
11.1 Port 11 FEATURES AND SHARED ACCESS

11.1.5 Event (Event data) port

(10) Event data ports are intended for message transmission.... A receiving thread can get
access to one or more data element in the queue according to the Dequeue Protocol and
Dequeued Items properties. ...Individual element of the queue can be retrieved via the port
variable using the Get Value and Next Value service calls. If the queue is empty the most
recent data value is available.

(11) Event ports are intended for event and alarm transmission.... A receiving thread
can get access to one or more events in the queue according to the Dequeue Items property.

(9.1(16)) The AADL supports n-to-n connectivity for event and event data ports. A port
may have multiple outgoing connections, i.e., its content is transmitted to multiple destina-
tions. This means that each destination port receives an instance of the event, or event data
being transmitted. (PLG claim not consistent with the above fan out policy ????) Simi-
larly, event and event data ports can support multiple incoming connections resulting in
sequencing and possibly queuing of incoming events and event data.

Event and event data ports can have a queue associated with them. By default, the
incoming event (event data) ports of threads, devices and processors have queues.

1. Dispatch event (event data) port
(C1) The ports that trigger the dispatch must have a Input Time property value of
Dispatch Time.

(20) If no event or event data port is explicitly connected to or associated by condi-
tion with the Dispatch port, then any incoming event or event data port can trigger
the dispatch. The input of other ports that can trigger dispatch is not frozen. Input of
the remaining ports is frozen according to the specified input time. ???

(21) If event and event data ports are explicitly connected to the Dispatch port, then
only one of those port will trigger the dispatch. The input of other ports that can trig-
ger dispatch is not frozen (PLG thus simultaneity only occurs for data ports or non
dispatching event). Input of the remaining ports is frozen according to the specified
input time.

(22) If a dispatch condition is specified (PLG: HOW ???, dispatch condition does
not seem to be defined; is it the condition in Await Dispatch runtime? If such, there
is no hope to fully model dispatch in Signal if the condition is not written in Signal)
then the logic expression determines the combination of event and event data ports
that trigger a dispatch, and whose input is frozen as part of the dispatch. The input
of other ports that can trigger dispatch is not frozen. Input of the remaining ports is
frozen according to the specified input time.

(23) If an event port is associated with a component (including thread) containing
modes and mode transition, and the mode transition names the event port, then the
arrival of an event is a mode change request and it is processed according to the mode
switch semantics.

(35) ... If such an incoming port is associated with a thread and the thread does not
contain a mode transition naming the port, then the event or event data arriving at

73

11.1 Port 11 FEATURES AND SHARED ACCESS

this port is added to the queue of the port. If the thread is aperiodic or sporadic and
does not have its Dispatch event connected (PLG: in the current mode) , then each
event and event data arriving and queued at any incoming ports of the thread results
in a separate request for thread dispatch. PLG: what about other threads ?

Dispatch event and Polychrony A Signal-process is dedicated to generate the
dispatch event (only for event driven AADL-threads).

2. Port queue
Queue properties for in event(-data) port:

Overflow Handling Protocol: enumeration (DropOldest, DropNewest, Error)
Urgency: aadlinteger 0 .. value(Max Urgency)
Dequeued Items: aadlinteger
Dequeue Protocol: enumeration (OneItem, MultipleItems, AllItems)

(30) ... If an event arrives and the number of queued events (and any associated data)
is equal to the specified queue size, then the Overflow Handling Protocol property
determines the action. If the Overflow Handling Protocol property value is

• Error, then an error occurs for the thread. ...

• DropNewest and DropOldest, the newly arrived or oldest event in the queue
event is dropped.

(11)The number of queued event (data) elements accessible to a thread can be deter-
mined through the port variable using the Get Count service call.

(31) Queues will be serviced according to the Queue Processing Protocol, (PLG:
not defined in my copy) Yue: Queue Processing Protocol could be one of the Sup-
ported Queue Processing Protocol (which is an enumeration type specifies the set of
queue processing protocols that are supported. By default is FIFO. Other protocols
are project specific). by default in a first-in, first-out order (FIFO). When an event-
driven thread declares multiple in event and event data ports in its type and more
than one of these queues are nonempty, the port with the higher Urgency property
value gets serviced first. If several ports with the same Urgency are non-empty, then
the Queue Processing Protocol is applied across these ports and must be the same for
them. In the case of FIFO the oldest event will be serviced (global FIFO). It is permit-
ted to define and use other algorithms for picking among multiple non-empty queues.
Disciplines other than FIFO may be used for managing each individual queue.

(32) By default, one item is dequeued and made available to the source text through
the port variable. The Dequeue Protocol property specifies different dequeuing op-
tions.

• OneItem: (default) a single frozen item is dequeued and made available to the
source text unless the queue is empty. The Next Value service call has no effect.
Yue: copy only one value at input time.

74

11.1 Port 11 FEATURES AND SHARED ACCESS

• AllItems: all items that are frozen at input time are dequeued and made avail-
able to the source text via the port variable, unless the queue is empty. Indi-
vidual items become accessible as port variable value through the Next Value
service call. (PLG meaning that values remain totally ordered) Yue: copy all
values. Next Value service call is used to access a value.

• MultipleItems: multiple items can be dequeued one at a time from the frozen
queue and made available to the source text via the port variable. One item is
dequeued and its value made available via the port variable with each Next Value
service call. Any items not dequeued remain in the queue and are available
for the next dispatch. Yue: multiple (Dequeue Items) values are copied. Use
Next Value to access one item at a time.

(46, p.143) For each data or event data port declared for a thread, a system imple-
mentation method must provide sufficient buffer space within the associated binary
image to unmarshall the value of the data type. Adequate buffer space must be allo-
cated to store a queue of the specified size for each event data port.

3. Port queue and Polychrony

A Signal-process is dedicated to manage the port queue. The queue could be any
supported processing queue, by default is fist in first out. It is made of a Queue and
a controler defined wrt to port queue rules.

To deliver multiple values, one can use an array with a companion counter (the num-
ber of meaningful values in the array) or introduce a new (?) type (bounded) se-
quence in Signal and associated operators (size, append, next,...)

In the current translation, a FIFO queue is provided (the other Supported Queue Processing Protocol
has not been implemented yet). A FIFO library is defined to: create a FIFO, set mes-
sages to a FIFO, and send out messages from a FIFO, etc. The FIFO management
will be implemented in external C code. Other types of queues could be developed
later.

process CREATE_FIFO =
(? string fifo_name;

integer fifo_size;
Data_type default_msg;

! ID_type fifo_ID;)
pragmas

Comment "create a FIFO"
end pragmas

(| fifo_ID := FIFO_RECORD{}(fifo_name, fifo_size, default_msg)
|);

process FIFO_RECORD =
(? string fifo_name;

integer fifo_size;
Data_type default_msg;

! ID_type fifo_ID;)

75

11.1 Port 11 FEATURES AND SHARED ACCESS

pragmas
C_Code "GLOBAL_FIFO_MANAGER->FIFORecord(&i1,&i2, &i3, &o1)"

end pragmas;

process In_FIFO =
{integer k;}
(? ID_type fifo_ID; [k]Data_type x_in;)
pragmas

Comment "send x_in (k elements) to FIFO"
end pragmas

(| fifo_ID ˆ= x_in
| fifo := FIFO_CHECKID{}(fifo_ID)
| fifo_new := SET_MESSAGE{k}(fifo_ID, fifo, x_in)
|)

where
FIFO_type fifo, fifo_new;

end;

process FIFO_CHECKID =
(? ID_type fifo_ID;
! FIFO_type fifo_out;)

pragmas
C_Code "GLOBAL_FIFO_MANAGER->FIFOCheckID(&i1,&o1)"

end pragmas;

process SET_MESSAGE =
{integer k;}
(? ID_type fifo_ID; FIFO_type fifo; [k]Data_type x_in;
! FIFO_type fifo_new;)
pragmas

Comment "add [k]x_in at the end of fifo_ID "
end pragmas

(| fifo_new.name := fifo.name
| fifo_new.size := fifo.size
| fifo_new.nbmsg := (fifo.nbmsg + k) when ((fifo.nbmsg + k)<=fifo.size)

default fifo.size

| array i to (MAX_QUEUE_SIZE-1) of
fifo_new.fifo_queue[i] := if (i<fifo.nbmsg) then fifo.fifo_queue[i]
else if ((i<fifo.size) and (i<(fifo.nbmsg+k))) then x_in[i-fifo.nbmsg]
else fifo.fifo_queue[i]

end
| FIFO_UPDATE(fifo_ID,fifo_new)
|);

process FIFO_UPDATE =
(? ID_type fifo_ID; FIFO_type fifo;)
pragmas

Comment "update the fifo recored"
C_Code "GLOBAL_FIFO_MANAGER->FIFOUpdate(&i1,&i2)"

end pragmas;

process Out_FIFO =
{integer k; Data_type default_msg;}

76

11.1 Port 11 FEATURES AND SHARED ACCESS

(? ID_type fifo_ID;
! [k]Data_type x_out;)
pragmas

Comment "get k elements (x_out) from FIFO, (suppose that k<fifo.nbmsg)"
end pragmas

(| fifo := FIFO_CHECKID{}(fifo_ID)
| (fifo_new, x_out) := GET_MESSAGE{k, default_msg}(fifo_ID, fifo)
|)

where
FIFO_type fifo, fifo_new;

end;

process GET_MESSAGE =
{integer k; Data_type default_msg;}
(? ID_type fifo_ID; FIFO_type fifo;
! FIFO_type fifo_new; [k]Data_type x_out;)
pragmas

Comment "from fifo_ID, get k elements, return [k]x_out"
end pragmas

(| fifo_new.name := fifo.name
| fifo_new.size := fifo.size
| fifo_new.nbmsg := (fifo.nbmsg - k) when ((fifo.nbmsg - k)>0)

default 0

| array i to (MAX_QUEUE_SIZE-1) of
fifo_new.fifo_queue[i] := if ((i<(fifo.nbmsg-k)) and (fifo.nbmsg>k))
then fifo.fifo_queue[k+i]
else if ((i>=(fifo.nbmsg-k)) and (fifo.nbmsg>k))
then default_msg
else default_msg

end
| array i to k of

x_out[i] := if (i < fifo.nbmsg) then fifo.fifo_queue[i]
else default_msg
end

| FIFO_UPDATE(fifo_ID, fifo_new)
|);

process Move_k_FIFO =
{integer k; Data_type default_msg;}
(? ID_type fifo_send, fifo_receive; event Move_time;
! [k]Data_type x_move;)
pragmas

Comment "at Move_time, move k elements from fifo_send to fifo_receive"
end pragmas

(| x_move := Out_FIFO{k, default_msg}(AT(fifo_send, Move_time))
| In_FIFO{k}(AT(fifo_receive, Move_time),x_move)
|);

process Move_all_FIFO =
{Data_type default_msg;}
(? ID_type fifo_send_ID, fifo_receive_ID; event Move_time;)
pragmas

Comment "at Move_time, move k elements from fifo_send to fifo_receive"

77

11.1 Port 11 FEATURES AND SHARED ACCESS

end pragmas
(| fifo_send := FIFO_CHECKID{}(AT(fifo_send_ID, Move_time))
| fifo_receive := FIFO_CHECKID{}(AT(fifo_receive_ID, Move_time))
| fifo_send_new.name := fifo_send.name
| fifo_send_new.size := fifo_send.size
| fifo_send_new.nbmsg := 0

| array i to (MAX_QUEUE_SIZE-1) of
fifo_send_new.fifo_queue[i] := AT(default_msg, Move_time)

end
| FIFO_UPDATE(fifo_send_ID, fifo_send_new)

| fifo_receive_new.name := fifo_receive.name
| fifo_receive_new.size := fifo_receive.size
| fifo_receive_new.nbmsg := (fifo_receive.nbmsg + fifo_send.nbmsg)

when ((fifo_receive.nbmsg + fifo_send.nbmsg)<fifo_receive.size)
default fifo_receive.size

| array i to (MAX_QUEUE_SIZE-1) of
fifo_receive_new.fifo_queue[i] :=
if (i<fifo_receive.nbmsg)
then AT(fifo_receive.fifo_queue[i], Move_time)
else AT(fifo_send.fifo_queue[i-fifo_receive.nbmsg], Move_time)
end

| FIFO_UPDATE(fifo_receive_ID, fifo_receive_new)
|)

where
FIFO_type fifo_send, fifo_receive, fifo_send_new, fifo_receive_new;

end;

4. In event (event data) port and Polychrony

An event (event data) port could be represented by a pair of QUEUEs (Ex-QUEUE
and Frozen-QUEUE) and a container of constraints. (Figure 18). Ex-QUEUE re-
ceives inputs from other threads (e.g., In FIFO() process). At InEvent (constraint by
Input Time in Between() process), move (Frozen) all the actual elements from Ex-
QUEUE to Frozen-QUEUE (Move all FIFO()). The inputs arrived after the InEvent
will be available at the next InEvent.

A number of elements (this number is determined by the Dequeue Protocol prop-
erty) in Frozen-FIFO will be dequeued (Dequeue() process) into an array (i accessible).
Any items not dequeued remain in the Frozen-QUEUE and are available for the next
InEvent. The elements in i accessible array could be used one at a time through
Next Value service call.

At InEvent, frozen the inputs: copy all elements of Ex-QUEUE into (Frozen-QUEUE),
and dequeue k elements of Frozen-QUEUE. These processes are defined in library
AADL EVENTPORT and AADL EVENTDATAPORT.

process Frozen_event_port =
{Data_type default_msg;}

78

11.1 Port 11 FEATURES AND SHARED ACCESS

Ex-QUEUE Frozen-QUEUEi_arrive

InEvent

i_accessibleFrozen_
event_port

Between =
{min_offset, max_offset}
(? event InEvent, ReferenceTime1;
 event unit1, unit2;)
(|...|)

ReferenceTime

Dequeue

unit1

unit2

Figure 18: In event port

(? ID_type fifo_send_ID, fifo_receive_ID; event Move_time;)
(| Move_all_FIFO{default_msg}(fifo_send_ID, fifo_receive_ID, Move_time)
|);

process Dequeue_event =
{integer dequeue_number; Data_type default_msg;}
(? ID_type fifo_ID;
! [dequeue_number]Data_type dequeue_sequence;)

(| dequeue_sequence := Out_FIFO{dequeue_number,default_msg}(fifo_ID)
|)

where
FIFO_type fifo;

end;

process Frozen_event_data_port =
{Data_type default_msg;}
(? ID_type fifo_send_ID, fifo_receive_ID; event Move_time;)
(| Move_all_FIFO{default_msg}(fifo_send_ID, fifo_receive_ID, Move_time)
|);

process Dequeue_event_data =
{integer dequeue_number; Data_type default_msg;}
(? ID_type fifo_ID;
! [dequeue_number]Data_type dequeue_sequence;)

(| dequeue_sequence := Out_FIFO{dequeue_number,default_msg}(fifo_ID)
|)

where
FIFO_type fifo;

end;

The dequeue number k is decided by Dequeue Protocol and Dequeued Items prop-
erty. The detailed interpretation of these two properties could be found in 14.4.

Dequeue Protocol Dequeue number
AllItems actual elements number of EX-FIFO
MultipleItems value of Dequeued Items
OneItem 1

(a) In event port

79

11.1 Port 11 FEATURES AND SHARED ACCESS

Let x � �x1,�x2, x3, x4, x5, . . .�� > In event port,
where �x1 > portID

x2 � Input T ime > Port property

x3 � Queue Size > Port property

x4 �Dequeue Protocol > Port property

x5 �Dequeue Items > Port property

A notation EventPortTranslation�� represents the translation from AADL
to Signal.
Let data port x is in the context of a component C . An in event port in a context
C is presented as an instance of a Signal process.
In case of Input Time contains only one reference time. Count�V �x2�� �
1.

Let x2 � �x21, x22, x23, x24, x25� > Input T ime
where: x21, x23 > aadlinteger

x22, x24 > Time Unit

x25 > IO Reference T ime

EventPortTranslation�x,C � �

x�1 �� i accessible �� InEventPort�m,n, size, k�
�i arrive, InEvent, Reference T ime, unit1, unit2�

where i arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

x�1 � IDTranslation�x1� � x1

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
k �

¢̈̈̈
¦̈̈̈
¤

size, if V �x4� � AllItems
PropertyTranslation�x5�, if V �x4� � MultiItems

1, if V �x4� � OneItem

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�

80

11.1 Port 11 FEATURES AND SHARED ACCESS

The InEventPort process is defined in library AADL EVENTPORT. (It is not
allowed to have an array of events, we use an array of Data type (integer) in-
stead: whenever a value exists, it represents a corresponding event.)

process InEventPort =
{integer min_offset, max_offset, size, dequeue_number;
Data_type def_msg;}

(? event i_arrive;
event InEvent, ReferenceTime, unit1, unit2; string Port_name;

! [dequeue_number]Data_type i_accessible;)
(| ex_FIFO_ID := CREATE_FIFO("ex_FIFO", size, def_msg)
| frozen_FIFO_ID := CREATE_FIFO("frozen_FIFO", size, def_msg)
| x_in[0] := DEFAULT_MSG when ˆi_arrive
| In_FIFO{1}(ex_FIFO_ID,x_in)
| e1:: Frozen_event_port{def_msg}(ex_FIFO_ID, frozen_FIFO_ID, InEvent)
| Between{min_offset, max_offset}(InEvent, ReferenceTime, unit1, unit2)
| e2:: i_accessible :=

Dequeue_event{dequeue_number, def_msg}(frozen_FIFO_ID)
| e1-->e2
|)

where
ID_type ex_FIFO_ID, frozen_FIFO_ID;
[1]Data_type x_in;
label e1, e2;

end;

The Dequeue Items (x5) and Queue Size (x3) property associations are inter-
preted in the property section 14.4.
In case of Input Time contains a list of reference time. Count�V �x2�� � 1.
This case is not considered yet.

(b) In event data port

Let x � �x1,�x2, x3, x4, x5, . . .�, x6� > In event data port,
where �x1 > portID

x2 � Input T ime > Port property

x3 � Queue Size > Port property

x4 �Dequeue Protocol > Port property

x5 �Dequeue Items > Port property

x6 >Data reference

The event data port interpretation is almost the same as the event port transla-
tion, except that an interpretation of the data type is added, and the management
of data (we could directly use array of data).
A notation EventDataPortTranslation�� represents the translation from
AADL to Signal. Let data port x is in the context of a component C . An
in event port in a context C is presented as an instance of a Signal process.

81

11.1 Port 11 FEATURES AND SHARED ACCESS

In case of Input Time contains only one reference time. Count�V �x2�� �
1.

Let x2 � �x21, x22, x23, x24, x25� > Input T ime
where: x21, x23 > aadlinteger

x22, x24 > Time Unit

x25 > IO Reference T ime

EventDataPortTranslation�x,C � �

x�1 �� i accessible �� InEventPort�m,n, size, k�
�i arrive, InEvent, Reference T ime, unit1, unit2�

where i arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
k �

¢̈̈̈
¦̈̈̈
¤

size, if V �x4� � AllItems
PropertyTranslation�x5�, if V �x4� � MultiItems

1, if V �x4� � OneItem

x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�
Data type � DataReferenceTranslation�x2�

The InEventDataPort process is defined in library AADL EVENTDATAPORT.

process InEventDataPort =
{integer min_offset, max_offset, size, dequeue_number; Data_type def_msg;}
(? Data_type i_arrive;

event InEvent, ReferenceTime, unit1, unit2; string Port_name;
! [dequeue_number]Data_type i_accessible;)

(| ex_FIFO_ID := CREATE_FIFO("ex_FIFO", size, def_msg)
| frozen_FIFO_ID := CREATE_FIFO("frozen_FIFO", size, def_msg)
| x_in[0] := i_arrive
| In_FIFO{1}(ex_FIFO_ID,x_in)
| e1:: Frozen_event_data_port{def_msg}(ex_FIFO_ID, frozen_FIFO_ID, InEvent)
| Between{min_offset, max_offset}(InEvent, ReferenceTime, unit1, unit2)
| e2:: i_accessible :=

Dequeue_event_data{dequeue_number, def_msg}(frozen_FIFO_ID)

82

11.1 Port 11 FEATURES AND SHARED ACCESS

| e1-->e2
|)

where
ID_type ex_FIFO_ID, frozen_FIFO_ID;
[1]Data_type x_in;
label e1, e2;

end;

where data type � IDTranslation�x6�
In case of Input Time contains a list of reference time. Count�V �x2�� � 1. Use
SeveralBetween as time constraint.

5. Out event (event data) port and Polychrony

The Output is stored in a out-QUEUE, and sent out at OutEvent time (Figure 19). The
OutEvent is restricted by a constraint Between (or SeveralBetween). A Distributer
selects the recipients depending on the Fan Out Policy.

QUEUEo_arrive

OutEvent

o_sent_1

Send

ReferenceTime

Between{}()unit1
unit2

o_sent_2

...Distributer{2}()

Distributer{1}()

Distributer{n}()

Figure 19: Out event port

The Send process is defined in library AADL EVENTPORT and AADL EVENTDATAPORT.

process Send_event =
{Data_type def_msg;}
(? ID_type fifo_ID; event OutEvent;
! event o;)
(| x_out:= Out_FIFO{1, def_msg}(AT(fifo_ID,OutEvent))
| o := when ˆx_out[0]
|)

where
[1]Data_type x_out;

end;

process Send_event_data =
{Data_type def_msg;}
(? ID_type fifo_ID; event OutEvent;
! o;)
(| x_out:= Out_FIFO{1, def_msg}(AT(fifo_ID,OutEvent))
| o := x_out[0]

83

11.1 Port 11 FEATURES AND SHARED ACCESS

|)
where
[1]Data_type x_out;

end;

(a) Out event port

Let x � �x1,�x2, x3, x4 . . .�� > Out event port
where:x1 > portID

x2 > Output T ime

x3 > Queue Size

x4 > Fan Out Policy

In case of Output Time contains only one reference time. Count�V �x2�� �
1.

Let x2 � �x21, x22, x23, x24, x25� > Input T ime
where: x21, x23 > aadlinteger

x22, x24 > Time Unit

x25 > IO Reference T ime

EventPortTranslation�x,C � �

x�1 �� OutEventPort�m,n, size�
�o arrive, OutEvent, Reference T ime, unit1, unit2�

where o arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�

The OutEventPort process is defined in library AADL EVENTPORT.

84

11.1 Port 11 FEATURES AND SHARED ACCESS

process OutEventPort =
{ integer min_offset, max_offset, size; Data_type def_msg;}
(? event o_arrive;

event OutEvent, Reference_Time, unit1, unit2; string Port_name;
! event o_accessible;)
(| out_FIFO_ID := CREATE_FIFO("out_FIFO", size, def_msg)
| x_out[0] := DEFAULT_MSG when ˆo_arrive
| In_FIFO{1}(out_FIFO_ID,x_out)
| o_accessible := Send_event{def_msg}(out_FIFO_ID, OutEvent)
| Between{min_offset, max_offset}

(OutEvent, Reference_Time, unit1, unit2)
|)
where
o1;
ID_type out_FIFO_ID;
[1]Data_type x_out;

end;

The Dequeue Items (x5) and Queue Size (x3) property associations are inter-
preted in the property section 14.4.
The Distributers are added to link the out event port and its associated con-
nections. The details interpretation of out port and Fan Out Policy have been
introduced in Section 11.1.3.
In case of Onput Time contains a list of reference time. Count�V �x2�� � 1.
This case is left for further study.

(b) Out event data port

Let x � �x1,�x2, x3, x4, . . .�, x5� > Out event data port
where:x1 > portID

x2 � Output T ime > Port property

x3 � Queue Size > Port property

x4 � Fan Out Policy > Port property

x5 >Data reference

The out event data port interpretation is similar to the out event port translation,
except that an interpretation of the data type is added.

85

11.1 Port 11 FEATURES AND SHARED ACCESS

EventDataPortTranslation�x,C � �

x�1 �� i accessible �� OutEventDataPort�m,n, size�
�o arrive, OutEvent, Reference T ime, unit1, unit2�

where o arrive, InEvent, Reference T ime, unit1, unit2 come from the context C

Reference T ime �

¢̈̈̈
¦̈̈̈
¤
Dispatch, if V �x25� � Dispatch

Start, if V �x25� � Start
Complete, if V �x25� � Complete

m � PropertyTranslation�x21�
n � PropertyTranslation�x23�
size � PropertyTranslation�x3�
x�1 � IDTranslation�x1� � x1

unit1 � PropertyTranslation�x22�
unit2 � PropertyTranslation�x24�
data type � IDTranslation�x5�

The process OutEventDataPort() is defined in library AADL EVENTDATAPORT.

process OutEventDataPort =
{ integer min_offset, max_offset, size; Data_type def_msg;}
(? Data_type o_arrive;

event OutEvent, Reference_Time, unit1, unit2;
string Port_name;

! o_accessible;)
(| out_FIFO_ID := CREATE_FIFO("out_FIFO", size, def_msg)
| x_out[0] := o_arrive
| In_FIFO{1}(out_FIFO_ID,x_out)
| o_accessible := Send_event_data{def_msg}(out_FIFO_ID, OutEvent)
| Between{min_offset, max_offset}

(OutEvent, Reference_Time, unit1, unit2)
|)
where
o1;
ID_type out_FIFO_ID;
[1]Data_type x_out;

end;

In case of Output Time contains a list of reference time. Count�V �x2�� �
1. Not considered yet.

6. In out event (event data) port and Polychrony Separated as in and out event (event
data) ports?

86

