5.2 Standard properties

Property Provides Requires
Access Right X X
Acceptable Array Size X X

11.5.3 Bus access and Polychrony

11.6 Feature group

Feature groups represent groups of component features of feature groups.
The content of a feature group is declared through a feature group type declaration.

This declaration is then referenced when feature groups are declared as component fea-
tures.

Within a component, the features of a feature group can be connected to individually.
Outside a component, feature groups can be connected as a single unit.

95


