
Arbitrary Relations in Formal Concept Analysis

and Logical Information Systems

Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

Irisa/Université de Rennes 1
Campus de Beaulieu, 35042 Rennes cedex, France

Email: Firstname.Lastname@irisa.fr

Abstract A logical view of formal concept analysis considers attributes
of a formal context as unary predicates. In a first part, we propose an
augmented definition that handles binary relations between objects. A
Galois connection is defined on augmented contexts. It represents con-
cept inheritance as usual, but also relations between concepts. As usual,
labeling operators are also defined. In particular, concepts and relations
are visible and labeled in a single structure. In a second part, we show
how relations can be used for navigating in an augmented concept lat-
tice. This part augments the theory of Logical Information Systems. An
implementation is sketched, and first experimental results are presented.

1 Motivation

Previous works have shown how FCA can serve as a basis for navigating in a set of
objects [1,2,3], automated learning [4], and other operations like querying, data-
mining, and context updating [5]. All these works show the versatility of FCA
and of its basic schema of a Galois connection between sets of objects and their
descriptions. The Galois connection yields a concept lattice structure that is the
formal foundation for navigating, infering, approximating, etc. However in most
applications of FCA, and Logical Information Systems (LIS) [5] in particular,
objects are described in isolation; no explicit relations between objects can be
described. Still, many applications are better modelled by arbitrary relations
between objects rather than by atomic objects only: e.g., in software engineering
and geographical information systems.

Power context families [6] introduce arbitrary relations in formal contexts
but not in the concept lattice of objects, which is used as a basis for navigat-
ing, querying, and datamining. So, we want to extend the definitions of Galois
connection, intent, concept lattice, and labeling to a power context family as a
whole, instead to each context of the family in isolation, while focusing on con-
cepts whose extent is a set of objects. Another way to say it is that we want to
incorporate relations in the description of objects, and relation concept lattices
in the object concept lattice. A direct application will be to augment navigation
in LIS by allowing to follow relations of the formal context between concepts in
addition to hierarchical relations.

Though this work applies equally well to standard FCA, we express it in
terms of logical concept analysis [7] because intentions of relations will take the
form of quantified formulas, which fits better a framework in which logic formulas
are native.

The structure of the sequel is as follows. Section 2 presents other attempts to
introduce relations in FCA, and logical formalisms that have inspired this work.
Section 3 describes our proposal. Section 4 presents its application to navigation
in a logical information system, and Section 5 sketches its implementation as a
file system, and an example.

2 Related Work

The main attempt to incorporate relations in FCA is the power context family [6].
It consists of a vector of formal contexts (K1, . . . , Kn) (n ≥ 2) with Ki =
(Oi,Ai, Ii) (i = 1, . . . , n) such that Oi ⊆ (O1)

i. It encompasses well arbitrary
relations at the context level, including n-ary relations. However, a different
concept lattice is generated for each context. On the contrary, we seek to define
a single concept lattice, where the concepts combine information about objects,
the relations they have, the objects accessible from these relations, and so on.
This is because we use concept lattices as a navigation structure in order to
retrieve sets of objects depending on their properties (including relations).

The handling of arbitrary relations in conceptual graphs [8] and description
logics [9] is just natural, since this is precisely what they are built for. However
in both formalisms, concepts are given a priori, and not generated from a formal
context. A conceptual graph and an ABox (set of objects and relations labeled
by logical properties) can be used to build a power context family, but both
formalisms lack the ability to exhibit collections of objects as FCA do.

Conceptual graphs have been combined with FCA by defining the concept
and relation types as the concepts of a power context family [10].

Description logics are languages of unary predicates whose most relevant
feature for this article is that they handle relations (called roles in the realm of
description logics) via quantifications. The theory of description logic tells how to
express classes and test whether a class entails another or whether an individual
belongs to a class. Prediger and Stumme [11] have used description logic to
defined a logical scale, and build a formal context over a relational database, but
this context contains no relation. Baader et al. has done some work combining
FCA and description logics [12]. Besides the fact they have different objectives
than ours, a key difference is that they use relations inside the representation
of each object (description logic concepts), whereas we here consider explicit
relations between objects of a context. In the terms of description logics, their
context is a TBox (set of terminological definitions), whereas our context is an
ABox.

In this paper we adopt the choice of description logics to consider only binary
relations, knowing this is not really a restriction as n-ary relations can always
be converted to binary relations through reification.

2

3 Relations in Logical Concept Analysis

3.1 Adding Relations to the Formal Context

Firstly, we define an object context that is identical to logical contexts previously
defined in LCA [7].

Definition 1 (object context).
An object context is a triple K1 = (O,L1, d1), where:

– O is a finite set of objects,
– L1 = (L1,t1,⊥1) is a 0-sup-semilattice. L1 can be tought as a logic :

elements of L1 are called formulas, t1 is called disjunction, ⊥1 is the
neutral element for disjunction (i.e., false) and the order v1, given by
x v1 y ⇔ x t1 y = y, is called subsumption ordering.

– d1 ∈ O → L1 is a mapping from objects to their logical description.

Lemma 1. Let K1 be an object context. The pair of mappings (ext1, int1), de-
fined by

ext1(f1) = {o ∈ O | d1(o) v1 f1} for f1 ∈ L1

int1(O) =
⊔

1{d1(o) | o ∈ O} for O ⊆ O

is a Galois connection between P(O) and L1: O ⊆ ext1(f1) ⇔ int1(O) v1 f1.

Note 1.
⊔

1 is well-defined as O is finite.

Remark that int1(∅) is ⊥1. Secondly, we define a relation context that logically
describes binary relations between objects of an object context.

Definition 2 (relation context). Let O be a set of objects, as in Definition 1.
A relation context is a triple (R,L2, d2), where:

– R is a binary relation, i.e. a set of pairs in O × O, equiped with two map-
pings start and end, s.t. start((o, o′)) = o and end((o, o′)) = o′. Moreover,
R is closed w.r.t. an inverse operation −1 such that for every relation r ∈ R,
start(r−1) = end(r) and end(r−1) = start(r).

– L2 = (L2,t2,⊥2, .
−1) is a 0-sup-semilattice. L2 can be thougth as a logic: el-

ements of L2 are formulas, t2 is called disjunction, ⊥2 is the neutral element
for disjunction (i.e., false) and the order v2, given by x v2 y ⇔ x t2 y = y
is called subsumption ordering. It must support an inverse operation (−1)
over formulas reflecting the inverse of relations (see below), and such that
for every f2, g2 ∈ L2, the following axioms are satisfied:

• (f−1
2)−1 ≡2 f2 (where f ≡2 g =def f v2 g ∧ g v2 f)

• f2 v2 g2 ⇔ f−1
2 v2 g−1

2 (v2 is invariant to reading direction).

– d2 ∈ R → L2 is a mapping from binary relations to logical formulas that is
compatible with the inverse operation on relations, i.e., d2(r

−1) ≡2 d2(r)
−1,

for all r ∈ R.

3

m
a
le

fe
m

a
le

d
ea

d
o
ld

g
ro

w
n
-u

p
y
o
u
n
g

3
0
s

4
0
s

9
0
s

n
o
n
e

C
a
rl

B
a
rk

s
D

o
n

R
o
sa

T
a
li
a
fe

rr
o

O
sb

o
rn

e
W

a
lt

D
is
n
ey

downy x x x x

fergus x x x x x

matilda x x x x x

scrooge x x x x

hortense x x x x x

quackmore x x x x x

unknown x x

della x x x x x x

donald x x x

huey x x x x x

dewey x x x x x

louie x x x x x

h
u
sb

a
n
d

m
o
th

er

(downy, fergus) x

(hortense, quackmore) x

(della, unknown) x

(hortense, downy) x

(scrooge, downy) x

(mathilda, downy) x

(donald, hortense) x

(della, hortense) x

(huey, della) x

(dewey, della) x

(louie, della) x

Figure1. Object and relation context for the Duck’s family example.

Example 1. Figure 1 represents the object and relation context for the members
of Donald Duck’s family. This example takes place in classical FCA, which is
a special case of LCA where L1 = P(A1),⊥1 = ∅ and t1 = ∩, so that
d1(downy) = {female, dead, 90s, Don Rosa}. L2 is defined in a similar fashion.
Note that according to Definition 2 the second table should actually be closed
by −1 to hold a relation context.

Lemma 2. Let K2 be a relation context. The pair of mappings (ext2, int2), de-
fined by

ext2(f2) = {r ∈ R | d2(r) v2 f2} for f2 ∈ L2

int2(R) =
⊔

2{d2(r) | r ∈ R} for R ⊆ R

is a Galois connection between P(R) and L2: R ⊆ ext2(f2) ⇔ int2(R) v2 f2.

Note 2.
⊔

2 is well-defined as O is finite.

The idea is now to combine both contexts in a context K, and both logics
in a logic L similar to description logics in that relations can be used to retrieve
objects depending on their relationships to other objects.

Definition 3 (combined context and logic). Let K1 be an object context,
and K2 be a relation context. The combined context is the pair (K1, K2) gath-
ering objects, relations, and their logical descriptions. The combined logic L is
the couple (L,v), where:

– L −→ > | L1 | ∃L2.L

4

– f v g ⇔

true if g = >
f v1 g if f, g ∈ L1

(f2 v2 g2) ∧ (f ′ v g′) if f = ∃f2.f
′, g = ∃g2.g

′ (where f ′, g′ ∈ L)
false otherwise

Note 3. Formulas of L can be expressed in first-order predicate logic in the
following manner. L1 and L are sets of unary predicates, and L2 is a set of binary
predicates such that ∃f2.f is defined by (∃f2.f)(x) ⇔ ∃x′.(f2(x, x′) ∧ f(x)).

Note 4. For convenience, we extend the subsumption v to sets of formu-
las G, F ⊆ L by defining G v f ⇐⇒ ∃g ∈ G : g v f , and G v F ⇐⇒
∀f ∈ F : G v f .

We now prove there exists a Galois connection between sets of objects and
sets of formulas from L, and we give a definition of it as a couple (ext , int).

Definition 4 (extent). Let K and L be the context and logic combined from K1

and K2. The extent in K of a set of formulas F ⊆ L is a set of objects defined
by ext(F) =

⋂

f∈F ext ′(f), where

ext ′(f) =

O if f = >
ext1(f) if f ∈ L1

{start(r) | r ∈ ext2(f2), end(r) ∈ ext ′(f ′)} if f = ∃f2.f
′.

Definition 5 (intent). Let K and L be the context and logic combined from K1

and K2. The intent in K of a set of objects O ⊆ O is defined by

int(O) = {f ∈ L | O ⊆ ext ′(f)}.

Theorem 1 (relational Galois connection). Given a combined context K,
the pair of mappings (ext , int) defined above is a Galois connection between
(P(O),⊆) and (P(L),⊇), i.e. for every O ⊆ O and F ⊆ L:

O ⊆ ext(F) ⇔ int(O) ⊇ F .

Then it is well known from FCA [13] that a complete concept lattice can be
defined.

Theorem 2 (concept lattice). Let K be a combined context. Let the set
of concepts C be defined as the set of all pairs (O, F) ∈ P(O) × P(L) such
that O = ext(F) and F = int(O): O is called the extent, and F is called the
intent. The partial ordering (C,≤), where (O, F) ≤ (O′, F ′) ⇐⇒ O ⊆ O′, is a
complete lattice, the concept lattice, as a direct consequence of Theorem 1.

It is important here to note that concept intents gather properties about ob-
jects as formulas in L1, properties about existing relations as formulas like ∃f2.>,
and recursively properties about related objects as formulas like ∃f2.f

′.
Now, a problem with Definition 5 is that it suggests that intents can be

computed only by testing every formula in L. In the following we show that

5

approximations of these intents can be effectively computed, and this to an
arbitrary accuracy.

Firstly, we define L(n) as the subset of L containing every formula that have
no more than n times the existential quantifier ∃. This corresponds to restricting
the depth of relation paths to n.

Definition 6 (depth-n intent). Let K and L be the context and logic combined
from K1 and K2. The depth-n intent int(n)(O) in K of a set of objects O ⊆ O
is defined by

int(0)(O) = int1(O)
int(n + 1)(O) = int(n)(O)

∪ {∃int2(R).f ′ | ∃R ⊆ R, O = start(R), int(n)(end (R)) v f ′}.

This definition is well-founded, and because of the finiteness of objects and
relations every approximate intent is also finite. However they can represent an
infinite set of formulas thanks to subsumption v in L: if f /∈ int(n)(O) but
int(n)(O) v f , then f implicitly belongs to the intent of O at depth n.

Theorem 3 (depth-n relational Galois connection). Given a combined
context K and a depth n, the pair of mappings (ext , int(n)) is a Galois connec-
tion between (P(O),⊆) and (P(L(n)),v), i.e. for every O ⊆ O and F ⊆ L(n),
O ⊆ ext(F) ⇔ int(n)(O) v F .

Proof. We split proof in three parts.

1. Firstly, we prove that for all n ∈ N, O ⊆ O and f ∈ L(n), O ⊆ ext ′(f) ⇒
int(n)(O) v f . The proof works by recurrence on the depth n, and by
induction on the syntax of formulas. The case where n = 0 follows from
Lemma 1, so we only show the general case n + 1, when f = ∃f2.f

′, i.e.,
f ∈ L(n + 1), and so f ′ ∈ L(n).
O ⊆ ext ′(∃f2.f

′) =⇒ O ⊆ {start(r) | r ∈ ext2(f2), end(r) ∈ ext ′(f ′)}
=⇒ ∀o ∈ O : ∃r ∈ ext2(f2) : o = start(r), end (r) ∈ ext ′(f ′)
=⇒ ∃R ⊆ ext2(f2) : O = start(R), end(R) ⊆ ext ′(f ′)
=⇒ ∃R ⊆ R : O = start(R), R ⊆ ext2(f2), end(R) ⊆ ext ′(f ′)
=⇒ ∃R ⊆ R : O = start(R), int2(R) v2 f2, int(n)(end (R)) v f ′

(Lemma 2, recurrence hypothesis because f ′ ∈ L(n))
=⇒ ∃R ⊆ R : O = start(R), int(n)(end(R)) v f ′, ∃int2(R).f ′ v ∃f2.f

′

=⇒ ∃g ∈ int(n + 1)(O) : g v f (g = ∃int2(R).f ′)
=⇒ int(n + 1)(O) v f .

2. Secondly, we prove in the same way the reciprocal lemma, i.e. int(n)(O) v
f ⇒ O ⊆ ext ′(f).
Suppose int(n + 1)(O) v ∃f2.f

′

Either int(n)(O) v ∃f2.f
′ =⇒ O ⊆ ext ′(∃f2.f

′) (recurrence hypothesis)
or {∃int2(R).f ′ | R ⊆ R, O = start(R), int(n)(end(R)) v f ′} v ∃f2.f

′

=⇒ ∃R ⊆ R : O = start(R), int(n)(end(R)) v f ′, ∃int2(R).f ′ v ∃f2.f
′

=⇒ ∃R ⊆ R : O = start(R), int2(R) v2 f2, int(end (R)) v f ′

=⇒ ∃R ⊆ R : O = start(R), R ⊆ ext2(f2), end(R) ⊆ ext ′(f ′)

6

(Lemma 2, recurrence hypothesis because f ′ ∈ L(n))
=⇒ ∀o ∈ O : ∃r ∈ ext2(f2) : o = start(r), end (r) ∈ ext ′(f ′)
=⇒ O ⊆ ext ′(∃f2.f

′) =⇒ O ⊆ ext ′(f).
3. Finally, we prove the theorem for all n ∈ N, O ⊆ O and f ∈ L(n).

O ⊆ ext(F) ⇐⇒ ∀f ∈ F : O ⊆ ext ′(f) ⇐⇒ ∀f ∈ F : int(n)(O) v f (first
and second part of this proof) ⇐⇒ int(n)(O) v F . ut

This last result entails that for every depth n a Galois connection is defined,
and so, a depth-n concept lattice can be derived from it. We complete this by
showing that when the depth tends to infinity the depth-n intent is equivalent
to the full intent of Definition 5.

Theorem 4 (limit relational Galois connection). Let K be a combined
context. For every set of objects O, when the depth n tends to infinity, the set of
formulas in L that are subsumed by the depth-n intent tends to be equal to the
full intent int(O), i.e.

∀O ⊆ O : ∀f ∈ L : f ∈ int(O) ⇐⇒ ∃n ∈ N : int(n)(O) v f.

Proof. f ∈ int(O) ⇐⇒ O ⊆ ext ′(f) ⇐⇒ O ⊆ ext({f})
⇐⇒ ∃n ∈ N : int(n)(O) v {f} (Theorem 3 because f ∈ L(n))
⇐⇒ ∃n ∈ N : int(n)(O) v f . ut

The exact full intents and concept lattice cannot be computed, especially if
there is a cycle between objects related by ∃f2.f

′ formulas. But this is not really
a problem since Theorems 3 and 4 show that we have a series of finite depth-n
intents and related concept lattices, which can be made as close as possible to
full intents and concept lattice.

3.2 Adding Relations to the Concept Lattice Labeling

All the information contained in the binary relation context is present in the
concept lattice C, and can be made explicit by adding a relational labeling to
the concept lattice, in addition to the usual labeling by objects and formulas.

Definition 7 (labeling). Let C be a concept lattice. The labeling of C by for-
mulas, noted µ, and by objects, noted γ, are defined as follows:

µ ∈ L → C, µ(f) = (ext({f}), int(ext({f}))),
γ ∈ O → C, γ(o) = (ext(int({o})), int({o})).

It is well-known that a concept lattice contains the same information as the
object context from which it derives. We show now that the concept lattice
derived from a combined context also contains its relational information.

A way of showing that C contains in some way the relation concept lattice C2

is to build an order-preserving mapping from the latter to pairs of concepts of
the former. So we go on defining a squared version of µ, and γ, applying to
pairs of concepts.

7

Definition 8 (relational labeling). Let c, c′ ∈ C. We define:
µ2 ∈ L2 → C2, µ2(f2) = (µ(∃f2.>), µ(∃f−1

2 .>)),
γ2 ∈ R → C2, γ2(r) = (γ(start(r)), γ(end (r))).

This implies that in addition to subsumption links between concepts (≤),
there are relation links between concepts (either individual relations between
object-labeled concepts, or relational formulas between formula-labeled con-
cepts). Moreover, most properties on labeling functions are kept [13,5]. In the
following, the ordering on pairs of concepts is defined by: (c1, c

′
1) ≤ (c2, c

′
2)

iff c1 ≤ c2 and c′1 ≤ c′2; and the inverse of a pair of concept is defined by:
(c, c′)−1 = (c′, c).

There exists an order-preserving mapping from the concept lattice of the rela-
tion context K2 into the concept lattice of the combined context K = (K1, K2).

Theorem 5 (order-preserving mapping). The mapping ϕ ∈ C2 → C2,
ϕ(c2) = µ2(int2(c2)) is order-preserving, i.e:

∀c2, c
′
2 ∈ C2 : c2 ≤ c′2 ⇒ ϕ(c2) ≤ ϕ(c′2).

Corollary 1. A corollary of Theorem 5 is that the ordering between formula-
labels is preserved: ∀f2, f

′
2 ∈ L2, µ2(f2) ≤ µ2(f

′
2) ⇒ µ2(f2) ≤ µ2(f ′

2).

So, each time two relation labels are ordered in the relation con-
cept lattice C2, they are so in the combined concept lattice C. How-
ever the reverse does not hold. For example, consider the two rela-
tions parent and grand-parent, whose inverse are respectively child and
grand-child. It is true that anyone who has a grand-parent also has a parent
(µ(∃grand-parent.>) ≤ µ(∃parent .>)); reciprocally, anyone who has a grand-
child also has a child (µ(∃grand-child.>) ≤ µ(∃child .>)). This implies the la-
bel grand-parent/grand-child is lower than the label parent/child in the
combined concept lattice. But this is certainly not the case in the relation con-
cept lattice as a relation can never have both properties parent/child and
grand-parent/grand-child. In conclusion the combined concept lattice can
add useful implications compared to the relation concept lattice.

Example 2. Figure 2 shows the depth-1 concept lattice built from the combined
context of Example 1, and its labeling by attributes, objects, and relational
properties ∃r.>. Grey circles represent the concepts introduced by relations,
dashed arrows and italic labels stand for labeling by relations.

It shows that every mother has a husband, and reciprocally that every mar-
ried female is a mother. Hence, every duck who has a mother also has a father.

4 Querying and Navigating with Relations in LIS

In previous work about Logical Information Systems (LIS) [5], querying and
navigation are defined on an object context K1 = (O,L1, d1). Queries are for-
mulas in L1, and for every query q ∈ L1, ext1(q) is the set of answers to the

8

Figure2. Concept lattice labeled by formulas, objects and some relations

query. In order to help users building queries, even without knowledge about
both the context and the logic, a set of navigation links can be computed for
any query q in order to refine it. Navigation links are not searched in the whole
space of logical formulas. They are searched in a subset of L1 which we call navi-
gation features, feat1(K1), that depends on the context and is user-defined. The
smaller and simpler formulas are in this subset, the simpler and more efficient
the navigation is.

The set of navigation links dirs(q) that can refine a query q is defined by:

dirs(q) = Maxv1
{x ∈ feat1(K1) | ∅ (ext1(q u1 x) (ext1(q)}.

In order to have an efficient and progressive navigation, links computed by
dirs(q) must carry information, ext1(q u1 x) (ext1(q), not lead to a dead-
end, ∅ (ext1(qu1 x), and be as general as possible w.r.t. subsumption ordering:
Maxv1

.

Each link x enables the user to move from the query q to the query q u1 x.
Finally individual objects have to be found in some place. Hence the definition
of local objects for any query q:

locals(q) = ext1(q) \
⋃

x∈dirs(q)

ext1(x).

9

Note that the definition of dirs relies on a conjunction operation u1 on
queries. However, such a connective was not required on the development of
logical concept analysis. Similarly, navigation is supposed to start from the top
element of the logic, true or >1, whereas it is the bottom element, false or ⊥1

that is required in logical concept analysis. This is not a contradiction, but this
must be examined in the actual definition of a querying and navigation system.

In the following we present the relational extension of querying and naviga-
tion in formal contexts.

4.1 Querying: Query Language and Extent

In order to have boolean operators in the query language Lq , we extend the
combined logic L in the following way:

Lq → > | ⊥ | Lq ∧ Lq | Lq ∨ Lq | ¬Lq | L1 | ∃L2.Lq.

It is not necessary to extend the subsumption v to the query language as
will be made clear later. However we do need to define the extent of queries,
given some context K = (K1, K2) in order to answer queries.

Definition 9 (query extent). Let K be a combined context from contexts K1

and K2.
extq(>) = O extq(q1 ∧ q2) = extq(q1) ∩ extq(q2)
extq(⊥) = ∅ extq(q1 ∨ q2) = extq(q1) ∪ extq(q2)
extq(f1 ∈ L1) = ext1(f1) extq(¬q) = O \ extq(q)
extq(∃f2.q) = {start(r) | r ∈ ext2(f2), end(r) ∈ extq(q)}

The last 2 lines are taken from Definition 4, given that in these cases, queries
are in the logic L.

4.2 Features: Useful Features for Navigation

In this section we show that not all formulas in Lq need to be considered as
candidates for navigation links. This leads to a definition of feats q(K) that is
only a small subset of the full query language itself.

Firstly we define X(q) as the set of possible navigation links for some query q,
i.e., formulas satisfying the “strictly refining and relevant” property:

X(q) = {x ∈ Lq | ∅ (extq(q ∧ x) (extq(q)}.

This definition differs from the definition of dirs by the fact that the selection
of subsumption-maximal elements is not applied, and that the full language Lq

is considered instead of a subset of features feat q(K). Our purpose is precisely
to characterize the latter.

Lemma 3 (elimination of connectives). For every query q ∈ Lq,
q1 ∧ q2 ∈ X(q) ⇒ q1 ∈ X(q) ∨ q2 ∈ X(q), > /∈ X(q)
q1 ∨ q2 ∈ X(q) ⇒ q1 ∈ X(q) ∨ q2 ∈ X(q), ⊥ /∈ X(q)
¬q1 ∈ X(q) ⇒ q1 ∈ X(q)

10

This indicates that boolean connectors can all be ignored in features. For ex-
ample, consider the proposition about conjunction, and let q1∧q2 ∈ X(q). Either
both q1 and q2 are in X(q), and so q1∧q2 can be obtained by successively select-
ing q1 and q2; or only one subquery, say q1, is in X(q), which means that q1 ∧ q2

is in fact equivalent to q1 for navigation (they reach the same concept).

Lemma 4. For all queries q, q′ ∈ Lq, and all relation formula x2 ∈ L2,

1. ∃x2.q
′ ∈ X(q) ⇔ q′ ∈ X(∃x−1

2 .q),
2. ∃x2.q

′ ∈ X(q) ⇒ extq(q ∧ ∃x2.>) 6= ∅.

Lemma 4 allows to recursively decompose the search for relational links. It
shows this can be achieved by first looking for ∃x2.> formulas that make the
new query non-empty (second proposition), and then by replacing the > by
navigation links among the images by x2 of objects in q (first proposition).

Hence, the set of useful navigation features for the language Lq is as follows.

Definition 10 (features).
feat q(K) = feat1(K1) ∪ {∃x2.x | x2 ∈ feat2(K2), x ∈ featq(K)}

This shows that the useful part of the query language for navigation is in-
cluded in L, even if general queries do not belong to L. Feature sets of logics L1

and L2, feat1(K1) and feat2(K2) are supposed to be defined with their respective
contexts. Note that if the query language in contexts K1 and K2 is based on
propositional calculus, variants of Lemma 3 will hold; feat1(K1) and feat2(K2)
are just the atomic formulas of the logic of their context.

4.3 Navigation: Links and Local Objects, Selection and Traversal

We can now define a version of dirs that is extended with relations.

Definition 11 (Navigation links).

dirs(q) = Maxv{x ∈ feat q(K) | ∅ (extq(q ∧ x) (extq(q)}.

There is no problem with using the subsumption v because feat q(K) ⊆ L.

Local objects are defined as usual: an object is local if it not accessible from
any navigation link. Navigation links in a combined relation and object context
are of two kinds: object formulas, and relation formulas. Object formulas are used
in logical queries, but relation formulas can be used either in logical queries, or
as paths to go through relations. In each case following a link transforms the
current query q as follows (assignement is denoted by :=).

1. A link x1 ∈ L1 is used as usual to refine a query: q := q ∧ x1. For instance,
property old can be such a refinement.

2. A link ∃x2.x ∈ L2 can also be used for refining a query, except that the
refinement applies to objects in relation to current objects instead of the
current objects themselves: q := q∧∃x2.x. For instance, property ∃parent .old
can be used to select individuals that have an old parent.

11

3. A link ∃x2.x ∈ L2 also means that relations of type x2 can be traversed to
reach objects of type x: q := x ∧ ∃x−1

2 .q. Only those objects of type x that
can be reached from q through x2 are considered. For instance, property
∃parent .old can be used to select the old parents of the curently selected
individuals.

Cases 1 and 2 are kinds of conceptual navigation (from some concept to a
subconcept), whereas case 3 is a kind of relational navigation (from some concept
to a related concept).

One may want to consider a query like ∃x2.(x ∧ x′) (consider, say,
∃parent .(old ∧ loving) for old and loving parents). Lemma 3 shows that it is not
necessary to produce navigation links of this form. However, if we successively se-
lect links ∃x2.x and ∃x2.x

′, then the resulting query is ∃x2.x∧∃x2.x
′, which is not

equivalent to ∃x2.(x∧ x′). This is where relational navigation comes in for help:
first, traverse x2 (q := ∃x−1

2 .>), then select x (q := ∃x−1
2 .> ∧ x), and select x′

(q := ∃x−1
2 .> ∧ x ∧ x′), and finally, traverse x−1

2 (q := ∃x2.(∃x−1
2 .> ∧ x ∧ x′) ≡

∃x2.(x ∧ x′)).

5 Implementation as a File System

Though a LIS can be implemented as a stand-alone application, a parallel be-
tween LIS notions and file system notions makes it natural to implement it as a
file system. This is the purpose of LISFS (LIS File System [14]) which is a file
system that offers the operations of a LIS at the operating system level. This
is achieved by considering files as objects, directories as formulas and paths as
conjunctions of directories. The root directory (/ under UNIX) plays the role of
the > formula. Thus, the absolute name of a file stands as its logical description.

Commands have essentially the same effects as UNIX shell commands, w.r.t.
this change. For instance, the shell command cd a changes the current query q
to q ∧ a, and the command ls is used to list the navigation links (computed by
dirs) and the local objects (computed by objects) of the current query.

5.1 Adding Arbitrary Relations to LISFS

From a file-system point of view, arbitrary relations can somewhat be understood
as symbolic links. As a matter of fact, having a relation r between two objects
o and o′ declares that o and o′ are linked and gives a description r to the link.
Regular UNIX links are just a special case where r can only take up one value:
the “synonym” relation.

Relations also extend the notion of symbolic link in that they can play two
roles in navigation. Indeed, they can be used for a conceptual navigation, in
which case they behave as normal properties, and for relational navigation. In
the case of relational navigation, traversing a navigation link in LISFS is the
counterpart of following a symbolic link in UNIX, with the additional benefit
that links in LISFS have an inverse and apply to sets of objects.

12

[1]# ls
total 12
1 first_appearance:40s/

1 first_appearance:none/
1 old/

2 grown-up/
3 husband<true/

3 husband>true/
3 mother<true/
3 young/

4 female/
5 dead/

5 first_appearance:30s/
5 first_appearance:90s/
8 male/

8 mother>true/
11 creator:/

[2]# cd male; ls
total 8

1 first_appearance:40s/
1 first_appearance:none/
1 grown-up/

1 old/
2 dead/

2 first_appearance:90s/
3 husband<true/

3 young/
4 first_appearance:30s/
5 mother>true/

7 creator:/
[3]# cd husband<true; ls

total 3
1 first_appearance:none/

1 husband<creator:osborne/
1 husband<creator:taliaferro/
1 husband<first_appearance:30s/

1 husband<grown-up/
2 creator:/

2 dead/
2 first_appearance:90s/
2 husband<creator:carl_barks/

2 husband<dead/
2 husband<first_appearance:90s/

[4]# cd !creator: ; ls
total 1

unknown
[5]# cat unknown
The husband of Della Duck

[6]# cd husband<< ; ls
total 1

della

Figure3. A Running Example with the Duck Family Context

Regarding navigation and querying, the following concrete syntax is adopted
(q denotes the current query):

– cd r>x selects objects whose image by r verifies x: q := q ∧ ∃r.x,
– cd r<x selects objects whose antecedent by r verifies x: q := q ∧ ∃r−1.x,
– cd r>> traverses relation r: q := ∃r−1.q,
– cd r<< traverses relation r−1: q := ∃r.q.

We use a slightly modified version of the shell command ln to create a relation
between two files that takes care of the name of the relation. E.g., we write ln

r o o’ to add a relation r between o and o′.

5.2 Example

Figure 3 shows LISFS augmented with arbitrary relations in action. Navigation
and querying take place in the Duck family context presented in Figure 1.

Starting from the > formula, command 1 asks for available navigation links.
The number of objects in the current query and in its possible refinements are
given. Quantified formulas appear under their concrete syntax: mother>true for
∃mother .>, mother<true for ∃mother−1.>, etc.

From there, command 2 lets the user select the males from the members
of the Duck family by setting the current query to > ∧ male ≡ male . New
increments are listed. Then, command 3 restricts the query to married males.
Thus, increments concerning relation husband−1 become more precise: two ducks
have a wife that is dead (∃husband−1.dead , shown as husband<dead) and so on.

13

Moreover, three ducks in the family satisfy the current query, among whom
only two of them have a creator. This seems odd, so the user asks to see ducks
that does not have a creator with command 4 (! denotes negation). This duck
is unknown. As objects are files in LISFS, they have a content which command 5

lists. Here, the user sees that unknown is supposed the be the husband of Della.
To verify that this really holds in the context, the user then traverses rela-
tion husband−1 with command 6.

6 Conclusion

In this paper we have shown that relations can be smoothly introduced not only
in formal contexts as is done by power context families, but also in the definition
of intents, and hence in concept lattices and their labeling. The advantage over
previous approaches is that information from both object and relation contexts
is combined in a single concept lattice. This enables a natural but powerful ex-
tension of LIS navigation and querying [5]. Relational features express properties
over objects w.r.t. their related objects, and can be used both for refining a set
of objects, as usual, and for traversing some relation from a set of objects to
another. This relational navigation has been implemented as an extension to an
existing LIS file system (LISFS).

Although relations in contexts are arbitrary, including non tree-like struc-
tures, our query language allows only tree-like queries, as in description logics,
but unlike conceptual graphs. We plan to extend the query language so as to
remove this tree-like constraint. This could be done by inserting variables in
queries, like in ∃r1.∃r2.X : f ′ ∧ ∃r3.∃r4.X where X must refer to a same object
in both occurrences. We also plan to extend the logic so as to handle more com-
plex path patterns (e.g., regular expressions), such as ∃parent+.famous meaning
“has a famous ancestor”.

References

1. Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in
a galois lattice with conventional information retrieval methods. International
Journal of Man-Machine Studies 38 (1993) 747–767

2. Lindig, C.: Concept. In Köhler, J., Giunchiglia, F., Green, C., Walther, C., eds.:
IJCAI95 Workshop on Formal Approaches to the Reuse of Plans, Proofs, and
Programs, Montreal, Canada (1995)

3. Ferré, S., Ridoux, O.: A file system based on concept analysis. In Savig, Y., ed.: Int.
Conf. Rules and Objects in Databases. Volume 1861 of LNCS., Imperial College,
London, UK, Springer (2000) 1033–1047

4. Ganter, B., Kuznetsov, S.: Formalizing hypotheses with concepts. In Mineau, G.,
Ganter, B., eds.: Int. Conf. Conceptual Structures. Number 1867 in Lecture Notes
in Computer Science, Darmstadt, Germany, Springer (2000) 342–356

5. Ferré, S., Ridoux, O.: An introduction to logical information systems. Information
Processing & Management 40 (2004) 383–419

14

6. Wille, R.: Conceptual graphs and formal concept analysis. In: Int. Conf. Con-
ceptual Structures. Volume 1257 of LNCS., Seattle, Washington, USA, Springer
(1997) 290–303

7. Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In
Mineau, G., Ganter, B., eds.: Int. Conf. Conceptual Structures. Number 1867 in
Lecture Notes in Computer Science, Darmstadt, Germany, Springer (2000) 371–384

8. Sowa, J.F.: Conceptual structures. Information processing in man and machine.
Addison-Wesley, Reading, MA, USA (1984)

9. Brachman, R.J.: On the epistemological status of semantic nets. In Findler, N.V.,
ed.: Associative Networks: Representation of Knowledge and Use of Knowledge by
Examples. Academic Press, New York, USA (1979)

10. Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by concep-
tual graphs and formal concept analysis. In Tepfenhart, W.M., Cyre, W.R., eds.:
Int. Conf. Conceptual Structures. Volume 1640 of LNCS., Blacksburg, Virginia,
USA, Springer (1999) 423–441

11. Prediger, S., Stumme, G.: Theory-driven logical scaling. In: International Work-
shop on Description Logics. Volume 22., Sweden (1999)

12. Baader, F., Sertkaya, B.: Applying formal concept analysis to description logics.
In Eklund, P.W., ed.: Int. Conf. Formal Concept Analysis. Volume 2961 of LNCS.,
Sydney, Australia, Springer (2004) 261–286

13. Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations.
Springer (1999)

14. Padioleau, Y., Ridoux, O.: A logic file system. In: USENIX Annual Technical
Conference, General Track, San Antonio, Texas, USA, USENIX (2003) 99–112

15

