
BLID: an Application of Logical Information

Systems to Bioinformatics ?

Sébastien Ferré and Ross D. King

Department of Computer Science, University of Wales, Aberystwyth,
Penglais, Aberystwyth SY23 3DB, UK

Tel: +44 1970 621922, Fax: +44 1970 622455, {sbf,rdk}@aber.ac.uk

Abstract BLID (Bio-Logical Intelligent Database) is a bioinformatic
system designed to help biologists extract new knowledge from raw
genome data by providing high-level facilities for both data browsing
and analysis. We describe BLID’s novel data browsing system which is
based on the idea of Logical Information Systems. This enables combined
querying and navigation of data in BLID (extracted from public bioinfor-
matic repositories). The browsing language is a logic especially designed
for bioinformatics. It currently includes sequence motifs, taxonomies, and
macromolecule structures, and it is designed to be easily extensible, as
it is composed of reusable components. Navigation is tightly combined
with this logic, and assists users in browsing a genome through a form
of human-computer dialog.

1 Motivation

Over the last decade many organisms have had their genomes fully sequenced.
For example, the 17 chromosomes of the Baker’s Yeast (Saccharomyces Cere-

visiae) have been sequenced, and they code for about 6000 proteins [Gof97].
Yeast is one of the best studied of all organisms, yet about 30% of all its pro-
teins still have not yet any known function. For other organism the percentage
is higher. Therefore, one of most important current problems in biology is to
discover the function of these proteins that are currently unknown, and to bet-
ter understand the function of those that are putatively known. To help do this
biologists require new and powerful tools to browse and compare bioinformatic
databases, and so extract the wealth of information hidden in them.

Many bioinformatic databases are publicly available: e.g., the whole genome
of the Yeast is accessible from MIPS1. Also, many tools are available: e.g., PSI-
BLAST for comparing sequences, ExPASy for computing physical properties of
proteins. However, these data sources and analysis tools are disconnected from
each other, making it very difficult to perform genome-wide analysis. Moreover,
they usually offer limited forms of querying and navigation.

Our aim is to provide biologists with a high-level and integrated interface
for browsing and analyzing a whole genome. To do this we first must build a

? This project is funded by the BBSRC grant 21BEP17028.
1 Munich Information center for Protein Sequences, http://mips.gsf.de/.

secondary database gathering data from different sources, and represent them
in a uniform way. We then must define a querying language that fits the needs
of bioinformatics, and allows browsing capabilities. In this paper, we focus on
the second task. This language can deal with taxonomies of protein functions,
with complex sequence patterns (as in Prosite), and with structures (e.g., the
transcription of proteins from several RNA parts called exons). The need for
complex representations and reasoning mechanisms leads us to the use of log-
ics specialized to bioinformatics. Hence the name of our system, BLID, which
stands for Bio-Logical Intelligent Database. The term “intelligent” refers to the
automated analysis, such as machine learning or data-mining, that will be made
available on top of the querying system in the future.

Section 2 discusses the use of Formal Concept Analysis (FCA) for bio-logical

browsing, and presents Logical Information Systems (LIS) as a theoretical frame-
work for BLID. Section 3 presents a logic for the representation and reasoning
of descriptions and queries. Section 4 explains and illustrates how an automatic
and non-hierarchical navigation can be combined with logical querying. Finally,
Section 5 discusses related works, and Section 6 draws some future directions,
especially w.r.t. analyses.

2 Concept Analysis and Logical Information Systems

Formal Concept Analysis (FCA) is a mathematical theory based on ordered
sets and complete lattices [Wil82]. A context is a triple (O, 2A, d), where O is
a set of objects, A a set of attributes, and d is a mapping from objects to their
description, i.e. a set of attributes. Then, a Galois connection (ext, int) is defined
between sets of objects and sets of attributes. For every set of attributes A, its
extent ext(A) = {o ∈ O | d(o) ⊇ A} is defined as the set of objects whose
description contains A (i.e., the answers of A, when A is seen as a query); and
for every set of objects O, its intent int(O) =

⋂
o∈O

d(o) is defined as the set
of attributes shared by all objects in O. Pairs of related extent and intent,
such as (ext(A), int(ext(A))) or (ext(int(O)), int(O)), are called concepts, and
form together a complete lattice of concepts when ordered by set inclusion on
their extent (or equivalently on their intent). Numerous works have shown the
usefulness of this concept lattice for information retrieval combining querying
and navigation [GMA93,FR03], learning and data-mining [GK00,FR02b].

This applicability of FCA to information retrieval and learning is the basis
for our choice of its use as a theoretical foundation. In BLID, objects are the
ORFs2 of some organism (the Yeast in the rest of this paper). However, simple
sets of attributes are not an expressive enough language for object descriptions
and queries. For example, a protein sequence can not be made an attribute as it
is different for each gene. A set of predefined patterns could be used instead (e.g.,
from Prosite), but information about the gene would be lost, and querying with

2 ORFs (Open Reading Frames) are segments of DNA in chromosomes supposed to be
transcribed and translated into proteins. An ORF coincides with the coding region
of a gene when this protein has directly been observed.

new patterns would no longer be possible. We wish to preserve all information
and to dispose of an open query language.

Logical Concept Analysis (LCA, [FR03]) is an extension of FCA that allows
for the replacement of sets of attributes A ∈ 2A by formulas f ∈ L of a logic. The
formulas need only be ordered by a subsumption relation v, and this must form a
lattice. Logical Information Systems (LIS, [FR03]) are founded on LCA and are
characterized by: (a) an object-centered representation; (b) a tight combination
of querying and navigation; (c) a logical representation of object descriptions,
queries, and navigation links; (d) genericity in the logic for customization.

Section 3 describes the building of a logic that is designed specifically for
BLID. This comprises the definition of the language, as well as a few neces-
sary operations: (1) the subsumption v for ordering formulas according to their
specificity/generality3 (f v g means f is more specific than g), (2) the conjunc-
tion u, and (3) the function feat that maps each object description to a set of
more general formulas, their features. These features play an important role in
navigation, which is presented in Section 4. They are generated mainly automat-
ically by the operation feat , but can also be introduced at any time manually by
users according to their needs.

3 Customized Logic and Querying for Bioinformatics

A logical context is build by creating an object for every ORF of the Yeast’s
genome. Each object/ORF is described by collecting information from vari-
ous data sources (see Section 1). For instance, a partial description of the
ORF YAL003w, incorporating various data types, is (sequences are shortened):

[name is "YAL003w", nb atoms = 3138, mol weight = 22.627e3,

seq is MAS[..]QKL, struc is c(8)a(12)c(3)[..]b(10)c(5)a(25)c,

some exon is [1,80], some exon is [447,987],

’mfc05/04/02: elongation’].

This description combines different concrete domains: text (name), integer
(number of atoms), float (molecular weight), two kinds of sequences (over amino-
acids and 3D structures), segments (exons). The first sequence (attribute seq) is
made of amino-acids, and defines the protein expressed by the ORF. In solution
the protein folds to form a specific 3D-shape. This shape, the tertiary structure,
is still generally unknown, but it is possible to reliably predict an intermedi-
ate structure, the secondary structure [OK00]. This latter structure (attribute
struc) is represented as a sequence composed of 3 kinds of structure element
(helices a, sheets b, and connecting elements called coils c), which can have dif-
ferent lengths (given between brackets after each structure element). The exons
are the gene segments, from which an ORF is composed. The last term in the

3 Notice that the left argument in the subsumption relation is not restricted to be an
object description, but can be any query as well as the right argument. This makes
it much harder to define such logics, but is necessary for navigation.

description is an element of the taxonomy of functional classes, found in MIPS.
(This taxonomy has been used as target classes in machine learning [KKCD00].)

Let the following expression be a query:

(’mfc05: PROTEIN SYNTHESIS’ or ’mfc06: PROTEIN FATE’)

and some exon start >= 2 and nb atoms in 3000..4000 and

seq match N-{P}-[ST]-{P} and not name ends with "w",

where the pattern N-{P}-[ST]-{P} is the Prosite motif PS00001, which is de-
scribed as “N-glycosylation site”. While none of the terms of this query appears
as such in the description of YAL003w, the latter is still an answer of the query.
This means that propositional logic is not expressive enough as a query lan-
guage w.r.t. above description. One could wonder if propositional logic could be
made suitable by adapting the object descriptions. The answer is no, because
some data types have an infinite number of patterns (e.g., numerical intervals,
sequence motifs); and even for data types where this adaptation is possible (e.g.,
finite taxonomy of functional classes), this would imply redundancy and poten-
tial exponential growth of the descriptions.

Our logical language for descriptions and queries can be understood as a
propositional logic, whose atoms are replaced by logical features belonging to
fragments of predicate logic. In fact, this is equivalent to saying that our logic is
a controlled fragment of predicate logic, plus some theory about the considered
data types. For instance, the logical feature seq match N-{P}-[ST]-{P} can be
translated into predicate logic by:

∀Orf : ∃Start, P1, P2, A2, P3, A3, P4, A4 : seq(Orf, Start)∧
somesucc(Start, P1) ∧ aa(P1, ’N’) ∧ succ(P1, P2) ∧ aa(P2, A2)∧
A2 6= ’P’ ∧ succ(P2, P3) ∧ aa(P3, A3) ∧ (A3 = ’S’ ∨A3 = ’T’)∧

succ(P3, P4) ∧ aa(P4, A4) ∧A4 6= ’P’,

given some theory to define the predicate somesucc as the transitive closure of
predicate succ. It should be clear from this example that a customized logic
is preferable to predicate logic as a query language. This is more than mere
syntactic sugar because the use of specialized logics enables us to make the
computation of subsumption decidable, simpler, and more efficient (remembering
that subsumption needs to be applied between queries as well).

Building such a logic from scratch would be a tedious task because of the
number of different concrete domains. Moreover, this would make it difficult to
extend, or to reuse, parts of existing customized logics. In order to favor modu-
larity and re-usability we apply the principles of logic functors [FR02a], which
enable us to build complex logics by simple composition of smaller logic compo-
nents, the logic functors. Essentially, a logic functor is a function from logics to
logics, where logics are modeled as abstract types encapsulating both represen-
tation and reasoning. Most logic functors are reused from previous applications,
and a few others, specific to bioinformatics, are created (e.g., for protein se-
quences and Prosite motifs). Due to limited space, we do not give in this paper
formal definitions for the language, the semantics, and the subsumption of logic
functors. For those interested, they are available for a few functors in [FR02a].

Figure 1 shows the way the logic functors are composed as a tree. Each node
is a logic functor that is applied to the logics composed from its sub-nodes. At the
root of the tree we recognize the propositional parts of the logic. The remainder of
the tree describes the logic of features that replace the usual atoms. Features are
used to represent both object descriptions and query terms. They are essentially
conjunctions of terms taken in concrete domains. The functor Sum allows us to
easily combine any number of concrete domains, and facilitate extensibility of
the logic. Finally, the functor AIK (named after the epistemic logic All I Know)
enables to apply the Closed World Assumption on object descriptions [FR02a].

Pair
Float

Attr(mol_weight,...)
Interval

Pair
Int

Attr(nb_atoms,...)
Interval

Pair Attr(name,gene,...)
String

Pair Attr(seq)
AAMotif

Pair Attr(struc)
SSMotif

Some Pair Attr(exon)
IntSegment

Attr()

SumProp AIK Conj

Figure1. The BLID’s logic represented as a tree of logic functors.

The logical context of chromosome A contains 108 objects (ORFs), from
which 4867 features are extracted. This makes an average of 161 features per
object, and 3.5 objects per feature (feature sharing). As this context is extended
to the whole genome (6141 ORFs), the number of features per object remains
constant, and the sharing increases, which results in a total number of features
of around 60,000. In such a large context, it becomes intractable to compute
the concept lattice. However, it is important to provide users with navigation as
they cannot remember by heart the function names or the Prosite motifs, and
also because, given some previous query, it is difficult to guess relevant features
to refine it. Section 4 develops an interactive and incremental way of building
such queries: logical navigation.

4 Logical Navigation

The idea of navigation is to help users build their queries, and to enable them
to form overviews on the data. In the domain of concept analysis, navigation
is usually realized by a direct browsing of the concept lattice, or some part of
it [GMA93]. However, this lattice becomes rapidly very large, and we prefer to

realize navigation by a form of human-computer dialog [FR03], as this gives
more freedom for controlling the amount of answers.

To navigate from one query/concept to another, users specify query incre-

ments with exclamatory commands, such as ! name ends with "w", and they
get suggestions for increments with the interrogative command “?”. These sug-
gestions are found among the features that have been automatically extracted
from object descriptions by the logical operation feat . For example, in the context
made of all ORFs of chromosome A, this command gives the following result:

[1] ? What is there ?

100 ! struc 100 ORFs with known 2nd structure !

101 ! ’MIPS function’ 101 ORFs with function !

108 ? name What kind of name ?

108 ? some exon What kind of exon ?

108 ? seq What kind of sequence ?

108 ? mol_weight in .. What kind of mol. weight ?

108 ? nb_atoms in .. What kind of nb. of atoms ?

108 object(s) There are 108 selected ORFs.

The system returns not only exclamatory suggestions (query increments),
but also interrogative suggestions. These can be understood as “questions as
answers to questions”, and their purpose is to provide more concise answers,
as without them many exclamatory suggestions would possibly replace each in-
terrogative suggestion. These are called view increments, because they allow
to focus on one kind of features. For instance, the user can select the com-
mand “? nb atoms in ..” in order to focus on the number of atoms:

[2] ? nb_atoms in .. What kind of nb. of atoms ?

5 ! nb_atoms = 2**** 5 ORFs with nb. of atoms in [20000,30000[!

22 ! nb_atoms = 1**** 22 ORFs with nb. of atoms in [10000,20000[!

81 ! nb_atoms = 0**** 81 ORFs with nb. of atoms in [0,10000[!

108 object(s) There are 108 selected ORFs.

The formula nb atoms = 2****, which means the number of atoms is com-
prised between 20,000 and 29,999, is a feature automatically generated by the
functor Int to make the navigation more progressive than a flat set of values.
This makes the answers look like a histogram, as values at the left of increments
are the number of objects they would select (support). With query languages
such as SQL or Prolog, one would either get a flat list of all ORFs along with
their exact number of atoms, or have to ask an aggregative query for all relevant
intervals; which are difficult to know without prior knowledge of the range and
the scale of the attribute (which can change according to the working query).

Coming back to command [1], we see that the feature ’MIPS function’ ap-
pears as a query increment, because it is not supported by all objects. However,
we would expect it to be as well a view increment, focusing on the functions of
ORFs. In fact, exclamatory suggestions can often be combined with an interrog-
ative command.

[2] !? -l -i ’MIPS function’ Select ORFs with function ! What kind of

functions ?

22 ! ’mfc01: METABOLISM’

3 ! ’mfc02: ENERGY’ -> ’mfc01: METABOLISM’

[..]

39 ! ’mfc99: UNCLASSIFIED PROTEINS’

101 object(s) There are 101 selected ORFs.

The 101 objects are selected and functional classes are listed in lexicograph-
ical order (option -l). This shows that about 40% of ORFs are unclassified.
Option -i displays contextual implications between suggested increments. This
enables the user to discover that every ORF in chromosome A that has an en-
ergetic function, has also a metabolic function.

5 Related Work

Our logics are similar to Description Logics (DL, [Bra79]), in the sense that for-
mulas are variable-free, and their semantics is based on object sets rather than
on truth values. Our attributes are equivalent to functional roles, and our oper-
ator some corresponds to the existential quantification. The two key differences
are the modularity of logic functors, and our focus on concrete domains. Further-
more, it would be possible to define a logic functor implementing a description
logic in which atoms could be replaced by formulas of concrete domains; as it has
been done with propositional logic. Both DL and our logics could be translated
into predicate logic, which is more expressive; however they are more readable,
and allow for logical navigation thanks to their compatibility with Logical Con-
cept Analysis. We are also developing in parallel a querying interface in predicate
logic (using Prolog) to offer more expressive power to expert users, but at the
cost that no navigation is provided.

A project related to ours is GIMS [Cor01], which aims at providing querying
and analysis facilities over a genome database. In this project, simple queries can
be built incrementally by selecting attributes and predefined value patterns in
menus. Canned queries are made available for more complex queries and analysis.
We differ in that we have made the choice to give users an open language,
knowing that navigation will be available to guide users; even if they have no
prior knowledge. It is difficult, if not impossible, to forecast all types of queries
that may be of interest in the future.

6 Future Work

Our future work concentrates on providing analysis facilities in addition to query-
ing and navigation. The kind of analysis we are mostly interested in is to dis-
cover by machine learning techniques rules that predict the biological functions
of ORFs from genomic data (i.e., functional genomics [KKCD00]). A first step
will be to integrate existing machine learning techniques in BLID. Propositional
learners (e.g., C4.5, concept analysis [GK00]) expect kind of attribute contexts,
which can easily be extracted from the BLID’s logical context by making each
feature (e.g., sequence motifs) a Boolean attribute. Inductive Logic Programing

(ILP, [MR94]) expects a representation of examples in predicate logic, which can
always be obtained by translating them from our specialized logics.

Ultimately, BLID could be made an Inductive Database [dR02] by unifying
various machine learning and data-mining techniques under a unified inductive

query language. For instance, such a language could allow to ask for “all most
general rules predicting whether a protein is involved in metabolism according
to its sequence”. Such a high-level language would be very helpful to biologists
and bioinformaticians, who strive to relate genomic data to biological functions.

A LIS executable for Unix/Linux can be freely downloaded
at http://users.aber.ac.uk/sbf/camelis.

References

[Bra79] R. J. Brachman. On the epistemological status of semantic nets. In N. V.
Findler, editor, Associative Networks: Representation of Knowledge and Use
of Knowledge by Examples. Academic Press, New York, 1979.

[Cor01] M. Cornell et al. GIMS – a data warehouse for storage and analysis of
genome sequence and functional data. In IEEE Int. Symp. on Bioinformat-
ics and Bioengineering, pages 15–22. IEEE Press, 2001.

[dR02] L. de Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69–77, December 2002.

[FR02a] S. Ferré and O. Ridoux. A framework for developing embeddable customized
logics. In A. Pettorossi, editor, Int. Work. Logic-based Program Synthesis
and Transformation, LNCS 2372, pages 191–215. Springer, 2002.

[FR02b] S. Ferré and O. Ridoux. The use of associative concepts in the incremental
building of a logical context. In G. Angelova U. Priss, D. Corbett, editor, Int.
Conf. Conceptual Structures, LNCS 2393, pages 299–313. Springer, 2002.

[FR03] S. Ferré and O. Ridoux. An introduction to logical information systems.
Information Processing & Management, 2003. To appear.

[GK00] B. Ganter and S. Kuznetsov. Formalizing hypotheses with concepts. In
G. Mineau and B. Ganter, editors, Int. Conf. Conceptual Structures, LNCS
1867, pages 342–356. Springer, 2000.

[GMA93] R. Godin, R. Missaoui, and A. April. Experimental comparison of navi-
gation in a Galois lattice with conventional information retrieval methods.
International Journal of Man-Machine Studies, 38(5):747–767, 1993.

[Gof97] A. Goffeau et al. The Yeast genome directory. Nature, 387:1–105, 1997.
[KKCD00] R. D. King, A. Karwath, A. Clare, and L. Dehaspe. Genome scale prediction

of protein functional class from sequence using data mining. In R. Ramakr-
ishnan et al, editor, ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining, pages 384–389. ACM, 2000.

[MR94] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19,20:629–679, 1994.

[OK00] M. Ouali and R. D. King. Cascaded multiple classifiers for secondary struc-
ture prediction. Prot. Sci, 9:1162–1176, 2000.

[Wil82] R. Wille. Ordered Sets, chapter Restructuring lattice theory: an approach
based on hierarchies of concepts, pages 445–470. Reidel, 1982.

