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Abstract

Logical Information Systems (LIS) use logic in a uniform way to describe their
contents, to query it, to navigate through it, to analyze it, and to maintain it.
They can be given an abstract specification that does not depend on the choice
of a particular logic, and concrete instances can be obtained by instantiating this
specification with a particular logic. In fact, a logic plays in a LIS the role of a
schema in data-bases. We present the principles of logical information systems, the
constraints they impose on the expression of logics, and hints for their effective
implementation.

Key words: information systems, information search and retrieval, query
formulation, representation languages, deduction and theorem proving.

1 Introduction

Several researchers have recognized the name problem in information sys-
tems (Gifford, Jouvelot, Sheldon, and O’Toole, 1991; Gopal and Manber,
1999). In these systems, things are given names and very often a thing has
only a few names (frequently only one). For instance, in the most rudimen-
tary information systems, like hierarchical file systems, a thing is a file and its
name is the only path that leads from the root to the file.

1 This work was achieved at Irisa (Rennes, France), and funded by a scholarship
from CNRS and Région Bretagne.
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The problem with having only a few names is that they must be very carefully
chosen to tackle for all future usages of the things. Experience shows that this
is impossible to do for a wide range of future usages. For instance, there is no
hierarchical organization of many pieces of software that fits all the needs of
software development: programming, testing, documenting, debugging, etc. A
non-IT example is a cook-book. Cook-books are often organized following the
course of a meal, and it is thus very difficult to search for a recipe according
to other criteria, like the (un)availability of a oven, or a diet constraint. Note
that even electronic cook-books often follow this structure. Electronic or not,
the classical solution to this problem is to search in the whole information
system/document to find the desired thing. However, this is only a partial
solution because query language used in search engines are often too restricted.

There have been several attempts for solving the name problem. We mention
here only two of them that we have selected because they illustrate the dif-
ficulty of the enterprise, SFS (Gifford, Jouvelot, Sheldon, and O’Toole, 1991)
and HAC (Gopal and Manber, 1999). They have in common to combine hier-
archical naming and boolean querying.

Hierarchical naming is frequently found in computer tools: e.g., file systems,
book-marks, or menus. In this model, searching is done by navigating in a
classification structure that is often built and maintained manually. Navigating
implies a notion of place; being in a place, and going to another place. A notion
of neighborhood helps specifying the “other places” relatively to the place one
is currently in. Many applications require that a place is a place to read from
as well as a place to write on.

Boolean querying is often found in information servers such as search engines
on the Web (e.g., Google). In this model, searching is done by using queries,
generally expressed in a kind of propositional logic. A well-recognized difficulty
of this model is the necessity of having a good knowledge of the terminology
used in the information system, and of having a precise idea of what is searched
for. However, it is easier to recognize an object than to describe it, and the
necessity of expressing a query can repel casual users.

Then, which search model should be preferred: navigation or querying? In fact,
it depends on situations, and it is sometimes needed to use both of them in the
same search. For instance, someone could wish to begin his search by a query
and then refine it with navigation. Hybrid systems combining hierarchical
classification and boolean querying have been proposed in the domain of file
systems:

— SFS (Semantic File System, Gifford, Jouvelot, Sheldon, and O’Toole, 1991)
extends the hierarchical model of usual file systems with virtual directories that
correspond to queries. These queries concern file properties that are automat-
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ically extracted by transducers, and are expressed with valued attributes. So,
two organization and storage methods coexist: the standard hierarchy that
gives a name to files, and virtual directories that enable associative searches
on intrinsic file properties. Unfortunately, these two methods cannot be com-
bined freely in general. In particular, virtual directories are not places to write
into.

— HAC (Hierarchy And Content, Gopal and Manber, 1999) also uses queries
to build directories based on file contents, but these directories are integrated
in the hierarchy. This enables to combine hierarchy and contents in searches.
However, users are allowed to move a file in a directory even if it does not
satisfy the query associated to the directory, which results in consistency prob-
lems.

The drawback of these hybrid systems is their lack of consistency. Indeed,
they have two search models that are not tightly connected, which makes it
difficult to switch from one model to the other, and to combine both in the
same search.

We propose a scheme called Logical Information Systems (LIS) in which
queries are really places to read from and to write into. The scheme is flexible
in the sense that the neighborhood relation is very dense (i.e., things have
many names). It incurs no inconsistency or dangling links problem, because
the neighborhood relation is managed automatically. Finally, it supports both
querying and navigation, and arbitrary combinations of both because names
and queries belong to the same language (Godin, Missaoui, and April, 1993;
Lindig, 1995). This scheme is based on a variant of Formal Concept Analy-
sis (Barbut and Monjardet, 1970; Wille, 1982; Ganter and Wille, 1999) called
Logical Concept Analysis (Ferré and Ridoux, 2000).

The article is organized as follows. Section 2 presents the principles of Logical
Concept Analysis, and then Section 3 shows how it can be used for navigating
and querying. How to create and update the content of a LIS is presented in
Section 4. These sections refer to a logic passed as a parameter which is to be
used for naming, querying and navigating. Section 5 presents other functions
of a LIS like automated updating, data-mining and learning. Section 6 explains
how all this can be done practically. Finally, conclusions and perspectives are
given in Section 7.

2 Logical Concept Analysis

The origin of this work is the search for flexible organizations for managing,
updating, querying, or navigating in data. In this context, several roles are
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played by possibly different people: e.g., designer, administrator, and end-
user. Hierarchical organizations are not flexible, and updating, querying and
navigation are difficult to conciliate (see for instance the view update prob-
lem in data-bases (Keller, 1985)). The literature shows that Formal Concept
Analysis (FCA, Ganter and Wille, 1999) is a good candidate for supporting
querying and navigation.

The basis of FCA is a formal context that associates attributes to objects;
objects are the things of the introduction of this article, and the collection
of attributes associated to one thing/object is its name. FCA has received
attention for its application in many domains such as in software engineer-
ing (Snelting, 1998; Lindig, 1995; Krone and Snelting, 1994). The interest of
FCA as a navigation tool in general has also been recognized (Godin, Mis-
saoui, and April, 1993; Lindig, 1995; Vogt and Wille, 1994). However, we feel
it is not flexible enough as far as the naming of things is concerned, and the
literature on FCA insists more on analyzing a given context than on managing
evolving contexts. In this section, we present an extension to FCA that allows
for a richer name language.

The variety of application domains brings the need for more sophisticated
formal contexts than the mere presence/absence of attributes. For instance,
many application domains use numerical values (e.g., lengths, prices, ages),
and the need to express negation and disjunction is often felt. In a much more
specialized scope, it is imaginable to use the type of software components
as search keys (Di Cosmo, 1995). So, one cannot fix a priori limits to the
sophistication of attributes. Several enrichments to the attribute structure
have been proposed: e.g., many-valued attributes (Ganter and Wille, 1999),
and first-order terms (Chaudron and Maille, 1998). However, not a single
extended FCA framework covers all the concrete domains, and no one can
pretend covering all the concrete domains to come.

For the same reasons, logic has already been proposed, in information re-
trieval, for expressing object descriptions and queries (van Rijsbergen, 1986;
Meghini, Sebastiani, Straccia, and Thanos, 1993). In this setting, the relevance
of an object to a query relies on logical inference. As with Description Log-
ics (Brachman, 1979; Napoli, 1997), we use an exact relevance relation, called
subsumption, as some applications may need precise retrieval mechanisms; but
uncertain relevance has also been considered (Crestani and Lalmas, 2001). See
also a discussion on the management of uncertainty in the conclusion of this
article. So, we propose to construct a more general framework for concept anal-
ysis, Logical Concept Analysis (LCA), in which attributes are replaced by the
formulas of a logic . Moreover, we make this logic a parameter of LCA. This
allows for instantiating the general framework by merely filling in a dedicated
logic.
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2.1 Logic

Logical Concept Analysis (LCA) is a generalization of FCA, where sets of
attributes are replaced by formulas of an (almost) arbitrary logic. More details
about the relation with previous works in FCA can be found in (Ferré and
Ridoux, 2000), and all proofs can be found in (Ferré and Ridoux, 1999).

We first define what we call a logic in this article.

Definition 1 (logic) A logic is a 6-tuple (L,v,u,t,>,⊥), where

• L is the language of formulas,
• v is the subsumption relation (pre-order over L),
• u and t are respectively conjunction and disjunction (binary operations),
• > and ⊥ are respectively tautology and contradiction (constant formulas).

Such a logic must form a lattice (Davey and Priestley, 1990), whose order
is derived in the usual way from the pre-order v, and such that u and t are
respectively the infimum (greatest lower bound) and the supremum (least upper
bound), and > and ⊥ are respectively the top and the bottom. The notation L
can be used as a name for the logic lattice.

If f v g and g v f , f and g are called logically equivalent, which is denoted
as f ≡ g; we consider them as different representations of the same equivalence
class, and in fact we will consider that elements of L are the equivalence
classes. We just assume, for practical reasons, that operations v, u, and t
are computable. Some semantics is usually used to define a logic, but we delay
the discussion about it until Section 6.2 as we do not need it here. Just keep in
mind that formulas are here interpreted by sets of individuals or objects (like
in Description Logics), rather than by truth values (like in first-order logic).
In order to clarify things, here is an example of a logic.

Example 2 (Propositional logic) An example of logic that can be used in
LCA is propositional logic. On the syntactic side, the set of propositions P
contains atomic propositions (taken in a set A), formulas 0 and 1, and is
closed under binary connectives ∧ and ∨, and unary connective ¬. We say that
a proposition p is subsumed by another one q if ¬p ∨ q is a valid proposition
(p ² q). Then, (P ,²,∧,∨, 1, 0) satisfies Definition 1, because it is the well-
known boolean algebra.

This example shows that though the interface of the logic is limited to the
tuple (L,v,u,t,>,⊥), an actual logic may have more connectives: ¬ in this
example.

We now define the main notions and results of LCA: context, concept lattice,
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and contextualized subsumption.

2.2 Logical context and Galois connection

A logical context plays the role of tables in a database, as it gathers the
knowledge one has about objects of interest (e.g., files, bibliographic references,
recipes).

Definition 3 (logical context) A logical context (context for short) is a
triple K = (O,L, d) where:

• O is a finite set of objects,
• L is a logic (as in Definition 1),
• d is a mapping from O to L that describes each object by a formula.

Then, we define two mappings between sets of objects (2O) and formulas (L)
in a context K, that we prove to be a Galois connection (Davey and Priestley,
1990). A first mapping τK connects each formula f to its instances, i.e., ob-
jects whose description is subsumed by f ; τK(f) is the extent of f . A second
mapping σK connects each set of objects O ⊆ O to the most precise formula
subsuming all descriptions of objects in O; σK(O) is the intent of O.

Definition 4 (mappings τK and σK) Let K = (O,L, d) be a context,
O ⊆ O, and f ∈ L,

• σK (σ for short) : 2O → L, σK(O) :=
⊔

o∈O d(o)
• τK (τ for short) : L → 2O, τK(f) := {o ∈ O | d(o) v f}

Lemma 5 (Galois connection) Let K be a context. The pair (σK , τK) is a
Galois connection because

∀O ⊆ O, f ∈ L : σK(O) v f ⇐⇒ O ⊆ τK(f).

In the following, we will drop the subscript K when possible.

Example 6 (Triv) An example context will illustrate the rest of our de-
velopment on LCA. Context KTriv is deliberately small and simple as it is
aimed at illustrating theoretical notions, and not at showing a realistic ap-
plication of LCA. The logic used in this context is propositional logic P
(see Example 2) with a set of atomic propositions A = {a, b, c}. We de-
fine context KTriv by (OTriv,P , dTriv), where OTriv = {x, y, z}, and where
dTriv = {x 7→ a, y 7→ b, z 7→ c ∧ (a ∨ b)}.

A Logical Information System (LIS) is essentially a logical context equipped
with navigation and management tools. Formulas serve as queries, and extents
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as answers via mapping τK . This is only a rough description. We will see in
Section 3 that a LIS answer can also be a formula. For illustration purpose,
we consider a bibliographical information system.

Example 7 (Bib) Let Bib = (O,Pv, d) be a logical context where objects are
bibliographical references, whose description are composed of a type (e.g., ar-
ticle, in-proceedings), a list of authors, a title, and a year of publication.
The logic Pv, used for expressing descriptions, is similar to the proposi-
tional logic P (see Example 2) except that atoms are replaced by valued at-
tributes in the form attr value: attr is the name of an attribute (e.g., author,
year), and value expresses a logical property about the value of the at-
tribute. For instance, numerical attributes can be described in an interval logic
(e.g., year in 1990..2000, year in 1995), and string attributes can be de-
scribed by a string (e.g., title is "Logical Information Systems") or a
substring (e.g., title contains "System"). We now show as an example the
logical description of our article on LCA (Ferré and Ridoux, 2000).

type is "InProceedings"

∧ author is "Sébastien Ferré, Olivier Ridoux"

∧ title is "A Logical Generalization of Formal Concept Analysis"

∧ year in 2000

In the sequel of this article, the context Bib refers to all ICCS publications
until the year 1999, which consists in 209 objects.

2.3 Concept lattice and labelling

A formal concept, central notion of LCA, is the association of a set of objects
and of a formula, which is stable for the Galois connection (σ, τ).

Definition 8 (formal concept) In a context K = (O,L, d), a formal con-
cept (concept for short) is a pair c = (O, f) where O ⊆ O, and f ∈ L, such
that σK(O) ≡ f and τK(f) = O.

The set of objects O is the concept extent (written ext(c)), whereas formula f
is its intent (written int(c)).

We write =c for concept equality. The set of all concepts that can be built in
a context K is denoted by CK , and is partially ordered by ≤c defined below.
The fundamental theorem of LCA is that 〈CK ;≤c〉 forms a lattice, which is
finite, hence complete.

Definition 9 (partial order ≤c) Let c1 and c2 be in CK,
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c1 ≤
c c2 ⇐⇒ ext(c1) ⊆ ext(c2)

(could be defined equivalently by int(c1) v int(c2)).

Theorem 10 (concept lattice) Let K be a context. The partially ordered
set 〈CK ;≤c〉 is a finite lattice, whose supremum and infimum are as follows
for every set of indices J :

•
∨c

j∈J(Oj, fj) =
c (τK(σK(

⋃

j∈J Oj)),tj∈Jfj)
•

∧c
j∈J(Oj, fj) =

c (
⋂

j∈J Oj, σK(τK(uj∈Jfj)))

extent intent

{x,y,z}

{x,z} {y,z}

{z}{x} {y}

{}

c /\ (a \/ b) ba

a \/ (c /\ b) b \/ (c /\ a)

a \/ b

00

1 2 3

4 5

6

concept

(a) (b)

4 5

1 2 3

0

6

a c b

a \/ c b \/ c

a \/ b

a \/ b \/ c

0

concept formula

Figure 1. The concept lattice of context KTriv (a) and its labelling (b).

Example 11 (Triv) Figure 1.(a) represents the Hasse diagram of the concept
lattice of context KTriv (introduced in Example 6). Concepts are represented by
a number and a box containing their extent on the left, and their intent on the
right. The higher concepts are placed in the diagram the greater they are for
partial order ≤c. It can be observed that the concept lattice is not isomorphic
to the power-set lattice of objects 〈2O;⊆〉. Indeed, set {x, y} is not the extent
of any concept, because τ(σ({x, y})) = τ(a ∨ b) = {x, y, z}.

To make the concept lattice more readable, it is possible to label it with
formulas and objects. Mapping µ labels with a formula f the concept whose
extent is the extent of f . Mapping γ labels with an object o the concept whose
intent is the intent of o, that is its description.

Definition 12 (labelling) Let K = (O,L, d) be a context, o ∈ O,
and f ∈ L,

• µK (µ for short) : L → CK , ext(µK(f)) = τK(f)
• γK (γ for short) : O → CK , int(γK(o)) ≡ d(o).

The interesting thing with this labelling is that it enables to retrieve all data
of the context: an object o satisfies (v) a formula f in some context K if and
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only if the concept labelled with o is below (≤c) the concept labelled with f
in the concept lattice of K.

Lemma 13 (labelling) Under the conditions of Definition 12,

d(o) v f ⇐⇒ γK(o) ≤c µK(f) .

Example 14 (Triv) Figure 1.(b) represents the same concept lattice as Fig-
ure 1.(a) (see also Example 11), but its concepts are decorated with the µ
labelling instead of with the extents and intents. Formulas of the form

∨

A
where A ⊆ A (

∨

∅ ≡ 0) are placed on the right of the concept that they label.
For instance, concept 1 is labelled by formula a (i.e., µ(a) =c 1). In Fig-
ure 1.(b) we have restricted labels to be formulas of the form

∨

A, but it is
only to have a finite number of labels that are not all in the formal context.

2.4 Contextualized subsumption

In most contexts, it is possible to order some properties, although they are not
comparable by v. For instance, if in some context every bird flies, then we can
say that property “bird” is contextually subsumed by the property “fly”, al-
though we have not necessarily bird v fly in L. We introduce a contextualized
subsumption as a generalization of implications between attributes that are
used in standard CA for knowledge acquisition processes (Ganter and Wille,
1999; Snelting, 1998).

Definition 15 (contextualized subsumption) Let K = (O,L, d) be a
context, and f, g ∈ L. One says that f is contextually subsumed by g in
context K, which is noted f vK g, if and only if τK(f) ⊆ τK(g), i.e., if every
object that satisfies f also satisfies g.

Every arc of vK is called a contextualized implication.

Contextualized subsumption has a close connection with the concept lattice.

Theorem 16 (contextualized subsumption vs. concept lattice)
Let K be a context. The partially ordered set of formulas 〈L;vK〉, derived
in the usual way from the pre-order vK, is isomorphic to the concept lat-
tice 〈CK ;≤c〉. The morphism from formulas to concepts is µK (Definition 12);
and the morphism from concepts to formulas is int (Definition 8).

A context plays the role of a theory extending the subsumption relation and
enabling new entailments. Contextualized subsumption can also be seen as a
means for extracting knowledge from contexts. Thus, two kinds of knowledge
can be extracted: knowledge about context by deduction, and knowledge on
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the domain from which the context is extracted by induction (e.g., generalizing
“every bird flies” from bird vK fly).

Example 17 (Triv) As the contextualized subsumption is isomorphic to the
order on concepts (Theorem 16), it is possible to use the labelled concept lattice
(see Figure 1.(b)) to study contextualized subsumption in context KTriv. For
instance, as concept 2 is smaller than concept 5 relation c vKTriv

b∨ c stands,
which is already true in P. More generally, it can be seen that all valid sub-
sumptions in P are retained in contextualized subsumption. Examination of
the labelled concept lattice shows that the context adds new valid entailments
between formulas: e.g., c vKTriv

a ∨ b, because 2 ≤c 4 .

In the following sections, formal contexts will be used to formalize the content
of an information system, and the concept lattice (or equivalently, the contex-
tualized subsumption) will be used to organize things. It is the contextualized
equivalence relation that gives so many names to things.

2.5 Feature Context

Logical languages contain usually infinitely many formulas, whose complexity
is unbounded. This is a problem for algorithms that perform a search among
formulas (e.g., for automated learning, Ganter and Kuznetsov, 2001). For ef-
ficiency and readability of results, we restrict the search space of formulas to
a finite subset F ⊆ L whose elements are called features. Features differ from
attributes of standard formal contexts in three ways:

(1) features belong to a fixed logical language and so, have a semantics,
(2) features are automatically ordered according to the subsumption v, and
(3) a newly introduced feature can have a non-empty extent.

It is possible to extract a formal context, with F as the set of attributes,
from the logical context: we call it the feature context. This context is not
intended to be actually build from the logical context, but it is defined to
allow reasoning about the logical context with a coarser grain than the full
logic.

Definition 18 (feature context) Let K = (O, 〈L;v〉, d) be a logical
context, and FK ⊆ L be a finite set of features, that may depend
on K. The feature context of K is the formal context KF = (O, FK , IKF

),
where IKF

= {(o, x) ∈ O × FK | d(o) v x}. We also define description fea-
tures for any object o by DKF

(o) =↑F d(o), where for any f ∈ L,
↑F f = {x ∈ F | f v x}.
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The content of FK is not strictly determined but depends on the context K.
It should contain simple formulas subsuming logical descriptions (in K), fre-
quently used formulas (in queries), and more generally, every formulas that
users expect to see in answers. In fact, FK acts as the vocabulary that a LIS
uses in its answers.

Example 19 (Triv) From boolean descriptions (like in context KTriv, see
Example 6) one can consider as features the clauses (i.e., disjunctions) of
the conjunctive normal form of the descriptions. Thus, the features of con-
text KTriv would be FKTriv

= {a, b, c, a ∨ b}, and relation IKF
would be

{(x, a), (x, a ∨ b), (y, b), (y, a ∨ b), (z, c), (z, a ∨ b)}.

From the description given in Example 7, one can extract the following features
(amongst others): author contains "Ridoux", year in 1950..2000.

concept : extension intention

{x,y,z} {a \/ b}

{z}{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, c, a \/ b}

{c, a \/ b}

Figure 2. The feature concepts of context KTriv

Feature concepts can be derived from a feature context as for ordinary logical
contexts. See for instance Figure 2 for the lattice of feature concepts of context
KTriv.

Lemma 20 relates the Galois connections of logical and feature contexts.

Lemma 20 (logical vs. feature Galois connections)
Let O ⊆ O, X ⊆ F ,

• σKF
(O) =↑F σK(O)

• τKF
(X) = τK(uX).

Theorem 21 shows the existence of a mapping that approximates a logical
concept in a feature concept and then defines equivalence classes among logical
concepts.

Theorem 21 (approximation of concept) Let (O, f) ∈ CK be a logical
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concept. The feature concept generated from O (intent: σKF
(O)) and the fea-

ture concept generated from f (extent: τKF
(↑F f)) are in fact the same feature

concept (τKF
(↑F f), ↑F f), the smallest concept in CKF

whose extent is larger
than or equal to O.

2.6 Sub-context

It is often useful to reason on a sub-context by restricting the set of objects
and the set of features. For instance, the need for views has been recognized
in databases (Ullman, 1989) (see also Definition 31).

Definition 22 (sub-context) Given a domain D ⊆ O, restricting the
set of objects, and a view V ⊆ F , restricting the set of features, we
define the sub-context of a feature context KF by the formal context
KF (D,V ) = (D,V, IKF

∩ (D × V )).

Example 23 (Triv) We define 4 sub-context of KTriv (see Example 6).

(1) D = O and V = FKTriv
\{c}:

IKF
= {(x, a), (x, a ∨ b), (y, b), (y, a ∨ b), (z, a ∨ b)}.

(2) D = O and V = {c}:
IKF

= {(z, c)}.
(3) D = O\{z} and V = FKTriv

:
IKF

= {(x, a), (x, a ∨ b), (y, b), (y, a ∨ b)}.
(4) D = O\{z} and V = FKTriv

\{c}:
IKF

= {(x, a), (x, a ∨ b), (y, b), (y, a ∨ b)}.

Lemma 24 relates the Galois connections of feature contexts and sub-contexts.

Lemma 24 (feature vs. sub-context Galois connection) Let O ⊆ D,
and X ⊆ V ,

• σKF (D,V )(O) = σKF
(O) ∩ V ,

• τKF (D,V )(X) = τKF
(X) ∩D.

Example 25 (Triv) The concept lattices of the four subcontexts of Exam-
ple 23 are as in Figure 3.

A domain can be specified by the extent τK(q) of a formula, i.e., the
answers τK(q) to a query q. A view can be specified as the set of
features subsumed by a query v, i.e., ↓F v = {x ∈ F | x v v}. E.g., in
the logic presented in Example 7, the formula (author contains ""

∨ title contains "concept" ∨ year in 1900..2000) would select all
features of attributes author, title and year, restricted to years in the last
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{x,y,z}

{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, a \/ b}

(1)

{a \/ b}

{x,y} {a \/ b}

{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, c, a \/ b}

(3)

concept : extension intention

{x,y} {a \/ b}

{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, a \/ b}

(4)

{x,y,z}

{z} {c}

{}

(2)

Figure 3. Four subconcept lattices of context KTriv

century, and titles that contain the word “concept”.

3 Navigating and Querying in a Logical Context

3.1 Navigating vs. Querying

Information systems offer means for organizing data, and for navigating and
querying. Though navigation and querying are not always distinguished be-
cause both involve queries and answers, we believe they correspond to very
different paradigms of human-machine communication. In fact, the difference
can be clarified using the intent/extent duality.

Navigation implies a notion of place, and of a relation between places (e.g., file
system directories, and links or subdirectory relations). Through navigation, a
user may ask for the content of a place, or ask for related places. The ability to
ask for related places implies that answers in the navigation-based paradigm
belong to the same language as queries. In terms of the intent/extent duality,
a query is an intent, and answers are extents for the content part, and intents
for the related places.

In very casual terms, we consider navigation with possibly “no road-map”,
i.e., no a priori overview of the country. Related places form simply the land-
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scape from a given place as shown by a “viewpoint indicator”. However, our
proposal is compatible with any kind of a priori knowledge from the user.

With querying, answers are extents only. A simulation of navigation is still
possible, but forces the user to infer what could be a better query from the
unsatisfactory answer to a previous query; i.e., infer an intent from an extent.
This is difficult because there is no simple relation between a variation in the
query, and the corresponding variation in the answer. The experience shows
that facing a query whose extent is too vast, a user may try to refine it, but the
resulting extent will often be either almost as vast as the former or much too
small. In the first case, the query lacks of precision (i.e., number of relevant
items in the answer divided by total number of items in the answer), whereas
in the second case, the query recall (i.e., number of relevant items in the answer
divided by number of relevant items in the system) is too low.

Godin et al. (1993) and Lindig (1995) have shown that Formal Concept Anal-
ysis is a good candidate for reconciliating navigation and querying. We follow
this opinion, but we believe that care must be taken to make formal contexts
as close to the description languages of the end-users, and we have proposed
Logical Concept Analysis (LCA) where formal descriptions are logical formu-
las instead of being sets of attributes (Section 2.1).

Our goal in this section is to show how a form of navigation and querying
can be defined, so that a user who knows neither the content of a Logical
Information System, nor the logic of its descriptions, can navigate in it and
discover the parts of the contents and the parts of the logic that are relevant
to his quest. Note that a more expert user may know better and may navigate
more directly to his goal, but since almost everybody has his shortcomings,
the no-knowledge assumption is the safest one to do.

3.2 A Logical Information System

In this section, we will insist on navigation tools, and will delay the manage-
ment of a logical context (e.g., creating, updating objects) until Section 4.

A LIS needs a user interface. We will formalize a shell-based interface, though
this is not the most modern thing to do. This is because we believe that shell
interfaces (like in UNIX or MS-DOS) are familiar to many of us, and because
this abstraction level exposes properly the dialogue of queries and answers. A
higher-level interface like a graphical one would hide it, whereas lower-level
interfaces, like a file system, would expose irrelevant details. However, nothing
prevents one to give a graphical interface to a LIS, or to implement it as a file
system.
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The shell commands are those of the UNIX shell, reinterpreted in the LIS
framework. Main changes are the replacement of paths by formulas of L re-
ferring to concepts via mapping µK , and the use of contextualized subsump-
tion vK . For the rest, commands have essentially the same effects. The cor-
respondence between a UNIX file system and a logical information system is
as follows:

UNIX shell −→ LIS shell

file −→ object

path −→ logical formula

absolute name of a file −→ object description

directory −→ formula/concept

root −→ formula >/concept >c

working directory −→ working query/concept

Navigation commands cd, ls, and pwd are defined in Section 3.3; and the
querying command ls -R is defined in Section 3.4. Creation and update com-
mands touch, mkdir, rm, mv, and cp will be defined in Sections 4.1 and 4.2.

3.3 Navigating in a Logical Context

Once objects have been logically described and recorded in a logical
context K = (O,L, d), one wants to retrieve them. One way to do this is
navigating in the context. As already said, this way of searching is partic-
ularly useful in a context where the logic or the content are unknown. The
aim of navigation is thus to guide the user from a current place to a target
place, which contains the object(s) of interest. For this, a LIS offers to the user
3 basic operations (the corresponding UNIX-like command names are placed
between parenthesis):

(1) to ask to LIS what is the current place (command pwd),
(2) to go in a certain “place” (command cd place),
(3) to ask to LIS effective ways towards other “places” (command ls).

3.3.1 Places as formal concepts

In a hierarchical file system, a “place” is a directory. In our case, a “place” is
a formal concept, which can be seen as a coherent set of objects (extent) and
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properties (intent) (see Definition 8). In large contexts, concepts cannot be
referred to by enunciating either their extent or their intent, because both are
generally too large. Formulas of the logic L can play this role because every
formula refers to a concept through the labelling map µ (see Definition 12),
and every concept is referred to by one or several formulas, which are often
much concise than its intent. For instance in Figure 1, one can see that c is a
concise name for the concept ({z}, c ∧ (a ∨ b)).

We now describe the 3 navigation operations listed above. First of all, going
from place to place implies to remember the current place, which corresponds
to the working directory. In a LIS, we introduce the working query, wq, and
the working concept, wc := µK(wq); we say that wq refers to wc. This working
query is taken into account in the interpretation of most LIS commands, and
it is initialized to the formula >, which refers to the concept whose extent is
the set of all objects. Command pwd displays the working query to the user.

The second navigation operation, command cd, takes as argument a query
formula q saying in which place to go, and it changes the working query
accordingly. We call lwq (i.e., elaboration of wq) the mapping that associates
to the query q a new working query according to the current working query wq.
The query q can be seen as a link between the current and the new working
query. Usually, cd is used to refine the working concept, i.e., to select a subset
of its extent. In this case, the mapping lwq is defined by lwq(q) := wquq, which
is equivalently characterized by

µK(lwq(q)) =
c wc ∧c µK(q) and τK(lwq(q)) = τK(wq) ∩ τK(q).

However, it is useful to allow for other interpretations of the query argument.
For instance, we can allow for the distinction between relative and absolute
queries, similarly to relative and absolute paths in file systems. The previous
definition of the mapping lwq concerns relative queries, but can be extended
to handle absolute queries by lwq(/q) := q, where ’/’ denotes the absolute
interpretation of queries. This allows to forget the working query. We can also
imagine less usual interpretations of queries like lwq(|q) := wqt q. Finally, the
special argument .. for the command cd enables to go back in the history
of visited queries/concepts. This works much like the “Back” button in Web
browsers.

The last navigation operation, command ls, is intended to guide the user
towards his goal. More precisely, it must suggest some relevant links that could
act as queries for the command cd to refine the working query. These links are
formulas of L. A set of links given by ls should be finite, of course (whereas L is
usually infinite), even small if possible, and complete for navigation (i.e., each
object of the context must be accessible by navigating from >c).
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3.3.2 Navigation Links

The following notion of link corresponds to the case where the elaboration
mapping satisfies lwq(q) = wq u q. To avoid to go in a concept whose extent
is empty (a dead-end), we must impose the following condition on a link x:
τK(wq u x) 6= ∅. Furthermore, to avoid to go in a concept whose extent is
equal to the extent of wq (a false start), we must impose this other condi-
tion: τK(wq u x) 6= τK(wq). These conditions state that the extent of the new
working query must be strictly between the empty set and the extent of the
current working query. This characterizes relevant links (Lindig, 1995).

Now, as L is a too wide search space (it is often infinite), we will consider a
finite set of features F ⊆ L in a context K in which links are selected.

Furthermore, we retain only greatest links (in the subsumption order) as they
correspond to smallest navigation steps. Indeed, recall that each link is a sug-
gestion to the user. Therefore, if the link year in 1990..2010 is suggested,
it is not worth suggesting the link year = 2000, because the former subsumes
the latter. Following this principle, every conjunctive formula xu y can be ex-
cluded from the search space for links, and so, of the set of features, because
it is redundant with x and y. Thus, a way to build the set of features is to
split object descriptions on outermost conjunctions (i.e., a ∧ b is split into a
and b, whereas (c ∧ d) ∨ e cannot be split this way).

However, to limit the number of links, it is useful to also extract ab-
stracted form of these features, so as to allow a still more progres-
sive navigation. For instance, the system would suggest the successive
links title, title contains "System", and then title is "Logical

Information Systems"; instead of directly suggesting the latter. Only this
latter feature appears explicitly in the description. The others are abstrac-
tions of it, and plays a role of “factorization” among links.

We now summarize this part by defining the set of links in a given context
and working query.

Definition 26 (Navigation links) Let K = (O,L, d) be a context. The set
of navigation links for every working query wq ∈ L is defined by

LinkK(wq) := Maxv{x ∈ FK | ∅ 6= τK(wq u x) 6= τK(wq)}.

3.3.3 Local Objects and Navigation Completeness

As navigation aims at finding objects, command ls must not only suggest
some links to other places, but also present the objects belonging to the current
place, called the objects of wq or the local objects. We define a local object
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as an object that is in the current place, but in no place reachable through a
link.

Definition 27 (local object) Let K = (O,L, d) be a context. The set of
local objects is defined for every working query wq ∈ L by

LocalK(wq) := τK(wq) \
⋃

x∈LinkK(wq)

τK(x).

Given a place, there can be no local object, but there can also be several
objects in some place. The less local objects there are, the better it is for nav-
igation. More precisely, if two local objects have non-equivalent descriptions,
it should be possible to make this difference appear in the links. Thus, the
choice the user has to do is intentional (between one or several logical links)
rather than extensional (between several objects). This idea is formalized as
the completeness of navigation.

Definition 28 (navigation completeness) Let K = (O,L, d) be a context.
Navigation is complete in K if and only if for every working query wq ∈ L,
the following holds

∀o, o′ ∈ LocalK(wq) : d(o) ≡ d(o′).

This completeness can be guaranteed by ensuring that the set of features FK is
such that if two objects have non-equivalent descriptions there exists a feature
that is satisfied by one object and not by the other.

Theorem 29 (navigation completeness) A necessary and sufficient con-
dition for navigation completeness in a context K is that for every objects o, o′

d(o) 6≡ d(o′)⇒ ∃x ∈ FK : d(o) v x⇔ d(o′) 6v x.

In the case where all objects have different descriptions, there is never more
than one local object. This must be compared to Web querying where the
number of objects returned in response to a query is generally large. This is
because with navigation, non-local objects are hidden behind the intentional
properties that enable to distinguish these objects. It is the end-user who
selects an intentional property to reveal its content.

Another interesting thing to notice is that the working query can be, and
often is, much shorter than the whole description of the local object (which is
also the intent of the working concept), as in the following example where the
first formula is contextually equivalent (in context Bib, see Example 7) to the
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second one for accessing the object.

author contains "Mineau" ∧ author contains "Missaoui"

≡

author is "Mineau, Missaoui" ∧ title is "The Representation of

Semantic Constraints in Conceptual Graph Systems" ∧ type is

"InProceedings" ∧ year in 1997

3.3.4 Links and Views

Even if the set of links is restricted to relevant and greatest ones among fea-
tures, it appears in practice that it is too large and heterogeneous. For in-
stance, in the context Bib (see Example 7), the set of links is a mix of author
names, title words, etc. Our idea is to abstract the set of all author names
(features author contains ...) by a single feature author (meaning “the
attribute author is defined”). This feature is not useful for selecting objects,
but it is useful to select links about the attribute author. We call this kind
of features views as they present the navigation from a “point of view”. We
introduce a working view wv, similar to the working query, under which links
must be searched for. For instance, if the working view is (author), links
will be author names. We take it into account in the definition of navigation
links, where the relation x @ wv denotes a strict subsumption (i.e., x v wv
and wv 6v x).

Definition 30 (Navigation links with views) Let K = (O,L, d) be a
context. For every working query wq ∈ L and every working view wv ∈ L,
the set of navigation links is defined by

LinkK(wq,wv) := Maxv{x ∈ FK | x @ wv, ∅ 6= τK(wq u x) 6= τK(wq)}.

As a link is a variation of the working query that restricts the current extent,
one defines a view as a variation of the working view that restricts the set of
links. Moreover, if a view is not also a link, it must subsume at least two links.
Indeed, if some view hides only one link, it is worth presenting the link directly.
Finally, we define a set of links and views where views can be understood as
summaries of sets of links, whose selection by the user allows him to see these
underlying links in a narrower view.

Definition 31 (Navigation links and views) Let K = (O,L, d) be a con-
text. The set of navigation links and views for every working query wq ∈ L
and every working view wv ∈ L is defined by (‖E‖ denotes the cardinality of
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a set E)

LVK(wq,wv) := Maxv{x ∈ FK | x @ wv, ∅ 6= τK(wq u x) 6= τK(wq)

or ‖LinkK(wq,wv u x)‖ ≥ 2}.

To summarize, the view-based variant of command ls takes as argument a
view v, sets the working view to lwv(v) (where lwv works similarly to lwq),
shows the local objects if they exist, displays each link or view x of the
set LVK(wq,wv) along with the size of its selected extent τK(wq u x), and
finally displays the size of the working extent τK(wq). Links and views are
distinguished according to their cardinality compared to the size of the work-
ing query; views simply have the same size as the working concept, whereas
links have strictly smaller sizes.

3.3.5 User/LIS Dialogue

We now show how commands cd and ls compose a rather natural dialogue
between the user and LIS. The user can refine the working concept with com-
mand cd, and asks for suggested links and views with the command ls. LIS
displays to the user relevant links for forthcoming cd’s, and relevant views for
forthcoming ls’s. With commands cd and ls, and links and views, both the
user and a LIS can assert facts and ask questions;

• Command cd and links are assertions from the user and LIS.
user: cd kind (i.e., “I want this kind of object!”),
LIS: links to kind (i.e., “I have this kind of object!”).

• Command ls and views are questions from the user and LIS.
user: ls kind (i.e., “What kind of object do you have?”),
LIS: view kind (i.e., “What kind of object do you want?”).

It should also be noticed that both the user and LIS can answer to questions
both by assertions and by questions.

Example 32 (Bib) A complete example of a dialogue is given in Table 1. The
left part of this table shows what is really displayed by our prototype, and the
right part is an english translation of the dialogue. Notice that this translation
is rather systematic and could be made automatic. (n) is the prompt for the
n-th query from the user. On the 2nd query, the question of the user is so
open, that LIS only answers by questions. On the 3rd query, the user replies
to one of these questions (title) by an assertion; but on the 4th query, he
sends back to LIS another of these questions (author) to get some relevant
suggestions. On the 5th query, he just selects a suggested author, "Wille",
and then gets his co-authors on Concept Analysis with the 6th query. On the
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7th query, he selects a co-author and finally finds an object at the 8th query.

Table 1
Example of User/LIS Dialogue in context Bib.

(1) pwd (1) What is currently selected?

1 All objects.

(2) ls (2) What do you have?

209 type What kind of type do you want?

209 author What kind of author do you want?

209 year What kind of year do you want?

209 title What kind of title do you want?

209 object(s) 209 objects are currently selected.

(3) cd title contains "Concept A" (3) I want objects whose title contains "Concept A"!

(4) ls author (4) What kind of author do you have (for this)?

1 author contains "Mineau" I have 1 object with author "Mineau"!

1 author contains "Lehmann" I have 1 object with author "Lehmann"!

1 author contains "Stumme" I have 1 object with author "Stumme"!

1 author contains "Prediger" I have 1 object with author "Prediger"!

3 author contains "Wille" I have 3 objects with author "Wille"!

4 object(s) 4 objects are currently selected.

(5) cd author contains "Wille" (5) I want objects with author "Wille"!

(6) ls (6) What kind of author do you have (now)?

1 author contains "Mineau" I have 1 object with author "Mineau"!

1 author contains "Lehmann" I have 1 object with author "Lehmann"!

1 author contains "Stumme" I have 1 object with author "Stumme"!

3 author contains "Wille" What kind of author "Wille" do you want?

3 object(s) 3 objects are currently selected.

(7) cd author contains "Mineau" (7) I want objects with author "Mineau"!

(8) ls (8) What do you have?

#200 Mineau, Stumme, Wille. Conceptual Structures Represented by Conceptual Graphs

and Formal Concept Analysis. INPROC, 1999.

1 object(s) 1 object is currently selected.

(9) pwd (9) What is currently selected?

author contains "Wille" ∧ Objects with authors "Wille"

author contains "Mineau" ∧ and "Mineau",

title contains "Concept A" and whose title contains "Concept A".

3.4 Querying a Logical Context

Extensional queries, as in data-bases or some Web browsers like Google, can
be submitted to a logical information system using the -R option with com-
mand ls. The answer to query ls -R q is simply τK(lwq(q)), i.e., the extent

21



of the concept referred to by lwq(q) (see Section 3.3).

(1) ls -R /title contains "Logic" ∧ ¬ title contains "Concept" ∧

year in 1990..1995

#3 Gaines. Representation, discourse, logic and truth: situating

knowledge technology. INPROC, 1993.

#2 Sowa. Relating diagrams to logic. INPROC, 1993.

#72 Van den Berg. Existential Graphs and Dynamic Predicate Logic.

INPROC, 1995.

3 object(s)

4 Creating and Updating a Logical Context

Whereas much has been said on the construction of concept lat-
tices (Kuznetsov and Objedkov, 2001), the construction of contexts is often
left in the background. The construction process can fall into two categories:
off-line and on-line. In the off-line case, the context is built once for all after
the data have been gathered and the problem is to find an object description
language appropriate to the intended analysis. The typical application of this
category is the analysis of surveys. In the on-line case, the context is built
progressively along the arrival of data and a problem is to properly describe
new objects at the time they arrive. Information systems are the typical ap-
plication of this category, but this is not the mainstream approach to using
Concept Analysis.

Hypothesis 1 (on-line construction) We consider here only the on-line
case, as we focus on information systems. For each new piece of data that
arrives, an object is created, and added to the context, with this piece of data
as content.

We propose that the description given to an object is two-parts. The first part,
the intrinsic description, is automatically extracted from the object content,
and depends on the kind of content and on the logic of the application. For
instance, let us consider that objects are incoming e-mail messages. In this
application, the building of the context is clearly on-line; and possible compo-
nents of the intrinsic description are the from, to, and subject fields.

The second part, the extrinsic description, is manually assigned by users ac-
cording to personal intentions and preferences. We must consider there are no
known rules to infer extrinsic properties, as if the contrary holds they could be
integrated in the intrinsic description. In a usual e-mail application, extrinsic
properties are managed by storing e-mail messages in different folders accord-
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ing to personal needs. However, extrinsic properties need not be organized in
a hierarchical relation as folders often are.

4.1 Creating a Logical Context

The objects we want to represent in a context are often defined in the “world”
by a content. We want to describe these objects both by an intrinsic proper-
ties (automatically extracted from their contents), and by extrinsic properties
(manually assigned by users). All these elements are the context data, from
which a logical context can be built.

Definition 33 (context data) Context data are defined as a 6-tuple
D = (O, C,L, c, di, de), where

• O is a set of objects,
• C is the domain of contents,
• L is a logic,
• c ∈ O → C maps every object to its content,
• di ∈ C → L extracts an intrinsic description from every content,
• de ∈ O → L maps every object to its extrinsic description.

The building of a context from its data consists in keeping the set of objects
and the logic, and composing a description that maps every object to its
intrinsic description “plus” its extrinsic description. This “plus” denotes an
update operation ¦ that we present in more details in Section 4.2.

Definition 34 (context building) Let D = (O, C,L, c, di, de) be context
data. The context built from data D is defined as

K(D) = (O,L, d),where for every o ∈ O, d(o) = di(c(o)) ¦ de(o).

Example 35 (E −Mail) In this section, we consider that objects are e-mail
messages. An example of a simplified e-mail message content is:

From: Alice@paris.fr

To: Bob@berlin.de, Chloe@madrid.es

Date: 2 May 2002, 14:52

Subject: Hello world!

When do you come in Paris?

See you,

Alice

From such a content, an intrinsic description that retains only fields from,
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to, and subject can be extracted and formulated in logic Pv (see Example 7).
This is only a matter of choice, as other fields could be taken into account.
In particular, the message body would certainly be useful in a real application,
but it is not necessary to our explanations. The intrinsic description we obtain
from the above content is the following formula.

from is "Alice@paris.fr"

∧ to is "Bob@berlin.de, Chloe@madrid.es"

∧ subject is "Hello world!"

Then, the user (e.g., Bob) can add his personal comments by formulating an
extrinsic description. For instance, the extrinsic description

personal ∧ ¬spam

means the message is “personal” (opposite of “professional”), and is not a
“spam”. The expected result of updating the intrinsic description with the ex-
trinsic description is

from is "Alice@paris.fr"

∧ to is "Bob@berlin.de, Chloe@madrid.es"

∧ subject is "Hello world!"

∧ personal ∧ ¬spam

The LIS shell commands for creating new entries in a context are
mkdir and touch. Command mkdir creates a new feature. For instance,
mkdir subject begins with "H" introduces a finer feature than those that
are obtained by simply splitting conjunctions. Command touch simply creates
an object with empty content at some place designated by a formula. How-
ever, objects are normally created by applications that give objects a content
(and so, an intrinsic description) and an extrinsic description, which is usually
based on the working query.

4.2 Updating a Logical Context

From the definition of context data (see Definition 33), a logical context can
be updated in 4 ways:

(1) addition of an object with its initial content and extrinsic description
(commands touch, cp, and applications),

(2) update of the content of an object (applications),
(3) update of the extrinsic description of an object (command mv), and
(4) deletion of an object (command rm).
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The only difficulty that arises from these operations is the update opera-
tion, which is used to change an extrinsic description in an incremental way
(i.e., without completely redefining it), and to compose intrinsic and extrinsic
descriptions. A naive solution would be to manually change extrinsic descrip-
tions, and to directly integrate them in intrinsic descriptions. However, this
has two important drawbacks. First, the intrinsic description changes with the
contents and so, it is not a persistent support for extrinsic properties. Second,
practice shows that one often wishes to express an update operation for a set of
objects in a single command: for instance, add property “personal” (personal)
to all e-mail messages sent from “Alice” (i.e., from contains "Alice").

We give now a specification of such an operation, as it is given by Herzig and
Rifi (Herzig and Rifi, 1999). This puts constraints on what a logical update
operation should be.

Definition 36 (update) Let L = (L,v,u,t,>,⊥) be a logic. The result of
updating a description d ∈ L by an entry e ∈ L is the result of an operation
d ¦ e, which must satisfy the following postulates:

(1) (HR) d ¦ e v e ;
(2) (HR) d u e v d ¦ e ;
(3) (HR) d ¦ > ≡ d ;
(4) (HR) d 6v ⊥ and e 6v ⊥ implies d ¦ e 6v ⊥ ;
(5) (HR) for every d′ ≡ d, d′ ¦ e ≡ d ¦ e ;
(6) (HR) for every e′ ≡ e, d ¦ e′ ≡ d ¦ e ;
(7) (HR) for every d1, d2 ∈ L such that d ≡ d1td2, d¦ e ≡ (d1 ¦ e)t (d2 ¦ e) ;
(8) (involution) (d ¦ e) ¦ e ≡ d ¦ e.

All postulates are from Herzig and Rifi, except postulate 8. Postulate 1 means
that the entry must always be taken into account, and so, satisfied in the
result. Postulate 2 adds that everything satisfied in the result comes from
either the description d or the entry e. In the case where the entry is the
tautology, i.e., brings no information, postulate 3 states that the description
must be kept unchanged. Postulate 4 forces the result to be consistent, unless
the description or the entry is already inconsistent. Postulates 5 and 6 mean
that results must not depend on the syntax of formulas. Finally, postulate 7
says that operation ¦ must be distributive for disjunction, and postulate 8
says that it must be an involution.

Herzig and Rifi (1999) present an update operation for propositional logic with
dependencies between atoms, denoted by WSS ↓dep , that satisfies all postu-
lates in Definition 36. In logic, dependency between atoms is subsumption.

Example 37 (Bib) Logic Pv is a propositional logic, whose usual
atoms are replaced by valued attributes. This means that we must
consider dependencies between such atoms. For instance, the atom
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from is "Alice@paris.fr" implies the atom from contains "Alice",
contradicts the atom from is "Bob@berlin.de", but is independent from the
atom subject contains "Hello".

The LIS shell commands rm, mv and cp perform LIS updates. Command rm q

suppresses the local object of lwq(q) (if it exists, see Section 3.3.3). Command
mv moves a file from a place to another: mv q e moves the local object o
of lwq(q) in concept µ(d(o) ¦ e). Similarly, cp q e creates a new copy of the
local object in the same concept. With option -r, every object of the extent
of lwq(q) is concerned, instead of only the local object.

(1) cd /from contains "Alice"

(2) mv . personal

(3) rm -r /spam

The move command (line 2) adds the feature personal to the local object of
the working query from contains "Alice". The remove command (line 3)
deletes all objects described as spam.

Contents can also be changed by applications. This changes indirectly de-
scriptions (their intrinsic parts), but the ensuing reorganization of the formal
concept lattice is automatic and transparent. In fact, it costs not so much
since the concept lattice is not actually represented (see Section 6).

5 Data-mining, automated updating and learning

Previous sections 3 and 4 present the core operations of a LIS. More operations
can be defined. Some are derived from core operations, like a form of data-
mining, and others are disjoint from the core but can be added to it.

5.1 Data-mining

The definition of links (see Definitions 3.3.2 and following) is a specific case
of Knowledge Discovery in a formal context. It can be generalized to recover
more classical KD operations like machine-learning through the computation
of necessary or sufficient properties (modulo some confidence), or data-mining
through association rules. Indeed, CA has been often applied in domains such
as data-analysis, data mining, and learning.

Data-analysis consists in structuring data in order to help their understand-
ing. These data are often received as tables or relations and structured by
partitions, hierarchies, or lattices. With CA, formal contexts (binary relations
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between objects and attributes) are structured in concept lattices (Ganter and
Wille, 1999). This is applied for instance in software engineering for config-
uration analysis (Krone and Snelting, 1994). Data-mining is used to extract
properties from large amounts of data. These properties are association rules
satisfied (exactly or approximately) by the data. This is analogous to implica-
tions between attributes in FCA (see Ganter and Wille, 1999, p. 79), and to
contextualized subsumption in LCA (see Section 2.4). Unsupervised learning
is similar to data-analysis in the sense that one tries to discover some prop-
erties, and to understand some data, whereas supervised learning is similar
to data-mining as some rules are searched to explain a target property using
known properties. For instance, Kuznetsov applied CA to the learning of a
positive/negative property from positive and negative instances (Kuznetsov,
1999).

The aim of this section is to show that these features of Knowledge Discov-
ery (KD) can be incorporated in LIS, and how.

A context K plays the role of a theory by extending the subsumption relation
and enabling new entailments (e.g., bird vK fly when every bird flies in the
context). All these contextual entailments are gathered with logical entail-
ments to form the contextualized logic, which is thus a means for extracting
some knowledge from the context. Two kinds of knowledge can be extracted:
knowledge about the context by deduction (“Every bird of this context do
fly”), and knowledge about the domain (which the context belongs to) by
induction (“Every bird of the domain may fly”).

Concept lattices produced by data-analysis are isomorphic to contextualized
logics (see Theorem 16). Associations rules produced by data-mining or super-
vised learning match the contextualized subsumption relation, possibly qual-

ified by a confidence defined by conf(f vK g) =
‖τK(f) ∩ τK(g)‖

‖τK(f)‖
and a

support defined by supp(f vK g) = ‖τK(f) ∩ τK(g)‖.

Considering two properties f, g ∈ L, their contextual relation is deter-
mined by the cardinalities of 3 sets of objects: πl

K(f, g) := ‖τK(f) \ τK(g)‖,
πc

K(f, g) := ‖τK(f) ∩ τK(g)‖ and πr
K(f, g) := ‖τK(g) \ τK(f)‖. For instance,

f contextually entails g if and only if πl
K(f, g) = 0, f and g are contextually

separated if and only if πc
K(f, g) = 0, or x is a link of wq (see Section 3.3.2) if

and only if πc
K(x,wq) 6= 0 and πr

K(x,wq) 6= 0. Note that the superscripts, l, c,
and r refer to the left, center, and right part of the following Venn diagram:

f     g g \ ff \ g

f g
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So, the procedure that computes links for navigating in a LIS can be gener-
alized to compute necessary or sufficient conditions, association rules, and
links, only by specifying constraints on πc

K , πr
K , and πl

K . Observe that

conf(f vK g) =
πc

K(f, g)
πl

K(f, g) + πc
K(f, g)

, and that supp(f vK g) = πc
K(f, g).

Definition 38 (Data-mining) Let K = (O,L, d) be a context. For every
working query wq ∈ L and working view wv ∈ L a set of facts is defined by

FactK(wq,wv) := Maxv











(x, rank(x,wq)) ∈ FK ×Rank

| x @ wv, property(x,wq)











,

where Rank is a domain of ranking values, and rank and property are an
application and a predicate defined using πc

K, πr
K, and πl

K.

Example 39 (Generalized navigation)

Links: Consider
rank(x,wq) = πc

K(x,wq) and property(x,wq) = πc
K(x,wq) > 0.

Then, FactK(wq,wv) computes all links from working query wq under
view wv.
Necessary conditions: Consider

rank(x,wq) = conf(wq vK x)
and property(x,wq) = conf(wq vK x) ≥ confmin,
where confmin ∈ [0, 1].

Then, FactK(wq,wv) computes all necessary properties to wq (i.e., prop-
erties entailed by wq) with a confidence greater than confmin.
Sufficient conditions: Consider

rank(x,wq) = (supp(x vK wq), conf(x vK wq))
and property(x,wq) = supp(x vK wq) ≥ suppmin ∧ conf(x vK wq) ≥ confmin,
where suppmin, confmin ∈ [0, 1].

Then, FactK(wq,wv) computes all sufficient conditions to be in the extent
of wq with a support and confidence greater than suppmin and confmin.

5.2 Context Maintenance based on Learning

A context associates to objects a description that combines automatically ex-
tracted properties (intrinsic) and manually assigned ones (extrinsic) (cf. Sec-
tion 4). The extrinsic properties are expressed by users according to intentions
that are often subjective and changing, and that determine the classification
and retrieval of objects. So, we believe it is important to assist users in this
task through the automatic suggestion of extrinsic properties to be assigned

28



and even the discovery of rules to automate these assignments. The principle
is to learn from the relationship between extrinsic and intrinsic descriptions
of existing objects the extrinsic description of a new object whose intrinsic
description is computed from its content. Because of the changing nature of
users’ intentions, the assistance given in the incremental building of a logical
context must be interactive. We present formal principles, and an application
to the classification of e-mail messages. Proofs can be found in (Ferré and
Ridoux, 2002b).

5.2.1 Induction through Associative Concepts

Let us consider the situation where a new object o∗ is added to a logical
context K = (O,L, d) along with an intrinsic description d∗(o∗) to form a new
context K∗ = (O ] {o∗},L, d∗) with d∗(o) = d(o) for all o ∈ O. Our aim is to
induce from the old context K a set of extrinsic properties IndKF

(o∗) ⊆ F for
the new object.

We first define associative concepts as the concepts of K when one considers
only description features of o∗, DKF

(o∗).

Definition 40 (associative concept) A non-empty concept of the sub-
context KF (O, DKF

(o∗)) is called an associative concept of o∗ in KF . The
set of all such associative concepts is denoted by ACKF

(o∗).

ACKF
(o∗) organizes the feature context KF in a concept lattice (where the

empty concept is missing) that is less finely detailed than CKF
. However, this

coarser concept lattice is relevant to the features of o∗. Conversely, the finer
details in CKF

cannot be expressed with the features of o∗.

Then, an induced feature can be defined as a feature that contextually sub-
sumes the intent of some associative concepts.

Definition 41 (induced property) We say a feature x is an induced prop-
erty for o∗ if and only if there exists an associative concept c ∈ ACKF

(o∗),
such that uint(c) vK x or, equivalently, ext(c) ⊆ τK(x). IndKF

(o∗) denotes
the set of all induced properties of o∗ in KF .

Intuitively, an associative concept c of a new object o∗ is an already existing
concept (for previous objects in K) that has some similarity with the descrip-
tion of o∗. When x ∈ IndKF

(o∗) is induced from an associative concept c,
ext(c) is the support of the induction, and int(c) is the explanation. A given
associative concept can induce several features; and a given feature can be in-
duced by several associative concepts, and so, it can have several explanations.
Induced features that do not belong to description features are called expected
features, which are the features suggested to users as extrinsic properties.
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Example 42 (Triv) Consider d(o∗) = c ∧ d, then DKF
(o∗) = {c, d}.

ac = ({z}, {c}) is an associative concept of o∗, and a ∨ b is a feature of KTriv

(see Figure 2) such that ext(ac) ⊆ {x, y, z} = τKTriv
(a ∨ b). So, a ∨ b is an

induced feature.

5.2.2 Experimentation

The aim of this section is to present through experimentations the kind of
interactions that help a user to assign extrinsic properties to incoming objects,
and to gradually automate these assignments (e.g., for filtering spams).

5.2.2.1 Filtering spams We consider here the assisted filtering of spams.
The following display shows the initial description of a new (non-solicited) e-
mail message, with its expected features. The context on which the induction
of expected features is based is made of 200 e-mail messages.

Current description:

from is "hh2732774@dtcom.net" ∧

to is "undisclosed-recipients" ∧

subject is "earn money without a job!"

Expected features:

28 spam

<- from contains "net" ∧ to is "undisclosed-recipients"

<- to is "undisclosed-recipients"

<- from contains "net"

<- subject contains "earn" ∧ subject contains "money"

2 to contains "irisa"/ to contains "fr"/ from contains "com"

<- subject contains "earn" ∧ subject contains "money"

...

We can see that, whereas the from and subject field are new, several fea-
tures are induced. This is possible because message fields are split into
words, which enables to find common features between the new object
and existing ones: e.g., from contains "net", subject contains "money",
to is "undisclosed-recipients".

We also see that the above message is well-recognized as a spam, and this
feature is even the most strongly induced one with several explanations and a
weight of 28 supporting objects. These explanations suggest some rules such as
“every e-mail message sent to undisclosed-recipients is a spam”, or “every
e-mail message whose subject contains words earn and money is a spam”.
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It is up to the user to validate these explanations, and to make them automatic
rules, or to be cautious, and to consider them only as hints.

Figure 4 shows the filtering rate of spams during the incremental building of an
e-mail context. The dashed line represents the rate of well-classified messages
(as spam or non-spam) at the n-th insertion. The solid line represents the
rate of classified messages (well or not). So, the part between the two lines
represents badly classified messages (e.g., spam classified as non-spam), and
the part above the solid line represents non-classified messages. This plot shows
that after a transient phase of about 50 messages, the rate of well classified
messages steadily reaches 85%, and there are nearly no bad classification.
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classified
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Figure 4. Filtering spams

The rates in Figure 4 are accumulated from the start of the experiment:

classified(n) =
total classified(n)

n . So they take into account the bad
rates of the transient phase. The pseudo-instantaneous rates, classified(n) =
total classified(n)− total classified(n− δt)

δt are over 90% after the 80th mes-

sage for a time window (δt) of 50 messages (average number of messages per
week during the experiment).

5.2.2.2 Classifying e-mail messages The second application is a variant
of the first one in which keywords are not limited to two values. We classify e-
mail messages in about 20 non-exclusive categories such as teaching, research,
spam, call-for-paper, and so on. Note that these categories were not fixed a
priori, but appeared only when required by the meaning of incoming messages.
Thus, the vocabulary of categories remains open for ever.

Figure 5 shows the results of this experiment. The “automatic” line shows the
rate of automatic classification using rules that are suggested by the system
and accepted by the user (40 rules, including 15 for spams). The “suggested”
line shows the rate of correct suggested classification. It tends to decrease
simply because the sum of the two rates must be less than 1. Both rates are
measured in number of features. The solid line shows the sum of the two rates.
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Figure 5. Classifying e-mail messages

Note again that these rates are cumulative; the instantaneous rates of “auto-
matic+suggested” is constantly over 85% after the 100th message for a time
window of 50 messages.

6 Implementation of a LIS

Logic information systems are based on two choices: Concept Analysis and the
use of an arbitrary logic. Both choices ask for performance questions as the
complexity of concept lattices is exponential, and using logical descriptions
implies the introduction of a theorem prover. However, theorem proving may
be costly, e.g., exponential time for propositional logic.

6.1 Concept analysis without concept lattice

We first present the internal representation of a logical context we have chosen
for our prototype; we also describe operations on this representation. Then,
we give space complexity for the internal representation, and time complexity
for the operations. These complexities are based on hypotheses, justified by
experiments.

6.1.1 Internal Representation of a Logical Context

In a logical context K = (O,L, d), we are mainly interested in navigation
and querying. From their definition in Sections 3.3 and 3.4, it appears that all
needed elementary operations are:

• v: subsumption test between two formulas,
• τK : extent of a formula, which is based on subsumption v and on the set of

objects O,
• ∩: set intersection (between two extents),
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• Maxv: selection of maximal formulas w.r.t. v, from a set of formulas.

Three of these operations use the subsumption test, i.e., they call the theorem
prover of the logic. As its complexity is high for some logics, it is preferable to
limit its use as much as possible. In particular, the computation of extents is
intensively used in the search for links, whereas each computation of an extent
means as many subsumption tests as the number of objects.

We propose to store subsumption relations between features, and between fea-
tures and object descriptions, in what we call a logical cache. We also propose
to cache extents of features, which are intensively used for navigation. Thus, a
logical context K is stored as a directed acyclic graph whose nodes are logical
formulas (features FK and object descriptions d(O)), equipped with their ex-
tent, and whose arcs are subsumption relations between these formulas (arcs
deducible by reflexivity and transitivity are not represented). This represen-
tation is the Hasse diagram of the partially ordered set 〈FK ∪ d(O);v〉.

Note that this representation is different from the concept lattice, which is
usually used in systems based on concept analysis (e.g., Godin, Missaoui, and
April, 1993; Cole and Stumme, 2000). We think the logical Hasse diagram is
more appropriate to logical navigation for several reasons:

• the order used to compare a potential link to the working view and to select
maximal links is the subsumption v, and not the order on concepts ≤c,

• it allows to search for navigation links among the features subsumed by
the working view, without testing x @ wv; and similarly to select maximal
features without actually checking subsumption,

• the number of concepts can be exponential with the number of objects,
whereas the set of features is sufficient for navigation, and its size is linear
with the number of objects (see Section 6.1.2),

• the order ≤c on concepts changes when objects are added, contrary to the
order v on formulas.

The principal operations we consider on this logical cache are:

insertion of a formula: a new feature or object description is inserted in
the graph and connected to other formulas according to the subsumption
relation;

addition of an object: a new object is placed on the node representing its
description, and extents of existing nodes are updated;

search for the maximal features satisfying some property: this is
used to search for navigation links and views.

These operations are sufficient to implement the shell commands we presented
for navigation and querying.
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6.1.2 Theoretical and Practical Complexity

The two important parameters for determining complexities are the number
of objects, n, and the number of features per object, f (there are other pa-
rameters, but they are bounded by f). The space complexity of the Hasse
diagram is in O(f 2n). Among the three above operation, only the insertion
of a formula actually uses the subsumption test: the number of call to v is
in O(fn). Other operations find their results in the logical cache. The time
complexity of set operations is either in O(f 2) (insertion of a formula, and
addition of an object), or in O(fn) (search for links and views).

Our experiments have shown that the number of features per object f is nearly
constant for a given application (see Section 6.1.3). This is explained by the
fact that features are extracted from object descriptions automatically and
without considering other objects. The consequence for complexities is that
every operation is either constant, or linear with the number of objects. This
means that navigation and querying in a LIS are tractable.

6.1.3 Experiments

A prototype of a Logical Information System has been built for experimen-
tation purpose. It has been implemented in λProlog (Miller and Nadathur,
1986; Belleannee, Brisset, and Ridoux, 1999) as a generic system in which a
theorem-prover and a syntax analyzer can be plugged-in for every logic used
in descriptions. It is not meant to be efficient, though it can handle several
thousand entries. Contrary to other tools based on concept analysis, it does
not create the concept lattice. It only manages a Hasse diagram of the features
used so far.

For the ICCS Bib context (see Example 7), the Hasse diagram has 954 nodes
and 2150 arcs. In the experiments reported in this article, all response times
are shorter than 1 second. In other experiments with a full-sized Bib con-
text, i.e., all BibTeX fields (Lamport, 1985) are represented and there are
several thousand bibliographical references, the Hasse diagram has an average
of 15 nodes per object, 3 arcs per node, and a height of about 5. This experi-
ment and others support the idea that the number of features per object, f ,
is nearly constant for a given application; e.g., f is about 60 in Bib contexts.
This has a positive implication on the complexity of LIS operations, because
under this hypothesis their time complexity is either constant, or linear with
the number of objects (see above).
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6.2 Logics for LCA and LIS

We present in this section how the generic scheme that takes a logic as a
parameter can be instantiated.

6.2.1 Principles

Using logics as schemas in data-bases implies that end-users or system ad-
ministrators will have to define and implement logics. Clearly, this is out of
reach for most of them. In order to make our principles practicable anyway,
we have designed a framework for specifying and implementing logics. This
framework is based on what we called logic functors. Using them, defining and
implementing a logic consists merely in combining parameterized logics. Each
logic functor consists in a logic component, e.g., propositional logic or interval
comparison. Functors can be composed to form new logics, e.g., propositional
logic on intervals.

Each functor is implemented as a parameterized theorem prover. Our goal is
that the theory and theorem prover of a combination of functors result from
a systematic combination of the theory and theorem prover of each functor.

All functors and their compositions implement a common interface which cor-
responds to the 6-tuple of Definition 1. This makes it possible to program
generic applications that can be instantiated with a logic component. Con-
versely, customized logics built using the logic functors can be embedded in an
application that respects this interface.

The whole framework development is geared towards manipulating logics as
lattices. So, subsumption is considered as a relation between formulas, and we
study the conditions under which this relation is a partial order.

Our idea is to consider that a logic interprets its formulas as functions of their
atoms. By abstracting atomic formulas from the language of a logic we obtain
what we call a logic functor. A logic functor can be applied to a logic to form
a new logic. For instance, if propositional logic is abstracted over its atomic
formulas, we obtain a logic functor called prop, which we can apply to, say, a
logic on intervals interv, to form propositional logic on intervals, prop(interv).
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6.2.2 Logics and logic functors

We present the logic functor structure. More details can be found in (Ferré
and Ridoux, 2002a), particularly on the conditions for composability.

Definition 43 (logic) A logic L is a triple (ASL, SL, PL) where ASL defines
the abstract syntax of formulas of L, SL defines their semantics, and PL defines
their interface.

SL is a pair (IL, |=L) where

• IL is the interpretation domain of the formulas of L, and
• |=L∈ P(IL × ASL) is the satisfaction relation between interpretations

and formulas; i |=L f means that i is a model of f . We write
ML(f) = {i ∈ IL | i |=L f} the set of all models of a formula f .

PL is a 5-uple (vL,tL,uL,>L,⊥L) where

• vL∈ P(ASL × ASL) is the subsumption relation,
• tL,uL ∈ ASL ×ASL → (ASL ∪ {undef }) are conjunction and disjunction,

and
• >L,⊥L ∈ ASL ∪ {undef } are the tautology and contradiction for L.

All logics built with logic functors present the same interface
(vL,tL,uL,>L,⊥L), plus other operations like updating (operation ¦ in
Section 4.1), parsing and printing. So, they implement the same abstract
data-type. The 5 logic operations considered here correspond to a minimal
requirement about logics; the ability to test subsumption, to build new
formulas using conjunction and disjunction, and to determine if a formula is
a tautology or a contradiction. A logic may have more connectives, but they
will appear in its abstract syntax, not in its interface.

In order to simplify the presentation, we will only consider operations vL, uL,
and >L in the sequel.

The definition of uL needs not be total. Similarly, >L needs not be defined.
Moreover, there is no a priori relation between SL and PL. So, we need a notion
of completeness and consistency that takes into account partial definitions.

Definition 44 (completeness) Let L be a logic, the operations of its inter-
face PL, i.e., vL, uL, and >L, are complete w.r.t. a semantics SL, if and only
if for all formulas f, g ∈ ASL we have

• ML(f) ⊆ML(g) =⇒ f vL g,
• >L 6= undef =⇒ML(>L) = IL,
• f uL g 6= undef =⇒ML(f uL g) ⊇ML(f) ∩ML(g)),
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An interface PL is complete w.r.t. a semantics SL if and only if each of its
operation is complete.

Definition 45 (consistency) Let L be a logic, the operations of its interface
PL, i.e., vL, uL, and >L, are consistent w.r.t. a semantics SL, if and only if
for all formulas f, g ∈ ASL we have

• f vL g =⇒ML(f) ⊆ML(g),
• >L is always consistent,
• f uL g 6= undef =⇒ML(f uL g) ⊆ML(f) ∩ML(g),

An interface PL is consistent w.r.t. a semantics SL if and only if each of its
operation is consistent.

By this definition, operations uL and >L (and also tL and ⊥L) of a completely
undef ined interface are trivially complete and consistent, but they makes a
useless interface. So, the game of designing a new logic is to make it defined
enough to be useful, but still complete and consistent.

Definition 46 (logic functor) Assuming L, AS, S, and P the collections of
all logics, abstract syntax, semantics, and interface, a logic functor F : L

n → L

is a triple (ASF , SF , PF ) defined as follows:

• ASF : AS
n → AS such that ASF (L1,...,Ln) = ASF (ASL1

, . . . , ASLn
),

• SF : S
n → S such that SF (L1,...,Ln) = SF (SL1

, . . . , SLn
),

• PF : P
n → P such that PF (L1,...,Ln) = PF (PL1

, . . . , PLn
),

By convention, a logic will be considered as a logic functor of type L.

Logic functors are used as follows. SL describes the semantics; it acts as a
specification. PL implements an interface; its description must be constructive
enough, so that it leads directly to a program. A part of the interface describes
how the concrete syntax is parsed and printed (remember that ASL is only the
abstract syntax). The other part offers logic operations. The user composes
a logic by applying logic functors to logics, say F (L1, . . . , Ln), and a logic
composer takes such an expression and produces automatically the concrete
implementation of the logic by gluing together the concrete implementations
of F , L1, . . . , and Ln. This results in a software component, with a formally
specified interface, that can be plugged in any software system that assumes
the same interface.

This methodology leads to designing a library of logic functors for describing
objects of LIS: a unary propositional functor (prop), whose main quality is
to make a total logic out of a partial one (prop(partial) = complete), several
nullary logic functors for concrete domains like strings and intervals, several
n-ary logic functors for combining descriptions, and an auto-epistemic logic
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functor for representing (un)completeness of knowledge.

It is worth insisting on the auto-epistemic logic functor. Very often, users ex-
pect that a description author is "Smith" implies ¬ author is "Jones".
However, this is false in standard propositional logic. One needs a form of
Closed World Assumption or a kind of Negation as Failure to prove that.
However, to be used in a LIS a logic must be monotonic (because its sub-
sumption relation must form a lattice). ONL (a.k.a. “All I Know” Levesque,
1990) is an epistemic modal logic that permits to express that a formula tells
the whole truth. It is a variant of ONL that we are using in LIS (Ferré,
2001); and its functor is called aik . Since it is very frequent to have to express
absolute knowledge, the idiom prop(aik(prop(. . .))) has become a mandatory
prefix of the logics used in LIS.

The principle of composing logic functors has been implemented in a proto-
type. It reads logic specifications such as prod(prop(atom), prop(interv)) and
produces automatically a printer, a parser, and a theorem-prover. This ex-
ample means that logic formulas are products of a proposition on atoms and
a proposition on intervals. The prototype reads such a constructed logic and
builds a theorem-prover for it by instantiating the theorem-prover associated
to each logic functor at every occurrence where it is used. The prototype,
each functor implementation, and the resulting implementations are written
in λProlog.

Coming back to the bibliography example of the introduction, we construct a
dedicated logic with logic functors as follows:

prop(aik(prop(sum(atom, valattr(sumn(interv, string, . . .)))))).

which means propositional logic on epistemic modal formulas on propositional
logic on a sum (i.e., a mix) of atomic formulas and valued attributes whose val-
ues are themselves made of interval formulas, string formulas, etc. According
to the theory of logic functors, the following theorem holds.

Theorem 47 (Bib logic is ok) The logic L used in Example 7,

L = prop(aik(prop(sum(atom, valattr(sum2 (interv , string)))))),

is such that PL is total, bounded, and consistent and complete in all five oper-
ations w.r.t. SL.
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7 Conclusion

7.1 Summary of LIS

We have presented the specifications of a Logical Information System based
on (Logical) Concept Analysis. It is based on Concept Analysis and is generic
w.r.t. a logic for describing objects. In this framework, navigation/querying
and creation/updating can be seamlessly integrated.

In this way, standard commands of a file system shell can be mimicked in
a logical context. However, a simple generalization of the definition of links
forms a framework in which operations of data-analysis or data-mining can
also be expressed. Using this framework, purely symbolic navigation as well
as statistical exploration can be integrated smoothly as variants of the same
generic operation.

As opposed to previous attempts of using Concept Analysis for organizing
data, we do not propose to navigate directly in the concept lattice. Instead,
we use the contextualized logic (i.e., the logical view of the concept lattice) to
evaluate the relevance of navigation links. Those that do not narrow the focus
of the search are called views. They only restrict the language of available
navigation links. Other links, that do narrow the focus of the search, can be
used to come closer to some place of interest. The definition of links can be
generalized to encompass data-mining notions like necessary and sufficient
conditions, and association rules.

The advantage of LIS is a great flexibility which comes from two factors:

(1) the integration of operations that were exclusive in most systems,
(2) the use of logic with Concept Analysis, which solves the name problem.

We have experimented it in various contexts: e.g., cook-books, bibliographi-
cal repository, software repository (search by keywords, and search by types),
and simply a note-pad. Various logic components were used in these contexts:
atoms, intervals, strings, propositional logic, type entailment, taxonomies
(e.g., for ingredients). In all cases, a LIS goes beyond any a priori structure
and permits many kinds of views on the same information. For instance, in
the case of a cook-books, if every recipe is described by its ingredients, its
process, the required kitchen utensils, its dietetic value, its place in a meal,
and more cultural information, then a cook, a dietician, and a gourmet can
have very different views on the same data, and acquire new information by
data-mining and learning, simply by using a few LIS shell commands. Simi-
larly, if software components have intrinsic descriptions like their types and
languages, the modules they use, parts of specification, and requirements, and
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extrinsic descriptions like their testing status, and who is using them, then
several software engineering operations like developing and testing, versioning
and configuring, and maintenance and evolution can be done using the same
repository under different views, and also going smoothly from one view to
another.

A thorough description of LIS can be found in the PhD thesis of the first
author (Ferré, 2002b). It contains all proofs, gives more details about im-
plementation, and in addition to this paper, considers the representation of
complete vs. incomplete object descriptions.

The exclusive use of logic for describing objects, and for designing operations
asks the question of whether uncertainty can be dealt with in LIS. In fact, LIS
can handle uncertainty at two levels.

First level is the logical language. Because LIS is generic w.r.t. logic, it can
accomodate uncertainty either in descriptions of objects or in queries by using
logics that handle uncertainty. Even propositional logic can handle a kind
of uncertainty with disjunctions, but other logics like interval logic or logic
“All I Know” can handle other kinds of uncertainty. Intervals can deal with
uncertainty of numerical values, and “All I Know” deals with the extent of
knowledge. Both have been implemented as logic functors (see Section 6.2).

LIS is not opposed to using fuzzy modeling languages (logic, sets, etc), but
it requires an entailment relation that forms a lattice. In particular, the en-
tailment relation must be monotonic. Note that “All I Know” is a monotonic
logic that handles a notoriously non-monotonic feature: the “Closed World
Assumption”. We take this as a hint that the restriction to monotonic logics
is not a restriction in expressiveness.

Second level is the data-analysis level. As we have shown in Section 5.1, it
is very natural to generalize navigation into data-analysis w.r.t. to indicators
like confidence and support. This makes it possible to extract knowledge that
is not necessarily 100% true.

7.2 Related Works

There have been several other proposal of navigation/querying based on Con-
cept Analysis. Lindig (1995) designed a concept-based component retrieval
based on sets of significant keywords which are equivalent to our links for
the logic of attributes underlying FCA. Godin et al. (1993) propose a direct
navigation in the lattice of concepts, which is in fact very similar to Lindig’s
approach except that only greatest significant keywords, according to the con-
textualized subsumption on attributes, are displayed to the user. They have
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also notions common to our LIS such as working query, direct query specifi-
cation, and history of selected queries.

Cole and Stumme (2000) developed a Conceptual E-mail Manager (CEM)
where the navigation is based on Conceptual Scales (Prediger, 1997; Prediger
and Stumme, 1999). These scales are similar to our views in the sense that
they select some attributes acting as links and displayed, as for us, with the
size of the concept they select. A difference with our LIS is that these links
are ordered according to concept lattices of scales, but it can also be done in
LIS by a post-treatment on answers of command ls.

However, the main difference with all of these approaches is that we use an
(almost) arbitrary logic to express properties. This enables us to have auto-
matic subsumption relations (e.g., (author is "Wille, Mineau") v (author
contains "Wille") v (author)), and thus some implicit views (e.g., author,
year). Another difference is that we propose to handle in a uniform way, based
on CA, navigation and querying as above, but also, updating, data-mining,
learning, etc.

van Rijsbergen (1986) also combined information retrieval (IR) and logic by
introducing a logical model of IR, in which both object descriptions and queries
are logical. As for us, many logics could be used in this model, but a first
difference is that the relevance relation is defined as a measure combining the
exhaustivity and specificity of the object description to the query, rather than
an exact one (the subsumption v). This measure is used to rank the answers
of a query. A second difference is that navigation is not here combined with
querying. Later, Chiaramella (1997) added some navigation to this logical
model of IR. However, this navigation is structural rather than conceptual
as in a LIS, which means that a navigation step leads from a set of objects
to another, rather than from a query to a set of sub-queries. The fact that
our answers are intentional rather than extensional justifies we can rely on an
exact relevance relation because answers to queries are not flat sets of objects.
However, it is also possible to take into account uncertainties in a LIS (see the
end of Section 7.1).

7.3 Future Work

Our most practical perspective is to design a logical file system, which would
implement the ideas we have presented in this article, and serve as a Logic
Concept Repository for a LIS. The expected advantage is to offer the services
described here at a standard system level that is accessible for every applica-
tion. So doing, even applications that do not know about logical information
systems (like e.g., all existing compilers) would benefit from it. For this logi-
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cal file system, it will also be important to make our ideas work with a large
volume of data in an efficient way.

A graphical user-interface to logical file systems would allow to display in an
integrated fashion the working query, the working view, and the corresponding
extent and set of links. For instance, a graphical interface for keeping trace of
navigation, like what is becoming standard for file browsers, has been already
experimented for a simple logic (attributes with values) but should be devel-
oped further. This amounts to keep a trace of the path from the start of the
navigation to the current place. Moreover, the set of links could be presented
graphically as a diagram of ordered formulas. A further refinement is to take
into account the contextualized subsumption, to get something similar to con-
cept lattices derived from scales (Cole and Stumme, 2000). This amounts to
represent an overview of possible future navigations.

The World Wide Web can also be explored using our techniques if one consid-
ers answers to web-queries as a formal context into which to navigate. More
ambitious is to think of a Web-based LIS. In this case, the main issues will be
distribution of data and computation.

An application of the learning schema exposed in Section 5.2.1 is to use
the learning schema for navigating. A description would play the role of a
query, and its associative concepts could be proposed to the user as alterna-
tive queries. The advantage is that though the initial query could have an
empty answer, the alternative ones always correspond to non-empty concepts.
So, it makes it possible to start a search with only an example of what the
user is looking for, and then see actual representatives of the queried concepts.

Another interesting perspective follows the observation that the notion of as-
sociative concepts is closely related to modified and new concepts in the incre-
mental concept formation (Godin, Missaoui, and Alaoui, 1995). We developed
further this correspondence, which led to an improved algorithm for incremen-
tally computing concepts of sparse contexts (Ferré, 2002a).

In all this article, names or descriptions are essentially unary predicates,
whichever is the actual logic used for this purpose. However, several appli-
cations require to express relations between objects, i.e., n-ary predicates. For
instance, a LIS for a software environment should permit to express such re-
lations as calls f or is connected to x, where f and x are objects. These
relations form concrete links between objects, which we plan to consider for
navigation in a future work. The main difficulty is to manage the concrete links
in a way that remains compatible with the other navigation links. This will
also permit to represent topological informations, e.g., West of x or 10 miles

from y, that are used in Geographical Information Systems.

42



References

Barbut, M., Monjardet, B., 1970. Ordre et classification — Algèbre et combi-
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