
ESPRESSO AADL Digest Report

ESPRESSO Team

February 25, 2011

Foreword

This document is a draft that contains many copy/past from SAE AS5506A [2].
Its purpose is to propose a synthetic view of AADL behavior aspects, asserted by
uninterpreted citations, and related to Polychronous model.

Paragraph formats

The following formats are used:
This is a citation extracted from SAE AS5506A.
This is a property definition.

This is a comment/proposal related to Signal/Polychrony.
This is a short specific comment or question.
Note: the notation “+” represents alternative choice, “opt()” represents op-

tional and “list()” represents repeatable.

Contents

1 AADL purpose and organization 1

2 AADL components, packages and annexes 2
2.1 Specification . 2
2.2 Package . 2
2.3 Components . 3

2.3.1 Category of component (AADL 4.3, 4.4) 4
2.3.2 Prototype(4.7, for information) 5
2.3.3 Component description (AADL 3, 4.3, 4.4) 5
2.3.4 Connections . 8

1

CONTENTS CONTENTS

3 Data 8
3.1 Data component . 9
3.2 Standard properties . 10
3.3 Data component access . 12
3.4 Behavior: critical region . 12
3.5 Data in Polychrony . 13

3.5.1 Data type . 13
3.5.2 Protected data . 15

4 Subprogram 16
4.1 Subprogram component . 16

4.1.1 Structure . 16
4.1.2 Abstract syntax . 16
4.1.3 Standard properties . 18

4.2 Subprogram call . 18
4.3 Parameter connection . 19
4.4 Behavior . 19
4.5 Subprogram in Polychrony . 20

5 Subprogram group 21
5.1 Abstract syntax . 21

6 Thread 22
6.1 Structure . 22
6.2 Abstract syntax . 22
6.3 Standard properties . 24
6.4 Behavior . 26

6.4.1 Predeclared ports . 26
6.4.2 Real time counters . 26
6.4.3 Dispatch Protocol . 27
6.4.4 Thread states and state transition 28

6.5 Thread in Polychrony . 31
6.5.1 Expressiveness . 31
6.5.2 Uniform view . 32
6.5.3 Remaining questions . 34

7 Thread group 34
7.1 Abstract syntax . 35

2

CONTENTS CONTENTS

8 Process 35
8.1 Structure . 36
8.2 Abstract syntax . 36
8.3 Abstract syntax . 36
8.4 Standard properties . 37
8.5 Process and Polychrony . 38

9 Execution platform components 38
9.1 Processor . 38
9.2 Virtual processor . 39
9.3 Memory . 40
9.4 Bus . 41
9.5 Virtual bus . 41
9.6 Device . 42

10 System 42
10.1 Abstract syntax . 43
10.2 Component binding . 43
10.3 System operation mode . 44
10.4 AADL and physical time . 46

10.4.1 Perfect/unperfect real time(5.4.(5,6)) 46
10.4.2 Asynchronous system (5.4.6) 47

10.5 System and Polychrony . 48

11 Features and shared access 48
11.1 Port . 49

11.1.1 Abstract syntax of Port . 49
11.1.2 Standard properties . 51
11.1.3 In out (common) port behavior 54
11.1.4 Data port . 58
11.1.5 Event (Event data) port . 62
11.1.6 Port and Polychrony . 67

11.2 Parameter . 68
11.2.1 Abstract syntax of Parameter 68
11.2.2 Standard properties . 68
11.2.3 Parameter and Polychrony 68

11.3 Subprogram and subprogram group access 68
11.3.1 Subprogram access . 68
11.3.2 Subprogram group access . 69

11.4 Data access . 69

3

CONTENTS CONTENTS

11.5 Bus access . 71
11.6 Feature group . 71

12 Connection 71
12.1 Port connection . 72

12.1.1 Port connection categories 73
12.1.2 Legal port connection . 73
12.1.3 Standard properties . 80
12.1.4 Standard behavior . 80
12.1.5 Data port behavior . 80
12.1.6 Event (event data) port connection and Polychrony 83

12.2 Parameter connection . 83
12.3 Feature group connection . 84
12.4 Access connection . 85

13 Flows 87
13.1 Abstract syntax . 87
13.2 Standard properties . 88
13.3 Flows and Polychrony . 88

14 Properties 89
14.1 Abstract syntax . 89
14.2 Build in property types . 91
14.3 Scheduling features . 92

15 Modes 93
15.1 Mode declaration . 93
15.2 Model life . 94
15.3 Mode behavior . 94

15.3.1 Mode switch within a thread 95
15.3.2 Mode switch within set of threads 96
15.3.3 Mode switch for thread that are not synchronized 97

16 An AADL abstract syntax 97
16.1 Notations . 98

16.1.1 General AST . 98
16.1.2 AADL AST . 98

16.2 Lexical elements . 98
16.2.1 Word characters . 99
16.2.2 Other characters . 99

4

2 AADL COMPONENTS, PACKAGES AND ANNEXES

16.2.3 Decimal literals . 99
16.2.4 Based literals . 99
16.2.5 String literals . 99
16.2.6 Comments . 99
16.2.7 Identifiers . 99

16.3 Non extensible AADL . 100
16.3.1 Component type . 100
16.3.2 Component implementation 101

16.4 Annex . 102
16.5 Prototypes . 103
16.6 Extensible AADL . 103

1 AADL purpose and organization

(1.1(1)) The purpose of the AADL is to provide a standard and sufficiently precise
(machine-processable) way of modeling the architecture of an embedded, real-time
system, such as an avionics system or automotive control system, to permit analysis
of its properties, and to support the predictable integration of its implementation...

(1(8))...The standard specifies relevant characteristics of the detailed design
and implementation descriptions, such as source text written in a programming
language or hardware description language, from an external (black box) perspec-
tive. These relevant characteristics are specified as AADL component properties,
and as rules of conformance between the properties and the described components.

(1.1(2)) The AADL describes application software and execution platform com-
ponents of a system, and the way in which components are assembled to form a
complete system or subsystem. The language addresses the needs of system devel-
opers in that it can describe common functional (control and data flow) interfacing
idioms as well as performance-critical aspects relating to timing, resource alloca-
tion, fault-tolerance, safety and certification.

2 AADL components, packages and annexes

2.1 Specification

(3(2)) An AADL specification consists of global AADL declarations and AADL
declarations. The global AADL declarations are comprised of package specifica-
tions that contain globally accessible AADL declarations and property set declara-
tions. AADL declarations include component types, component implementations,
feature group types, and annex libraries. AADL declarations can be declared in

5

2.2 Package 2 AADL COMPONENTS, PACKAGES AND ANNEXES

packages and are therefore accessible to other packages, or they can be declared
directly in an AADL specification and not be accessible to packages...

Abstract syntax

AADL specification ��� Package spec � Property set

2.2 Package

(4.2(1)) A package provides a way to organize component types, component imple-
mentations, feature group types, and annex libraries into related sets of declarations
by introducing separate namespaces. Package names built using identifiers sepa-
rated by double colons (“::) ... In other words, complete sys :: first independent ::
fuel flow is distinct from complete sys ::second independent ::fuel flow. Packages
cannot be declared inside other packages.

(4.1(1)) ...The content of packages, e.g., classifiers, can be referenced from
anywhere by qualifying the classifier reference with the package name. The con-
tent of property sets, i.e., property type, property constant and property definitions,
can be referenced from within anywhere by qualifying the property type, constant,
or property reference with the property set name. Component classifiers, feature
group types, and annex libraries that are declared directly in an AADLspecifica-
tion are anonymous declarations. They are considered to reside in a local name
space and can only be referenced by another anonymous declaration.

Abstract syntax

6

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

Package spec ��� packageID � opt�Public package declarations�

� opt�Private package declarations� � opt�list�Property��

Package declarations ��� list�AADL declaration�

AADL declaration ��� Classifier declaration �Annex library

Classifier declaration ��� Software �Execution platform �Composite

Software ��� Data � Subprogram � Subprogram group � Thread

� Thread group � Process

Execution platform ��� Memory � Processor �Bus �Device

� V irtual processor � V irtual bus

Composite ��� System

Annex library ��� annexID �Annex spec

Property ��� property name ID �Assignment � In binding

Assignment ��� property value

In binding ��� list�platform component reference�

2.3 Components

(4(2)) A component represents some hardware or software entity that is part of
a system being modeled in AADL. A component has a component type, which
defines a functional interface.

(4.4(1)) ... Every component implementation is associated with a component
type. A component type may have zero or more component implementations de-
clared.

(4(6)) Components can be declared in terms of other components by refin-
ing and extending existing component types and component implementations. This
permits partially complete component type and implementation declarations to act
as templates that may have explicit parameter (prototype) specifications. Such tem-
plates can represent a common basis for the evolution of a family of related com-
ponent types and implementations.

(4(2)) The component type acts as the specification of a component that other
components can operate against. It consists of features, flows, and property associ-
ations.

(4(3)) A feature models a characteristic of a component that is visible to other
components. Features are named, externally visible parts of the component type,
and are used to exchange control and data via connections with other components...

7

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

(8(1)) ...The four categories of features are: port, subprogram, parameters, and
subcomponent access.

(8.1(1)) Feature groups represent groups of component features or feature groups.

(10(1)) A flow is a logical flow of data and control through a sequence of
threads, processors, devices, and port connections or data access connections. A
component can have a flow specification, which specifies whether a component is
a flow source, i.e., the flow starts within the component, a flow sink, i.e., the flow
ends within the component, or there exists a flow path through the component, i.e.,
from one of its incoming ports to one of its outgoing ports.

(10(2)) The purpose of providing the capability of specifying end-to-end flows
is to support various forms of flow analysis, such as end-to-end timing and la-
tency, reliability, numerical error propagation, Quality of Service (QoS) and re-
source management based on operational flows...

(3(4)) A component implementation specifies an internal structure in terms of
subcomponents, connections between the features of those subcomponents, flows
across a sequence of subcomponents, modes to represent operational states, and
properties.

(4(4)) ... Component implementations represent variants of a component that
adhere to the same interface, but may have different property values and realiza-
tions... Subcomponents are instantiations of component classifiers, i.e., component
types and implementations.

(3(12)) “Features and flow specifications of component types (...) subcompo-
nents, connections, flows, and modes of component implementations may have
incomplete specifications. These (...) act as templates that can be parameterized
by specifying prototypes. These specifications may be later refined in (...) exten-
sions with the completion of classifier references and property associations. Com-
ponent type extensions can also introduce additional features, flow specifications,
and properties. Such extensions can add new subcomponents, connections, flows,
modes, and properties to component implementations.

2.3.1 Category of component (AADL 4.3, 4.4)

• abstract: generic that can be refined into 2...10 (3(2)).

• Software components

1. data: represents static data in source text (3(15))

2. subprogram (- group): represents source text that is executed sequen-
tially (3(17))

8

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

3. thread (- group): models concurrent tasks (3(18))

4. process: models space partition in terms of virtual address spaces
(3(20))

• Execution platform components

1. (virtual -) processor (3(22))

2. memory (3(24))

3. (virtual -) bus (3(25))

4. device (3(27))

• Compositional components system (3(28))

2.3.2 Prototype(4.7, for information)

(1) Prototypes represent parameters for component type, component implemen-
tation, and feature group type declarations. They allow classifiers to be supplied
when a component type, component implementation, or feature group is being ex-
tended. The prototypes can be referenced in place of classifiers in feature declara-
tions, in subcomponent declarations, and as prototype bindings. The latter allows
parameterization via prototype to be propagated down the system hierarchy.

2.3.3 Component description (AADL 3, 4.3, 4.4)

In this document each of the component descriptions contains a structure table that
lists the categories of elements that can belong or not to a component. The property
is present in all components, and thus implicit in those tables.

1. Component type (AADL 3, 4.3)

(4.3(1)) A component type specifies the external interface of a component
that its implementations satisfy.

(4.3(5)) Component types can declare prototypes, i.e., classifier parameters
that are used in features. The prototype bindings are supplied when the com-
ponent types is being extended or used in subcomponent declarations.

Component type elements A component type specifies a functional inter-
face in terms of:

(a) features (3(6)) that can be

9

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

i. ports (to support data/control directional flows)
ii. subprograms (synchronous procedure call)

iii. (shared) access to data, subprograms(- group), bus

(b) flow specification (3(32)) (across a sequence of subcomponents)

(c) modes (3(29)) represent operational states of components in the mod-
eled physical system; a mode change can change the set of active com-
ponents and connections.

(d) properties (3(9))property has a name, a type and a value

Syntax to be added

2. Feature group (AADL 8.1, for information)

(8(3)) Feature groups represent groups of component features. Feature groups
can contain feature groups. Feature groups can be used anywhere features
can be used. Within a component, the features of a feature group can be
connected to individually. Outside a component, feature groups can be con-
nected as a single unit.

(8.1(L2))A feature group type can be declared to be the inverse of another
feature group type, as indicated by the reserved words inverse of and the
name of a feature group type.

(8.1(5)) The inverse of reserved words of a feature group type declaration
indicate that the feature group type represents the complement to the refer-
enced feature group type.

Two feature group types are considered to complement each other if the fol-
lowing holds:

(8.1(L9)) The number of feature or feature groups contained in the feature
group and its complement must be identical;

(8.1(L10)) Each of the declared features or feature groups in a feature group
must be a pair-wise complement with that in the feature group complement,
with pairs determined by declaration order....

(8.1(L11)) If both feature group types have zero features, then they are con-
sidered to complement each other;

(8.1(L12)) Ports are pair-wise complementary if they have complementary
direction (out / in, in / out, in out / in out), and are of the same port type. In
the case of event data or data ports, the data component classifier reference
must be identical;

10

2.3 Components 2 AADL COMPONENTS, PACKAGES AND ANNEXES

(8.1(L13)) Access features are pair-wise complementary if they have com-
plementary access direction (requires / provides, provides / requires), and
have matching access classifiers with the matching criteria being identity.

3. Component implementation(AADL 3, 4.4)

(4(4))...A component implementation specifies the realization of a compo-
nent variant, i.e., an internal structure for a component as an assembly of
subcomponents.

Syntax to be added

Figure 1: Subcomponent inclusion

Subcomponent inclusion

(a) Software components
(b) Execution platform components

• (virtual) bus may contain virtual bus.
• Device may contain bus.
• Memory may contain memory, bus.

11

3 DATA

• Processor may contain virtual processor, memory, (virtual) bus.
• Virtual processor may contain virtual processor, virtual bus.

(c) System may contain data, subprogram (group), process, (virtual) pro-
cessor, memory, (virtual) bus, device, system

2.3.4 Connections

(3(31)) AADL connections specify patterns of control and data flow between indi-
vidual components at runtime. A semantic connection can be made between

a data component and threads that access the data component for data access
connections,

a subprogram component and threads that require call access to the subpro-
gram,

two threads,
the event port of a thread, device, or processor and a mode transition for mode

transition connections.
a thread and a device or processor for port connections,
a bus component and buses, memory, processor, and device components for

bus access connections,
(3(31)) ...A semantic connection is represented by a set of one or more connec-

tion declarations that follow the component hierarchy from the ultimate connection
source to the ultimate connection destination.

3 Data

(5.1(1))A data component type represents a data type in source text. The internal
structure of a source text data type, e.g., the instance variables of a class or the
fields of a record, is represented by data subcomponents in a data component im-
plementation. Provides subprogram access features of a data component type can
model the concept of methods on a class or operations on an abstract data type. If
provides subprogram access features are declared, the data component may only
be accessed through the subprograms...

(5.1(2)) A data component classifier, i.e., a data component type name or a
data component type and implementation name pair (separated by a dot .), is used
as data type indicator in port declarations, subprogram parameter declarations, and
data subcomponent declarations.

(5.1(4)) References to data components are modeled through provides and re-
quires data access. Threads, processes, systems, and subprogram may access data
by reference.

12

3.1 Data component 3 DATA

3.1 Data component

• Data components classifiers represent data types.

• Data subcomponents represent static data in source text. Only those com-
ponents that explicitly declare required data access can access such sharable
data subcomponents. Data subcomponents can be shared within the same
process and across processes (if supported by the runtime system).

• When declared in a subprogram, that data subcomponent represents a lo-
cal variable. This data can not be made accessible outside the subprogram
through a provides data access declaration.

• References to data components are modeled through provides and requires
data access.

• Data component classifier references are also used to specify the data type
for data (event data) ports as well as subprogram parameters.

Figure 2: Data component graphical notation

Abstract syntax (5.1(10))A data component type can have zero data implemen-
tation.

The table is in contradiction with (L3) A data implementation can contain ab-
stract, data and subprogram subcomponents, and data property associations.

A data type does not provide data access (to its subcomponents). This point is
discussed in the draft. A port connection can be established between a port P and
an element E in a provided data access DA to P by DA.E.

Data ��� Data type �Data implementation

Data type

13

3.2 Standard properties 3 DATA

Figure 3: Data type and implementation

Data type ��� dataID � opt�list�Data feature�� � opt�list�Data property��

Data feature ��� Feature group � Provides subprogram access �

Requires subprogram access �Requires subprogram group access

Data property ��� Access Right property �Concurrency Control Protocol property � . . .

Data implementation

Data implementation ��� dataID � opt�list�Data subcomponent�� �

opt�list�Connection�� � opt�list�Data property��

Data subcomponent ��� subcomponentID �Data subcomponent reference

� opt�list�Property�� � opt�In modes�

Data subcomponent reference ��� dataID � subprogramID

3.2 Standard properties

1. Properties related to source text

Type Source Name: aadlstring applies to (data, port, subprogram);

Source Name: aadlstring applies to
(data, port, subprogram, parameter);

Source Text: inherit list of aadlstring applies to
(data, port, subprogram, thread, thread group, process, system, memory,
bus, device, processor, parameter, feature group, package);

14

3.2 Standard properties 3 DATA

2. Properties specifying memory requirements

Source Data Size: Size applies to
(data, thread, thread group, process, system, subprogram, processor, device);

3. Data sharing properties

Access Right. This property specifies the form of access that is permitted
for a component. It could be read only, write only, read write, by method.
Default value is read write.

Access Right : Access Rights� read write applies to
(Data, Bus, Data Access, Bus Access);

Access Rights : type enumeration (read only, write only,
read write, by method);

Concurrency Control Protocol. This property specifies the concurrency
control protocol used to ensure mutually exclusive access to a shared data
component.

(5) Shared data may be accessed by multiple threads. Such potential con-
current access is controlled according to the Concurrency Control Protocol.
(PLG not specified)

Concurrency Control Protocol: Supported Concurrency Control Protocols
applies to (data);

Supported Concurrency Control Protocols: type enumeration
(None Specified, @ project-specified A);

Default value is None Specified: no concurrency control protocol. AADLv2
does not specify the detailed project-specified protocols, but gives some ex-
ample concurrency control protocols: Interrupt Masking, Maximum Priority,
Priority Inheritance, Priority Ceiling, Spin Lock and Semaphore. [1] im-
plemented four kinds of concurrency control protocol: NoneSpecified, Lock,
BIP, PCP.

When a thread enters a critical region (when it is accessing a shared data
component), a Get Resource operation is performed on the shared data
component. When it exit from a critical region, a Release Resource op-
eration is performed.

A method of implementation may choose to support only locking of one
resource at a time, or locking of multiple resources simultaneously. What
method?

4. Input Time and Output Time specify the time range over which a compo-
nent has read or write access ato a shared data component.

15

3.3 Data component access 3 DATA

3.3 Data component access

Figure 4: Data component access

c1, c2, c3 are port connections, others are data access connections. It is not
clear if connecting data elements in a data to requires data access is possible: in the
rules one can see data subcomponent identifier . provides data access identifier,
but in the corresponding table, a data component does not provide data access to
its subcomponents..

(6) Input Time and Output Time specify the time range over which a compo-
nent has read or write access to a shared data component. The value of a shared data
component is read or written through the use of a data variable that represents the
shared data component, or through Get Value and Put Value service calls. Write
access immediately updates the shared data component.

(7) Input Rate and Output Rate specify the rate at which a shared data com-
ponent is accessed. The input rate specifies read accesses while the output rate
specifies write accesses.

3.4 Behavior: critical region

(5.1(17)) Concurrent access to shared data is coordinated according to the con-
currency control protocol specified by the Concurrency Control Protocol property
value associated with the data component. A thread is considered to be in a critical
region when it is accessing a shared data component. When a thread enters a critical
region a Get Resource operation is performed on the shared data component. Upon
exit from a critical region a Release Resource operation is performed If multi-
ple data components with concurrency control protocols are accessed by a thread,
the critical regions may be nested, i.e., the Get Resource and Release Resource
operations are pair-wise nested for each data component. Furthermore, deadlock
avoidance among threads accessing the same set of shared data components is as-
sured by proper nesting of the critical regions across all of the threads.

16

3.5 Data in Polychrony 3 DATA

(5.1(30)) The concurrency control protocol can be implemented through a num-
ber of concurrency control mechanisms such as mutex, lock, semaphore, or pri-
ority ceiling protocol. Appropriate concurrency control state is associated with
the shared data component to maintain concurrency control. The protocol imple-
mentation must provide appropriate implementations of the Get Resource and Re-
lease Resource operations.

(5.4.3 (42)) The time a thread resides in a critical region in worst case is the
duration of executing one thread dispatch.

Supported Concurrency Control Protocols are not defined by the standard. Ex-
amples are given in AADL A.2. By default there is no control protocol.

3.5 Data in Polychrony

TODO. Clarify semantics of Data� Data event connections

3.5.1 Data type

Data type can be represented by a free clock signal or signal structure containing
inner data as fields. The provides subprogram access features of a data component
type can model the concept of methods on a class of operations on an abstract data
type.

17

3.5 Data in Polychrony 3 DATA

For example:

data Message

features

updata message � provides subprogram access Update address;
end Message;

data implementation Message.impl

subcomponents

name � data aadlstring;
size � data aadlinteger;
text � data aadlstring;

end Message.impl;

subprogram Update address

features

message � in parameter Message;
end Update address;

A corresponding Signal structure:

type Message � struct � string name;
integer size;
string text; �;

Simple data There is no problem to represent data types in Signal: at worst
external types can be used to represent AADL types.

There are two categories of Signal-signals: the free clock1 signals (constants,
state variables and free variables2) and the clocked signals (the use of which can
generate clock constraints). An AADL-data can be represented as a free clock
signal.

The problem of multiple accesses during a logical instant exists as for other
AADL features.

Compound data A data that contains inner data can be represented by a free
clock structure that contains inner data as fields.

18

3.5 Data in Polychrony 3 DATA

3.5.2 Protected data

A Data that provides subprogram access can be represented by a (see) Signal server
when concurrent access requires asynchronous features.

• A data subcomponent represents static data in the source text. Data in the
source text that is sharable between threads.

• A data that provides subprogram access can be represented by a Signal server
when concurrent access requires asynchronous features.

Data subcomponent declared in a subprogram A local data in the subprogram.
It could be accessible only inside the subprogram.

Data subcomponent declared in a thread or process It could be shared be-
tween threads. Figure 5 gives an example of two threads want to access a shared
data. The three components are declared in a same process. Thread require data ac-
cess by feature requires data access, and Thread2 provides data access by feature
provides data access.

Get_Resource

Get_Resource

Release_Resource

Release_Resource

Thread_1

Thread_2
Data_1

Requires_
data_
access

Provides_
data_
access

Get_Value

Put_Value

Scheduler

Figure 5: Data concurrency control

Two service calls Get Resource and Release Resource are performed to access
the shared data. The scheduler will decide which thread could get the resource.

19

4 SUBPROGRAM

Get Value service call returns the current value, and Put value updates the data
value.

The Concurrency Control Protocol should be taken into account (different
control protocols as implemented in [1]), how to implement in Signal?

4 Subprogram

(5.2-(1)) A subprogram component represents sequentially executed source text
that is called with parameters. A subprogram may not have any state that persists
beyond the call (static data). Subprograms can have local variables that are repre-
sented by data subcomponents in the subprogram implementation.

(8.3(4)) A subprogram that is accessed by more than one component is shared
and must be reentrant. The shared subprogram may be called by multiple threads.
This may result in concurrent access to shared data components.

A subprogram models callable source text that is executed sequentially. A
subprogram may be called by multiple threads or subprograms.

4.1 Subprogram component

(5.2-(6)) A subprogram type declaration specifies all interactions of the subpro-
gram with other parts of the application source text. Subprogram parameters are
specified as features of a subprogram type This includes in and in out parame-
ters passed into a subprogram and out and in out parameters returned from a sub-
program on a call, events being raised from within the subprogram through its out
event port and out event data port, required access to static data by the subprogram
are specified as part of the features subclause of a subprogram type declaration,
and required access to subprograms that are contained in another component and
are called by this subprogram. Syntax

4.1.1 Structure

4.1.2 Abstract syntax

Subprogram ��� Subprogram type � Subprogram implementation (1)

20

4.1 Subprogram component 4 SUBPROGRAM

Figure 6: Subprogram structure

Subprogram type

Subprogram type ��� subprogramID � opt�list�Subprogram feature�� �

opt�list�Flow spec�� � opt�list�Modes��

� opt�list�Subprogram property��

Subprogram feature ��� out event port � out event data port � Feature group

�Requires data access �Requires subprogram access

�Requires subprogram group access � Parameter

Subprogram property ��� Actual Subprogram Call property

� Subprogram Call Type property � . . .

Subprogram implementation

Subprogram implementation ��� subprogramID � opt�list�Subprogram subcomponent��

� opt�list�Subprogram call�� � opt�list�Connection��

� opt�list�Flow implementation�� � opt�list�End to end flow��

� opt�list�Modes�� � opt�list�Subprogram property��

Subprogram subcomponent ��� subcomponentID � Subprogram subcomponent reference

� opt�list�Property�� � opt�In modes�

Subprogram subcomponent reference ��� dataID

1. out event port is a Event port whose port direction is out.

2. out event data port is a Event data port whose port direction is out.

21

4.2 Subprogram call 4 SUBPROGRAM

4.1.3 Standard properties

• Properties related to source text

Source Name

Source Text

Source Language

• Properties specifying memory requirements

Source Code Size

Source Data Size

Source Stack Size

Source Heap Size

• Execution related properties

Compute Execution Time: Time Range

Compute Deadline: Time

• Remote subprogram call related properties.

Subprogram Call Type specifies whether the call is to be performed syn-
chronous or semi-synchronous. In case of a semi-synchronous call, the use
of the result is may be suspended until the result is available.

Subprogram Call Type: enumeration (Synchronous, SemiSynchronous)
� Synchronous applies to (subprogram);

4.2 Subprogram call

5.2-(2)) Subprograms can be called from threads and from other subprograms.
These calls are sequential calls local to the virtual address space of the thread.
Subprograms can also be called remotely from threads in other virtual address
spaces. A subprogram call sequence is declared in a thread implementation or in
a subprogram implementation. Subprogram call sequences may be mode-specific.
Subprogram calls may be local, i.e., to an instance of the subprogram in the same
process as the caller, or they may be remote, i.e., to subprogram instances in other
processes.

(5.2-(C2)) A subprogram call must reference a subprogram implementation.
(PLG: subprogram calls can be queued)

22

4.3 Parameter connection 4 SUBPROGRAM

4.3 Parameter connection

(9.2-(1)) ... Parameter connections may be declared from an in data or event data
port or in out data or event data port of the containing thread to a subprogram
call in or in out parameter. Parameter connections also ... follow the containment
hierarchy of subprogram calls nested in other subprograms.

PLG: it seems that a data component (access) cannot be connected to a param-
eter; the syntax does not allow it.

(L3) If the parameter connection declaration represents a parameter connection
between sibling components, then the source must be an out or an in out param-
eter and the destination must be an in or an in out parameter(PLG: parameter �
port forbidden). Furthermore, the source must be a parameter of a preceding sub-
program call in the call sequence, and the destination must be a parameter of a
succeeding subprogram call in the call sequence.

(PLG: when a subprogram call is in a subprogram are parameter¡-¿port con-
nections forbidden ?)

4.4 Behavior

(2) For parameter connections, data transfer occurs at the time of the subprogram
call and call return. In the case of subprogram calls to remote subprograms, the data
is first transferred to a local proxy and from there passed to the remote subprogram.

(5.2-(14)) Ordering of subprogram calls is by default the order of the subpro-
gram call declarations. Annex-specific notations, e.g., the Behavior Annex, can be
introduced to allow for other call order specifications, such as conditional calls and
iterations.

(5.2-(15)) The flow of parameter values between subprogram calls as well as
to and from ports of enclosing threads is specified through parameter connection
declarations.

(5.2-(L3)) Only one subprogram call sequence can apply to a given mode. In
other words, a mode identifier can be specified in the in modes subclause of at
most one subprogram call sequence.

((5.2-(19) A subprogram is executed within the calling AADL-thread or within
a called component while calling AADL-thread is suspended. It is executed within
a called component when the call refers to:

• Subprogram access to subprogram component in another AADL-thread,

• Subprogram access to a provides subprogram access feature in a device,

• Subprogram access of a processor (operating system),

23

4.5 Subprogram in Polychrony 4 SUBPROGRAM

• Subprogram classifier and the call has a subprogram call binding property
that refers to provides subprogram access in other AADL-thread.

In all other cases execution remains within the calling AADL-thread.

4.5 Subprogram in Polychrony

If there is no recursive call, one can consider a subprogram as a standard aperiodic
thread that has a dispatch event to which all calls are connected.

A subprogram seems to be a standard aperiodic AADL-thread with specific
syntactic synchronous signals named parameters. A subprogram differs from a
standard thread in the computing of C and T and the thread scheduling: when an
AADL-thread TH1send values to a standard AADL-thread TH2, the execution of
TH1 code is not necessary stopped. And TH2 cannot send values to TH1 in the
same period. At the opposite, if a thread TH1 send input parameters to a thread
subprogram THS2, those parameters are immediately sent, TH1 is suspended (with
its C remaining equal to 1) awaiting for output parameters from THS2 in the same
period.

A parameter can be seen as a data port; the Input Time of an input parame-
ter is the dispatch event of THS2, the Output Time of an output parameter is the
complete event of THS2. Parameters are connected by immediate connection.

Multiple calls in the same logical instant are analogous to simultaneous ar-
rivals of dispatching events in an aperiodic AADL-thread. To guarantee the correct
synchronization of those parameters, the input parameters are grouped in a Signal
structure type, and thus received as a single event data port named InParameter
connected to the dispatch port of the thread. The same is done for out parameters
grouped in ReturnResult. In out parameters are split on InParameter and ReturnRe-
sult fields. The InParameter and OutParameter have the suitable properties. They
are connected with respect to expected calling behavior.

To check: is a Subprogram call considered as a dispatch event of the AADL-
thread that provides the Subprogram access ? If not, when is the call executed ?

Finally a subprogram can be implemented as a Signal-procedure if such a fea-
ture is added to Signal.

A subprogram can be considered as a standard aperiodic thread that has a dis-
patch event to which all calls are connected.

A parameter can be seen as a data port: the Input Time is dispatch, and Out-
put Time is complete.

Synchronous call The input parameters are grouped in a Signal structure, named
InParameter, and the out parameters are grouped in ReturnResult. In out parame-

24

5 SUBPROGRAM GROUP

ters are split on InParameter and ReturnResult fields. Figure 7.

InParameter

ReturnResult

Dispatch

Complete

SP

CM

SubP

out1
out2

in1
in2

Complete

Figure 7: Subprogram

Semi-synchronous call The use of the result is may be suspended until the result
is available. When?

5 Subprogram group

(5.3-(1)) Subprogram groups represent groups of subprogram features, i.e., libraries
of subprograms. Subprogram groups can be made accessible to other components
through subprogram group access features and subprogram group access connec-
tions. This grouping concept allows the number of connection declarations to be
reduced, especially at higher levels of a system when a number of provided sub-
programs from one subcomponent and its contained subcomponents must be con-
nected to requires subprogram access in another subcomponent and its contained
subcomponents. The content of a subprogram group is declared through a subpro-
gram group type declaration. This declaration is then referenced when subprogram
groups are declared as subcomponents.

A subprogram represents a subprogram library.

5.1 Abstract syntax

Subprogram group ��� Subprogram group type

� Subprogram group implementation (2)

25

6 THREAD

Subprogram group type

Subprogram group type ��� subprogram group ID � opt�list�Subprogram group feature��

� opt�list�Subprogram group property��

Subprogram group feature ��� Feature group � Subprogram access

�Requires subprogram group access

Subprogram group property ���

Subprogram group implementation

Subprogram group implementation ��� subprogram group ID

� opt�list�Subprogram group subcomponent�� � opt�list�Connection��

� opt�list�Subprogram group property��

Subprogram group subcomponent ��� subcomponentID

� Subprogram group subcomponent reference

� opt�list�Property�� � opt�In modes�

Subprogram group subcomponent reference ��� subprogramID

6 Thread

(5.4-(1)) A thread represents a sequential flow of control that executes instructions
within a binary image produced from source text. A thread models a schedulable
unit that transitions between various scheduling states. A thread always executes
within the virtual address space of a process, i.e., the binary images making up the
virtual address space must be loaded before any thread can execute in that virtual
address space.

6.1 Structure

(from 5.4-(2)) An AADL-thread contains a predeclared in event port named Dis-
patch, and two predeclared out event ports named Complete and Error; those ports
cannot be user-declared (L3). As other ports, they may be connected (or not).

6.2 Abstract syntax

Thread ��� Thread type � Thread implementation (3)

26

6.2 Abstract syntax 6 THREAD

Figure 8: Thread structure

Thread type

Thread type ��� threadID � opt�list�Thread feature�� � opt�list�Flow spec��

� opt�list�Modes�� � opt�list�Thread property��

Thread feature ��� Port � Feature group �Data access

� Subprogram access � Subprogram group access

Thread property ��� Dispatch Protocol property � Priority property � . . .

27

6.3 Standard properties 6 THREAD

Thread implementation

Thread implementation ��� threadID � opt�list�Thread subcomponent��

� opt�list�Subprogram call�� � opt�list�Connection��

� opt�list�Flow implementation�� � opt�list�End to end flow��

� opt�list�Modes�� � opt�list�Thread property��

� opt�list�Annex subclause��

Thread subcomponent ��� subcomponentID � Thread subcomponent reference

� opt�list�Property�� � opt�In modes�

Thread subcomponent reference ��� dataID � subprogramID � subprogram group ID

Subprogram call ��� subprogram call ID �Called subprogram

� opt�list�Subprogram call property��

Called subprogram ��� subprogramID � provides subprogram access ID

� requires subprogram access ID

Subprogram call property ���

Annex subclause ��� annexID �Annex spec � opt�In modes�

6.3 Standard properties

• Properties related to source text (...)

Source Text

Source Language

see also (21) p.86

• Properties specifying memory requirements

Source Code Size

Source Data Size

Source Stack Size

Source Heap Size

• Properties specifying dispatch properties

Dispatch Protocol specifies the dispatch behavior for a thread.

Dispatch Protocol: Supported Dispatch Protocols

Period (mandatory if Dispatch Protocol is periodic or sporadic)

28

6.3 Standard properties 6 THREAD

Period: inherit Time applies to
(thread, thread group, process, system, device, virtual processor);

Dispatch Offset: Time (only if Dispatch Protocol is periodic)

Deadline specifies the maximum amount of time allowed between a thread
dispatch and the time that thread begins waiting for another dispatch.

Deadline: inherit Time Rightarrow Period
applies to (thread, thread group, process, system, device);

Input Time: IO Time Spec

Output Time: IO Time Spec

Priority specifies the priority of the thread that is taken into consideration
by some scheduling protocols in scheduling the execution order of threads.

Priority: inherit aadlinteger applies to
(thread, thread group, process, system, device);

• Properties specifying execution entrypoints and timing constraints: those
properties are defined for STEP in Initialize, Compute, Activate, Deactivate,
Recover, Finalize

STEP Execution Time: Time Range

STEP Deadline: Time

STEP Entrypoint, STEP Entrypoint {Call Sequence, Source Text}

• Properties specifying constraints for binding

...

• Properties related to mode switching and scheduling

Synchronized Component: inherit aadlboolean� true

Active Thread Handling Protocol: inherit Supported Active Thread Handling Protocols� abort

Active Thread Queue Handling Protocol: inherit enumeration (flush, hold)� flush

Activation Mode: enumeration (initial, resume)

29

6.4 Behavior 6 THREAD

6.4 Behavior

(5.4-(2))... A thread can be active in a particular mode and inactive in another mode.
As a result a thread may transition between an active and inactive state as part of a
mode switch. Only active threads can be dispatched and scheduled for execution.
Threads can be dispatched periodically or as the result of explicitly modeled events
that arrive at event ports, event data ports, or at a predeclared in event port called
Dispatch. Completion of the execution of a thread dispatch will result in an event
being delivered through the predeclared Complete event out port if it is connected.

(5.4-(3)) If the thread execution results in a fault that is detected, the source
text may handle the error. If the error is not handled in the source text, the thread
is requested to recover and prepare for the next dispatch. If an error is considered
thread unrecoverable, its occurrence is propagated as an event through the prede-
clared Error out event data port.

(5.4.3 (39)) A scheduler selects one thread from the set of threads in the ready
state to run on one processor according to a specified scheduling protocol. It en-
sures that only one thread is in the running state on a particular processor.

6.4.1 Predeclared ports

• Dispatch: If this port is connected, (ie is a destination in a connection), then
the arrival of an event results in the dispatch of the AADL-thread. Events
arriving on other (data-) event do not dispatch the AADL-process but are
queued. (PLG: Dispatch event Overflow Handling Protocol cannot be de-
fined ??)

• Complete: If this port is connected, an event is raised when the execution of
the AADL-thread completes. (PLG: no possible overflow)

• Error: If this port is connected, an event is raised when an unrecoverable
error is detected.(PLG: execution is stopped; no possible overflow)

6.4.2 Real time counters

An AADL-thread THREAD holds two timing values: C which is its actual execu-
tion time, and T which is its elapsed time. C and T are times in the reference time
of the processor (PROC) THREAD executes on . The actual execution time is the
time accumulating while THREAD actually runs on PROC; the elapsed time is the
time accumulating since the last dispatch of THREAD. In nominal behavior, C and
T are reset to 0 when the AADL-process is dispatched (C:=0, T:=0 in automata), C
continuously increases when THREAD is computing (δC=1 in automata), T con-
tinuously increases until THREAD completion (δT=1 in automata) (PLG: there

30

6.4 Behavior 6 THREAD

is here some personal interpretation concerning T). δX=0 means that X remains
unchanged.

6.4.3 Dispatch Protocol

(5.4.1(28)) The Dispatch Protocol property of a thread determines the character-
istics of dispatch requests to the thread. The Enabled function determines when a
transition to performing thread computation will occur. The Wait For Dispatch in-
variant captures the condition under which the Enabled function is evaluated. The
consequence of a dispatch is the execution of the entrypoint source text code se-
quence Subprogram access at its current execution position. This position is set to
the first step in the code sequence and reset upon completion.

(5.4.1(16)) ...If a dispatch request is received for a thread while the thread is
in the compute state, this dispatch request is handled according to the specified
Overflow Handling Protocol for the event or event data port of the thread.

An AADL-thread THREAD can have one of the following Dispatch Protocols:

1. periodic(29,30): a dispatch request is issued to THREAD at time intervals of
the specified Period property value. THREAD can have a Dispatch Offset
property value, set to 0 by default, that allows user defined alignment of
logically synchronous AADL-threads. Arrival of event (-data) will not result
in a dispatch. Events and event data are accessible (PLG ????) to a periodic
AADL-thread. (PLG: clarify event (-data) queuing).

(a) Enabled is T = Period+Dispatch Offset
(b) Wait For Dispatch is T B Period+Dispatch Offset.
(c) The dispatch occurs at (PLG: immediately after) T = Period+Dispatch Offset.

2. aperiodic(31): a dispatch request is issued to THREAD when a triggering
event occurs; there is no constraint on the inter-arrival time of triggering
events. A triggering event occurs when:

(a) an event (-data) arrives at an event (-data) port of THREAD with empty
queue

(b) a subprogram call arrives at a provides access feature of THREAD
(c) THREAD raises its complete event and an event is already queued in

some of its event (-data) port features

3. sporadic(32): dispatch requests are the same as in the aperiodic Dispatch Protocol,
but the time interval between successive dispatch requests will never be less
than the associated Period property value.

31

6.4 Behavior 6 THREAD

4. timed(33): dispatch requests are the same as in the aperiodic Dispatch Protocol,
but the time interval between two successive dispatch requests will never be
more than the associated Period property value. Thus an event time-out is
raised to Dispatch if T = Period. The Dispatch Offset property does not
apply. (PLG contradiction with definition of Period p. 268, where Period is
not allowed here).

5. hybrid(34): dispatch requests are those of the aperiodic Dispatch Protocol,
completed by those of the periodic Dispatch Protocol, for which a periodic
clock Tp is required; thus a supplementary event is raised to dispatch when
Tp � Period. The Dispatch Offset property does not apply. (PLG contra-
diction with definition of Period p. 268, where Period is not allowed here).

6. background(36): the AADL-thread is dispatched immediately upon com-
pletion of its initialization entrypoint execution. A background AADL-thread
is Mode insensitive.

(5.4(9)) For periodic threads arrival of events or event data will not result in a
dispatch. Events and event data are accessible to a periodic thread...

(5.4.6??(86)) A method of implementing a system must support the periodic
dispatch protocol. A method of implementation may support only a subset of the
other standard dispatch protocols. A method of implementation may support addi-
tional dispatch protocols not defined in this standard.

6.4.4 Thread states and state transition

(5.4.1 (15)) When a mode switch is initiated, a thread that is part of the old mode
and not part of the new mode exits the mode by transitioning to the suspended
awaiting mode (SAM) state after performing thread deactivation during the mode
change in progress system state (see Figure 20). If the thread is periodic and its
Synchronized Component property is true, then its period is taken into considera-
tion to determine the actual mode switch time (???? see Sections 12 and 13.3 for
detailed timing semantics of a mode switch). If an aperiodic or a sporadic thread
is executing a dispatch when the mode switch is initiated, its execution is handled
according to the Active Thread Handling Protocol property.

A thread that is not part of the old mode and part of the new mode enters the
mode by transitioning to the suspended awaiting dispatch (SAD) state after per-
forming thread activation.

(5.4.3 (39) A thread initially enters the ready state. A scheduler selects one
thread from the set of threads in the ready state to run on one processor according

32

6.4 Behavior 6 THREAD

to a specified scheduling protocol. It ensures that only one thread is in the running
state on a particular processor.

States and “normal” transitions (assert ignored) let SRC in {AADL-process,
vprocessor, processor, system}

• TH: AADL-thread halted(14), (AADL-thread not in a current Mode)

�? loaded�AADL� process� ! dispatch initialization� � T �� 0, TH �
�PTI�

�? AADL � threadexit�Mode� - ? AADL � threadenter�Mode�� �

TH � TH

• [PTI]: performing AADL-thread initialization, (AADL-thread not in a cur-
rent Mode)

let initialization completed � �started�system� , ? complete initialization�

δT � 1, δC > �0,1�?

(THREAD is not part of the initial mode , initialization completed): �PTI��
SAM

(THREAD is part of the initial mode , initialization completed): �PTI��
SAD

PLG: Mode change during initialization?

• SAM: suspended awaiting mode(15) (AADL-thread not in a current Mode)

δT � δC � 0?

�?AADL�thread enter�Mode� , ! dispatch activation� � T �� 0, SAM �

�PTA�

�stop�SRC�� � T �� 0, SAM � �PTF �

• �PTF �: performing AADL-thread finalize (AADL-thread not in a current
Mode)

δT � 1, δC > �0,1�?

�stopped�AADL � process�� � �PTF �� TH

PLG: Mode change during finalize?

• [PTD]: performing AADL-thread deactivation, (AADL-thread not in a cur-
rent Mode)

δT � 1, δC > �0,1�?

33

6.4 Behavior 6 THREAD

�? complete deactivation� � �PTD�� SAM

PLG: Mode change during deactivation?

• [PTA]: performing AADL-thread activation, (AADL-thread in current cMode)

δT � 1, δC > �0,1�?

�? complete activation� � �PTA�� SAD

�stop�SRC�� � T �� 0, �PTA�� �PTF �

PLG: exit(cMode) during activation?

• SAD: suspended awaiting dispatch(16) (AADL-thread in current cMode)

δT � δC � 0?

�Enabled�T � , ! dispatch computation� � T �� 0, SAD � �PTC�

�stop�SRC�� � T �� 0, SAD � �PTF �

�?AADL � thread exit�cMode�� � T �� 0, SAD � �PTD�

• [PTC]: performing AADL-thread computation, (AADL-thread in possibly
suspended current cMode)

δT � 1? δC > �0,1��seeinnerstate�

�? complete activation� � �PTA�� SAD

PLG: AADL-thread exit(cMode) during computation in inner transitions

PLG: stop(SRC) during computation ?

• PLG: compute state, used in (5.4.1(16)) is not defined. In (16) we have If
a dispatch request is received for an AADL-thread while the AADL-thread
is in the compute state, this dispatch request is handled according to the
specified Overflow Handling Protocol for the event or event data port of the
AADL-thread. (???). Probably means super state performing AADL-thread
computation

performing thread computation: inner states and transitions (AADL-thread
in possibly suspended current cMode)

• PTC.ready:

– δC � 0

– ? resume � � PTC.Running

34

6.5 Thread in Polychrony 6 THREAD

• PTC.Running:

– δC � 1

– ? preempt � � PTC.Ready

– ! complete � � null state

– �AADL�thread is background , ? exit�cMode�� �� PTC.Awaiting resume

– ! call server subprogram � � PTC.Awaiting return

– ! Get Resource � � PTC.Awaiting resource

• AADL-thread is background PTC.Awaiting resume

– δC � 0

– ? enter�cMode� � � PTC.ready

• PTC.Awaiting return

– δC � 0

– ? return server subprogram � � PTC.ready

• PTC.Awaiting resource

– δC � 0

– ? Release Resource � � PTC.Awaiting resource

Specific states and “abnormal” transitions (see 5.4)

6.5 Thread in Polychrony

One can propose a uniform view of AADL-threads.

6.5.1 Expressiveness

The preemption mechanism cannot be fully described in Signal, due to possible
invisible side effects. All other AADL mechanism can be described in full Signal
(ie non endochronous Signal-processes). One suppose that an AADL-thread is
split into atomic actions that contains no more than one external interaction (value
output/input, subprogram call,...). If the source language is Signal, this splitting
can be automatic (gray box construction).

35

6.5 Thread in Polychrony 6 THREAD

6.5.2 Uniform view

A background AADL-thread is considered as an aperiodic AADL-process with one
single dispatch and lowest priority.

An AADL-thread T is translated into a Signal-process P that has the same
input/output as T (ports). This Signal-process P is embedded in a process that
provides to P, accurate synchronizations and communications. One can find below
the coarse principles to do it.

1. P is (automatically) structured into atomic components following the gray
box principles (extended to IO equivalence, refining the I equivalence)

2. P is then nested in a container C P that insures the correct scheduling and
data transmission using FIFOs for event(data) ports thanks to a synchro-
nization Signal-process SP and a communication manager CM. SP and CM
communicate (for instance to determine the complete event).

• The synchronization Signal-process SP owns the Signal-signals of P
completed by the (data events or) events found in the (fig.5,6): ? event
dispatch, event complete, event data mode, Get resource, Release resource.
It is built thanks to properties of T (including the dispatch property)
and the Polychrony standard gray box scheduler of P. SP describes the
(logical) clock behaviors resulting from T and inner features proper-
ties. SP has a companion Signal-process TSP that interfaces logical
events and real-time. SP is composed with a companion Signal-process
that manages timing constraints (intervals). It builds the dispatch event
according to the dispatch protocol from DispatchEventRequest and Pe-
riodEvent.

• The communication manager CM interacts with (contains ?) port FI-
FOs to schedule event (data) actual delivering taking into account T
and port properties (such as priorities,...). It has its own inner clock.
For aperiodic, sporadic, timed, hybrid AADL-threads, it generates the
Boolean Signal-signal DispatchEventRequest at each occurrence of com-
plete event. DispatchEventRequest is false if all FIFO are empty, true
otherwise. It generates the events required by ports synchronizations.

3. 1.The container C P is used as a component in a real time container RT C P.
C P is composed with the companion Signal-process TSP that interfaces log-
ical events and real-time:

TSP has the time unit as input (or the time value in the current hyperperiod)
and computes C and T (or TSP receives T and computes C,...). TSP generates

36

6.5 Thread in Polychrony 6 THREAD

timed events resulting from time properties such as DeadlineEvent,... For
a periodic, sporadic, timed, hybrid AADL-process TSP generates an event
PeriodEvent.

In Figure 9, a thread is interpreted as a real-time container RT C P. It is com-
posed of a timing environment TSP and a container C P.

RT_C_P

P

Dispatch

output2 (event)

deadline

resume

suspend

P: have the same input/output as thread T

SP: a synchronization process

CM: a communication manager,
interact with port FIFO to schedule event (data) actual delivering

C_P: a container, insure correct scheduling and data transmission

TSP: a timing environment, generate timed events resulting from time properties

RT_C_P: a real-time container

Get_resoure

Release_resource

OutDataPort

tick

running

TSP start

SPinput1 (data)

input2 (event data)
InEventPort

OutEventPort

output1 (data)

CM

DispatchEventRequest

C_P

InDataPort

Complete
Error

Provides_
data_access

Dispatch

Complete

Put_Value

Complete

Dispatch

Figure 9: Thread

• The timing environment TSP handles the time properties, and generates timed
events, such as start and deadline.

• The container C P insures the correct data transmission (SP and CM) and
execution (P).

• SP contains all the in ports and requires (data, bus or subprogram) access
feature.

37

7 THREAD GROUP

• CM contains all the out ports and provides (data, bus or subprogram) ac-
cess feature. For aperiodic, sporadic threads, it generates a boolean signal
DispatchEventRequest at each occurance of complete event.

• P is a synchronous computation process. When it finishes, a Complete event
is sent out. An Error event is generated when an unrecoverable error occurs.

Problem: Thread mode transition.

6.5.3 Remaining questions

1. Errors, event abort

2. Provides/require access

3. The details of the above description and the combination with other features
translation may raise new problems.

4. Loops in the scheduler due to multiple input/output during the AADL logical
time (i.e. dispatch-complete interval). Sequence type in Signal ?.

5. Define the precisely the morphism that transforms the Signal step gray box
scheduler into an oversampled scheduler (ie input are cells, a single black
box runs in an oversampled instant, following the initial static graph)

7 Thread group

(1)A thread group represents an organizational component to logically group threads
contained in processes. The type of a thread group component specifies the features
and required subcomponent access through which threads contained in a thread
group interact with components outside the thread group. Thread group implemen-
tations represent the contained threads and their connectivity. Thread groups can
have multiple modes, each representing a possibly different configuration of sub-
components, their connections, and mode-specific property associations. Thread
groups can be hierarchically nested.

PLG: An AADL-thread group has properties such as period, deadline,...priority,...
What are the relations of these properties/constraints with the same properties in
inner features ?

A thread group represents an organizational component to logically group thread
contained in processes. A thread group does not represent a virtual address space
nor does it represent a unit of execution. It must be directly or indirectly contained
within a process.

38

7.1 Abstract syntax 8 PROCESS

7.1 Abstract syntax

Thread group ��� Thread group type � Thread group implementation
(4)

Thread group type

Thread group type ��� thread group ID � opt�list�Thread group feature��

� opt�list�Flow spec�� � opt�list�Modes�� � opt�list�Thread group property��

Thread group feature ��� Port � Feature group �Data access

� Subprogram access � Subprogram group access

Thread group property ���

Thread group implementation

Thread group implementation ��� thread group ID

� opt�list�Thread group subcomponent�� � opt�list�Connection��

� opt�list�Flow implementation�� � opt�list�End to end flow��

� opt�list�Modes�� � opt�list�Thread group property��

Thread group subcomponent ��� subcomponentID

� Thread group subcomponent reference

� opt�list�Property�� � opt�In modes�

Thread group subcomponent reference ��� dataID � subprogramID

� subprogram group ID � threadID � thread group ID

8 Process

(1)A process represents a virtual address space. The Runtime Protection process
property indicates whether this virtual address space is runtime protected, i.e., it
represents a space partition unit whose boundaries are enforced at runtime. The
virtual address space contains the program formed by the source text associated
with the process and its subcomponents. A complete implementation of a process
must contain at least one thread or thread group subcomponent.

(13)This standard permits dynamic virtual memory management or dynamic li-
brary linking after process loading has completed and thread execution has started.
However, a method for implementing a system must assure that all deadline prop-
erties will be satisfied to the required level of assurance for each thread.

39

8.1 Structure 8 PROCESS

8.1 Structure

Figure 10: Process structure

8.2 Abstract syntax

A process represents a virtual address space. Threads of a process must be explic-
itly declared.

8.3 Abstract syntax

Process ��� Process type � Process implementation (5)

Process type

Process type ��� processID � opt�list�Process feature�� � opt�list�Flow spec��

� opt�list�Modes�� � opt�list�Process property�� (6)

Process feature ��� Port � Feature group �Data access

� Subprogram access � Subprogram group access (7)

Process property ��� Period property � Priority property

�Actual Processor Binding property � . . . (8)

40

8.4 Standard properties 8 PROCESS

Process implementation

Process implementation ��� processID � opt�list�Process subcomponent��

� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��

� opt�list�Modes�� � opt�list�Process property�� (9)

Process subcomponent ��� subcomponentID � Process subcomponent reference

� opt�list�Property�� � opt�In modes� (10)

Process subcomponent reference ��� dataID � subprogramID

� subprogram group ID � threadID � thread group ID (11)

8.4 Standard properties

• Properties related to source text (...)

Source Language

Source Text

• Properties related to memory space

Runtime Protection : inherit aadlboolean

• Inheritable AADL-thread properties

Period: inherit Time

Dispatch Offset: Time

Deadline: inherit Time� value(Period)

Priority applies to: inherit aadlinteger

Synchronized Component: inherit aadlboolean� true

Active Thread Handling Protocol:inherit
Supported Active Thread Handling Protocols� abort

• Properties specifying execution entrypoints and timing constraints

Load Time: Time Range

Load Deadline: Time

Startup Deadline: Time

Startup Execution Time: inherit Time

41

8.5 Process and Polychrony 9 EXECUTION PLATFORM COMPONENTS

• Properties specifying constraints for binding

PLG: An AADL-process has properties such as period, deadline,...priority,...
What are the relations of these properties/constraints with the same properties in
inner features ?

8.5 Process and Polychrony

Same question as for AADL-thread group concerning inheritance.
A standard Signal-process ? Following AADL definition of an AADL-process

(a –virtual– address space), a notion of Object-process in Signal (or any other
name) can correspond to shared variable scopes.

Check period, time-out, ... properties. They might impact connection delay by
accumulation.

9 Execution platform components

9.1 Processor

A processor is an abstraction of hardware and software that is responsible for
scheduling and executing threads and virtual processors that are bound to it.

Abstract syntax:

Processor ��� Processor type � Processor implementation (12)

Processor type

Processor type ��� processorID � opt�list�Processor feature�� � opt�list�Flow type��

� opt�list�Modes�� � opt�list�Processor property��

Processor feature ��� Provides subprogram access

� Provides subprogram group access � Port � Feature group

�Bus access � Feature group

Processor property ���

42

9.2 Virtual processor 9 EXECUTION PLATFORM COMPONENTS

Processor implementation

Processor implementation ��� processorID � opt�list�Processor subcomponent��

� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��

� opt�list�Modes�� � opt�list�Processor property�� (13)

Processor subcomponent ��� subcomponentID � Processor subcomponent reference

� opt�list�Property�� � opt�In modes� (14)

Processor subcomponent reference ��� memoryID � busID

� virtual processor ID � virtual bus ID (15)

9.2 Virtual processor

A virtual processor represents a logical resource that is capable of scheduling and
executing threads and other virtual processors bound to them.

Abstract syntax:

V irtual processor ��� V irtual processor type

� V irtual processor implementation (16)

Virtual processor type

V irtual processor type ��� virtual System subcomponent referenceprocessor ID

� opt�list�V irtual processor feature�� � opt�list�Flow type��

� opt�list�Modes�� � opt�list�V irtual processor property�� (17)

V irtual processor feature ��� Provides subprogram access

� Provides subprogram group access � Port � Feature group

V irtual processor property ��� (18)

43

9.3 Memory 9 EXECUTION PLATFORM COMPONENTS

Virtual processor implementation

V irtual processor implementation ��� virtual processor ID

� opt�list�V irtual processor subcomponent�� � opt�list�Flow implementation��

� opt�list�End to end flow�� � opt�list�Modes�� � opt�list�V irtual processor property��
(19)

V irtual processor subcomponent ��� subcomponentID

� V irtual processor subcomponent reference

� opt�list�Property�� � opt�In modes� (20)

V irtual processor subcomponent reference ��� virtual processor ID

� virtual bus ID (21)

9.3 Memory

A memory represents an execution platform component that stores code and data
binaries.

Abstract syntax:

Memory ��� Memory type �Memory implementation (22)

Memory type

Memory type ��� memoryID � opt�list�Memory feature��

� opt�list�Modes�� � opt�list�Memory property�� (23)

Memory feature ��� Bus access � Feature group (24)

Memory property ��� (25)

Memory implementation

Memory implementation ��� memoryID � opt�list�Memory subcomponent��

� opt�list�Connection�� � opt�list�Modes�� � opt�list�Memory property��
(26)

Memory subcomponent ��� subcomponentID �Memory subcomponent reference

� opt�list�Property�� � opt�In modes� (27)

Memory subcomponent reference ��� memoryID � busID (28)

44

9.4 Bus 9 EXECUTION PLATFORM COMPONENTS

9.4 Bus

A bus represents an execution platform component that can exchange control and
data between memories, processors and devices.

Abstract syntax

Bus ��� Bus type �Bus implementation (29)

Bus type

Bus type ��� busID � opt�list�Bus feature�� � opt�list�Modes��

� opt�list�Bus property��

Bus feature ��� Requires bus access � Feature group

Bus property ���

Bus implementation

Bus implementation ��� busID � opt�list�Bus subcomponent�� � opt�list�Connection��

� opt�list�Modes�� � opt�list�Bus property��

Bus subcomponent ��� subcomponentID �Bus subcomponent reference

� opt�list�Property assocaition�� � opt�In modes�

Bus subcomponent reference ��� virtual bus ID

9.5 Virtual bus

A virtual bus represents logical bus abstraction, such as a virtual channel or com-
munication protocol.

Abstract syntax

V irtual bus ��� V irtual bus type � V irtual bus implementation (30)

Virtual bus type

V irtual bus type ��� virtual bus ID � opt�list�Modes��

� opt�list�V irtual bus property��

V irtual bus property ���

45

9.6 Device 10 SYSTEM

Virtual bus implementation

V irtual bus implementation ��� busID � opt�list�V irtual bus subcomponent��

� opt�list�Modes�� � opt�list�V irtual bus property��

V irtual bus subcomponent ��� subcomponentID

� V irtual bus subcomponent reference

� opt�list�Property�� � opt�In modes�

V irtual bus subcomponent reference ��� virtual bus ID

9.6 Device

A device represents dedicated hardware within the system, entities in the external
environment, or entities that interface with the external environment.

Abstract syntax

Device ��� Device type �Device implementation (31)

Device type

Device type ��� deviceID � opt�list�Device feature�� � opt�list�Flow spec��

� opt�list�Modes�� � opt�list�Device property��

Device feature ��� Port � Feature group � Provides subprogram access

� Provides subprogram group access �Bus access

Device property ���

Device implementation

Device implementation ��� deviceID � opt�list�Device subcomponent��

� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��

� opt�list�Modes�� � opt�list�Device property��

Device subcomponent ��� subcomponentID �Device subcomponent reference

� opt�list�Property�� � opt�In modes�

Device subcomponent reference ��� busID � virtual bus id

10 System

(1) A system represents an assembly of interacting application software, execution
platform, and system components. Systems can have multiple modes, each rep-
resenting a possibly different configuration of components and their connectivity

46

10.1 Abstract syntax 10 SYSTEM

contained in the system. Systems may require access to data and bus components
declared outside the system and may provide access to data and bus components
declared within. Systems may be hierarchically nested.

PLG: A system has properties such as period, deadline,... What are the rela-
tions of these properties/constraints with the same properties in inner features ?

A system represents an assembly of interacting application software, execution
platform ans system components.

10.1 Abstract syntax

System ��� System type � System implementation (32)

System type

System type ��� systemID � opt�list�System feature�� � opt�list�Flow spec��

� opt�list�Modes�� � opt�list�System property�� (33)

System feature ��� Port � Feature group � Subprogram access

� Subprogram group access �Bus access �Data access (34)

System property ��� Actual Processor Binding property

� Priority property � Period property � . . . (35)

System implementation

System implementation ��� systemID � opt�list�System subcomponent��

� opt�list�Connection�� � opt�list�Flow implementation�� � opt�list�End to end flow��

� opt�list�Modes�� � opt�list�System property�� (36)

System subcomponent ��� subcomponentID � System subcomponent reference

� opt�list�Property�� � opt�In modes� (37)

System subcomponent reference ��� dataID � subprogramID

� subprogram group ID � processID � processorID � virtual processor ID

�memoryID � busID � virtual bus ID � deviceID � systemID (38)

10.2 Component binding

(13(3)) A system instance is completely instantiated and bound if all threads are
ultimately bound to a processor, all source text making up process address spaces
are bound to memory, connections are bound to buses if their ultimate source and

47

10.3 System operation mode 10 SYSTEM

destinations are bound to different processors, and subprogram calls are bound to
remote subprograms as necessary.

(13(C1))Every mode-specific configuration of a system instance must have
a binding of every process component to a (set of) memory component(s), and a
binding of every thread component to a (set of) processor(s).

(C13(2) In the case of dynamic process loading, the actual binding may change
at runtime. In the case of tightly coupled multi-processor configurations, such as
dual core processors, the actual thread binding may change between members of
an actual binding set of processors as these processors service a common set of
thread ready queues.

(C13(4) A software component may be bound to multiple memory compo-
nents.

(C13(5) A thread must be bound to a one or more processors. If it is bound to
multiple processors, the processors share a ready queue, i.e., the thread execute on
one processor at a time.

(13(C6) Multiple threads can be bound to a single processor.

10.3 System operation mode

(13) The set of all mode transitions specified for all components of a system in-
stance form a set of concurrent mode transitions, called system operation modes
(SOM). The set of possible SOMs is the cross product of the sets of modes for
each component. That is, a SOM is a set of component modes, one mode for each
component of the system. The initial SOM is the set of initial modes for each com-
ponent. (PLG: this suggest a Global mode)

(14) The discrete variable Mode denotes a SOM. That is, the variable Mode
denotes a possible discrete state that is defined by the mode hybrid semantic dia-
grams. Note that the value of Mode will in general change at various instants of
time during system operation, although not in a continuous time-varying way.

(15) The SOM transition is requested whenever a mode transition in any com-
ponent in the system instance is requested by the arrival of an event. A single event
can trigger a mode switch request in one or more components. In a synchronized
system, this event occurs logically simultaneously for all components, i.e., the re-
sulting component mode switch requests are treated as a single SOM transition
request.

(16) A mode transition of a thread internal mode, i.e., a mode declared in the
thread or one of its subprograms, that is triggered by the component itself or is
triggered by an event coming in through an event port of the thread, takes place at
the next thread dispatch; if the event triggers both a mode transition and a dispatch,
then the dispatch is considered to be the next dispatch.

48

10.3 System operation mode 10 SYSTEM

(18) If several events occur logically simultaneously and are semantically con-
nected to transitions in different components that lead out of their current mode
or to different transitions out of the same mode in one component, then events are
considered to have an implementation-dependent order that determines the mode
transition for the mode switch resulting in the other events being ignored. (PLG:
does this mean no queuing of mode transition triggers ?)

(19) After a SOM transition request has occurred, the actual SOM transition
occurs in zero time, if no periodic threads are part of the old mode, otherwise, it
occurs at the hyperperiod boundary of the old SOM...During that time, the system
continues to operate in the old SOM and additional events that would result in a
SOM transition from the current SOM are ignored.

(20) ... The hyperperiod is determined by the periods of those periodic threads
whose Synchronzied Component property is true and that are active in a given
SOM. If this set of threads is empty, the mode transition is initiated immediately.

(21) At the time of actual SOM transition, the transition is performed to the
new SOM that contains the destination modes of the requested component mode
switch(es). The hyperperiod for the mode transition is determined by the set of
thread to be active in the new SOM.

(22) A runtime transition between SOMs requires a non-zero interval of time,
during which the system is said to be in transition between two system modes of
operation. While a system is in transition, excluding the instants of time at the start
and end of a transition, all arriving events that appear in transition edge declarations
are ignored and will not cause any mode change.

(23) At the instant of time the mode-transition-in-progress state is entered, con-
nections that are part of the old SOM and not part of the new SOM are disabled.
For data connections, this means that the data value is not transferred into the in
data port variable of the newly disabled thread.

(24) At the instant of time the mode-transition-in-progress state is entered, data
is transferred logically simultaneously for all connections that are declared to be
part of any of the component mode transitions making up the SOM transition. For
data connections, this means that the data is transferred from the out data port such
that its value becomes available at the first dispatch of the receiving thread.

(25) At the instant of time the mode-transition-in-progress state is entered, con-
nections that are not part of the old SOM and part of the new SOM are enabled.
For data connections, this means that the data value of a transition connection is
transferred into the in data port variable of the newly enabled thread. If the in data
port of the destination thread is not the destination of a transition connection, the
data value of the out data port of the source thread is transferred into the in data
port variable of the newly enabled thread. If the source thread is also activated as
part of the mode transition, its out data port value is transferred after the thread

49

10.4 AADL and physical time 10 SYSTEM

completes its activate entrypoint execution.
(26) When the mode-transition-in-progress state is entered, thread exit(Mode)

is triggered for all threads that are part of the old mode and not part of the new
mode. This results in the execution of deactivation entrypoints for those threads
(see Figure 5) as described in Section 12.

(27) In addition, at the time the mode-transition-in-progress state is entered,
thread enter(Mode) is triggered for threads that are part of the new mode and not
part of the old mode. This permits those threads to execute their activation entry-
points (see Figure 5). In addition, for periodic threads this is immediately followed
by their first compute entrypoint dispatch as described in Section 12.

(29) While the system is in the mode-transition-in-progress state, threads that
are part of the old and new SOM continue to operate normally. SOM transition
requests as resulting from raise events are ignored while the system instance is in
the mode-transition-in-progress state.

(30) The system instance remains in the mode-transition-in-progress state until
the next hyperperiod. This hyperperiod is determined by new SOM according to the
rules stated earlier. At that time, the system instance enters current system operation mode
state and starts responding to new requests for SOM transition. (TG: what does it
mean if there is no periodic thread in the new mode and how is it compatible with
the protocols to handle threads that are in the performing computation state at the
time instant of actual mode switch? cf. 12 (22))

PLG: what about queues and other pending actions

10.4 AADL and physical time

10.4.1 Perfect/unperfect real time(5.4.(5,6))

(13.3(11), p. 234) In a synchronized system, periodic threads are dispatched si-
multaneously with respect to a global clock. The hyperperiod of a set of periodic
threads (PLG: sharing the same time reference) is defined to be the least common
multiple of the periods of those threads.

(5.4.5 (61))...In the concurrent hybrid automata model for the complete sys-
tem, ST is a single real-valued variable shared by all threads that is never reset and
whose rate is 1 in all states. ST is called the reference timeline.

(5.4.5 (62)) Two periodic threads are said to be synchronized if, whenever they
are both active in the current system mode of operation, they are logically dis-
patched simultaneously at (...) their hyperperiod. Two threads are logically dis-
patched simultaneously if the order in which all exchanges of control and data at
that dispatch event are identical to the order that would occur if those dispatches
were exactly dispatched simultaneously in true and perfect real time

50

10.4 AADL and physical time 10 SYSTEM

(PLG ??? notion not defined in the standard). If all periodic threads contained
in an application system are synchronized, then that application system is said to
be synchronized.

(5.4.5 (64)) Within a synchronization domain, perfect synchronization may not
occur in a physical system. (...) it is the responsibility of each physical implemen-
tation to take these imperfections into account when providing the synchronization
domain for programmers (e.g. make sure your message transmission schedule in-
cludes enough margin for the message to get there by the time it is needed, taking
into account these various effects in your particular implementation).

(5.4.6 (68)) Message-passing semantics of communication and thread execu-
tion is represented by aperiodic threads whose dispatch is triggered by arrival of
messages and message may be queued in the event data port. This communica-
tion paradigm is insensitive to time, thus, not affected by multiple synchronization
domains.

(5.4.6 (69)) Sampled data-stream semantics of communication and thread exe-
cution is represented by periodic threads and data ports. In this case the sampling of
the input is sensitive to the reference time. AADL distinguishes between immedi-
ate and delayed connections for deterministic sampling, and sampling connections
for non-deterministic sampling. Similarly, a periodic thread may non-determinis-
tically sample event ports and event data ports, e.g., a health monitor sampling
an alarm queue. Deterministic communication minimizes latency jitter, while non-
deterministic communication can result in latency jitter in units of the sampling
rate, the latter often leading to instability of latency sensitive applications such as
control systems.

(5.4.6 (70)) In general, communication timing of immediate and delayed con-
nections cannot be guaranteed when the connection crosses synchronization do-
mains. In other words, those connections become sampling connections.

10.4.2 Asynchronous system (5.4.6)

In this section (???), one found:
(5.4.6(75)) The Await Dispatch runtime service takes a mask and a trigger con-

dition function as parameter. The mask specifies which ports are being considered
in triggering the next dispatch of a thread. The trigger condition function, if present,
is evaluated on the ports identified in the mask to determine when a dispatch should
occur.

51

10.5 System and Polychrony 11 FEATURES AND SHARED ACCESS

subprogramAwait Dispatch

features

PortMask � inparameter;� �Listofportsthatcantriggeradispatch

ConditionFunction � subprogram;
endAwait Dispatch;

10.5 System and Polychrony

Same question as for AADL-thread group and process concerning inheritance.
Because in Signal, there is no notion of hardware component, a system is a

composition of Signal-processes.
Check period, time-out, ... properties. They might impact connection delay by

accumulation.

11 Features and shared access

A feature is a part of a component type definition that specifies how that component
interfaces with other component.

Port features represent a communication interface for the exchange of data and
events between components.

(4) Subprogram access features represent access to a subprogram to be called
from other components, and the need for a component to call a subprogram in-
stance locally or to call a subprogram remotely.

(5) Subprogram group access features represent sharing and required access to
a subprogram library.

(6) Parameter features represent data values that can be passed into and out of
subprograms.

(7) Data subcomponent access represents communication via shared access to
data components.

(8) Bus subcomponent access represents physical connectivity of processors,
memory, devices, and buses through buses.

(3) Feature groups represent groups of component features. Feature groups can
contain feature groups. Feature groups can be used anywhere features can be used.

Abstract syntax of Feature

Feature ��� Port � Parameter � Subcomponent access � Feature group

Subcomponent access ��� Subprogram access � Subprogram group access �Data access �Bus access

52

11.1 Port 11 FEATURES AND SHARED ACCESS

11.1 Port

(1) Ports are logical connection points between components that can be used for the
transfer of control and data between threads or between a thread and a processor or
device. Ports are directional, i.e., an output port is connected to an input port. Ports
can pass data, events, or both. Data transferred through ports is typed..... Incoming
events may trigger thread dispatch or mode transitions. Properties specify the in-
put and output timing characteristics of ports. Actual event and data transfer may
be initiated by the runtime system of the execution platform or by Send Output
runtime service calls in the application source text.

Ports are directional. AADL distinguishes between three port categories: data
port, event port and event data port.

An example:
thread threadA

features
portA: in data port {Timing� immediate };
portB: in event port;
portC: out event data port dataA {Output Time� (Completion, 0.0ns .. 0.0ns)};

end threadA;

11.1.1 Abstract syntax of Port

Port ��� Event port �Data port �Event data port (39)

Basic port ��� portID � Port direction � opt�list�Port property�� (40)

Event port ��� Basic port (41)

Data OR Eventdata port ��� Port triggering � opt�Data reference� �Basic port
(42)

Data port ���Data OR Eventdata port�Port triggering � no� (43)

Event data port ���Data OR Eventdata port�Port triggering � on� (44)

Port direction ��� �in, out,�in out�� (45)

Port triggering ��� �on,no� (46)

Data reference ��� dataID (47)

Note:

1. A Port belongs to three categories: Data port, Event port and Event data port
(39).

2. A Event port is specified by a portID, Port direction and an optional list of
Port property (40).

53

11.1 Port 11 FEATURES AND SHARED ACCESS

3. A Data port is a Data OR Eventdata port whose Port triggering is no (43).

4. A Event data port is a Data OR Eventdata port whose Port triggering is on
(44).

5. Port direction is an enumeration of {in, out, in out } (45).

6. portID adheres to the naming rules specified for all identifiers.

7. A Port property could be Input Time, Output Time, Timing, Fan out policy
association and many others. The following table gives a brief view of prop-
erties that are associated to ports.

54

11.1 Port 11 FEATURES AND SHARED ACCESS

Property In port Out port
Event Data Event data Event Data Event data

Input Time X X X
Output Time X X X
Source Name X X X X X X
Source Text X X X X X X
Type Source Name X X X X X X
Required Connection X X X X X X
Allowed Connection Binding Class X X X X X X
Device Register Address X X X X X X
Timing X X
Input Rate X X X
Output Rate X X X
Compute Entrypoint X X
Compute Entrypoint Call Sequence X X
Compute Entrypoint Source Text X X
Compute Execution Time X X
Compute Deadline X X
Allowed Memory Binding Class X X X X
Allowed Memory Binding X X X X
Actual Memory Binding X X X X
Overflow Handling Protocol X X
Queue Size X X X X
Queue Processing Protocol X X X X
Dequeued Items X X
Dequeue Protocol X X
Fan Out Policy X X X
Urgency X X X
Transmission Type X X
Base Address X X X X X X

11.1.2 Standard properties

This section gives an explanation of some of the standard properties.

1. Properties related to source text (...)

Source Name

Source Text

2. Properties related to memory space (binding,...)

55

11.1 Port 11 FEATURES AND SHARED ACCESS

Device Register Address: aadlinteger

3. Property related to port connections

Required Connection : aadlboolean� true

4. Properties related to IO policy

• Input Time specifies the amount of execution time that can pass after
dispatch before the input is frozen. Default value is dispatch with zero
offset.
Input Time: list of IO Time Spec� (Time� Dispatch;

Offset� 0.0 ns .. 0.0 ns;) applies to (port);
IO Time Spec : type record (Offset : TimeRange;

Time : IO Reference Time;);
Each possible value is a pair of Time (possible values: Dispatch Time,
Start, Completion and NoIO) and a time tange Offset.
The IO Time Spec property specifies the amount of execution time
Offset relative to a Time at which input or output occurs. The value
consists of a reference point and time range pair.
Frozen: From the point of Input Time on, any new arrived data (or
event, or event data) is not available until the next Input Time. It is
sampled until the next Input Time (Figure 11).

Input_Time1 Input_Time2 Input_Time3

The inputs arrived after Input_Time1 will be
available until next Input_Time (Input_Time2).
These values could be used during Input_Time2
and Input_Time3, through Get_Value or
Next_Value service call.

Get_Value Next_Value

Figure 11: Input frozen

• Output Time specifies the amount of execution time until completion
at which output becomes available. Default value is completion with
zero offset. Possible values: Start, Completion, Deadline and NoIO.
Output Time: list of IO Time Spec� (Time� Completion;

Offset� 0.0 ns .. 0.0 ns;) applies to (port);
The output will be transmitted immediately if it is called by a Send output
service call, otherwise it will be sampled and sent out at Output Time.
(Figure 12)

56

11.1 Port 11 FEATURES AND SHARED ACCESS

Output_Time1 Output_Time2

The outputs generated after Output_Time1 will
be transmitted through a Send_Output service
call, or will be transmitted at next Output_Time
(Output_Time2).

Send_output

Figure 12: Output Time

Input Time and Output Time can have a list of values. Two Signal
events InEvent and OutEvent are used to represent the Input Time and
Output Time. They may have many occurrences.

•

Input Rate: Rate Spec
Rate Spec : type record (Time Interval : TimeRange;

Rate Distribution : Supported Distributions;);
An AADL in out port is translated into a front-end Signal-process de-
pending upon the port properties to manage directed connections.

• Output Rate: Rate Spec

• Timing property specifies the connection type of a data port.
Timing : enumeration (sampled, immediate, delayed)

� sampled applies to (port);

(a) If Timing is declared as immediate, then Output Time is Com-
pletion and Input Time is Start.

(b) If Timing is declared as delayed, then Output Time is Deadline
and Input Time is Dispatch.

Timing Input Time Output Time
immediate Start Completion
delayed Dispatch Deadline

• Fan Out Policy property specifies how the output is distributed to mul-
tiple recipients of a port with multiple outgoing connections. Default
value is Broadcast.
Fan Out Policy: enumeration (Broadcast, RoundRobin, Selective, OnDemand)

applies to (port);
A controler is needed to choose the recipients of an out port. (Fig-
ure 13.)

57

11.1 Port 11 FEATURES AND SHARED ACCESS

output

OutEvent

Distributer

The Distributer will decide
the output could be sent
to which receiver in port,
depending on the
Fan_Out_Policy property.

Input2

Input1

Figure 13: Fan Out Policy

Problem : In AS5506A v2, p136, “The Input Time can be done for all ports
by specifying the property value for the thread”. But the Input Time property is
defined only applies to a port, but not to a thread (p262).

Modification : p34 of MyAADLDigest, Deadline Time is not the default value
of Output Time, but the Completion Time is.

11.1.3 In out (common) port behavior

Rate properties (29) The Input Rate and Output Rate properties specify the rate
at which input and output is expected to occur at the port with the associated prop-
erty. By default the input and output rate of ports is the rate at which the thread
executes. The rate can be fixed (periodic) or according to a distribution. An input
or output rate higher than the dispatch rate of a thread indicates that multiple in-
puts or multiple outputs are expected during a single dispatch. An input or output
rate lower than the dispatch rate of a thread indicates that inputs or outputs are not
expected at every dispatch. If an Input Time or Output Time property is specified,
then the number of values must be consistent with the rate. An input or output rate
lower than the period indicates that input is not expected at every dispatch and that
output is not expected to be transmitted at every dispatch.

Those rate properties will not generate anything but comments in Signal. The
consistence between a (Input/Output) Time list statically defined and a (Input/Output) Rate
given by a distribution is not obvious to understand as such. Moreover, a rate
lower than the rate given by the size of the (Input/Output) Time results in a non-
deterministic behavior. Thus, we should assume that (Input/Output) Time list gives
the (maximal) number of (Input/Output) values between 2 dispatches in the current
Mode. And we consider Rates as information for verification tools.

Input ports (13) Data, events, and event data arriving through incoming ports
is made available to the receiving thread, processor, or device at a specified input
time. From that point on any newly arriving data, event, or event data is not avail-
able to the receiving component until the next dispatch (PLG: Input Time, not

58

11.1 Port 11 FEATURES AND SHARED ACCESS

really dispatch), i.e., the input is frozen.
(17) The Input Time property can have a list of values. In this case it indicates

that input is frozen multiple times for the execution of a dispatch.

1. Input Time possible ReferencePoint

• Dispatch Time: (the default value) input is frozen at dispatch time;
the time reference is clock time.
T � 0.

• Start Time: input is frozen at a specified amount of execution time
into the execution. The time is within the specified time range. The
time range must have positive values.
Start T imelow B C B Start T imehigh.

• Completion Time: input is frozen at a specified amount of execution
time relative to execution completion. The time is within the speci-
fied time range. A negative time range indicates execution time before
completion.
�Ccomplete�Completion T imelow� B C B �Ccomplete�Completion T imehigh�

where Ccomplete represents the value of c at completion time.

• None: input is not frozen. In other words, the port is excluded from
making new input available to the source text. This allows users to
specify that a subset of ports to provide input. The property value can
be mode specific, i.e., a port can be excluded in one mode and included
in another mode.

2. Actual input

(15) The Input Time property can be used to explicitly specify an input time
for ports. This can be done for all ports by specifying the property value for
the thread, or it can be specified separately for each port. (PLG: may some
ports inheriting thread property while others have their own specification?)

(40) A Receive Input runtime service allows the source text of a thread to
explicitly request port input on its incoming ports to be frozen and made ac-
cessible through the port variables....The Receive Input service takes a mask
parameter that specifies for which ports the input is frozen. (PLG: links with
Input Time ???)

(42) A Get Value runtime service shall be provided that allows the source
text of a thread to access the current value of a port variable. The service call
returns the data value. Repeated calls to Get Value result in the same value

59

11.1 Port 11 FEATURES AND SHARED ACCESS

to be returned, unless the current value is updated through a Receive Input
call or a Next Value call.

PLG: as far as I understand these rules allow several freezing between two
dispatches, not only at dispatch time as indicated in (13).

There are some questions concerning the consistency:

• Is it possible to freeze input after completion ? The reasonable answer
is probably that a thread cannot emit complete before all Input Time
occurrences. But in AADL an Input Time may follow the Comple-
tion Time !!! How is this possible if the thread is not running (see
(40) below) ??? Does this means that input freezing is done by some
AADL implicit action ??? How this policy can be made consistent with
hidden Receive Input calls.

• Negative time associated with Completion Time is generally not causal
!!!

(9.1.4(28)) Arrival of events on event ports can also trigger a mode switch if
the event port is named in a mode transition originating in the current mode
(see Section 12). Events that trigger mode transitions are not queued at event
ports.

3. Input ports and Polychrony

The input port behavior induces an event Signal-signal InEvent for a port.
InEvent has as many occurrences as given by Input Time list. This occur-
rences may be dynamically generated according to queue size, TimeOffset,
...

Output ports (27) The Output Time property can have a list of values. In this
case it indicates that output is transmitted multiple times as part of the execution of
a dispatch.

Property specific to output port:
Fan Out Policy: enumeration (Broadcast, RoundRobin, OnDemand)

1. Output Time possible ReferencePoint

• Start Time: output is transmitted at a specified amount of execution
time into the execution. The time is within the specified time range.
The time range must have positive values.
Start T imelow B C B Start T imehigh.

60

11.1 Port 11 FEATURES AND SHARED ACCESS

• Completion Time: output is transmitted at a specified amount of ex-
ecution time relative to execution completion. The time is within the
specified time range. A negative time range indicates execution time
before completion.
�Ccomplete�Completion T imelow� B C B �Ccomplete�Completion T imehigh�

where Ccomplete represents the value of c at completion time.
The default is completion time with a time range of zero, i.e., it occurs
at C � Ccomplete

• Deadline Time: (the default value) ; output is transmitted at deadline
time; the time reference is clock time.
T �Deadline.

• None: output is not transmitted . In other words, the port is excluded
from making new output from the source text. This allows users to
specify that a subset of ports to provide output. The property value can
be mode specific, i.e., a port can be excluded in one mode and included
in another mode.

2. Fan Out Policy

The Fan Out Policy property indicates whether the output is passed to all
recipients (Broadcast), to the next recipient ready to be dispatched (OnDe-
mand), or the output is distributed evenly to the recipients (RoundRobin). If
the property is not specified the default is Broadcast. If the fan out policy is
OnDemand, a queue may be associated with the port through the use of the
appropriate queue properties.

PLG: the exact title for these queue properties is In port queue properties
; more over the complementary wording in 8.2.3 does not mention queues

associated with output ????. Moreover an AADL-thread can probably wait
for dispatch coming from several ports; if it is dispatched from one source,
it should cancel the other demands,....???? it’s a very costly protocol

3. Actual output

(38) A Send Output runtime service allows the source text of a thread to
explicitly cause events, event data, or data to be transmitted through outgo-
ing ports to receiver ports. The Send Output service takes a mask parameter
that specifies for which ports the transmission is initiated. Send Output is a
nonblocking service. (PLG: links with Output Time ???)

(39) A Put Value runtime service allows the source text of a thread to supply
a data value to a port variable. This data value will be transmitted at the next

61

11.1 Port 11 FEATURES AND SHARED ACCESS

Send Output call in the source text or by the runtime system at completion
time or deadline.

PLG: These rules allow several sending between two dispatches.

There are some questions concerning the consistency:

• Is it possible to send after completion ? The reasonable answer is
probably that a thread cannot emit complete before all Output Time
occurrences. But in AADL an Output Time may follow the Comple-
tion Time !!! How is this possible if the thread is not running (see (40)
below) ??? Does this means that output is achieved by some AADL
implicit action ??? How this policy can be made consistent with hidden
Send Output calls.

• Negative time associated with Completion Time is generally not causal
!!!

4. Output ports and Polychrony

The output port behavior induces an event Signal-signal OutEvent for a port.
OutEvent has as many occurrences as given by Output Time list. This occur-
rences may be dynamically generated according to queue size, TimeOffset,
... and Fan Out Policy.

A Fan Out Policy that is not the standard Broadcast policy, will generate a
Signal-process in charge of this policy

11.1.4 Data port

(9) Data ports are intended for transmission of state data such as signals. There-
fore, no queuing is supported for data ports. A thread can determine whether the
input buffer of an in data port has new data at this dispatch by checking the port
status trough a Get Count service call, which is accessible through the port vari-
able through a Get Value service call. If no new data value has been received the
old value is made available.

(9.1(L10))A data port cannot be the destination of more than one semantic port
connection unless each semantic port connection is contained in a different mode.

(5.4.6(71))...data port connections across synchronization domains are sampled
connections.

1. Aggregate data port

(8.1(6))The role of an aggregate data port is to make a collection of data
from multiple outgoing data ports available in a time-consistent manner.

62

11.1 Port 11 FEATURES AND SHARED ACCESS

Time consistency in this context means that if a set of periodic threads is
dispatched at the same time to operate on data, then the recipients of their
data see either all old values or all new values. This is accomplished by
declaring a data port, whose data classifier has an implementation with data
components corresponding to the data of the individual data ports.

(8.1(7)) The functionality of an aggregate data port can be viewed as a thread
whose only role is to collect the data values from several in data ports and
make them available as an aggregate data record; on the receiving side an
equivalent thread takes passes on the elements of the aggregate data record
on to the respective out data ports of receiving threads....

2. Behavior
It seems that data ports can have multiple output and multiple input during
an AADL thread dispatch

(24) By default, the output time, i.e., the time output is transmitted to con-
nected components, is the completion time for data ports.

3. Data ports and Polychrony
Data port can be represented using cell Signal-process. A data port is close
to a Signal-signal (several data ports can be synchronous).

An aggregate data port can be implemented as indicated in AADL-8.1(7), as
a Signal-process that builds a struct before sending values, and counterpart
one that breaks the struct before delivering individual flows.

So we need a Signal-process model for input data port and a Signal-process
model for output data port. These models may be a unique common model..

A data port supports only one value. If no new data value has been received,
the old value is made available. A data port port could be represented by a
buffer, where a data written to the buffer remains there, until it is overwritten
by a new one.

(a) In data port
i. Sampled. The Timing property is specified as sampled or not

specified.
A. One value of Input Time

The InEvent (the actual input time) is under constraint of Be-
tween (Figure 14).
ReferenceTime is the reference time (Specified by Input Time
property, which could be Dispatch, Start . . .). timeunit is the
unit of two time offsets: min offset, max offset.

63

11.1 Port 11 FEATURES AND SHARED ACCESS

input
buffer M

InEvent

input'

in data port (Sampled)An input written to the buffer
remains there until it is overwritten
by a new arrived input instance.

At InEvent (given by Input_Time
property), the current element in
the buffer is copied (Frozen) to a
memory M.

The value in M will be used by
Get_Value or other service call.

The buffer may be overwritten
multiple times before next InEvent
occurs.

Get_Value

Frozen_
data_port

ReferenceTime
Between{int min_offset, max_offset}=
(?Event Controlled_Time, ReferenceTime;
 Unit timeunit;)
(|...|)

Figure 14: In data port (sampled)

B. A list of values of Input Time
For example:
Input Time: list of (Dispatch, 0.0ns .. 1.0ns) (Start, 0.0ns ..
1.0ns) applies to portA;
Each value will have a corresponding min offset, max offset
and ReferenceTime (Figure 15). The InEvent satisfies the con-
straint.

input
buffer M

InEvent

input'

Get_Value

Frozen_
data_port

SeveralBetween
{int n, [n] struct {min_offset, max_offset}}=
(? Event Controlled_Time, [n] ReferenceTime;
 Unit timeunit;)
(|...|)

ReferenceTime

Figure 15: In data port (sampled): a list of values

The Frozen data port copies the latest value of the buffer at
specified time instant (InEvent). It can be represented by a
cell and when operation. (Figure 16.)

ii. Immediate. If the Timing property is declared as immediate, then
the InEvent is Start (the Input Time value is ignored). (Figure 17)

iii. Delayed. If the Timing property is declared as delayed, then the
InEvent is Dispatch (the defined Input Time value is ignored).
(Figure 18.)

64

11.1 Port 11 FEATURES AND SHARED ACCESS

cell when

process Frozen_data_port =
(? ii, InEvent; ! oo;)
(| oo := ii cell InEvent when InEvent |)

InEvent

ii oo

Figure 16: Frozen data port

input
buffer M

InEvent (= Start)

input'

in data port (Immediate)

Get_Value

Frozen_
data_port

Figure 17: In data port (immediate)

input
buffer M

InEvent (= Dispatch)

input'

in data port (Delayed)

At Dispatch time, the latest
element in the data buffer is
copied (Frozen) to a memory M.

Get_Value

Frozen_
data_port

Figure 18: In data port (delayed)

(b) Out data port
The Output is sent out at OutEvent. A Distributer will select the recip-
ients depending on Fan Out Policy.

• Immediate. If the Timing property is declared as immediate, the
OutEvent is Completion (Figure 19). The value of Output Time
is ignored.

output output'

out data port (immediate)

OutEvent (=Completion)

buffer DistributerSend

Figure 19: Out data port (immediate)

• Delayed. Similar as immediate. Output Time is ignored. The
OutEvent is Deadline.

65

11.1 Port 11 FEATURES AND SHARED ACCESS

• Sampled. The OutEvent is restricted by a constraint Between
(or SeveralBetween, depending on the how many values the Out-
put Time property specifies). (Figure 20)

output
output'

out data port (sampled)

OutEvent

buffer

Distributer

Send

Between{}()
(or:
SeveralBetween{}()
)

ReferenceTime

Figure 20: Out data port (sampled)

(c) In out data port In out data port is separated into in and out two ports?

11.1.5 Event (Event data) port

(10) Event data ports are intended for message transmission.... A receiving thread
can get access to one or more data element in the queue according to the De-
queue Protocol and Dequeued Items properties. ...Individual element of the queue
can be retrieved via the port variable using the Get Value and Next Value service
calls. If the queue is empty the most recent data value is available.

(11) Event ports are intended for event and alarm transmission.... A receiving
thread can get access to one or more events in the queue according to the De-
queue Items property.

(9.1(16)) The AADL supports n-to-n connectivity for event and event data
ports. A port may have multiple outgoing connections, i.e., its content is trans-
mitted to multiple destinations. This means that each destination port receives an
instance of the event, or event data being transmitted. (PLG claim not consistent
with the above fan out policy ????) Similarly, event and event data ports can sup-
port multiple incoming connections resulting in sequencing and possibly queuing
of incoming events and event data.

Event and event data ports can have a queue associated with them. By de-
fault, the incoming event (event data) ports of threads, devices and processors have
queues.

1. Standard properties

66

11.1 Port 11 FEATURES AND SHARED ACCESS

• Port specific compute entrypoint properties for event and event data
ports:
Compute Entrypoint: classifier (Subprogram Classifier)

Compute Execution Time: Time Range

Compute Deadline: Time

(4) Event (-data) ports may dispatch a port specific Compute Entrypoint.
This permits threads with multiple event or event data ports to execute
different source text sequences for events arriving at different event
ports (PLG: suvh an entry is a black box in a gray box) If specified, the
port specific Compute Execution Time and Compute Deadline takes
precedence over those of the containing thread.

• Queue Processing Protocol. Queues will be serviced according to
this property, by default in a FIFO order. An event (event data) port
could be represented by a Signal FIFO.
Queue Processing Protocol: Supported Queue Processing Protocols�

FIFO applies to (event port, event data port, subprogram access);

• Queue Size. The default port queue size is 1.
Queue Size: aadlinteger 0 .. Max Queue Size� 1 applies to

(event port, event data port, subprogram access);

• Dequeue Protocol. This property specifies the dequeuing option to the
receiving application.
Dequeue Protocol: enumeration (OneItem, MultipleItems, AllItems)�

OneItem applies to (event port, event data port);

• Dequeued Items. This property specifies the maximum number of
items that ate made available to the application when the input is frozen
at input time.
Dequeued Items: aadlinteger applies to (event port, event data port);

• Overflow Handling Protocol. This property determine the action,
when an event (event data) arrives and the number of queued events
is equal to the specified queue size.
Overflow Handling Protocol: enumeration (DropOldest, DropNewest, Error)�

DropOldest applies to (event port, event data port, subprogram access);

2. Dispatch event (event data) port

(C1) The ports that trigger the dispatch must have a Input Time property
value of Dispatch Time.

67

11.1 Port 11 FEATURES AND SHARED ACCESS

(20) If no event or event data port is explicitly connected to or associated by
condition with the Dispatch port, then any incoming event or event data port
can trigger the dispatch. The input of other ports that can trigger dispatch is
not frozen. Input of the remaining ports is frozen according to the specified
input time.

(21) If event and event data ports are explicitly connected to the Dispatch
port, then only one of those port will trigger the dispatch. The input of other
ports that can trigger dispatch is not frozen (PLG thus simultaneity only oc-
curs for data ports or non dispatching event). Input of the remaining ports is
frozen according to the specified input time.

(22) If a dispatch condition is specified (PLG: HOW ???, dispatch condition
does not seem to be defined; is it the condition in Await Dispatch runtime? If
such, there is no hope to fully model dispatch in Signal if the condition is not
written in Signal) then the logic expression determines the combination of
event and event data ports that trigger a dispatch, and whose input is frozen
as part of the dispatch. The input of other ports that can trigger dispatch is
not frozen. Input of the remaining ports is frozen according to the specified
input time.

(23) If an event port is associated with a component (including thread) con-
taining modes and mode transition, and the mode transition names the event
port, then the arrival of an event is a mode change request and it is processed
according to the mode switch semantics.

(35) ... If such an incoming port is associated with a thread and the thread
does not contain a mode transition naming the port, then the event or event
data arriving at this port is added to the queue of the port. If the thread is
aperiodic or sporadic and does not have its Dispatch event connected (PLG:
in the current mode) , then each event and event data arriving and queued
at any incoming ports of the thread results in a separate request for thread
dispatch. PLG: what about other threads ?

Dispatch event and Polychrony A Signal-process is dedicated to generate
the dispatch event (only for event driven AADL-threads).

3. Port queue

Queue properties for in event(-data) port:

Overflow Handling Protocol: enumeration (DropOldest, DropNewest, Error)� DropOldest

Urgency: aadlinteger 0 .. value(Max Urgency)

68

11.1 Port 11 FEATURES AND SHARED ACCESS

Dequeued Items: aadlinteger

Dequeue Protocol: enumeration (OneItem, MultipleItems, AllItems)� OneItem

(30) ... If an event arrives and the number of queued events (and any associ-
ated data) is equal to the specified queue size, then the Overflow Handling Protocol
property determines the action. If the Overflow Handling Protocol property
value is

• Error, then an error occurs for the thread. ...

• DropNewest and DropOldest, the newly arrived or oldest event in the
queue event is dropped.

(11)The number of queued event (data) elements accessible to a thread can
be determined through the port variable using the Get Count service call.

(31) Queues will be serviced according to the Queue Processing Protocol,
(PLG: not defined in my copy) by default in a first-in, first-out order (FIFO).
When an event-driven thread declares multiple in event and event data ports
in its type and more than one of these queues are nonempty, the port with
the higher Urgency property value gets serviced first. If several ports with
the same Urgency are non-empty, then the Queue Processing Protocol is ap-
plied across these ports and must be the same for them. In the case of FIFO
the oldest event will be serviced (global FIFO). It is permitted to define and
use other algorithms for picking among multiple non-empty queues. Disci-
plines other than FIFO may be used for managing each individual queue.

(32) By default, one item is dequeued and made available to the source text
through the port variable. The Dequeue Protocol property specifies different
dequeuing options.

• OneItem: (default) a single frozen item is dequeued and made available
to the source text unless the queue is empty. The Next Value service
call has no effect.

• AllItems: all items that are frozen at input time are dequeued and made
available to the source text via the port variable, unless the queue is
empty. Individual items become accessible as port variable value through
the Next Value service call. (PLG meaning that values remain totally
ordered)

• MultipleItems: multiple items can be dequeued one at a time from the
frozen queue and made available to the source text via the port variable.
One item is dequeued and its value made available via the port variable

69

11.1 Port 11 FEATURES AND SHARED ACCESS

with each Next Value service call. Any items not dequeued remain in
the queue and are available for the next dispatch.

(46, p.143) For each data or event data port declared for a thread, a system
implementation method must provide sufficient buffer space within the asso-
ciated binary image to unmarshall the value of the data type. Adequate buffer
space must be allocated to store a queue of the specified size for each event
data port.

4. Port queue and Polychrony

A Signal-process is dedicated to manage the port queue. It is made of a FIFO
and a controler defined wrt to port queue rules.

To deliver multiple values, one can use an array with a companion counter
(the number of meaningful values in the array) or introduce a new (?) type
(bounded) sequence in Signal and associated operators (size, append, next,...)

In event (event data) port An event (event data) port could be represented
by a pair of FIFOs (Ex-FIFO and In-FIFO) and a container of constraints.
(Figure 21). Ex-FIFO receives inputs from other threads. At InEvent (con-
straint by Input Time in inIntervalle), move (Frozen) some elements from
Ex-FIFO to In-FIFO. The inputs arrived after the InEvent will be available at
the next InEvent. The elements in In-FIFO will be used through Next Value
service call.

Ex-FIFO In-FIFOinput

InEvent

Next_Value

input'

in event/ event data port

Frozen_
event_port

Between()
(or:
SeveralBetween()
)

ReferenceTime

Figure 21: In event port

At InEvent, frozen the inputs: copy a number of elements of Ex-FIFO into
internal FIFO (In-FIFO).

70

11.1 Port 11 FEATURES AND SHARED ACCESS

process Frozen event port = { integer Dequeue number; }
(? event InEvent; FIFO Ex-FIFO;
! FIFO In-FIFO)
(S...S)

The Dequeue number is decided by Dequeue Protocol property.

Dequeue Protocol Dequeue number
AllItems actual number of EX-FIFO
MultipleItems value of Dequeued Items
OneItem 1

Out event (event data) port The Output is stored in a FIFO, and sent out
at OutEvent time (Figure 22). The OutEvent is restricted by a constraint
inIntervalle (or a list of constraints depending on the Output Time value).

FIFOoutput

OutEvent

output'

out event/ event data port

Distributer

Send

ReferenceTime Between()
(or:
SeveralBetween()
)

Figure 22: Out event port

Problem: Dispatch for aperiodic or sporadic thread?

If no event (event data) port is explicitly connected to or associated by con-
dition with the Dispatch port, then any incoming event (event data) port can
trigger the dispatch. The input of other ports that can trigger dispatch is not
frozen. Input of the remaining ports is frozen according to the specified input
time. (Not clear)

In out event (event data) port Separated as in and out event (event data)
ports?

11.1.6 Port and Polychrony

71

11.2 Parameter 11 FEATURES AND SHARED ACCESS

An event (data) port differs from a Signal-signal in that a single Event (data) port
is transmitted at each dispatch.

Event data ports can be represented by FIFOs (or FIFO pairs, the last FIFO
contains the frozen values) or cell Signal-processes (extended at of Yue) following
the port queue property.

Event ports can be represented by counters (?)
The meaning of frozen is not fully clear in my mind.
Persistence of queued events through mode transitions ?

11.2 Parameter

A parameter represents a data value that can be passed into and out of subprograms.
Parameters are typed with a data classifier reference representing the data type.

(1) Subprogram parameter declarations represent data values that can be passed
into and out of subprograms. Parameters are typed with a data classifier reference
representing the data type.

11.2.1 Abstract syntax of Parameter

Parameter ��� parameterID � Parameter direction � opt�Data reference�

� opt�list�Parameter property��

Parameter direction ��� �in, out, �in out��

11.2.2 Standard properties

11.2.3 Parameter and Polychrony

A parameter could be modeled as a Signal signal?

11.3 Subprogram and subprogram group access

11.3.1 Subprogram access

(8.3(1)) ... Subprogram access is used to model binding of a subprogram call (local
or remote) to the subprogram instance being called.

1. Abstract syntax of Subprogram access

72

11.4 Data access 11 FEATURES AND SHARED ACCESS

Subprogram access ��� subprogram access ID �Access status�

opt�Subprogram reference� � opt�list�Subprogram access property��

Subprogram reference ��� subprogramID

Subprogram access property ��� Queue Size property�

Queue Processing Protocol property �Overflow Handling Protocol property � . . .

2. Standard properties

Input Rate: Rate Spec

Output Rate: Rate Spec

(8.3-(7)) Input Rate and Output Rate specify the rate at which a subprogram
is called. (PLG: As rate in ports)

11.3.2 Subprogram group access

Abstract syntax of Subprogram group access

Subprogram group access ��� subprogram group access ID �Access status�

opt�Subprogram group reference� � opt�list�Subprogram group access property��

Subprogram group reference ��� subprogram group ID

Subprogram group access property ���

11.4 Data access

Components can declare that they require access to externally declared data com-
ponents. Components may provide access to their data components.

Abstract syntax of Data access

Data access ��� data access ID �Access status�

opt�Data reference� � opt�list�Data access property��

Access status ��� provides � requires

Data reference ��� dataID

Data access property ��� Access Right �Access T ime � . . .

73

11.4 Data access 11 FEATURES AND SHARED ACCESS

Figure 23: Data access

Figure 23 shows two types of data access.
thread Thread1
features

Dataset: provides data access Data1;
end Thread1;
thread Thread2
features

Reqdataset: requires data access Data1;
end Thread2;

Some properties The Access Time property specifies the range of execution
time during which the data component is being accessed.

Access Time : record (First: IO Time Spec; Last: IO Time Spec;)
� (First� (Time� Start; Offset� 0.0ns .. 0.0 ns;);

Last� (Time� Completion; Offset� 0.0ns .. 0.0ns;);)
applies to (data access);

Interpretation In Figure 24, two constraints are added. They represent the First
and Last access time specified by Access Time property. Get Value, Get Resource
and Release Resource are three predefined service calls. At FirstTime, a Get Resource
is performed to lock the data resource. At LastTime, a Release Resource is per-
formed. A Get Value may be performed during the execution depending on the
detailed implementation. The value is stored in a memory M, and it will be up-
dated when a new Get Value is performed.

74

11.5 Bus access 12 CONNECTION

M

FirstTime

requires data access

inIntervalle

TimeEvent1

inIntervalleTimeEvent2

LastTime

Get_Resource
Release_Resource

Get_Value

Figure 24: Requires data access

11.5 Bus access

Abstract syntax of Bus access

Bus access ��� bus access ID �Access status�

opt�Bus reference� � opt�list�Bus access property��

Bus reference ��� busID

Bus access property ��� Access Right � . . .

11.6 Feature group

Abstract syntax of Feature group

Feature group ��� featuregroupID � opt�list�Feature���

opt�Inverse featuregroup reference� � opt�list�Feature group property��

Inverse featuregroup reference ��� featuregroupID

Feature group property ��� Allow Memory Binding �Actual Memory Binding � . . .

12 Connection

A connection is alinkage between features of two components that represents com-
munication of data and control between components.

Abstract syntax of Connection

Connection ��� Port connection � Parameter connection�

Access connection � Feature group connection (48)

75

12.1 Port connection 12 CONNECTION

12.1 Port connection

(9.1(1) Port connections represent transfer of data and control between two concur-
rently executing components.... These connections are semantic port connections.
A semantic port connection is determined by a sequence of one or more individual
port connection declarations that follow the component containment hierarchy in a
fully instantiated system from an ultimate source to an ultimate destination.

(9.1(2) ... The ultimate source of a semantic port connection is ... an out or in
out port of a thread, processor, or device component. The ultimate destination of a
semantic port connection is an in or in out port of a thread, a processor, or a de-
vice component. (4) ... the ultimate source or the ultimate destination of a semantic
port connection, but not both, can be a data component.

(9.1(4) Semantic port connections also represent the sampling of a data com-
ponent content by a data or event data port, and updating a data component with
the output of a data or event data port. In other words, the ultimate source or the
ultimate destination of a semantic port connection, but not both, can be a data com-
ponent.

(9.1(5) Semantic port connections may also route a raised event to a modal
component through a sequence of connection declarations. A mode transition in
such a component is the ultimate destination of the connection, if the mode tran-
sition names an in or in out event port in the enclosing component, or an out or in
out event port of one of the subcomponents.

(9.1(3)) ... An individual port connection declaration links a (source) of one
subcomponent to a (destination) of another subcomponent, i.e., it connects sib-
ling components at the highest level in the component hierarchy required for the
connection. Alternatively, a port connection declaration maps a (source) of a sub-
component to an outgoing port of a containing component or an incoming port of
a containing component to a (destination) of a subcomponent. PLG: names them
filiation connections, and sibling connections.

(9.1(6) Semantic port connections may exist between arrays of component in-
stances...

Semantic port connection A semantic port connection is determined by a se-
quence of one or more individual port connection declaration that follow the com-
ponent containment hierarchy in a fully instantiated system from an ultimate source
to an ultimate destination.

An example:

76

12.1 Port connection 12 CONNECTION

connections
C1: data port port1 � port2;
C2: event data port port3 � port4;
C3: event port port5 � port6;

12.1.1 Port connection categories

(10) A port connection declared with the optional in modes and transitions sub-
clause specifies whether the connection is part of specific modes or is part of the
transition between two specific modes.

(L11) A semantic (data) connection cannot contain both immediate and de-
layed connection declarations.

(13) Event port connections may refer to an event source or event destination
specification (self.eventname) (PLG ???). An event source specification indicates
that the component itself is the source of an event. In case of a thread this may be
due to a Send Output or Raise Event system call or due to an event raised by the
underlying runtime system, i.e., the processor. In case of incomplete system mod-
els it may also represent the fact that a subcomponent to be specified is the source
of an event. An event destination specification indicates that the event may be des-
tined for an event port in the execution platform component(s) the component is
bound to, or for a subcomponent yet to be declared in an incomplete system model.
(PLG: To be clarified)

12.1.2 Legal port connection

(L1) ...The sources and destinations must be features of an AADL-thread, AADL-
thread group, AADL-process, processor, device, or system component as indicated
in the following array (PLG: rebuilt from L5):

(PLG: extracted from 15):

• 1 � 2: Content of data component is sampled by data port at the specified
input time

• 1 � 3: Content of data component is copied to the event data port when the
data component is written to; the connection destination monitors write op-
erations to data components (may not be supported by all runtime systems).

• (2,3)� 1: Event data (3), data(2) port output is written into data component
at the specified output time.

• 2 � 2: Data port output is transferred and available upon receipt as most
recent value.

77

12.1 Port connection 12 CONNECTION

Figure 25: Legal port connection

• 2 � (3,4): Data port output is transferred and received as event data (3),
event (4), i.e., queued and may result in a dispatch. (PLG: 2� 4 is not listed
as acceptable in (L5))

• 3 � 2: Event data port output is transferred and available upon receipt as
most recent value.

The ultimate source ... must be a feature of a thread, processor, or device.
The ultimate destination ... must be a port of a thread, a processor, a device, or

a mode transition.
(L2) If the ultimate destination ... is a (PLG event port in a ?) mode transition,

then the ultimate source must be an out event port. (L1) ...This mode transition
must be declared in the mode subclause of a thread, thread group, process, sys-
tem, device, bus, memory, or processor naming an in event port in one of its mode
transitions.

(L3) If a semantic port connection may be active in a particular mode, then the
ultimate source and ultimate destination components must be part of that mode.

(L4) If a semantic port connection may be active in a particular mode transition,
then the ultimate source component must be part of a system mode that includes
the old mode identifier and the ultimate destination component must be part of a
system mode that includes the new mode identifier.

(from L7) sibling connection > �out, in out� � �in, in out�
(from L8) filiation connections > �out, in out�2

8 �in, in out�2

(from L9) connection between a data component and a port, then the data com-
ponent must have the (correct) access right

(21)... Bi-directional flow between two components is represented by two con-
nections between the in out ports of two components.

78

12.1 Port connection 12 CONNECTION

(9.1(L10))A data port cannot be the destination of more than one semantic port
connection unless each semantic port connection is contained in a different mode.

N-to-n connectivity is supported for event and event data ports (9.1.2(16))
PLG: What about other connections (see table above)

(L17) A processor port specification must only be used in event connections
within threads and subprograms. (PLG ???)

(C2) The processor port identifier of a processor port specification (proces-
sor.processor port identifier) must name a port of the processor that the thread is
bound to.

(L12) The ultimate source (and destination) of an immediate or delayed port
connection must be a periodic thread or periodic device.

Data type matching(see L13...L15)
(C1) There cannot be cycles of immediate connections between threads, de-

vices, and processors.
(PLG: strong static rule that does not take mode into account?)
The following are acceptable sources and destinations of port connections:

event port � event port
data port� data port, event port, event data port, data, data access
event data port� event data port, data port, event port, data, data access
data � data port, event data port, event port
data access� data port, event data port, event port

Abstract syntax of Port connection

Port conncetion ��� Event event port connection �Data data port connection

�Eventdata Eventdata port connection �Data eventdata port connection

�Data event port connection �Eventdata data port connection

�Eventdata event port connection �DATA Port connection

�DATA access Port connection �Data DATA connection

�Data DATA access connection �Eventdata DATA connection

�Eventdata DATA access connection (49)

A Port connection can either be a Event event port connection, or a Data data port connection
or others (49).

• Event port, data port, event data port, data, data access � event port: port
output or written data is recognized as event and quequed in the event port.

• Event data port, data port, data, data access� event data port: data output or
written data is transferred and received as event data in a queuqed port.

79

12.1 Port connection 12 CONNECTION

• Data port, event data port, data, data access � data port: data output or
writted data is transferred and available upon receipt as most recent value of
a data port variable: the data port samples data.

Abstract syntax of Event event port connection

Event event port connection ��� opt�connectionID� �Event port reference

�Connection direction �Event port reference

� opt�list�Port connection property��

� opt�In modes and transitions� (50)

Event port reference ��� portID (51)

Connection direction ��� directional � bidirectional (52)

Port connection property ��� Connection Patten Property �Actual Connection Binding � . . .
(53)

1. Event port reference is a reference of event port identifier (51).

2. Connection direction could be directional or bidirectional (52). In case of
a bidirectional port connection, both ports must be in out ports or a data
component with read write access.

3. A Port connection property association is a property related to port connec-
tions. It could be Connection Patten Property, or Actual Connection Binding
or many other related properties (53).

4. In modes and transitions is defined in Mode section.

Abstract syntax of Data data port connection

Data data port connection ��� opt�connectionID� �Data port reference

�Connection direction �Data port reference

� opt�list�Port connection property��

� opt�In modes and transitions�

Data port reference ��� portID

80

12.1 Port connection 12 CONNECTION

• A data port can not be the destination of more than one semantic port connec-
tion, unless each semantic port connection is contained in a different mode.

• There could not be cycles of immediate connections between thread, devices
and processors.

Modification : In AS5506A, the immediate or delayed connection is not de-
clared by different connection symbol, (there is no longer A � A or � AA), but
specified by a Timing property (associated with the port), which can be either
sampled (by default), immediate and delayed.

Abstract syntax of Eventdata eventdata port connection

Eventdata eventdata port connection ��� opt�connectionID�

�Eventdata port reference �Connection direction

�Eventdata port reference � opt�list�Port connection property��

� opt�In modes and transitions�

Eventdata port reference ��� portID

Abstract syntax of Data eventdata port connection

Data eventdata port connection ��� opt�connectionID�

�Data port reference �Connection direction

�Eventdata port reference � opt�list�Port connection property��

� opt�In modes and transitions�

Abstract syntax of Data event port connection

Data event port connection ��� opt�connectionID�

�Data port reference �Connection direction

�Event port reference � opt�list�Port connection property��

� opt�In modes and transitions�

81

12.1 Port connection 12 CONNECTION

Abstract syntax of Eventdata data port connection

Eventdata data port connection ��� opt�connectionID�

�Eventdata port reference �Connection direction

�Data port reference � opt�list�Port connection property��

� opt�In modes and transitions�

Abstract syntax of Eventdata event port connection

Eventdata event port connection ��� opt�connectionID�

�Eventdata port reference �Connection direction

�Event port reference � opt�list�Port connection property��

� opt�In modes and transitions�

Abstract syntax of connections between ports and data components

1. DATA Port connection

DATA Port connection ��� opt�connectionID� �Data reference

�Connection direction � Port reference

� opt�list�Port connection property��

� opt�In modes and transitions�

Data reference ���DataID

Port reference ��� portID

2. DATA access Port connection

DATA access Port connection ��� opt�connectionID�

� Provides data access reference �Connection direction

� Port reference � opt�list�Port connection property��

� opt�In modes and transitions�

82

12.1 Port connection 12 CONNECTION

Provides data access reference ��� provides data access ID

3. Data DATA connection

Data DATA connection ��� opt�connectionID� �Data port reference

�Connection direction �Data reference

� opt�list�Port connection property��

� opt�In modes and transitions�

4. Data DATA access connection

Data DATA access connection ��� opt�connectionID� �Data port reference

�Connection direction �Requires data access reference

� opt�list�Port connection property��

� opt�In modes and transitions�

Requires data access reference ��� requires data access ID

5. Eventdata DATA connection

Eventdata DATA connection ��� opt�connectionID�

�Eventdata port reference �Connection direction

�Data reference � opt�list�Port connection property��

� opt�In modes and transitions�

6. Eventdata DATA access connection

Eventdata DATA access connection ��� opt�connectionID�

�Eventdata port reference �Connection direction

�Requires data access reference � opt�list�Port connection property��

� opt�In modes and transitions�

83

12.1 Port connection 12 CONNECTION

• provides data access ID (requires data access ID) is a data access ID whose
related Access status is provides (requires).

• The data component must have the following access right: as source, the
access right must be read-only or read-write; as destination, the access right
must be write-only or read-write.

12.1.3 Standard properties

1. Classifier Matching Rule. This property specifies the rule to be applied to
mach the data classifier of a connection source to the data classifier of a con-
nection destination. Allowed rules: Classifier Match, Equivalence, Subset
and Conversion.

2. The Transmission Type property specifies whether the transmission across
a connection is initiated by the sender (push) or by the receiver (pull). By
default the transmission is initiated by the sender. When associated with
a connection the property represents the transmission type the connection
expects. When associated with a bus (or virtual bus) the property represents
the transmission type that is provided by the bus or protocol.

Transmission Type: enumeration (push, pull)

12.1.4 Standard behavior

(11) While in a given mode, transmission over a port connection only occurs if the
connection is part of the current mode.

(12) During a mode switch, transmission over a data port connection only oc-
curs at the actual time of mode switch if the port connection is declared to apply to
the transition between two specific modes. The actual mode switch initiates trans-
mission. This allows data state to be transferred between threads active in different
modes. Similarly, for event or event data ports it allows for transfer of queue con-
tent.

(31) Within a synchronized system, an event arrives logically simultaneously
at all ultimate connection destinations (see also Section 13.3).

12.1.5 Data port behavior

(32) A data port connection is declared to be sampling (�), immediate (¿-¿), or
delayed (-¿¿). In a sampling semantic connection the recipient samples the output
of the sender at dispatch time or as specified by the Input Time property of the re-
cipient port. In an immediate semantic connection the sender always communicates

84

12.1 Port connection 12 CONNECTION

with the receiver mid-frame, i.e., in the same dispatch frame. In a delayed semantic
connection the sender always communicates with the recipient phase-delayed, i.e.,
in the next dispatch frame of the recipient.

(33) Immediate and delayed connections only apply to semantic data connec-
tions whose end-points are both periodic. They ensure that over- and under-sam-
pling of periodic data streams occurs deterministically. The alignment of transmis-
sion start and end times between the sending and receiving component is statically
known and is not affected by preemption of thread execution and variation in actual
execution time. (PLG: check consistency of this claim)

(34) A semantic data port connection is considered to be delayed if at least
one of the connection declarations is declared to be delayed. A semantic data port
connection is considered to be immediate if at least one of the connection declara-
tions is declared to be immediate. Otherwise, the semantic data port connection is
considered to be sampling. Typically, an immediate or delayed data connection is
specified through the sibling connection declaration, i.e., the declaration at the top
of the containment hierarchy of a semantic connection.

(35) For immediate data port connections data transfer only occurs when the
periods of the sending and receiving component align, i.e., their dispatch occurs
logically simultaneous (Tsource � 0 , Tdestination � 0). The data transmission is ini-
tiated when the source component completes and enters the suspended state (Csource � Ccomplete, source).
The actual execution of the receiving component is delayed until the sending thread
completes execution (Cdestinationt � 0 ,Csource B Ccomplete, source). The input
is received at that time, i.e., the output time of the source data port is Comple-
tion Time with zero range, and the input time of the receiving port is Start Time
with zero range. Note that both the source and destination must complete their exe-
cution by the deadline of the destination, i.e., (Csource � Ccomplete, source ,Csource � Ccomplete, source , Tdestination CDeadlinedestination).
This rule is transitive for sequences of immediate semantic connections.

(36) For delayed data port connections data transmission is initiated at the dead-
line of the source component (Tsource �Deadlinesource, i.e., the output time of
the source data port is Deadline Time). The input time of the receiving compo-
nent port is the Dispatch Time, i.e., the data is received at the next dispatch of the
receiving component following or equal to the source deadline.

(37) For immediate and delayed connections the input time and output time
cannot be explicitly declared by Input Time and Output Time properties.

(39) For delayed data port connections, the data transmission is initiated at the
deadline of the source thread. The data is available at the destination port at the next
dispatch of the destination thread that occurs at or after the source thread deadline.
If the source deadline and the destination dispatch occur at the same logical time
instant, the transmission is considered to occur within the same time instant.

(41) If multiple transmissions occur for a data port connection from the source

85

12.1 Port connection 12 CONNECTION

thread before the dispatch of the destination thread, then only the most recently
transmitted data is available in the destination port.

(42) If no transmission occurs on an in data port between two dispatches of the
destination thread, then the thread receives the same data again, resulting in over-
sampling of the transmitted data. A status indicator is accessible to the source text
of the thread as part of the port variable to determine whether the data is fresh.

(46) Deterministic communication expressed by immediate and delayed con-
nections must be guaranteed by the method of implementation. Even if the trans-
mission is initiated and completed by explicit send and receive service calls in the
source text of the sending and receiving thread, the send and receive order of the
two communicating threads must be assured.

Data port connection are restricted to 1-n.

1. Sampling data port connection. The source and destination thread or de-
vice must be periodic. The output of the sender is sent out at its Out-
put Time (OutEvent). Only the most recently transmitted data is available
in the destination port. The received data will be sampled at Input Time
(InEvent) of the receiver (dispatch time by default) (Figure 26.) The source
Distributer determines the output should be sent to which receiver.

bufferoutput

OutEvent bufferinput

InEvent

input'
M

Sender

inIntervalle

Distributer

TimeEvent

Frozen

inIntervalle

TimeEvent

buffer
input

InEvent

input'
MFrozen

inIntervalle

TimeEvent

Figure 26: Sampling data port connection

2. Immediate data port connection. Deterministic. The sender and receiver
must be both periodic. The actual execution of the receiver is delayed until
the sender completes execution. The Output Time of the source data port is
assumed to be Completion. The Input Time of the receiver port is assumed
to be Start with zero offset, and any other specified time is ignored.

OutEvent := Completion; InEvent := Start;

86

12.2 Parameter connection 12 CONNECTION

The scheduler must ensure that the execution of the receiver is aligned with
the completion of the sender.

3. Delayed data port connection. Deterministic. The sender and receiver
are both periodic. The data transmission is initiated at the Deadline of the
sender. The input time of the receiver is the Dispatch time (next dispatch of
the receiver following the sender’s deadline).

OutEvent := Deadline; InEvent := Dispatch;

12.1.6 Event (event data) port connection and Polychrony

Event (event data) ports support n-n connectivity. The event (event data) is sent out
at OutEvent which is under constraint of Output Time. The received event (event
data) is available at InEvent. (Figure 27)

Next_Value

FIFOoutput

OutEvent

Ex-FIFO
input

InEvent

input'
In-FIFOSender

inIntervalle

Distributer

TimeEvent

Frozen

inIntervalle

TimeEvent

Figure 27: Event (event data) port connection

12.2 Parameter connection

(9.2-(1)) Parameter connections represent flow of data between the parameters of
a sequence of subprogram calls in a thread.

Acceptable parameter connections include:

87

12.3 Feature group connection 12 CONNECTION

Source Destination
thread port
thread feature group port
thread in complete feature group

call.parameter requires data access
feature group requires data access
call.parameter
data subcomponent

thread port
thread feature group port
requires data access call.parameter
feature group requires data access
data subcomponent
enclosingcall.parameter containedcall.parameter
containedcall.parameter enclosingcall.parameter

Abstract syntax of Parameter connection

Parameter connection ��� opt�connectionID� � Source parameter reference

�Destination parameter reference

� opt�list�Parameter connection property��

� opt�In modes and transitions�

Source parameter reference ��� parameterID � dataID � requires data access ID � portID

Dest parameter reference ��� parameterID � dataID � requires data access ID � portID

Parameter connection property ���

12.3 Feature group connection

Abstract syntax of Feature group connection

Feature group connection ��� opt�connectionID� � Source feature group reference

� bidirectional �Destination feature group reference

� opt�list�Feature group connection property�� � opt�In modes and transitions�

88

12.4 Access connection 12 CONNECTION

Source feature group reference ��� feature group ID

Dest feature group reference ��� feature group ID

Feature group connection property ���

12.4 Access connection

(9.3(3)) The ultimate source of a semantic access connection is the data compo-
nent, bus component, or subprogram component that is being shared. The ultimate
destination of an access connection is the component requiring the access without
a contained subcomponent also requiring access...

(9.3(L1)) The category of the source and the destination of a access connection
declaration must be the same...

(9.3(L2)) The ultimate source of a semantic access connection must be data,
subprogram, subprogram group, or bus subcomponent (or their respective access
feature.)

(9.3(L3))The ultimate destination of a semantic data access connection must
be a requires data access feature of a thread or a subprogram call that requires the
same data access.

(9.3(7)) Access connections are restricted to 1-n connectivity...

Abstract syntax of Access connection

Access connection ��� Bus access connection � Subprogram access connection

� Subprogram group access connection �Data access connection

Bus access connection (1) ... Bus access is used to model connectivity of exe-
cution platform components through buses.

Bus access connection ��� opt�connectionID� �Bus access provider reference

�Connection direction �Bus access requirer reference

� opt�list�Bus access connection property�� � opt�In modes and transitions�

Bus access provider reference ��� provides bus access ID � busID

Bus access requirer reference ��� requires bus access ID � busID

Bus access connection property ���

89

12.4 Access connection 12 CONNECTION

Subprogram access connection

Subprogram access connection ��� opt�connectionID�

� Subprogram access provider reference �Connection direction

� Subprogram access requirer reference

� opt�list�Subprogram access connection property��

� opt�In modes and transitions�

Subprogram access provider reference ��� subprogramID

� provides subprogram access ID (54)

Subprogram access requirer reference ��� subprogramID

� requires subprogram access ID (55)

Subprogram access connection property ��� (56)

Subprogram group access connection

Subprogram group access connection ��� opt�connectionID�

� Subprogram group access provider reference �Connection direction

� Subprogram group access requirer reference

� opt�list�Subprogram group access connection property��

� opt�In modes and transitions�

Subprogram group access provider reference ��� subprogram group ID

� provides subprogram group access ID

Subprogram group access requirer reference ��� subprogram group ID

� requires subprogram group access ID

Subprogram group access connection property ���

Data access connection

Data access connection ��� opt�connectionID� �Data access provider reference

�Connection direction �Data access requirer reference

� opt�list�Data access connection property�� � opt�In modes and transitions�

90

13 FLOWS

Data access provider reference ��� provides data access ID � dataID

Data access requirer reference ��� requires data access ID � dataID

Data access connection property ���

13 Flows

(1) A flow is a logical flow of data and control through a sequence of threads,
processors, devices, and port connections or data access connections. A compo-
nent can have a flow specification, which specifies whether a component is a flow
source, i.e., the flow starts within the component, a flow sink, i.e., the flow ends
within the component, or there exists a flow path through the component, i.e., from
one of its incoming ports to one of its outgoing ports.

A flow is a logical flow of data and control through a sequence of threads,
processors, devices and port connections or data access connections.

13.1 Abstract syntax

Flows are represented by flow specification, flow implementation and end-to-end
flow declarations.

Flow ��� Flow spec � Flow implementation �End to end flow

Flow spec

Flow spec ��� Flow source � Flow sink � Flow path (57)

Flow source ��� flowID � out flow feature ID

� opt�list�Flow property�� � opt�In modes� (58)

Flow sink ��� flowID � in flow feature ID

� opt�list�Flow property�� � opt�In modes� (59)

Flow path ��� flowID � in flow feature ID � out flow feature ID

� opt�list�Flow property�� � opt�In modes� (60)

1. out flow feature ID (in flow feature ID) is a flow feature ID, which could
be a feature ID

91

13.2 Standard properties 13 FLOWS

Flow implementation

Flow implementation ��� Flow source implementation

� Flow sink implementation � Flow path implementation (61)

Flow source implementation ��� flowID � opt�list�flowID � connectionID��

� out flow feature ID � opt�list�Flow property��

� opt�In modes and transitions� (62)

Flow sink implementation ��� flowID � in flow feature ID

� opt�list�connectionID � flowID�� � opt�list�Flow property��

� opt�In modes and transitions� (63)

Flow path implementation ��� flowID � in flow feature ID

� opt�list�connectionID � flowID�� � out flow feature ID

� opt�list�Flow property�� � opt�In modes and transitions� (64)

End to end flow

End to end flow ��� flowID � start flow ID � opt�list�connectionID � flowID��

� connectionID � end flow ID � opt�list�Flow property��

� opt�In modes and transitions� (65)

start flow ID ��� flowID (66)

end flow ID ��� flowID (67)

13.2 Standard properties

Latency: Time Range

Throughput: Data Volume

13.3 Flows and Polychrony

(2) The purpose of providing the capability of specifying end-to-end flows is to
support various forms of flow analysis, such as end-to-end timing and latency, re-
liability, numerical error propagation, Quality of Service (QoS) and resource man-
agement based on operational flows.

This purpose does not require specific Signal features. Flows properties can be
represented in comments if necessary.

92

14 PROPERTIES

14 Properties

14.1 Abstract syntax

(1) A property provides information about component types, component imple-
mentations, subcomponents, features, connections, flows, modes, and subprogram
calls. A property has a name, a type, and a value. The property definition declares
a name for a given property along with the AADL components and functionality to
which the property applies. The property type specifies the set of acceptable values
for a property. Each property has a value or list of values that is associated with the
named property in a given specification.

(2) A property set contains declarations of property types and property defi-
nitions that may appear in an AADL specification. The two predeclared property
sets in this standard define properties and property types that are applicable to
all AADL specifications. Users may define property sets that are unique to their
model, project or toolset. The properties and property types that are declared in
user-defined property sets are accessed using their qualified name. A property def-
inition declaration within a property set indicates the component types, component
implementations, subcomponents, features, connections, flows, modes, and sub-
program calls, for which this property applies.

(3) Properties can have associated expressions that are statically typed, and
evaluate to a specific value. The time at which a property expression is evaluated
may depend on the property and on how a specification is processed. For exam-
ple, some expressions may be evaluated immediately, some after binding decisions
have been made, and some reflect runtime state information, e.g., the current mode.
During analysis, all property expressions can be evaluated to known values, if nec-
essary, by considering all possible runtime states. A given property definition may
have a default expression.

PLG: look deeper to clearly understand inheritance of time properties.

93

14.1 Abstract syntax 14 PROPERTIES

Property set

Property set ��� property set ID � opt�list�Property type declaration��

� opt�list�Property definition declaration�� � opt�list�Property constant��

Property type declaration ��� property type ID � Property type

Property type ��� aadlboolean � aadlstring �Enumeration type

�Units type �Number type �Range type

�Classifier type �Reference type �Record type

Property definition declaration ��� property name � V alued property

� list�Property owner�

Property constant ��� Single valued property constant

�Multi valued property constant

Enumeration type ��� list�enumeration literal ID�

Units type ��� Units list

Units list ��� unitID � opt�list�unitID � numeric literal��

Number type ��� Real � Integer

Real ��� aadlreal � opt�Real range� � opt�Units designator�

Integer ��� aadlinteger � opt�Integer range� � opt�Units designator�

Units designator ��� units property type ID �Units list

Real range ��� Real bound �Real bound

Real bound ��� real literal � constant

Integer range ��� Integer bound � Integer bound

Integer bound ��� integer literalORconstant

Range type ��� Number type � number property type ID

Classifier type ��� list�Classifier category reference�

Reference type ��� list�Reference category�

Record type ��� list�Record field�

Record field ��� fieldID � Property type designator

V alued property ��� Single valued property �Multi valued property

Single valued property ��� Property type designator

� opt�Default property expression�

Multi valued property ��� list�Property type designator�

� list�Default property expression�

Single valued property constant ��� property constant ID

� Property type designator �Constant property expression

Multi valued property constant ��� property constant ID

� Property type designator � list�Constant property expression�

94

14.2 Build in property types 14 PROPERTIES

Property expression

Property expression ��� Boolean term �Real term � Integer term

� String term �Enumeration term �Unit term �Real range term

� Integer range term � Property term �Component classifier term

�Reference term �Record term �Computed term

Boolean term ��� boolean value �NOT boolean term �AND boolean term

�OR boolean term

boolean value ��� true � false

NOT boolean term ��� NOT �Boolean term

NOT ��� not

AND boolean term ��� Boolean term �AND �Boolean term

AND ��� and

OR boolean term ��� Boolean term �OR �Boolean term

OR ��� or

Real term ��� real literal � constant

Integer term ��� integer literal � constant

String term ��� string literal � string property constant term

Enumeration term ��� enumerationID

� enumeration property constant term

Unit term ��� unitID � unit property constant term

Real range term ��� Real term �Real term � opt�Real term�

Integer range term ��� Integer term � Integer term � opt�Integer term�

Property term ��� property name

Component classifier term ��� Component type reference

�Component implementation reference

Reference term ��� contained model element path

Record term ��� list�record field ID � property value�

Computed term ��� functionID

14.2 Build in property types

1. Property types

• aadlboolean,

95

14.3 Scheduling features 14 PROPERTIES

• aadlstring
• enumeration type
• units type
• number type
• range type
• classifier type
• reference type
• record type

2. Number types

• aadlinteger [integer range] [units units designator]
• aadlreal [real range] [units units designator]

14.3 Scheduling features

• The Data Volume property type specifies a property type for the volume of
data per time unit. The predeclared unit literals are expressed in terms of
seconds as time unit. The numeric value of the property must be positive.

Note: Conversion factor of 1000 consistent with ISO.
Data Volume: type aadlinteger 0 bitsps .. value(Max Aadlinteger)

units (bitsps, Bytesps� bitsps * 8,
Kbytesps� Bytesps � 1000,
Mbytesps� Kbytesps � 1000,
Gbytesps�Mbytesps � 1000);

• The Throughput property specifies the maximum volume of data transferred
per time unit. Its numeric value must be positive.

Throughput: Data Volume applies to (flow, connections);

• The Time property type specifies a property type for time that is expressed as
numbers with predefined time units. The standard units are ps (picoseconds),
ns (nanoseconds), us (microseconds), ms (milliseconds), sec (seconds), min
(minutes) and hr (hours).

Time: type aadlinteger 0 ps .. value(Max Time) units Time Units;

• The Tim Range property type specifies a property type for a closed range
of time, i.e., a time span including the lower and upper bound. The property
type is Time.

Time Range: type range of Time;

96

15 MODES

15 Modes

(13)The modes subclause declares a state machine describing the dynamic mode
switching behavior of modes. The states of the state machine represent the differ-
ent modes and the transitions specify the event(s) that can trigger a mode switch
to the destination mode. Only one mode alternative represents the current mode at
any one time.

(1) A mode represents an operational mode state, which manifests itself as a
configuration of contained components, connections, and mode-specific property
value associations . . .

(2) Mode transitions . . . are triggered by events . . .

15.1 Mode declaration

(L1) A mode or mode transition can be declared in any of the component cate-
gories.

(L3) The set of transitions declared within a single component implementation
must define a deterministic transition function. For each mode, there must exist
exactly (PLG: at most ??? see item13) one transition, which can cause transition
to another mode. Unless logical conditions are defined for mode switches, an event
port can only be named in one outgoing transition from the same mode.

A mode represents an operational mode state. Mode transitions model dynamic
operational behavior that represents switching between configurations and changes
in components internal characteristics.

Abstract syntax

Modes ��� Mode �Mode transition (68)

Mode ��� ModeID � opt�list�Mode property�� (69)

Mode property ��� (70)

Mode transition ��� opt�Mode transition ID� � source mode ID

� list�Mode transition trigger� � destination mode ID

� opt�list�Mode transition property�� (71)

Mode transition trigger ��� portID � . . . (72)

Mode transition property ��� (73)

In modes ��� list�modeID� (74)

In modes and transitions ��� list�Mode or transition� (75)

Mode or transition ��� modeID �Mode transition ID (76)

97

15.2 Model life 15 MODES

(L2) If a component classifier contains mode declarations, one of those modes
must be declared with the reserved word initial. If the component classifier extends
another component classifier, the initial mode may have been declared in one of
the ancestor component classifier.

(L4) The unique port identifier must be either an in or in out event port identifier
in the namespace of the associated component type or an out or in out event port in
the namespace of the component type associated with the named subcomponent.

15.2 Model life

(10) The in modes statement is declared as part of subcomponent declarations, sub-
program call sequences, flow implementations, and property associations. It spec-
ifies the modes for which these declarations and property values hold. The mode
identifiers refer to mode declarations in the modes subclause of the component
classifier.

(11) The in modes statement declared as part of connection declarations specify
the modes or mode transitions for which these connection declarations hold. The
mode identifiers refer to mode declarations in the modes subclause of the compo-
nent implementation. If a connection is declared to be part of a mode transition,
then the content of the ultimate source port is transferred to the ultimate destina-
tion port at the actual mode switch time. If the in modes statement contains only
mode transitions, then the connection is part of the specified mode transitions, but
not part of any particular mode....

(from 10-11) If the in modes statement is not present, then the subcomponent,
subprogram call sequence, flow implementation, property association or connec-
tion is part of all modes.

(from 10-11) If a property association (a connection) has both mode-specific
declarations and a declaration without an in modes statement, then the declaration
without the in modes statement applies to those modes not covered by the mode-
specific declarations.

15.3 Mode behavior

(3) The mode semantics described here focus on a single mode subclause. A sys-
tem instance that represents the runtime architecture of an operational system can
contain multiple components with their own mode transitions. The semantics of
system-wide mode switching are discussed in Section 13.3

(5) A mode may represent a runtime configuration of systems, processes,
thread groups and threads and their connections for a given operational state. In
this case the modes are declared in thread groups, processes and systems, and in

98

15.3 Mode behavior 15 MODES

modes clauses indicate which subcomponents and connections are active in a given
mode. In this case, only the threads that are part of the current mode are in the sus-
pended awaiting dispatch state responding to dispatch requests. All other threads
are in the suspended awaiting mode state or thread terminated state.

(9) A component type or component implementation may contain several de-
clared modes. Exactly one of those modes is the current mode. Initially, the ini-
tial mode is the current mode. On mode activation the Activation Mode property
(PLG: p.251: applies to thread) determines whether the initial mode is entered or
the mode from the last deactivation is resumed.

(13) ... A mode switch is triggered when an event arrives at an event port that
is named in one of the transitions out of the state representing the current mode.
If an event is raised and there is no transition out of the current mode naming the
event port through which the event arrives, the event is ignored. If several events
occur logically simultaneously and affect different mode transitions out of the cur-
rent mode, the order of arrival for the purpose of determining the mode transition
is implementation dependent. If an Urgency property is associated with each port
named in mode transitions, then the mode transition with the highest port urgency
takes precedence. If several ports have the same urgency then the mode transition is
chosen non-deterministically. (PLG: why not implementation dependent as above
?)

15.3.1 Mode switch within a thread

(15) A mode switch within a thread may logically occur at dispatch time. An ex-
ternal event through an incoming event port, or an event raised within the thread
or will cause the thread to enter the new mode at the next dispatch. Such an event
raised within a thread is declared as self.eventname, or by a subprogram call with
an outgoing event port including a call to the Send (deprecated Raise Event) ser-
vice call, and implemented as a service call to Send (deprecated Raise Event) in
the application source text or runtime system.

(16) A mode switch within a thread results in a change of its current mode.
The effect is a change in the subprogram call sequence and mode-specific property
values to reflect a change in source text internal execution behavior...

(17) Similarly, mode switches within an execution platform component occur
as a result of external or internal events. A mode switch within a thread or exe-
cution platform component does not affect the set of active threads, processors,
devices, buses, or memories, nor does it affect the set of active connections.

99

15.3 Mode behavior 15 MODES

15.3.2 Mode switch within set of threads

(18) A mode switch within a system, process, or thread group implementation
has the effect of deactivating and activating threads to respond to dispatches, and
changing the pattern of connections between components. Deactivated threads tran-
sition to the suspended awaiting mode state. Background threads that are not part
of the new mode suspend performing their execution. Activated threads transition
to the suspended awaiting dispatch state and start responding to dispatches. Sus-
pended background threads that are part of the new mode resume performing exe-
cution once the transition into the new mode is complete. Threads that are part of
both the old and new mode of a mode transition continue to respond to dispatches
and perform execution. Ports that were connected in the old mode, may not be
connected in the new mode and vice versa.

(19) When a mode switch is requested through the arrival of an event on a
mode transition it may result in activation or deactivation of threads and connec-
tions, or in the change of a threads period, deadline, dispatch protocol, or execution
time. In this case the actual mode switch occurs immediately if no periodic threads
are part of the old mode, otherwise it occurs once these periodic threads in the
old mode are synchronized at their hyperperiod. Only those threads with a Syn-
chronzied Component property value of true are considered in the determination
of the hyperperiod.

(20) Starting with the actual time of mode switch, the component is in a mode
transition in progress state for a limited amount of time. During this time some
threads are deactivated, other threads are activated, connections are adjusted, and
the active threads in the new mode start to execute. This time period takes the Syn-
chronized Component property into account and is determined at the level of the
whole system instance (see Section 13.3). After that period of time, the component
is considered to operate in the new mode.

(21) At the time of the actual mode switch, the deactivate entrypoint is in-
voked for the following threads that must be deactivated: periodic threads that are
synchronized with the mode switch; aperiodic or sporadic threads that are in the
suspended awaiting dispatch state...

(25) At the time of the actual mode switch, any threads that were inactive in
the old mode and are active in the new mode execute their activate entrypoint. In
the case of periodic threads, this is immediately followed by their first dispatch of
the compute entrypoint. (TG: does it mean they don’t go through the suspended
awaiting dispatch state?)

In the case of background threads, the thread resumes execution from where it
was suspended at the last deactivation. (TG: if it is at the time of the actual mode
switch, is it compatible with (18) where it is said once the transition into the new

100

16 AN AADL ABSTRACT SYNTAX

mode is complete?)
(24) Background processes that are only part of the old mode are suspended

when the actual mode switch occurs.
(27) Some property values for a component or its subcomponents may be

mode-specific, for example the period of a periodically dispatched thread may be
different in different modes of operation. It changes at the time of actual mode
switch.

15.3.3 Mode switch for thread that are not synchronized

(22) At the time instant of actual mode switch, aperiodic and sporadic threads as
well as periodic threads not synchronized with the mode switch may still be in the
perform computation state. The Active Thread Handling Protocol property speci-
fies for each such thread what action is to be taken at mode switch. Possible actions
are:

• Abort the execution of the thread and permit the thread to recover any state
through execution of its recover entrypoint. This permits the thread to re-
cover to a consistent state for future activation and dispatch. Upon com-
pletion of the recover entrypoint, execution the thread enters the suspended
awaiting mode state; event and event data port queues of the thread are
flushed by default or remain in the queue until the thread is activated again
as specified by the Active Thread Queue Handling Protocol property. If the
thread was executing a remotely called subprogram, the current dispatch exe-
cution of the calling thread of a call in progress or queued call is also aborted.

• Permit the thread to complete the execution of its current dispatch. Any
remaining queued events, or event data may be flushed by default, or re-
main in the queue until the thread is activated again as specified by the Ac-
tive Thread Queue Handling Protocol property.

• Permit the thread to finish processing all events or event data in its queues.

(TG: does it possibly include new ones?)

16 An AADL abstract syntax

We describe the AADL language using the abstract syntax trees defined in this
section.

101

16.1 Notations 16 AN AADL ABSTRACT SYNTAX

16.1 Notations

16.1.1 General AST

1. Tree set Given a set of labels Λ that contains a special empty label ε, the set
of trees labeled in Λ is the smallest set that satisfies the following rules :

• Y is in ; it denotes the tree that only contains an unlabeled root;ts label
is ε; by definition4 � �Y�;

• if t1, . . . , tn are trees then for all λ in Λ �λ, �t1, . . . , tn�� is a tree la-
beled λ

2. Tree sets For all subsets of trees SS,SS1, . . . , SSn,

• SS1 � SS2 denotes the set of trees SS1 8 SS2

• �SS1� � SS1 �4

• SS1 � SS2 � � � � � SSn is the set of n tuples of trees; � is defined as
associative (ie �t1, �t2, t3��, ��t1, t2�, t3��, �t1, t2, t3� are not distin-
guished)

• SS1� is the smallest set of non empty sequences of trees defined by:
SS1� � SS1 � �SS1 � SS1��

• SS1� � �SS1��

• for all λ in Λ, λ � SS is the set of trees �λ, �t1, . . . , tn�� such that
�t1, . . . , tn� is a n-tuple in SS, completed by �λ, Y� when4 is in SS.

3. Tree set variables For an identifier X

• X � SS1 is the definition of X that associates to X the set of trees SS1

• each occurrence of a variable in a tree set expression denotes the set of
trees that is associated to X by its definition.

16.1.2 AADL AST

A SSS is a set of AADL abstract syntax trees;
The set of labels contain the component categories.

16.2 Lexical elements

none statement ��� none

102

16.2 Lexical elements 16 AN AADL ABSTRACT SYNTAX

16.2.1 Word characters

letter or digit ��� identifier letter � digit

identifier letter ��� upper case identifier letter � lower case identifier letter

upper case identifier letter: Any character of Row 00 of ISO 10646 BMP whose
name begins Latin Capital Letter.

lower case identifier letter: Any character of Row 00 of ISO 10646 BMP whose
name begins Latin Small Letter.

Digit: One of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

16.2.2 Other characters

space character: The character of ISO 10646 BMP named Space”.
special character: Any character of the ISO 10646 BMP that is not reserved for

a control function, and is not the space character, an identifier letter, or a digit.
format effector: The control functions of ISO 6429 called character tabulation

(HT), line tabulation (VT), carriage return (CR), line feed (LF), and form feed (FF).
other control function: Any control function, other than a format effector, that

is allowed in a comment; the set of other control functions allowed in comments
is implementation defined.

16.2.3 Decimal literals

decimal integer literal ��� numeral�positive exponent�

decimal real literal ��� numeral.numeral�exponent�

numeral ��� digit��underline�digit��

exponent ��� E���numeral �E � numeral

positive exponent ��� E���numeral

16.2.4 Based literals

16.2.5 String literals

16.2.6 Comments

16.2.7 Identifiers

A IDENT is the set of identifiers defined by

103

16.3 Non extensible AADL 16 AN AADL ABSTRACT SYNTAX

identifier ��� identifier letter��underline�letter or digit��

A NAME ��� A IDENT �A IDENT

A LNAME ��� list�A IDENT � �A NAME

package name ��� �package identifier ����package identifier � �A IDENT�

component implementation name ��� component type identifier.component implementation identifier

unique component type reference ��� �package name ���component type identifier

unique component implementation reference ��� �package name ���component implementation name

unique component classifier reference ��� unique component type reference � unique component implementation reference

unique feature group type reference ��� �package name ���feature group type identifier

16.3 Non extensible AADL

16.3.1 Component type

A COMP TY PE ��� A IDENT �A PROTOTY PE �A FEATURE

�A FLOW SPEC � �A MODALITY � �A PROPERTY �AANNEX

A MODALITY ��� A MODE � �A MODE TRANS

A PROPERTY ��� A PROP ASSO �A CONT PROP ASSO

component type ��� component categorydefining component type identifier

� �A IDENT

�prototypes�prototype � Snone statement��

�features�feature � Snone statement��

�flows�flowspec � Snone statement��

�modes�mode �mode transition � Snone statement��

�properties�

component type property associationScontained property association�

Snone statement��

annex subclause�

enddefining component type identifier;

104

16.3 Non extensible AADL 16 AN AADL ABSTRACT SYNTAX

A PROP ASSO � add � �id � A IDENT�� �A PROP V ALUE�

set � �id � A IDENT�� �A PROP V ALUE�

A IN BINDING �A IN MODES

property association ��� � � newvalueforaproperty

�property set identifier ���property name identifier� property value

�in binding� � �A IN BINDINGTOBEDEFINED

�in modes�;� �A IN MODES

16.3.2 Component implementation

A COMP IMPL � A IDENT �A PROTOTY PE �A FEATURE

�A FLOW SPEC �A MODALITY �A PROPERTY �A ANNEX

component implementation ��� component categoryimplementation

defining component implementation name � �ANAME

�prototypes�prototype � Snone statement��

�subcomponents�subcomponent � Snone statement��

�calls�subprogram call sequence � Snone statement��

�connections�connection � Snone statement��

�flows�flow implementationSend to end flow spec � Snone statement��

�modes�mode �mode transition � Snone statement��

�properties�property associationScontained property association�

Snone statement��

annex subclause�

enddefining component implementation name;

105

16.4 Annex 16 AN AADL ABSTRACT SYNTAX

subcomponent ��� defining subcomponent identifier � � �AIDENT

��component category

�unique component classifier reference � �AIDENT

�prototype bindings��

�array dimensions��

Sprototype reference�

�subcomponent property associationScontained property association��

�in modes�;� �A IN MODES

data subcomponent ���

definingsubcomponentidentifier � � �AIDENT

��data�unique component classifier reference � �AIDENT

�prototype binding���

Sprototype reference�

NOTE: The above syntax rule is a variation of the subcomponent syntax rule.
The above syntax rule also applies to the subcomponent refinement syntax.

16.4 Annex

annex subclause ��� annexannex identifier � �A IDENT

���� � annex specific language constructs � ���Snone�;
annex library ��� annexannex identifier � �A IDENT

���� � annex specific reusable constructs � ���Snone�;

106

16.5 Prototypes 16 AN AADL ABSTRACT SYNTAX

16.5 Prototypes

prototype ��� defining prototype identifier � � �A IDENT

component category�unique component classifier reference� � �A IDENT

�property association��;
prototype refinement ��� defining prototype identifier � refinedto � �A IDENT

component category�unique component classifier reference� � �A IDENT

�property association��;
prototype reference ��� prototypeprototype identifier � �A IDENT

prototype bindings ��� �prototype binding�, prototype binding���

prototype binding ���

prototype identifier� � �A IDENT

�component categoryunique component classifier reference

� �A IDENT

�array dimensions��

S�prototypeprototype identifier� � �A IDENT

16.6 Extensible AADL

A EXT COMP TY PE � A IDENT �A REF PROTOTY PE � �A REF FEATURE

�A REF FLOW SPEC � �A MODALITY �A PROPERTY � �A ANNEX�

107

16.6 Extensible AADL 16 AN AADL ABSTRACT SYNTAX

component type extension ���

component categorydefining component type identifier

extendsunique component type reference�prototype bindings� � �A IDENT

�prototypes��prototypeSprototype refinement� � Snone statement��

�features�featureSfeature refinement � Snone statement��

�flows�flow specSflow spec refinement � Snone statement��

�modes�modeSmode refinementSmode transition � Snone statement��

�properties�

component type property associationScontained property association�

Snone statement��

annex subclause�

enddefining component type identifier;

108

16.6 Extensible AADL 16 AN AADL ABSTRACT SYNTAX

component implementation extension ���

component categoryimplementation

defining component implementation name � �A NAME

extendsunique component implementation reference � �A LNAME

�prototype bindings�

�prototypes��prototypeSprototype refinement� � Snone statement��

�subcomponents

�subcomponentSsubcomponent refinement � Snone statement��

�calls�subprogram call sequence � Snone statement��

�connections

�connectionSconnection refinement � Snone statement��

�flows��flow implementationSflow implementation refinementS

end to end flow specSend to end flow spec refinement��

Snone statement��

�modes��modeSmode refinementSmode transition� � Snone statement��

�properties��property associationScontained property association��

Snone statement��

�annex subclause��

enddefining component implementation name;

subcomponent refinement ���

defining subcomponent identifier � refinedto

��component category

�unique component classifier reference� � ��A IDENT �

�prototype bindings�

�array dimensions��

Sprototype reference�

���subcomponent property association

Scontained property association����

�in modes�;� �A IN MODES

109

16.6 Extensible AADL 16 AN AADL ABSTRACT SYNTAX

array dimensions ��� ���array dimension size����

array dimension size ��� numeral

array selection identifier ��� identifierarray selection

array selection ��� ��range selection���

range selection ��� numeral�..numeral�

feature refinement ���

port refinementSfeature group refinementSsubprogram refinementS

subcomponent access refinementSparameter refinement

feature group type ���

featuregroupdefining identifier

�prototypes��prototype� � Snone statement��

�features�featureSfeature group spec��

�inverseofunique feature group type�

Sinverseofunique feature group type�

�properties��featuregroup property association� � Snone statement��

�annex subclause��

enddefining identifier;

110

REFERENCES REFERENCES

feature group type extension ���

featuregroupdefining identifier

extendsunique feature group type reference�prototype bindings�

� �A IDENT

�prototypes��prototype� � Snone statement��

features

�featureSfeature refinementS

feature group specSfeature group refinement��

�inverseofunique feature group type�

�properties��featuregroup property association� � Snone statement��

�annex subclause��

enddefining identifier;

feature group spec ���

defining feature group identifier � featuregroup

��inverseof�unique feature group type reference�prototype bindings��

� �A IDENT

���featuregroup property association����;

feature group refinement ���

defining feature group identifier � refinedto

featuregroup

��inverseof�unique feature group type reference�prototype bindings��

� �A IDENT

���featuregroup property association����;

References

[1] Erwan Jahier, Nicolas Halbwachs, and P. Raymond. Synchronous Modeling
and Validation of Priority Inheritance Schedulers. In Fundamental Approaches

111

REFERENCES REFERENCES

to Software Engineering Fundamental Approaches to Software Engineering,
Lecture Notes in Computer Science, pages 140–154, York Royaume-Uni, 03
2009. Springer Verlag.

[2] SAE Aerospace. Architecture Analysis and Design Language (AADL). SAE
AS5506A, 2009.

112

