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ABSTRACT
One time-consuming task in the development of software
is debugging. Recent work in fault localization crosschecks
traces of correct and failing execution traces, it implicitly
searches for association rules which indicate that executing
a line will most probably cause the whole execution to fail.
This technique has some limitations: it assumes that an er-
ror has a single faulty statement origin, and that lines are
independent. Our research hypothesis is that using associ-
ation rules with more expressive premises, some limitations
can be alleviated. The solution that we propose combines
association rules and formal concept analysis. Our tech-
nique is already usable when the size of the execution traces
is not too large. We conjecture that the technique can be
used to analyze large executions, thanks to the information
contained in the Abstract Syntax Tree.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; H.3.3 [Information Storage and Re-

trieval]: Information Search and Retrieval

General Terms
Measurement, Reliability, Experimentation, Theory

Keywords
Formal Concept Analysis, Association Rules, Data Mining,
Fault Localization, Debugging

1. INTRODUCTION
When a program fails, i.e. when it does not produce the

expected results, a debugging process begins. It corresponds
to the detection and the correction of the responsible faults.
Debugging is a time-consuming task in the development of
software. Our research focuses on the first part of the de-
bugging process, i.e. fault localization. In order to locate
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faults in programs, several approaches to crosscheck traces
exist. Some are based on the differences between a passed
execution and a failed execution [11, 4]. Others use statisti-
cal indicators in order to rank lines of the program [8, 9, 10].
As it has been demonstrated, recent work in fault localiza-
tion that crosschecks traces of correct and failing execution
traces [8], implicitly searches for association rules [1] which
indicate that executing a particular source line will most
probably cause the whole execution to fail [5]. Altougth the
first experiments give good results, Denmat et al. showed
that this technique has some limitations. For example, it
assumes that an error has a single faulty statement origin,
and lines are independent.

Our work is based on the same intuition than other meth-
ods, i.e. a line in traces of failed executions has more chances
to be faulty than a line in traces of passed executions. Our
research hypothesis is that using association rules with more
expressive premises, the limitations highlighted by Denmat
et al. can be alleviated. The solution that we propose
combine association rules [1] and Formal Concept Analysis
(FCA) [7] in order to improve the fault localization. Formal
Concept Analysis (FCA) has already been used for several
software engineering tasks [12]. FCA finds interesting clus-
ters, called concepts, in data sets. The input of FCA is the
same as association rules, a formal context, i.e. a binary
relation describing elements of a set of objects by subsets of
attributes.

In the sequel, Section 2 introduces the methods that are
used to carry out our research. In addition, our first re-
sults are presented [3, 2]. Section 3 discusses the differences
between our approach and existing methods. Section 4 pro-
poses further work with the Abstract Syntaxic Tree (AST)
to improve fault localization, it gives a evaluation plan.

2. FAULT LOCALIZATION WITH DATA
MINING

In this section, our method is briefly described, for more
details see [2]. We use the Trityp program given in Fig-
ure 1 to illustrate our approach. Program Trityp classifies
three segment lengths into four categories: scalene, isosceles,
equilateral, not a triangle. One fault has been introduced
at Line 841. The condition (trityp == 2) is replaced by
(trityp == 3). That fault implies a failure in two cases.
The first case is when trityp is equal to 2. That case is not
taken into account as a particular case and thus it is treated
as a default case, at Lines 89 and 90. The second case is

1http://www.irisa.fr/lande/gotlieb/resources/Javaexp/trityp/



public int Trityp(){

[57] int trityp ;

[58] if ((i == 0) || (j == 0) ||

(k == 0))

[59] trityp = 4 ;

[60] else

[61] {

[62] trityp = 0 ;

[63] if ( i == j)

[64] trityp = trityp + 1 ;

[65] if ( i == k)

[66] trityp = trityp + 2 ;

[67] if ( j == k )

[68] trityp = trityp + 3 ;

[69] if (trityp == 0)

[70] {

[71] if ((i+j <= k) ||

(j+k <= i) ||

(i+k <= j))

[72] trityp = 4 ;

[73] else

[74] trityp = 1 ;

[75] }

[76] else

[77] {

[78] if (trityp > 3)

[79] trityp = 3 ;

[80] else

[81] if ((trityp == 1)

&& (i+j > k))

[82] trityp = 2 ;

[83] else

// FAULTY LINE

[84] if ((trityp == 3)

&& (i+k > j))

[85] trityp = 2 ;

[86] else

[87] if((trityp == 3)

&& (j+k > i))

[88] trityp = 2 ;

[89] else

[90] trityp = 4 ;

[91] }

[92] }

[93] return(trityp) ;}

static public

string conversiontrityp(int i){

[97] switch (i){

[98] case 1:

[99] return "scalen";

[100] case 2:

[101] return "isosceles";

[102] case 3:

[103] return "equilateral";

[104] default:

[105] return "not a ";}}

Figure 1: Source code of the Trityp program.
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Table 1: Example of the trace context for the faulty

version of program Trityp.

when trityp is equal to 3. That case should lead to the
test Line 87, but due to the fault it is first tested at line 84.
Indeed, if the condition (i+k>j) holds, trityp is assigned
to 2. However, (i+k>j) does not always entail (j+k>i),
which is the real condition to test when trityp is equal to
3. Therefore, trityp is assigned to 2 whereas 4 is expected.

The Trace Context and Association Rules.
In order to reason about program executions we use traces

of these executions. Let us assume that each trace contains
at least the executed lines and the verdict of the execution,
PASS if the execution produces the expected results and
FAIL otherwise. This forms the trace context. The objects
of the trace context are the execution traces. The attributes
are all the lines of the program and the two verdicts. Each
trace is described by the executed lines and the verdict of
the execution. Table 1 gives a part of the resulting trace
context for the program of Figure 1. For instance, during
the first execution (e1), the program executes lines 66, 68,
. . . and passes2.

In order to understand the causes of the failed executions,
we use our data mining algorithm [3] which searches for as-
sociation rules. We search for particular association rules
where the premise are sets of lines which are mostly con-
tained in failed execution traces and few passed execution
traces (according to the statistical indicators) and the con-
clusion is the attribute FAIL, i.e. rules that have the form:
line i, line j, · · · → FAIL. The support is the first fil-
tering statistical indicator for the extraction of association
rules. It measures the frequency of a rule. For the fault lo-

2Complete context:
http://www.irisa.fr/LIS/cellier/icfca08/trace context.txt

81 84 87 90 105 66 78 112 · · · 93
r1 × × × × × × × × ×

r2 × × × × × × ×

· · ·

r9 × × ×

Table 2: Example of the rule context for the faulty

program Trityp with minlift = 1.25 and minsup = 1.

Figure 2: Rule lattice associated to the rule context

of Table 2.

calization problem, the value of the threshold of the support,
minsup, indicates the minimum number of failed executions
that should be covered by a rule to be selected. Choosing a
very high threshold, only the most frequent execution paths
are represented in the set of association rules. Choosing a
very low threshold, minsup equals to one object, all execu-
tion paths that are stressed by the test cases are represented
in the set of association rules. The other well-known indi-
cator that we use is lift. In our approach, the lift indicates
how the execution of a set of lines improves the probability
to have a failed execution.

The Rule Context and The Rule Lattice.
The computation of association rules generates a lot of

rules with large premises. Understanding the links that ex-
ist between the rules, for example if a rule is more specific
than another, is difficult to do by hand. The computed as-
sociation rules, however, are partially ordered according to
their premises; indeed L1 → FAIL is more specific than
L2 → FAIL when L1 and L2 are sets of lines such that
L2 ⊂ L1. Therefore, in order to help analyze the rules, we
propose to build a new context, the rule context. The ob-
jects are the association rules; the attributes are lines. Each
association rules is described by the lines of its premise. Ta-
ble 2 shows a part of the rule context for the faulty version
of the Trityp program with the support threshold, minsup,
equal to 1 object and the lift threshold minlift equal to
1.25. The premise of rule1 contains line 81, line 84, line 87,
line 90, ...3 .

The rule lattice is the concept lattice associated with the
rule context. In FCA a concept is defined by a pair (extent,
intent), where extent is the maximal set of objects that have
in their description all attributes of intent, and intent is the

3Complete rule context:
http://www.irisa.fr/LIS/cellier/icfca08/rules context.rl



maximal set of attributes common to the description of all
objects of extent. The concepts of the context can be rep-
resented by a concept lattice where each concept is labelled
by its intent and extent. The lattice allows association rules
to be structured in a way that highlights the partial order-
ing which exists between them. Figure 2 displays the rule
lattice associated with the rule context of Table 24. The
rule lattice is presented with a reduced labelling. In that
representation, a node is a concept and, each attribute and
each object is written only once. Namely, each concept is
labelled by the attributes and the objects that are specific
to it. As a consequence, the premise of a rule r can be com-
puted by collecting the attributes labelling all the concepts
above the concept that is labelled by r. For example, on
Figure 2 the premise of the rule which labels Concept 3 is
line 85, line 84, line 68, line 101, line 81, line 93, line 58,
line 17, plus the other 20 attributes (lines) that label the
top concept (Concept 10).

Interpretation of the Rule Lattice.
Navigating in the rule lattice bottom up first displays rules

that are in general too specific to explain the error. It then
displays rules that are more general and maybe more infor-
mative, and finally displays the top of the lattice which is
labelled by the attributes (line numbers) that are common
to all failed executions.

The bottom concept of the rule lattice in Figure 2 has no
attribute in its labelling. During the debugging session two
paths are proposed to follow. The leftmost path from the
bottom concept, Concept 2, corresponds to the case where
variable trityp is equal to 3 and condition (i+k>j) holds
whereas the condition (j+k>i) does not hold. It leads to
two concepts. The first concept is Concept 7 labelled by
line 66, it is the statement which initializes trityp to 2. The
second concept is Concept 4 labelled by three line numbers:
105, 90, 87. These lines correspond to the case when the
variable trityp is equal to 2 and trityp is assigned to 4
when 2 is expected, i.e. the triangle is labelled as not a
triangle instead of isosceles. Those two concepts are too
specific but by looking at the rule of the concept upwards
(Concept 5), the faulty line is localized. Concept 5 covers
the greatest number of failed executions (support=112) and
has the greatest lift among rules which have support equal
to 112. The same reasoning can be done with the rightmost
concept, Concept 3. It also leads to line 85. It corresponds to
the then branch of the faulty conditional, i.e. the line where
variable trityp is assigned to 2 when 4 is expected. This
example shows that the rule lattice gives relevant clues for
exploring the program. The faulty line is not immediately
highlighted but exploring the lattice bottom up guides the
user in its task to understand the fault.

In addition, the concepts of the rule lattice have two prop-
erties thanks to the statistical indicators related to the trace
lattice. The first property states that the support of rules
that label the concepts of the rule lattice decreases when ex-
ploring the lattice top down. The second property is about
the lift value. If two ordered concepts in the rule lattice are
labelled by rules with the same support value, the lift value
of the rule which labels the more specific concept is greater.
That is why the rule lattice is explored bottom up.

4The lattice was generated with the ToscanaJ tool
(http://toscanaj.sourceforge.net/)

3. DISCUSSION ABOUT PRIOR WORK
This section gives some elements of comparison with re-

lated work (see [2] for more details).
There exists several fault localization methods based on

the differences of execution traces: the union model, the
intersection model, the nearest neighbor [11], Delta debug-
ging [4]. They all assume a single failed execution and sev-
eral passed executions. The first context that we have in-
troduced, the trace context, contains the whole information
about execution traces (see Section 2). In particular, the as-
sociated lattice, the trace lattice, allows programmers to see
in one pass all the differences between traces of the above
mentioned approaches.

The union model is based on trace differences between
the failed execution f and a set of passed executions S:
f −

S

s∈S
s. The intersection model is the complementary.

It computes the features whose absence is discriminant of the
failed execution:

T

s∈S
s − f . The information computed

by these two methods can be found in the trace lattice. In
addition, these methods often compute an empty informa-
tion, namely each time the faulty line belongs to failed and
passed execution traces. For example, a fault in a condition
has a very little chance to be localized.

The nearest neighbor approach and the Delta debugging
approach are based on the difference between the failed ex-
ecution trace, f , and only one passed execution trace, the
nearest one, p: f − p. The traces of the first method con-
tain the executed lines, whereas the second method reasons
on the values of variables of the program during executions.
One of the purposes of those methods is to find a passed
execution relatively similar to the failed execution. In the
trace lattice, the executions that execute the same lines are
clustered in the label of a single concept. Executions that
are near share a large part of their executed lines and label
concepts that are neighbors in the lattice. All the nearest
neighbors are naturally in the trace lattice. In addition, our
method is not restricted to traces that contain line numbers.
Indeed, it can be applied when the traces contain different
kind of information as the variable values.

Jones et al. [8] compute association rules with only one line
in the premise. As already mentioned, Denmat et al. showed
that the method has limitations, because it implicitly as-
sumes that an error has a single faulty statement origin, and
that lines are independent. By using association rules with
more expressive premises, namely with several lines, the lim-
itations mentioned above are alleviated. Firstly, the faults
that can be located are not restricted to faults which have
a single faulty statement origin. Secondly, the dependency
between lines is taken into account. Indeed, dependent lines
are clustered or ordered together.

Jones et al.’s present the result of their analysis to the
user as a coloring of the source code. A red-green gradient
indicates the correlation with failure. Lines that are highly
correlated with failure are colored in red, whereas lines that
are highly not correlated are colored in green. Red lines typ-
ically represents more than 10% of the lines of the program,
whithout identified links between them. Some other statisti-
cal methods [9, 10] also try to rank lines in a total ordering.
With our approach, reading the lattice gives a context of
the fault and not just a sequence of independent lines to
be examined. In addition, the lattice allows the number of
lines to be examined at each step (concept) to be reduced
by structuring the lines. The user who wants to localize a
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Figure 3: Example of a part of an AST.

fault in a program has a background knowledge about the
program, and can use it to explore the rule lattice.

4. FUTURE WORK AND EVALUATION
PLAN

The method that is proposed for fault localization is al-
ready usable at the end of the debugging process. When the
programmer has a rough idea of the location of the faults and
that only a small part of the execution has to be traced, the
current methods to visualize lattices can be directly used.

We conjecture that the technique, with some extensions,
can be used to analyze large executions. At present, the
information is described in terms of lines whereas it is not
always the most relevant information granularity. For ex-
ample, given a basic block all its lines always appear in the
same label. Displaying the location of the basic block would
be more relevant. This will help keeping concept labels to a
readable size. We are currently working on the presentation
of the results to reduce their size and to give more semantics
to them so that they are more tractable by users. We are us-
ing the information that is contained in the Abstract Syntax
Tree (AST) to reduce the size of the intent of the concept.
For instance, Figure 3 shows a part of the AST of a pro-
gram. In that AST, the granularity is: class, method, block
and line. Let us assume that the computation of association
rules generates a rule like: line 1, line 2, line 3, line 4, line 5
→ FAIL, thanks to the AST the rule can be simplified in:
blockC 3 → FAIL. It means that the complete block, i.e.
all lines of the block, is involved in the failure of executions.

Another advantage of using the AST appears during the
computation of association rules. Indeed, the AST can be
seen as a taxonomy, i.e. a hierarchy of the elements of the
program. The algorithm which is used to compute asso-
ciation rules [3], allows taxonomies to be taken into ac-
count. Introducing the AST as a taxonomy permits two
improvements. Firstly, the computation time can be re-
duced. For instance, if the attribute method 1 is not suf-
ficiently frequent, none of the attributes under method 1
(e.g. block 1, block 3, line 1, line 2) can be sufficiently fre-
quent (see [3]) and thus that part of the taxonomy can be
ignored. Secondly, thanks to the taxonomy, new rules can
be generated. For example, let us assume that the attribute
block 3 is a good candidate to be the premise of a rule,
but neither block 4 nor block 5. If no taxonomy is taken
into account, only one rule is generated: block 3 → FAIL.
However, if the AST is taken into account as a taxonomy,
and if the rule blockP 1 → FAIL is relevant with respect
to the statistical indicator thresholds, two rules are com-
puted: block 3 → FAIL and blockP 1 → FAIL. The no-
tation blockP 1 → FAIL means that only a part of the

block 1 is ivolved in the fact that executions fail. In order
to understand the difference between blockC 1 → FAIL and
blockP 1 → FAIL, we can say that blockC 1 is a conjunc-
tion of sub-elements of block 1 in the taxonomy, i.e. block 3
and block 4 and block 5 can imply that the executions fail.
The notation blockP 1 is a disjunction of sub-elements of
block 1 in the taxonomy, i.e. execute block 3 or block 4 or
block 5 can imply that the executions fail. That kind of
disjunctive rules can be interesting when for example the
fault is on a conditionnal statement and not all condition-
nal branchs highlight the faulty behaviour. The interpreta-
tion is not the same when there is only one rule block 3 →

FAIL and when there are two rules block 3 → FAIL and
block 1 → FAIL. In the first case, the fault is very likely
in block 3 whereas in the second case the fault can be in
block 1.

We have experimented on toy Java programs. We are
currently setting up the environment to test the method on
bigger programs, using JTransformer5. We envisage to eval-
uate our method on large programs of the SIR repository [6].
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[3] P. Cellier, S. Ferré, O. Ridoux, and M. Ducassé. A
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