A framework for developing embeddable
customized logics

Sébastien Ferré** and Olivier Ridoux

IRISA, Campus Universitaire de Beaulieu, 35042 RENNES cedex,

{ferre,ridoux}@irisa.fr

Abstract Logic-based applications often use customized logics which
are composed of several logics. These customized logics are also often
embedded as a black-box in an application. Their implementation requires
the specification of a well-defined interface with common operations such
as a parser, a printer, and a theorem prover. In order to be able to
compose these logics, one must also define composition laws, and prove
their properties. We present the principles of logic functors and their
compositions for constructing customized logics. An important issue is
how the operations of different sublogics inter-operate. We propose a
formalization of the logic functors, their semantics, implementations, and
their composition.

1 Introduction

We present a framework for building embeddable automatic theorem provers
for customized logics. The framework defines logic functors as logic components;
for instance, one component may be the propositional logic, another component
may be the interval logic, also called intervals. Logic functors can be composed
to form new logics, for instance, propositional logic on intervals.

Each logic functor has its own proof-theory, which can be implemented as a
theorem prover. We desire that the proof-theory and the theorem prover of the
composition of logic functors should result from the composition of the proof-
theories and the theorem provers of the component logic functors.

All logic functors and their compositions implement a common interface. This
makes it possible to construct generic applications that can be instantiated with
a logic component. Conversely, customized logics built using the logic functors
can be embedded in an application that comply with this interface.

Logic functors specify off-the-shelf software components, the validation of the
composition of which reduces to a form of type-cheking, and their composition
automatically results in an automatic theorem prover. Logic functors can be
assembled by laymen, and used routinely in system-level programming, such as
compilers, operating systems, file-systems, and information systems.

This article is organized as follows. Section 2 presents our motivations, and
Section 3 introduces the notions of logics and logic functors, and several logic

** This author is supported by a scholarship from CNRS and Région Bretagne

functor properties like completeness and correctness. Section 4 introduces a sim-
ple nullary logic functor as an example, and a more sophisticated unary logic
functor that raises important questions on the properties of logics that result
from a composition of logic functors. Section 5 answers these questions by in-
troducing a new property, called reducedness. In Section 6, we compare this
work with the literature. Appendix A presents some nullary logic functors, and
Appendix B presents some n-ary logic functors.

2 Motivations

2.1 Logic-based information processing systems

In [FROOb,FRO1], we have proposed a Logical Information System that is built
upon a variant of Formal Concept Analysis [GW99,FR00a]. The framework is
generic in the sense that any logic whose deduction relation forms a lattice can
be plugged-in. However, if one leaves the logic totally undefined, then one puts
too much responsibility on the end-users or on a knowledge-base administrator.
It is unlikely they can design such a logical component themselves. By using the
framework developed in this article, one can design a toolbox of logical compo-
nents, and the user has only the responsibility of composing those components.
The design of this Logical Information System is the main motivation for this
research.

However, we believe the application scope of this research goes beyond our
Logical Information System. Several information processing domains have logic-
based components in which logic plays a crucial role: e.g., logic-based information
retrieval [SM83,vRCL98], logic-based diagnosis [Poo88], logic-based program-
ming [L1o87,MS98], logic-based program analysis [SFRW98,AMSS98,CSS99].
These components model an information processing domain in logic, and also
they bring to the front solutions in which logic is the main engine. This can be
illustrated by the difference between using a logic of programs and programming
in logic.

The logic in use in these system is often not defined by a single pure deduc-
tion system, but rather it combines several logics together. The designer of an
application has to make an ad hoc proof of consistency and an ad hoc implemen-
tation (i.e., a theorem prover) every time he designs a new ad hoc logic. Since
these logics are often variants of a more standard logic we call them customized
logics.

In order to favour separation of concerns, it is important that the application
that is based on a logic engine, and the logic engine itself, be designed separately.
This implies that the interface of the logic engine should not depend on the logic
itself. This is what we call embeddability of the logical component.

If we need to separately design the application and its logical components,
then who should develop the embedded logic components?

2.2 The actors of the development of an information processing
system

In this section, we present our views on the Actors of the development on an
information processing system. Note that Actors are not necessarily incarnated
in one person; each Actor may gather several persons possibly not living at the
same time. In short, Actors are roles, rather than persons. Sometimes, Actors
may even be incarnated in computer programs.

The first Actor is the Theorist; he invents an abstract framework, like, for
instance, relational algebra, lattice theory, or logic.

If the abstract framework has applications, then a second Actor, the System
Programmer, implements (part of) the theory in a generic system for these
applications. This results in systems like data-bases, static analysers, or logic
programming systems.

Then the third Actor, the Application Designer, applies the abstract frame-
work to a concrete objective by instantiating a generic system. This can be done
by composing a data-base schema, or a program property, or a logic program.

Finally, the User, the fourth Actor, maintains and uses an application. He
queries a data-base, he analyses programs, or he runs logic programs.

It is the relation between the System Programmer and the Application De-
signer that interests us.

2.3 Genericity and instantiation

Genericity is often achieved by designing a language: e.g., a data-base schema
language, a lattice operation language, and a programming language. Corre-
spondingly, instantiation is done by programming and composing: e.g., drawing
a data-base schema, composing an abstract domain for static analysis, or com-
posing a logic program.

We propose to do the same for logic-based tools. Indeed, on one hand the
System Programmer is competent for building a logic subsystem, but he does not
know the application; he only knows the range of applications. On the other hand
the Application Designer knows the application, but is generally not competent
for building a logic subsystem. In this article, we will act as System Program-
mers by providing elementary components for safely building a logic subsystem,
and also as Theorists by giving formal results on the composition laws of these
components.

We explore how to systematically build logics using basic components that
we call logic functors. By “construction of a logic” we mean the definition of its
syntax, its semantics, and its abstract implementation as a deduction system.
All logic functors we describe in this article have also a concrete implementation
as an actual program. We have also implemented a logic composer that takes the
description of a customized logic and builds a concrete logic component.

2.4 Customized logics

The range of logic functors can be very large. In this article we consider only
sums of logics, propositions (on arbitrary formulas), intervals, valued attributes
(abstracted w.r.t. values), strings (e.g., “begin with”, “contains”), and ONL (a
modal epistemic logic functor [Lev90]).

The whole framework is geared towards manipulating logics as lattices, as in
abstract interpretation. Deduction is considered as a relation between formulas,
and we study the conditions under which this relation is a partial order. This
excludes non-monotonic logics, but they can be used as nullary logic functors.
Note that non-monotonicity is seldom a goal in itself, and that notoriously non-
monotonic features have a monotonic rendering; e.g., Closed World Assumption
can be reflected in the monotonic modal logic ONL. Note also that in our
framework not all logics are lattices (nor their deduction relation is a partial
order), but the most interesting ones can always be completed in a lattice.

We will consider as a motivating example an application for dealing with
bibliographic entries. Each entry has a description made of its author name(s),
title, type of cover, publisher, and date. The User navigates through a set of
entries by comparing descriptions with queries that are written in the same
language. For instance, let us assume the following entry set:

— descr(entry;) =
[author:"Kipling"/ title:"The Jungle Book"/ paper-back/
publisher:"Penguin"/ year: 1985],

— descr(entryy) =
[author:"Kipling"/ title:"The Jungle Book"/ hard-cover/
publisher:"Century Co."/ year: 1908],

— descr(entrys) =
[author:"Kipling"/ title:"Just So Stories"/ hard-cover/
publisher:""/ year: 1902].

An answer to the query:

title: contains "Jungle"

is:

hard-cover publisher:"Century Co." year: 1900..1950

paper-back publisher:"Penguin" year: 1950..2000
because several entries (entry; and entrys) have a description that entails the
query (i.e., they are possible answers), and the application asks the user to
make his query more specific by suggesting some relevant refinements. Note that
author:"Kipling" is not a relevant refinement because it is true of all matching
entries. For every possible answer entry we have descr (entry) FEquery, and for
every relevant refinement x the following holds

1. there exists a possible answer e; such that descr(e;) [=x, and
2. there exists a possible answer e, such that descr (es) j£x.

We will not go any further in the description of this application
(see [FROOb,FR01]). We simply note that:

1. descriptions, queries, and answers belong to the same logical language, which
combines logical symbols and expressions such as strings, numbers, or inter-
vals, and

2. one can design a similar application with a different logic, e.g., for manip-
ulating software components. Thus, it is important that all different logics
share a common interface for being able to separately write programs for the
navigation system and for the logic subsystem it uses.

2.5 Summary

We define tools for building automatic theorem provers for customized logics for
allowing Users who are not sophisticated logic actors. Note also that the User
may be a program itself: e.g., a mobile agent running on a host system [IB96].
This rules out interactive theorem provers.

Validating a theorem prover built by using our tools must be as simple as
possible. We want this because the Application designer, though it may be more
sophisticated than the User, is not a logic actor.

Finally, the resulting theorem provers must have a common interface so that
they can be embedded in generic applications. Deduction is decidable in all the
logic components that we define. Thus, the logic components can be safely em-
bedded in applications as black-boxes.

3 Logics and logic functors

If an Application Designer has to define a customized logic by the means of
composing primitive components, these components should be of a ‘high-level’,
so that the resulting logic subsystem can be proven to be correct. Indeed, if
the primitive components are too low-level, proving the correctness of the result
is similar to proving the correctness of a program. Thus, we decided to define
logical components that are very close to be logics themselves.

Our idea is to consider that a logic interprets its formulas as functions of
their atoms. By abstracting atomic formulas from the language of a logic we
obtain what we call a logic functor. A logic functor can be applied to a logic to
generate a new logic. For instance, if propositional logic is abstracted over its
atomic formulas, we obtain a logic functor called prop, which we can apply to,
say, a logic on intervals, called interv, to form propositional logic on intervals,
prop(interv).

3.1 Logics

We formally define the class of logics as structures, whose axioms are merely
type axioms. Section 4 and Appendix A present examples of logics. All proofs
are omitted. They are given in the companion research-report [FR02].

Definition 1 (Syntax) A syntax AS is a denumerable set of (abstract syntax
tree of) formulas.

A semantics associates to each formula a subset of an interpretation domain
where the formula is true of all elements. This way of treating formulas as unary
predicate is akin to description logics [DLNS96].

Definition 2 (Semantics) Given o syntaz AS, a semantics S based on AS is
a pair (I,|=), where

— I is the interpretation domain,
— |E € P(Ix AS), (where P(X) denotes the power-set of set X), is a satisfac-
tion relation between interpretations and formulas.

i E f reads % is a model of f”. For every formula f € AS,
M(f)={ie€l|ilk= f} denotes the set of all models of formula f. For ev-
ery formulas f,g € AS, an entailment relation is defined as “f entails g” iff
M(f) € M(g).

The entailment relation is never used formally in this paper, but we believe
it provides a good intuition for the frequent usage in proofs of the inclusion of
sets of models.

The formulas define the language of the logic, the semantics defines its inter-
pretation, and an implementation defines how the logic implements an interface
that is common to all logics. This common interface includes a deduction rela-
tion, a conjunction, a disjunction, a tautology, and a contradiction.

Definition 3 (Implementation) Given a syntax AS and a symbol
"undef' ¢ AS, an implementation P based on AS is a 5-tuple (C,N,U, T, 1),
where

— C € P(AS x AS) is the deduction relation,
— M,U € AS x AS — AS U {undef} are the conjunction and the disjunction,
— T,L1 € ASU{undef} are the tautology and the contradiction.

Operations C, M, L, T, L are all defined on the syntax of some logic, though
they are not necessarily connectives of the logic, simply because the connectives
of a logic may be different from these operations. Similarly, the syntax and the
semantics may define quantifiers, though they are absent from the interface.

Note that this common interface can be implemented partially (by using
undef) if it is convenient. Because the interface is the same for every logic,
generic logic-based systems can be designed easily.

Definition 4 (Logic) A logic L is a triple (ASL, S, Pr), where ASy, is (the
abstract syntazx of) a set of formulas, Sy, is a semantics based on ASy,, and Py,
is an implementation based on ASy.

When necessary, the satisfaction relation = of a logic L will be written =y,
the interpretation domain I will be written I, the models M (f) will be written
My (f), and each operation op will be written op .

In object oriented terms, this forms a class L, which comprises a slot for the
type of an internal representation, and several methods for a deduction relation,
a conjunction, a disjunction, a tautology, and a contradiction. A logic L is simply
an instance of this class.

Definition 3 shows that operations M, LI can be partially defined, and that
operations T, L can be undefined.

Definition 5 (Total/partial, bounded/unbounded) A logic is partial if ei-
ther operations T or U or both are partially defined. It is unbounded if either
operations T or L or both is undefined.

In the opposite case, a logic is respectively called total and bounded.

When necessary, we make it precise for which operation a logic is to-
tal/partial.

Total logics are usually preferred, because they make applications simpler.
Indeed, they do not have to test for undef. Section 4.2 shows that the proposi-
tional logic functor applied to a partial logic always constructs a total logic.

There is no constraint, except for their types, on what C, M, LI, T, L can be.
So, we define a notion of consistency and completeness that relates the semantics
and the implementation of a logic. These notions are defined respectively for each
operation of an implementation, and only for the defined part of them.

Definition 6 (Completeness/consistency) Let L be a logic. An implemen-
tation P, is consistent (resp. complete) in operation op € {C, T, L, M, U} w.r.t.
a semantics Sy, iff

for all f,g € ASy,

fEg= Mi(f) € Mr(g) (resp- Mr(f) € Mr(9) = f T g),
T is defined => always consistent (resp. M (T) =1),
1) L is defined = ML(L) =0 (resp. always complete),

)
T)

(resp. f Mg is defined = M (fMg) D Mr(f) N Mr(g)),
— (op=U) fUg is defined = M (f U g) C ML(f)U Mr(g)
(resp. f U g is defined = My (f Ug) 2 My(f) U My(g)).

We say that an implementation is consistent (resp. complete) iff it is con-
sistent (resp. complete) in the five operations. We abbreviate “Pr is com-
plete/consistent in op w.r.t. S,” in “opy, is complete/consistent”.

Note that it is easy to make an implementation consistent and complete for
the last four operations M, LI, T, L, by keeping them undefined, but then the
implementation is of little use. Note also that a consistent C can always be
extended into a partial order because it is contained in C.

In general, consistent and complete logics are preferred to ensure matching
between the expected answers, specified by the semantics, and actual answers,
specified by the implementation. Thus, in these preferred logics deduction can

be extended into a partial order. However, some logics defined on concrete do-
mains are not complete. An important issue is how to build complete logics with
components that are not complete.

We must add to the five operations of an implementation, a parser and a
printer for handling the concrete syntax of formulas. Indeed, an application
should input and output formulas in a readable format. However, we do not
consider them further, because they do not determine any logical problem. On
the contrary, the five logical operations (deduction, conjunction, disjunction,
tautology, and contradiction) are at the core of the logics we consider.

3.2 Logic functors

Logic functors also have a syntax, a semantics, and an implementation, but
they are all abstracted over one or more logics that are considered as formal
parameters. We formally define the class of logic functors as structures. Section 4
and Appendix B presents examples of logic functors.

Given L the class of logics, logic functors are functions of type L™ — L. In
object oriented terms, this defines a template F. For reasons of uniformity, logics
are considered as logic functors with arity 0 (a.k.a. atomic functors, or nullary
logic functors).

Let AS be the class of all syntaxes, S be the class of all semantics, and P be the
class of all implementations. The syntax of a logic functor is simply a function
from the syntaxes of the logics which are its arguments, to the syntax of the
resulting logic.

Definition 7 (Logic functor) A logic functor F is a triple (ASr,Sr,Pr)
where

— the abstract syntax ASp is a function of type AS™ — AS, such that
ASp(L,y,.,L,) = ASFr(ASL,, .., ASL,);

— the semantics Sp is a function of type S™—S, such that
SF(Ll,..,Ln) = SF(SL17 "’SL'n);

— the implementation Pr is a function of type P" — P, such that
PF(Ll,..,Ln) = PF(PL17--7PLn)'

A logic functor in itself is neither partial or total, unbounded or bounded,
complete or uncomplete, nor consistent or inconsistent. It is the logics that are
built with a logic functor that can be qualified this way. However, it is possible
to state that if a logic L has some property, then F'(L) has some other property.
In the following, the definition of every new logic functor is accompanied with
theorems stating under which conditions the resulting logic is total, consistent,
or complete.

These theorems have all the form hypothesis on L = conclusion on F(L).
We consider them as type assignments, F' : hypothesis — conclusion. Similarly,
totality /consistency /completeness properties on logics are considered as type as-
signments, L : properties, so that proving that F'(L) has some property regarding
totality, consistency, or completeness, is simply to type-check it.

4 Composition of logic functors

We define a nullary logic functor and a propositional unary logic functor, and we
observe that completeness may not propagate well when we compose them. We
introduce a new property, called reducedness, that helps completeness propagate
via composition of logic functors. From now on, the definitions are definitions of
instances of I or [F.

4.1 Atoms

One of the most simple logic we can imagine is the logic of unrelated atoms atom.
These atoms usually play the role of atomic formulas in most of known logics:
propositional, first-order, description, etc.

Definition 8 (Syntax) AS.iom is a set of atom names.

Definition 9 (Semantics) Sgiom is (I, =) where I = P(ASqtom) and i = a iff
aci.

The implementation reflects the fact that the atoms being unrelated they
form an anti-chain for the deduction relation (a set where no pair of elements
can be ordered).

Definition 10 (Implementation) Puom s (C,M,U, T, L) where for ev-
ery a,b € ASqtom
-aCbiffa=b

a ifa="»b

—afb=allb= { undef otherwise
- T and L are undefined.

Theorem 11 (Completeness/consistency) Pgiom s consistent and com-
plete in T, T, L, N, U w.r.t. Satom-

In summary, P,ton, is not bounded and is partial in both conjunction and
disjunction, but it is consistent and complete w.r.t. Sgiom-

4.2 Propositional logic abstracted over atoms

Let us assume that we use a logic as a description/querying language. Since it
is almost always the case that we want to express conjunction, disjunction, and
negation, the choice of propositional logic is natural. For instance, the / used to
separate description fields in the bibliographical application (see Section 2) can
be interpreted as conjunction. Similarly, disjunction and negation could be used,
especially to express information like “published in 1908 or 1985”. Propositional
logic, Prop, is defined by taking a set of atoms A, and by forming a set of propo-
sitional formulas Prop(A) by the closure of A for the three boolean connectives,
A, V, and —: the boolean closure.

Prop is usually considered as a free boolean algebra, since there is no relation
between atoms, i.e., they are all pairwise incomparable for the deduction or-
der. However in applications, atoms are often comparable. For instance, boolean
queries based on string matching use atoms whose meaning is contains s, is s,
begins with s, and ends with s where s is a character string. In this example,
the atom is "The Jungle Book" implies ends with "Jungle Book", which im-
plies contains "Jungle".

This leads to considering the boolean closure as a logic functor prop. So
doing, the atoms can come from another logic where they have been endowed
with a deduction order.

Definition 12 (Syntax) The syntax ASprop of the logic functor prop maps the
syntax ASa of a logic of atoms A to its syntactic closure by the operators A, V,
and the operator —.

The interpretation of these operators is that of the connectives with the same
names. It is defined by induction on the structure of the formulas. For atomic
formulas of AS,,op(a) (i-e., AS4) the semantics is the same as in the logic A.

Definition 13 (Semantics) Sprop is (14, E4) — (14,) such that

iEaf if f € ASa
N if f=f
EF il andief i f=hAf
iEfioriEfo if f=fiVvfe.

Definition 14 (Implementation) P,,,, is
(EA, Ma,Ua, T4, J_A) = (E, mnu,T, J_) such that

— f C g is true iff there exists a proof of the sequent - —f V g in the sequent
calculus of Table 1 (inspired from leanTAP [BP95,F'it98]).
In the rules, A is always a set of literals (i.e., atomic formulas or negations
of atomic formulas), I' is a sequence of propositions, L is a literal, X is a
proposition, B is the disjunction of £ and (2, « is the conjunction of a;
and s, and L denotes the negation of L (a:= —a and =a := a).

—fNg=fAgy,

- fug=1fvy,

— T =aV-a, for any a € AS4,

— L =aA-a, for any a € AS4.

Rules T-Axiom, |-Axiom, C-Axiom, M-Rule, and L-Rule play the role of
the ordinary axiom rule. The first two axioms are variants of the third one when
either a or b is missing. Rules M-Rule, and U-Rule interpret the propositional
connectives in the logic of atoms.

Note that the logic has a connective —, but its implementation has no cor-
responding operation. However, the deduction relation takes care of it. This is
an example of how more connectives or quantifiers can be defined in a logic or a

T-Axiom: -b, AT if T4 is defined and T4 Ca b
1-Axiom: a,A+T if 1 4 is defined and a C4 14
C -Axiom: a,-b,A-T ifaCab

alabAFT

M-Rule: W

if a My b is defined

U-Rule: % if @ s b is defined

. AFX, I .] LAFT
——-Rule: FooX T literal-Rule: AFLT
. AF BB, T . AFa,T Al as, T
,G—Rule. W a-Rule: AF a, T

Tablel. Sequent calculus for deduction in propositional logic.

logic functor, though the interface does not refer to them. A logic functor for the
predicate calculus could be defined in the same way, but since this theory is not
decidable, the resulting logic functor would be of little use to form embeddable
logic components. Instead of the full predicate calculus, it would be better to
define a logic functor for a decidable fragment of it, like the fragments in the
family of description logics [DLNS96].

Definition 15 (Validity) A sequent A & I is called valid in Sp,p(a) iff it is
true for every interpretation. It is true for an interpretation ¢ € I iff there is an
element in A that is false for i, or there is an element in I' that is true for i.

Lemma 16 A sequent A& I' is valid in Syrop(a) iff Nsea M) €U, cr M (7).

4.3 Properties of prop(A)

We present the properties of prop(A) w.r.t. the properties of A.

Theorem 17 (Consistency) P,,,,(a) 45 consistent in &, T, L, MM, U w.r.t.
Sprop(A) if Pa is consistent in E, L, LI and complete in T, M w.r.t. Sa.

There is no such lemma for completeness. In fact, the logic of atoms is not
necessarily total, and thus not all sequent a;,as, A F I' can be interpreted as
a1 My as, AF I'. So, there is a risk of incompleteness.

For instance, imagine 3 atoms ay, as, b such that M (a;)NM (az) C M(b), and
M(a;) # 0, M(b) # I, and M(a;) € M (b). If the implementation is complete,
then the sequent a3, as, b F should be provable. However, if the logic of atoms
is only partial, the conjunction a; M4 a2 may not be defined, and rule M-Rule
does not apply. In this case, the sequent would not be provable. One can build
a similar example for disjunction.

5 Reducedness

5.1 Formal presentation

We define a property of an atomic logic A, which is distinct from completeness,
is relative to the definedness of the logic operations, and helps in ensuring the
completeness of prop(A).

Definition 18 (Openness) A sequent A & I is called open in Pypopa) iff it
is the conclusion of no deduction rule, and it is not an axiom. Otherwise, it is
called closed.

An open sequent is a node of a proof tree that cannot be developed further,
but is not an axiom. In short, it is a failure in a branch of a proof search.
Lemma 19 A sequent A& I' is open according to implementation Pa iff

— I is empty,

—VYae A:alZg La (when L4 is defined),
—V-b€EA:TAUZAb (when T 4 is defined),
—Va,~be A:alZab,

—Ya#b€e A:aMyb is undefined,

— V-a# b€ A:alyb is undefined.

So, an open sequent A + I' can be characterized by a pair (A, B), where
A C AS, is the set of positive literals of A, and B C AS4 is the set of negative
literals of A (let us recall that I' is empty). The advantage of noting open
sequents by such a pair is that they are then properly expressed in terms of the
logic of atoms.

Incompleteness arises when an open sequent is valid; the proof cannot be
developed further though the semantics tells the sequent is true.

Lemma 20 An open sequent (A,B) is valid in the atom semantics Sa iff
Naca Mala) € Upep Ma(b).

Definition 21 (Validity) A family of open sequents ((Ai, B;))icr is valid in
atom semantics Sa iff every open sequent (A;, B;) is valid in S4.

Definition 22 (Reducedness) An implementation P4 is reduced on a set F
of open sequent families, w.r.t. a semantics Sa, iff every non-empty family of F
s not valid.

Theorem 23 (Completeness) P,,,,4) is complete in T on a subset of pairs
of formulas IT C AS,,5p(4) X ASprop(ay, W.T-t. Sprop(a), if Na is consistent and
L4 is complete, and Py is reduced on open sequent families of all fV —g formula
proof trees (where (f,g) € II) w.r.t. Sa. It is also complete in T, L, M, U
w.r.t. Sprop(A)-

Theorem 23 is somewhat complicated to allow the proof of completeness on a,
subset of prop(A). In some logics, it is possible to show that every open sequent
is not valid. Then every non empty open sequent family is not valid, and so,
atom implementation P4 is reduced on every set of open sequent families. In
such a case, we merely say that P4 is reduced w.r.t. Sya.

5.2 Application to prop(atom)

The following lemma shows that the nullary logic functor atom is reduced. So,
the implementation of logic prop(atom) is complete.

Lemma 24 (Reducedness) P, is reduced w.r.t. Satom.-

Corollary 25 P,,,,(atom) 18 totally defined, and complete and consistent w.r.t.

Sprop(atom) .

5.3 Discussion

All this leads to the following methodology. Nullary logic functors are defined for
tackling concrete domains like intervals and strings. They must be designed care-
fully, so that they are consistent and complete, and reduced. More sophisticated
logics can also be built using non-nullary logic functors (e.g., see Appendix B).
Then, they can be composed with logic functor prop in order to form a total,
consistent and complete logic. The resulting logic is also reduced because any
total, consistent and complete logic is trivially reduced. Furthermore, its imple-
mentation forms a lattice because totality, consistency and completeness make
the operations of the implementation isomorphic to set operations on the models.

Reducedness formalizes the informal notion of an implementation being de-
fined enough. Thus, it seems that it is useful to define it as a coherence relation
between the semantics and the implementation, via a notion of maximaly defined
implementation.

Definition 26 (Maximal definedness) An implementation (C,M,U, T, L) is
maximally defined w.r.t. a semantics (I, =) iff

—Vf,g:Yh:M((h)=M(f)NM(g) = fng=h
—Vf,g:Yh:M((h)=M(f)UM(g) = fUg=h
~Vh:M(Mh)DI=>h3T
—Vh:M(Mh)CO=hC L
—Vh:M(h)CM(g)=hCyg

An implementation obeying this definition would be consistent, and complete,
and it seems it would be reduced.

However, it is more subtle than that. Reducedness is more fundamentaly
a property of the semantics itself. One can build atomic logic functors whose
semantics is such that no definition of its implementation makes it reduced.
In fact, the problem comes when intersection of models can be empty and no
formula has an empty model. Note that in logic atom no intersection of models
can be empty.

We will describe more nullary reduced logic functors in Appendix A, and
more n-ary logic functors Appendix B.

6 Conclusion

We propose logic functors to construct logics that are used very concretely in
logic-based applications. This makes the development of logic-based systems
safer and more efficient because the constructed logic can be compiled to produce
a fully automatic theorem prover. We have listed a number of logic functors, but
many others can be built.

6.1 Related works

Our use of the word functor is similar to ML’s one for designating parameterized
modules [Mac88]. However, our logic functors are very specialized contrary to
functors in ML which are general purpose (in short, we have fixed the signature),
and they carry a semantic component. Both the specialization and the semantic
component allow us to express composition conditions that are out of the scope
of ML functors. We could have implemented logic functors in a programming
language that offers ML-like functors, but we did not so, mainly for the sake
of compatibility with the rest of our application that was already written in
AProlog.

The theory of institutions [GB92] shares our concern for customized logics,
and also uses the word functor. However, the focus and theoretical ground are
different. Institutions focus on the relation between notations and semantics,
whereas we focus on the relation between semantics and implementations. In
fact, the implementation class P is necessary for us to enforce embeddability.
We consider the notation problem in the printing and parsing operations of an
implementation. The theory of institutions is developed using category theory
and in that theory there are functors from signatures to formulas, from signatures
to models, and from institutions to institutions. Our logic functors correspond
to parameterized institutions.

An important work which shares our motivations is LeanTAP [BP95,BP96].
The authors of LeanTAP have also recognized the need for embedding cus-
tomized logics in applications, and the need for offering the Application Designer
some means to design a correct logic subsystem. To this end, they propose a very
concise style of theorem proving, which they call lean theorem proving, and they
claim that a theorem prover written in this style is so concise that it is very
easy to modify it in order to accomodate a different logic. And indeed, they
have proposed a theorem prover for first-order logic, and several variants of it
for modal logic, etc. Note that the first-order theorem prover is less than 20
clauses of Prolog. We think that their claim does not take into account the fact
that the System Programmer and the Application Designer are really different
Actors. There is no doubt that modifying their first-order theorem prover was
easy for these authors, but we also think it could have been undertaken by few
others. A hint for this is that it takes a full journal article to revisit and justify
the first-order lean theorem prover [Fit98]. So, we think lean theorem proving is
an interesting technology, and we have used it to define logic functor prop, but it
does not actually permit the Application Designer to build a customized logic.

Our main concern is to make sure that logic functors can be composed in
a way that preserves their logical properties. This led us to define technical
properties that simply tell us how logic functors behave: total/partial, consis-
tent/complete, and reduced /unreduced. This concern is complementary to the
concern of actually implementing customized logics, e.g., in logical frameworks
like Isabelle [Pau94], Edinburgh LF [HHP93], or Open Mechanized Reasoning
Systems [GPT96], or even using a programming language. These frameworks
allow users to implement a customized logic, but do not help users in proving
the completeness and consistency of the resulting theorem prover. Note that one
must not be left with the impression that these frameworks do not help at all.
For instance, axiomatic types classes have been introduced in Isabelle [Wen97] in
order to permit automatic admissibility check. Another observation is that these
frameworks mostly offer environments for interactive theorem proving, which is
incompatible with the objective of building fully automatic embeddable logic
components. Note finally that our implementation is written in AProlog, which
is sometimes considered as a logical framework.

In essence, our work is more similar to works on static program analysis tool-
box (e.g., PAG [AM95]) where authors assemble known results of lattice theory
to combine domain operators like product, sets of, and lists in order to build ab-
stract domains and derive automatically a fixed-point solver for these domains.
The fact that in the most favourable cases (e.g., prop(A)), our deduction rela-
tions form (partial) lattices is another connection with these works. However,
our framework is more flexible because it permits to build lattices from domains
that are not lattices. In particular, logic functor prop acts as a lattice comple-
tion operator on every other reduced logic. Moreover, we believe that non-lattice
logics like interv (see Appendix A.1) can be of interest for program analysis.

Figure 1 summaries our analysis of these related works. The dark shade of
System Programmer task is essentially to implement a Turing-complete pro-
gramming language (recall that Actors are roles not single persons). The light
shade of System Programmer task is to implement a very specific programming
language for one Application Designer task. In this respect, we should have men-
tionned the studies on Domain Specific Languages (DSL) as related works, but
we know no example of a DSL with similar aims. Note also that what remains
of the task of the Application Designer is more rightly called gluing than pro-
gramming when the System Programmer has gone far enough in the Application
Designer’s direction.

6.2 Summary of results and further works

Our logic functors specify logical “components off-the-shelf” (COTS). As such,
the way they behave w.r.t. composition is defined for every logic functor.

The principle of composing logic functors has been implemented in a pro-
totype. It includes a logic composer that reads logic specifications such as
sum(prop(atom), prop(interv)) (sums of propositions on atoms and propositions
on intervals) and automatically produces a printer, a parser, and a theorem

Customized

Logic
gluing gluing
Functors Application Lattice
.E’ _E’ programmer Operations
= Meta £
% Language gv
8 AProlog
o
|
Prolog System
programmer
machine [TERRRIITH L e e
v LeanTap Logic Logic PAG
Functors Frameworks

Figurel. Several related works and the respective tasks of the System Programmer
and the Application Designer

prover. The theorem prover is built by instantiating the theorem prover associ-
ated to each logic functor at every occurrence where it is used. The logic com-
poser, each logic functor implementation, and the resulting implementations are
written in AProlog.

Our paper suggests a software architecture for logic-based systems, in which
the system is generic in the logic, and the logic component can be separately
defined, and plugged in when needed. We have realized a prototype Logical
Information System along these lines [FROOD].

Coming back to the bibliography example of the introduction, we construct
a dedicated logic with logic functors defined in this article:

prop(aik (prop(sum(atom, valattr(sum(interv, string)))))).

According to results of this article, the composition of these logic functors is such
that the generated implementation is total, bounded, and consistent and com-
plete in all five operations of the implementation. It allows to build descriptions
and queries such as

descr(entry;) =
[author: is "Kipling" A title: is "The Jungle Book" A
paper-back A publisher: is "Penguin" A year: 1985],
query =
title: contains "Jungle" A year: 1950.. A
(paper-back V hard-cover).

Note that entry; is a possible answer to the query because
descr(entryl) Eprop(aik(p'rop(sum(atom,valatt’r(sum(inter’u,st'm'ng)))))) query,

which is automatically proved using the generated implementation.

We plan to validate the use of logic functors within the Logical Information
System. This application will also motivate the study of other logic functors like,
e.g., modalities or taxonomies, because they are useful for making queries and
answers more compact.

Another possible extension of this work is to vary the type of logic functors
and their composition. In the present situation, all logic functors have type
L™ — L. It means that the only possibility is to choose the atomic formulas
of a logic. However, one may wish to act on the interpretation domain, or on
the quantification domain. So, one may want to have a class D of domains, and
logic functors that take a domain as argument, e.g., D — L. At a similar level,
one may wish to act on the interface, either to pass new operations through it,
e.g., negation or quantification, or to pass new structures, e.g., specific sets of
models. The extension to higher-order logic functors, e.g., (L. — L) — L, would
make it possible to define a fixed-point logic functor, p, with which we could
construct a logic as L = pF where F' is a unary logic functor.

Finally, we plan to develop new logic functors for the purpose of program
analysis. For instance, in [RBM99,RB01] we have proposed to combine the do-
main of boolean values with the domain of types to form a logic of positive
functions that extends the well-known domain Pos [CSS99]. We called this typed
analysis. The neat result is to compute at the same time the properties of ground-
ness and of properness [0’K90]. Our project is to define logic functors for every
type constructors, and to combine them according to the types inferred /checked
in the programs (e.g., list(list(bool)), where bool is simply {true, false}). This
will make it possible to redo what we have done on typed analysis, but also to
explore new static analysis domains by combining the logic functors for types
with other nullary logic functors than bool.

Acknowledgements: We are pleased to acknowledge the careful reading of this
article by Alberto Pettorossi. Remaining mistakes are ours.

References

[AM95] M. Alt and F. Martin. Generation of efficient interprocedural analyzers with
PAG. In Static Analysis Symp., LNCS 983, pages 33-50, 1995.

[AMSS98] T. Armstrong, K. Marriott, P. Schachte, and H. Sgndergaard. Two classes
of boolean functions for dependency analysis. Science of Computer Pro-
gramming, 31:3-45, 1998.

[BP95] B. Beckert and J. Posegga. lean TAP: Lean, tableau-based deduction. J. Au-
tomated Reasoning, 11(1):43-81, 1995.

[BP96] B. Beckert and J. Posegga. Logic programming as a basis for lean automated
deduction. J. Logic Programming, 28(3):231-236, 1996.

[CSS99] M. Codish, H. Sgndergaard, and P.J. Stuckey. Sharing and groundness
dependencies in logic programs. ACM TOPLAS, 21(5):948-976, 1999.

[DLNS96] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in descrip-
tion logics. In G. Brewka, editor, Principles of Knowledge Representation
and Reasoning, Studies in Logic, Language and Information, pages 193-238.
CLSI Publications, 1996.

[Fit98]

[FR00a]

[FROOb]

[FRO1]

[FRO2]
[GB92]

[GPT96]

[GW99]
[HHP93]

[IB96]

[Lev90]
[L1087]
[Mac88]
[MS98]

[O’K90]
[Pau94]

[Poo88]

[RBO1]

[RBMYY]

M. Fitting. leanTAP revisited. Journal of Logic and Computation, 8(1):33—
47, February 1998.

S. Ferré and O. Ridoux. A file system based on concept analysis. In Y. Sagiv,
editor, Int. Conf. Rules and Objects in Databases, LNCS 1861, pages 1033~
1047. Springer, 2000.

S. Ferré and O. Ridoux. A logical generalization of formal concept analysis.
In G. Mineau and B. Ganter, editors, Int. Conf. Conceptual Structures,
LNCS 1867, pages 371-384. Springer, 2000.

S. Ferré and O. Ridoux. Searching for objects and properties with logical
concept analysis. In H. S. Delugach and G. Stumme, editors, Int. Conf.
Conceptual Structures, LNCS 2120, pages 187-201. Springer, 2001.

S. Ferré and O. Ridoux. Logic functors: a framework for developing embed-
dable customized logics. Rapport de recherche 4457, INRIA, 2002.

J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for
specification and programming. J. ACM, 39(1):95-146, 1992.

F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning theories - towards
an architecture for open mechanized reasoning systems. In F. Baader and
K. U. Schulz, editors, 1st Int. Workshop: Frontiers of Combining Systems,
pages 157-174. Kluwer Academic Publishers, March 1996.

B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foun-
dations. Springer, 1999.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
JACM, 40(1):143-184, January 1993.

V. Issarny and Ch. Bidan. Aster: A framework for sound customization
of distributed runtime systems. In 16th Int. Conf. Distributed Computing
Systems, 1996.

H. Levesque. All I know: a study in autoepistemic logic. Artificial Intelli-
gence, 42(2), March 1990.

J.W. Lloyd. Foundations of Logic Programming. Symbolic computation —
Artificial Intelligence. Springer, Berlin, 1987.

D.B. MacQueen. An implementation of Standard ML modules. In LISP
and Functional Programming, pages 212-223, 1988.

K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduc-
tion. The MIT Press, 1998.

R.A. O’Keefe. The Craft of Prolog. MIT Press, 1990.

L. C. Paulson. Isabelle: a generic theorem prover. LNCS 828. Springer, New
York, NY, USA, 1994.

D. Poole. Representing knowledge for logic-based diagnosis. In Int. Conf.
Fifth Generation Computer Systems, pages 1282-1290. Springer, 1988.

0. Ridoux and P. Boizumault. Typed static analysis: Application to the
groundness analysis of typed prolog. Journal of Functional and Logic Pro-
gramming, 2001(4), 2001.

0. Ridoux, P. Boizumault, and F. Malésieux. Typed static analysis: Ap-
plication to groundness analysis of Prolog and AProlog. In Fuji Int. Symp.
Functional and Logic Programming, pages 267—283, 1999.

[SFRW98] M. Sagiv, N. Francez, M. Rodeh, and R. Wilhelm. A logic-based approach

[SM83]

to program flow analysis. Acta Informatica, 35(6):457-504, June 1998.
G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[VRCL98] C.J. van Rijsbergen, F. Crestani, and M. Lalmas, editors. Information Re-
trieval: Uncertainty and Logics. Advanced models for the representation and
retrieval of information. Kluwer Academic Publishing, Dordrecht, NL, 1998.

[Wen97] M. Wenzel. Type classes and overloading in higher-order logic. In E.L.
Gunter and A. Felty, editors, Theorem proving in higher-order logics, LNCS
1275, pages 307-322. Springer-Verlag, 1997.

A More nullary reduced logic functors

Ad-hoc logics are often designed for representing concrete observations on
a domain. They serve as a language to write atomic formulas. In the bib-
liographical application atomic formulas could be between 1900 and 1910 or
contains "Kipling". In order to serve as arguments to the logic functor prop
(or other similar boolean logic functors if available), they must be equipped
with a “natural” conjunction and “natural” disjunction, i.e., they must be con-
sistent and complete (cf. Definition 6). However, these operations can usually be
only partially defined. For instance, the “natural” disjunction of two intervals is
only defined if the intervals overlap.

By definition, applying the logic functor prop to such an atomic logic pro-
duces a logic that is always total and bounded (Definition 14). It also provides a
consistent and complete implementation if the atom logic also has a consistent,
complete, and reduced implementation (Lemmas 17 and 23).

So, for every nullary logic functor presented in this section, we prove that its
implementation is consistent, complete, and reduced w.r.t. its semantics.

A.1 Intervals

Intervals are often used to express incomplete knowledge either in the data-
base or in the queries. For instance, in the bibliographical application, year:
1900..1910 may express an interval of dates between 1900 and 1910. We can
also express open intervals such that year: ..1910, which means “before 1910”.

Definition 27 (Syntax) ASintery = {[z,y] | z,y € RW{—,+}}.

The symbol — denotes the negative infinity (smaller than any real number),
and the symbol + denotes the positive infinity (greater than any real number).
So, Rw {—,+} is a totally ordered set bounded by — and +.

Definition 28 (Semantics) Sintery @5 (I,) where I =R and i E [z,y] <
r<i1<y.

For simplifying further proofs it should be noted that models of interval
formulas are intervals of the real numbers. In particular, M;ntery ([+,—]) = 0.

Property 29 Mo (f) = interval f (recall that formulas are only syntaz, so
“interval f” is the interval ordinarily written f).

Definition 30 (Implementation) Pitery s (C,1,U, T, 1)
where for every [z1,y1], [Z2,Y2] € ASinterv

= [21,91] C [22,92] iff 22 < 21 and y1 <y,

- [-T17y1] M [$27y2] = [max($17$2)7min(yl7y2)]7

_ _ [Imin(z1, z2), max(y1,y2)] if 22 < y1 and 21 <y
[#1,91] U2, o] = undef otherwise ’

- T= [_a +]’

- 1= [+a _]'

Note that conjunction is defined for every pair of intervals, but disjunction
is only defined for pairs of overlapping intervals.

Theorem 31 (Completeness/consistency) Piptery is consistent and com-
plete in C, T, L, N, U w.r.t. Sinterv-

Piptery is partial in disjunction, but it is consistent and complete. Further-
more, the following lemma shows that it is reduced, and so, it can serve as
argument of the logic functor prop.

Lemma 32 (Reducedness) Pj,tery 4 reduced w.r.t. Sintery -

A.2 Strings

Often, descriptions and queries contain string specifications, like is, start with
and contains. Moreover, these specification can be ordered by an en-
tailment relation. For instance, the atom és "The Jungle Book" entails
ends with "Jungle Book", which entails contains "Jungle".

Definition 33 (Syntax) ASging = A0l 37 gO1 1y {#}, where X is some (infi-
nite) signature such that {*,$,#} N X =0.

The optional symbol ~ denotes the beginning of a string; it is the left bound
of a string. The optional symbol $§ denotes the end of a string; it is the right
bound of a string. So, “contains s” is written s, “starts with s” is written “s,
and is s is written “s$. The symbol # denotes the empty language (matched by
no string).

Definition 34 (Semantics) Ssiring s (I,}=) where I = "X*§ andi = f <=
i=afp.

So, models are made of complete strings. More precisely,

Property 35 Miring(f) is "X*fX*$ if f is not bounded, fX*$ if f is only
left-bounded, "X f if f is only right-bounded, and f if f is bounded.

Note also that only formula # has an empty model.

Definition 36 (Implementation) Pying is (C,M,U, T, L) where for ev-
ery f,9 € ASstring

- fEgiff f=0a9p,
fo#fcy
g f9gC f
— fMg=< # if flLgand giZ f and both f and g are
either left-bounded or right-bounded, or one of them is bounded
undef otherwise
— U is undefined,
— T =k,
— 1L =4#.

Theorem 37 (Completeness/consistency) Piping is consistent and com-
plete in C, T, L, M, and U w.r.t. Ssiring.

Pyyring is partial, but it is consistent and complete. Furthermore, the following
lemma shows that it is reduced, and so, the composition prop(string) is also
consistent and complete.

Lemma 38 (Reducedness) Piring is reduced w.r.t. Ssiring.

B More n-ary logic functors

We present in this appendix some more n-ary logic functors. Some of them
produce reduced logics that are not necessarily total. In this case, partiality is
not a problem, since it is enough to wrap them in logic functor prop. A few other
functors produce logics that are not reduced, but that are total (if the logics to
which they are applied are also total). They are useful, but only as the outermost
logic functor of a composition. Using them in, say, the logic functor prop, would
produce an incomplete logic, which is seldom desired.

In each case, we present the syntax, the semantics, the implementation and
results about consistency and completeness, and reducedness.

B.1 Complete knowledge

The logic “All I Know” [Lev90] represents knowledge judgements in a modal
way, instead of by an extra-logical rule as with closed world assumption. Note
also that it is a monotonous logic.

Definition 39 (Syntax) AS,; is the optional wrapping of the syntaz of some
logic by the All I Know modality. We will use square brackets [and] as a concrete
syntazx.

The syntax of aik operates on descriptions expressed as logical formulas. For
any description fq, [f4] represents its closure in a complete description (f4 is all
that is true), f4 represents a positive fact, and if aik is composed with prop, - f4
represents a negative fact.

Definition 40 (Semantics) Sgix is (Ig, =q) — (I, |=) such that

= 0 s {1 g 05 20

Definition 41 (Implementation) P, is
(Ed; Mg,Uq, T4, Ld) — (E, mnu, T, J_) such that

the deduction C is defined according to Table 2
faNaga if f = fa and g = g4

f iffCg
- fNg=<y9 ifgC f

1 iff=1[fdZg

€1 ifg =194l € f
— fUg = undef
- T=Ta
—1=1y

C| ga [g4]

fa |fa Ca 9a fa Ca La
[flfiCa ga|fa =a 9a or faCaLla

Table2. Definition of logical deduction in logic functor aik.

Theorem 42 (Completeness/consistency) P, has the following complete-
ness and consistence properties:

The tautology, T, is defined (resp. complete) if the description tautology, T 4,
is defined (resp. complete). The case of the contradiction, 1, is similar w.r.t. to
consistency.

Conjunction M is consistent and complete if the description conjunction My is
consistent and complete. Disjunction Ll is always consistent and complete because
it is undefined.

The deduction T is consistent and complete if the description deduction Cgy
is consistent and complete, and no formula in ASy,, has only 1 model (which is
usually the case).

Lemma 43 (Reducedness) Py (1) is reduced for open sequent families in-
cluded in S = {(A,B) | A C ASqik(r,), B € La}, if Eq is consistent and com-
plete, T4 is defined and complete, | 4 is defined and consistent, and My is totally
defined.

To summarize, logic functor prop can be applied to a logic aik(Lg) if T4 is
defined and complete, |4 is defined and consistent, C4 and My are consistent,

complete, and total for My. In this case, C,,0p(aik(L,)) 18 consistent and complete
when the right argument has no closed formula [g4] among its atoms. This is
satisfying when used in a logical information system, because closed formulas
appear only in object descriptions, and so as left argument of deduction L.

B.2 Valued attributes

Valued attributes are useful for attaching several properties to objects. For in-
stance, a bibliographical reference has several attributes, like author, year,
or title, each of which has a value. We want to express some conditions on
these values, and for this, we consider a logic Ly, whose semantics is in fact
the domain of values for the attributes. Attributes themselves are taken in an
infinite set Attr of distinct symbols. Thus, a logic of valued attributes is built
with the logic functor valattr, whose argument is the logic of values, and that is
defined as follows:

Definition 44 (Syntax) Given a set Attr of attribute name, ASyaiatr iS the
product of Attr with the syntax of some logic:
Asvalattr(L) = {a : f | f €LANac€ AttT‘}

Definition 45 (Semantics) Syuaur s (Iv,FEv) +— (I,E) such that
I=A— IyW{undef} and i = a:v iff i(a) # undef and i(a) v v.

Definition 46 (Implementation) Pt S
(Ev, My, Uy, Ty, Lv) — (E, n,u, T, J_) such that

—a:vCbh:wiff vCywand (a=borvCy Ly),
a:(vNyw)ifa=>b

—a:vMNb:w=<a:ly ifvCy Ly orwCy Ly,
undef otherwise
a:(vUyw)ifa=>b

) S Ja:v ifwCy Ly
a:vlUb:w= bew ifoCy Ly’
undef otherwise

— T and L are undefined.

Theorem 47 (Completeness/consistency) Pyuaur(v) 15 consistent and
complete in &, T, L, M, U w.r-t. Syaaur(v) tf Pv 1s consistent and complete
w.r.t. Sy.

Pyatattr is partially defined in both conjunction and disjunction, but it is
consistent and complete provided that its implementation argument is. Further-
more, the following lemma shows that Pyattr(v) is reduced provided that its
argument is. So, the logic functor prop can be applied to logic functor valattr to
form a complete and consistent logic.

Lemma 48 (Reducedness) Py q4r(v) 18 reduced w.r.t. Syquaser(vy if Py is re-
duced w.r.t. Sy.

B.3 Sums of logics

The sum of two logics allows one to form descriptions/queries about objects that
belong to different domains. Objects from one domain are described by formulas
of a logic L;, while other objects use logic La. A special element ‘7’ represents
the absence of information, and the element ‘#’ represents a contradiction. For
instance, the bibliographical application may be part of a larger knowledge base
whose other parts are described by completely different formulas. Even inside the
bibliographical part, journal articles use facets that are not relevant to conference
article (and vice-versa).

We write sum the logic functor used for constructing the sum of 2 logics.
Note that sum could easily be generalized to arbitrary arities.

Definition 49 (Syntax) AS,um forms the disjoint union of two logics plus for-
mulas 7 and #.

Definition 50 (Semantics) Ssum s (IL,, Er,), {1y, EL,) — (I, =) such that

i':qu ifiGIwaEASLl
i':sz ifiGILzafEASLz
true if f=7

false otherwise

I=IL1&JIL2 andil:f:

We will prove that Pyym(r,,r,) is reduced w.r.t. Seum(r,,,) if Pr, and Pr,
are reduced w.r.t. Sg, and Sy, making the logic functor sum usable inside the
logic functor prop. The development of this logic functor is rather complex but
we could not find simpler but reduced definitions for sum.

Definition 51 (Implementation) Py, is
(EL1 MLy, ULy, TLlJ LL1)7 (ELza MLysULs, TL2) J-Lz) = (Ea mu,T, J—) such that

fEL1g foageASLl
_ng: fEng foageASL2
= true if fCr, L1, or fCr, L1, or f =4 org="?
false otherwise
(fI—IL1g 'iff,QEASLl
f|—|L29 iffagEASLz

- fng =41f if g ="
g if f ="
otherwise

\

Vfl—llq giff,gGASLl

fUr, g4 f,9 € ASL,

iff=#or fCr, L, or fCr, L1,

ifg=# orgCr, 1p, orgCp, 11,

if f=?0rg="?

if fe ASp,,9€ ASr, and T, Cp, fand Tz, Cr, g
! if fe ASp,, g€ ASp, and Ty, Cp, gand T, Cp, f
undef otherwise

- fug = <

VY Y

S L= #

Theorem 52 (Completeness/consistency) Poum(rL,,1,) 5 consistent and
complete in T, T, L, M, U w.rt. Seum(r,,1,) o Pr, and Pr, are consistent
and complete w.r.t. St, and Sr,.

Lemma 53 (Reducedness) Py (L,,1.) 8 reduced w.r.t. Seum(r,,1.) if Pr,
and Pyp, are reduced and consistent in T, L w.r.t. Sy, and Sp,.

B.4 Sets of models

The logic functor set is useful to describe for instance sets of authors or keywords.
Each item is specified by a formula of the logic argument of set. Models of sets
of subformulas are sets of models of subformulas.

Definition 54 (Syntax) AS,.: is the set of finite subsets of formulas of a logic.
Definition 55 (Semantics) S is (I, =e) — (I, =) such that
I=PL) andi=f < Vfe€ f:inM.(fe) #0.

Definition 56 (Implementation) P is
(Ce,Me,Ue, Te, Le) = (E,M,U, T, L) such that for all f,g € ASge(e)

—fEg < Vge€g:3fe €f:fe Lo ge

- fhg=(fuyg)
- f'—lng {feUec ge | fe € f,9e € g, fe Ue ge defined}
. T=

— 1 ={L.}, if L. is defined

Theorem 57 (Completeness/consistency) The deduction T is consistent
(resp. complete) if deduction on elements T, is also consistent (resp. complete).
The tautology T is always defined and complete. The contradiction L is defined
(resp. consistent) if the element contradiction L. is also defined (resp. consis-
tent). The conjunction N is always totally defined, consistent and complete. The
disjuction L is totally defined, complete if the element disjunction . is also

complete, but not consistent in general.

The logic functor set is not reduced but it is still useful as the outermost
functor of a composition.

