
Automatic Synthesis of Dis

trib

ut

ed Transition Systems

Alin Ştefănescu
(University of Konstanz)

Rennes – March 28th, A.D. 2006

Design of Complex Systems

Specification vs. Implementation

Wanted: a correct implementation w.r.t. the specification.

Two approaches:

• Given a specification and an implementation, check if the
implementation satisfies the specification

[Model Checking]

• From a given specification, automatically construct an
implementation

→ [Synthesis]

I. Synthesis... In which setting?

Synthesis: The Sequential Case

Specification

Synthesis: The Sequential Case

Specification

+

One Agent

?
⇒

Synthesis: The Sequential Case

Specification

+

One Agent

?
⇒

Implementation

Synthesis: The Distributed Case

Specification

Synthesis: The Distributed Case

Specification

+

Team of
Communicating Agents

?
⇒

Synthesis: The Distributed Case

Specification

+

Team of
Communicating Agents

?
⇒

Distributed Implementation

The Problem

+

Labeled Transition System Distribution

?
⇒

Distributed Transition System

Synthesis of Distributed Transition Systems

Input: Given a labeled transition system TS and
a distribution ∆ of actions over a set of agents,

Output: Build, if possible, a distributed transition system over
∆ whose global state space is equivalent to TS

equivalent : graph-isomorphic / trace-equivalent / bisimilar

Building a House...

0 1

2 3

floor

floor

wall wall

roof

Building a House...

0 1

2 3

floor

floor

wall wall

roof

+

roof

floor

Agent 1

roof

wall

Agent 2

Distribution of {floor,wall,roof} over {1,2}:

• Σlocal (1)={roof,floor}, Σlocal (2)={roof,wall}

• dom(roof)={1,2}, dom(floor)={1}, dom(wall)={2}

Building a House...

0 1

2 3

floor

floor

wall wall

roof

+

roof

floor

Agent 1

roof

wall

Agent 2

Building a House...

0 1

2 3

floor

floor

wall wall

roof

+

roof

floor

Agent 1

roof

wall

Agent 2

?
⇒

0 1
roof

floor

Agent 1

0 1

roof

wall

Agent 2

Synchronous Products of Transition Systems

A synchronous product of transition systems consists of a set of
local transition systems synchronizing on common actions.

An action is executed if only if all local transition systems from its
domain are able to execute that action.

0 1
roof

floor
‖ 0 1

roof

wall

0,0 1,0

0,1 1,1

floor

floor

wall wall

roof

Building a House...

0 1

2 3

floor

floor

wall wall

roof

+

roof

floor

Agent 1

roof

wall

Agent 2

⇒

0 1
roof

floor

Agent 1

0 1

roof

wall

Agent 2

The specification is implementable!

Building a House... Not Always Possible!

0 1

2 3

floor

floor

wall wall

roof

+

roof

floor

Agent 1

roof

wall

Agent 2

⇒

0 1
roof

floor

Agent 1

0 1

roof

wall

Agent 2

wall

floor

When the edge (1,wall,3) is deleted,

the specification is no longer implementable!

Asynchronous Automata

Asynchronous automata [Zielonka87] generalize the synchronous
products allowing more communication during synchronization.

An action is executed only for chosen tuples of local states of its
domain.

1 →floor 2

0 →wall 1

(0, 0) →roof (1, 1)

(0, 1) →roof (2, 2)

0, 0

0, 1 2, 2

1, 1 2, 1

wall

roof

roof

floor

Asynchronous Automata

Asynchronous automata [Zielonka87] generalize the synchronous
products allowing more communication during synchronization.

An action is executed only for chosen tuples of local states of its
domain.

1 →floor 2

0 →wall 1

(0, 0) →roof (1, 1)

(0, 1) →roof (2, 2)

0, 0

0, 1 2, 2

1, 1 2, 1

wall

roof

roof

floor

Not implementable as a synchronous product! (cf. wall roof floor)

Synthesis Flow – the whole truth

Specification

Global behavior and distribution

TEST

Is the specification distributable?

Heuristics

Try to refine the specification

so as to become distributable

Synthesis

Core algorithms + heuristics

Distributed implementation

Desired format

yes

no

if possible

II. Distributed systems... Characterizations?

The Diamonds of Independence

A distribution generates an independence relation ‖ ⊆ Σ × Σ

a‖b ⇔ dom(a) ∩ dom(b) = ∅

The independent and forward diamond rules are:

ID FD

1

2

3

a

b

a‖b
=⇒

1

2

3

4

a

b

b

a

1

2 3

a b a‖b
=⇒

1

2 3

4

a b

b a

The global state space of a distributed system satisfies ID and FD.

Characterizations

Characterizations of ‘distributable’ global transitions systems given
in the literature:

[Zielonka87], [Morin98,99], [CastellaniMukundThiagarajan99]

• modulo isomorphism: theory of regions
(ID and FD necessary, but not sufficient)

• modulo trace-equivalence:

→ SP: product languages
→ AA: ID and FD necessary and sufficient

• modulo bisimulation: by some modifications of the above

Traces of Distributed Transition Systems

The execution trace language Tr(TS) = the set of all possible
finite executions of TS starting in an initial state.

• any execution trace language Tr(TS) is prefix-closed

• For any asynchronous automaton AA, Tr(AA) is ID-closed,
i.e., uabv ∈ Tr(AA) ∧ a‖b ⇒ ubav ∈ Tr(AA)

• For any deterministic asynch. aut. AA, Tr(AA) is FD-closed,
i.e., ua ∈ Tr(AA) ∧ ub ∈ Tr(AA) ∧ a‖b ⇒ uab ∈ Tr(AA)

Zielonka’s Theorem (variant)

For any prefix-closed ID-FD-closed regular language L, there exists
a finite deterministic asynch. automaton AA with Tr(AA) = L.

Languages of Distributed Transition Systems

Tr(NAA) =
ID-closed prefix-closed
regular languages

Tr(DAA) =
ID-FD-closed
prefix-closed
regular languages

finite unions of
prefix-closed regular

product languages
= Tr(NSP)

prefix-closed regular
product languages

= Tr(DSP)

Several other variants classified:

→ global final states / local final states / acyclic specifications

III. Implementability Test... How difficult?

The Implementability Test

Distributed Implementability

Instance: a transition system TS and
a distribution ∆ of actions over a set of agents

Question: Is there a distributed transition system over ∆
equivalent with TS?

distributed transition system : SP / AA
equivalent : isomorphic / trace-equivalent / bisimilar

Previous characterizations provide decision procedures, leading
easily to upper bounds. We filled most of the missing lower bounds.

Complexity Bounds Overview

Synchronous products (with one global initial state)
Specification (TS) Isomorphism Trace Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete

Deterministic P [Mor98]
PSPACE-complete PSPACE-complete

Asynchronous automata (with multiple global initial states)
Specification (TS) Isomorphism Trace Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete PSPACE-complete

Deterministic P [Mor98] P
P

Complexity Bounds Overview

Synchronous products (with one global initial state)
Specification (TS) Isomorphism Trace Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete

Deterministic P [Mor98]
PSPACE-complete PSPACE-complete

Acyclic & Nondet. NP-complete

Acyclic & Determ. P [Mor98]
coNP-complete coNP-complete

Asynchronous automata (with multiple global initial states)
Specification (TS) Isomorphism Trace Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete PSPACE-complete

Deterministic P [Mor98] P
P

Acyclic & Nondet. NP-complete coNP-complete

Acyclic & Determ. P [Mor98] P
P

IV. Synthesis of deterministic distributed transition
systems... More efficient?

Synthesis of Deterministic Synchronous Products

distribution ∆ transition system TS

Reduction

Candidate

synchronous
product SP

net 〈N, M0〉 markings M⊥

Reachability Checker

SP is a solution SP is not a solution
+ counterexample run

no yes

A Heuristic for Smaller Asynchronous Automata

• Zielonka’s procedure outputs
very large asynchronous automata

• Usually smaller asynchronous automata accepting the same
language exist

• Heuristic idea
Unfold the initial transition system guided by Zielonka’s
construction and test if any of the intermediary transition
systems is already asynchronous (modulo isomorphism):

Initial TS Intermediary TS Zielonka’s automaton

test if asynchronous!

unfold unfold

Some Special Cases

Using the characterization for implementability modulo
isomorphism, we gave alternatives to Zielonka’s construction in the
particular cases of:

• transitive distributions

• conflict-free specifications

• acyclic specifications

Relaxed Synthesis

If the initial specification is not ‘distributable’...

Relaxed synthesis problem

Given a distribution ∆ and a transition system TS , find an
asynchronous automaton AA over ∆ such that Tr(AA) ⊆ Tr(TS)
and Σ(AA) = Σ(TS).

We proved the above problem to be undecidable.

Proposed NP-complete heuristic:

IDFD subautomaton synthesis problem

Given a transition system TS , find a reachable subautomaton A
with Σ(A) = Σ(TS) satisfying ID&FD.

V. A Case Study – Mutual exclusion

Synthesis Flow – reloaded

Specification

Global behavior and distribution

TEST

Is the specification distributable?

Heuristics

Try to refine the specification

so as to become distributable

Synthesis

Core algorithms + heuristics

Distributed implementation

Desired format

yes

no

if possible

Mutual Exclusion (n=2)

• actions: Σ := {req1, enter1, exit1, req2, enter2, exit2}

• processes: Proc := {A1, A2, V1, V2}

req1 enter1 exit1 req2 enter2 exit2

dom {A1, V1} {A1, V2} {A1, V1} {A2, V2} {A2, V1} {A2, V2}

→ req1 and req2 are independent

→ each action involves only one process and one variable

Regular Specification for Mutex(2)

Behavior Mutex of a mutual exclusion algorithm:

• the runs are interleavings of the local behaviours
(reqi enteri exiti)

∗

• forbid sequences where enter1 is followed by enter2 without
exit1 in between (mutual exclusion)

• forbid sequences where req1 is followed by two enter2 without
enter1 in between (strong absence of starvation)

• any execution of Mutex is the prefix of another execution of
Mutex (deadlock freedom)

Global Automaton (1) – FD not satisfied

req1 req2

req2 req1

enter 2enter 1

req2 req1

enter 1 enter 2

enter 1 enter 2exit1 exit2

req1req2

enter 1 enter 2

exit1

exit1

exit2

exit2

Global Automaton (2) – Distributable

req1 req2

req2 req1

enter 2enter 1

req2 req1

enter 1

enter 2

exit1

req1

enter 2

exit1

exit1

exit2

exit2

Global Automaton of the Solution

req1 req2

req2 req1
enter 2

enter 1

req2
req1

enter 1

enter 2exit1

req1

enter 2

exit1

exit1
exit2

exit2
req2

req2

req1

req1

enter 2

req1

enter 1

enter 1

exit2
exit2

Synthesized Mutex(2) Algorithm

Initialization: v1 := 0; v2 := 0
Agent 1 ‖ Agent 2

ncs1: [NCS1]; ncs2: [NCS2];
〈 case (v1 = 0): v1 := 1; goto e1 〈 case (v2 = 0): v2 := 1; goto e2

case (v1 = 2): v1 := 1; goto e′1 case (v2 = 2): v2 := 3; goto e2

case (v1 = 3): v1 := 4; goto e′1 〉 e2: 〈 await v1 ∈ {0, 2, 3, 4} then
e1: 〈 await v2 ∈ {0, 1} then case (v1 = 0): v1 := 2; goto cs2

case (v2 = 0): goto cs1 case (v1 = 2): v1 := 0; goto cs2

case (v2 = 1): goto cs′1 〉 case (v1 = 3): v1 := 2; goto cs2

e′1: 〈 await v2 ∈ {2, 3} then case (v1 = 4): v1 := 1; goto cs2 〉
case (v2 = 2): v2 := 0; goto cs1 cs2: [CS2];
case (v2 = 3): v2 := 1; goto cs′1 〉 case (v2 = 1): v2 := 2; goto ncs2

cs1: [CS1]; v1 := 0; goto ncs1 case (v2 = 3): v2 := 0; goto ncs2

cs′1: [CS1]; v1 := 3; goto ncs1

Particularity: Priority is given to the first process in case both processes

request access

Prototype Implementations

Prototypes to support the full synthesis cycle:

• Synchronous products:

→ Via projections on local alphabets [translation to the input of
the reachability checkers of the Model-Checking Kit]

• Asynchronous automata:

→ heuristics for finding an ID-FD subautomata [implementation
in the constraint-based logic programming framework Smodels]

→ unfolding-based heuristics for Zielonka [implementation in C]

• Benchmarks: mutual exclusion, dining philosophers.
E.g., for mutual exclusion with N processes:

→ original Zielonka’s construction can handle only N=2 processes
(specification size: |TS | = 14, |Proc | = 4, |Σ| = 6)

→ our heuristics can handle up to N=5 processes
(specification size: |TS | = 25, 537, |Proc | = 10, |Σ| = 15)

VI. Coming to an end...

Online References

The results presented today can be found online at:

http://www.inf.uni-konstanz.de/∼stefanes/phd-thesis.pdf

or on DBLP:

Today’s menu

Synthesis of synchronous products and asynchronous automata:

• A careful study and survey of characterizations of the global
structure (graph isomorphism) and behaviors (traces of
executions) of the two theoretical models with several variants

• Matching computational complexity bounds for the
implementability tests for several combinations

• Alternatives to Zielonka’s construction in special cases

• Several heuristics for finding smaller synthesized solutions

• Prototype implementations for most of the algorithms

Merci de votre patience !

Appendix

Synchronous Products (Formally)

A synchronous product of transition systems SP over a
distribution (Σ, Proc , ∆) consists of

• a set of local state spaces (Qp)p∈Proc and

• a set of local transitions relations (→p)p∈Proc with
→p ⊆ Qp × Σlocal(p) × Qp.

The global state space of SP consists of the global states
Q ⊆

∏

p∈Proc Qp reachable from a set of initial global states I by

(qp)p∈Proc
a

−→(q′
p)p∈Proc ⇔

{

qp
a

−→p q′
p for all p ∈ dom(a)

qp = q′
p for all p 6∈ dom(a)

Asynchronous Automata (Formally)

An asynchronous automaton AA over a distribution (Σ, Proc , ∆)
consists of

• a set of local state spaces (Qp)p∈Proc and

• a set of local transition relations (→a)a∈Σ with
→a ⊆

∏

p∈dom(a) Qp ×
∏

p∈dom(a) Qp

The global state space of AA consists of the global states
Q ⊆

∏

p∈Proc Qp reachable from a set of initial global states I by

(qp)p∈Proc
a

−→(q′
p)p∈Proc ⇔

{

(qp)p∈dom(a) →a (q′
p)p∈dom(a) and

qp = q′
p for all p 6∈ dom(a).

Characterization of Async. Automata modulo Isomorphism

Theorem (Morin99)

Let (Σ, Proc , ∆) be a distribution and TS = (Q, Σ,→, I) be a

transition system. Then, TS is isomorphic to an asynchronous

automaton over ∆ if and only if for each p ∈ Proc there exists an

equivalence relation ≡p ⊆ Q × Q with:

AA1: If q1
a

−→ q2, then q1 ≡Proc\dom(a) q2.

AA2: If q1 ≡Proc q2, then q1 = q2.

AA3: If q1
a

−→ q′
1 and q1 ≡dom(a) q2, then there exists q′

2

such that q2
a

−→ q′
2 and q′

1 ≡dom(a) q′
2.

Mutual Exclusion – A Classical Solution

[EmersonClarke82] automatically synthesise a Mutex alg. from a
CTL spec.

req1 req2

req2 req1
enter2enter1

req2 req1enter1 enter2

exit1 exit2

exit1 exit2

NCSi

TRYi

CSi

NCSj ∨ CSj?TRYj?→ TURN:=j

NCSj ∨ (TRYj∧ TURN=i)? NCSj ∨ TRYj?

• actions req1 and req2 are not independent

• involved implementation (reqi tests TRYj , update TURN,
moves to TRYi)

Regular Specification for Mutex(2)

Spec ⊆ Σ∗ for Mutex(2) can be chosen such that:

• Spec ⊆
shuffle(prefix((req1enter1exit1)

∗), prefix((req2enter2exit2)
∗))

• Spec ⊆ Σ∗\ [Σ∗enter1(Σ\exit1)
∗enter2Σ

∗] and its dual
(mutual exclusion)

• Spec ⊆ Σ∗\ [Σ∗req1(Σ\enter1)
∗enter2(Σ\enter1)

∗enter2Σ
∗]

and its dual (absence of starvation)

	Appendix
	Appendix
	Distributed Implementability

