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2 Overall Objectives

2.1 Overview

The LIS team aims at developing formal methods for handling complex data sets in a �exible
and precise way. �Flexible� means that the content determines the shape of the container. Very
often, it is the opposite that is observed; e.g., the tree-like shape of a hierarchical �le system
enforces the tree-like shape of software packages. �Precise� means that any subset of the data
set can be easily characterized. Again, it is the opposite that is often observed; e.g., in a
hierarchical �le system only sub-trees can be easily characterized. More and more information
is available on the Web, and more and more information can be stored on a single machine.
However, whereas the related low-level technology is developing, and performance is increasing,
little is done for organizing the ever-growing amount of information. Therefore, the LIS team

3



Team LIS IRISA Activity Report 2009

addresses the issues of organizing and querying information in general. The solutions are to be
both formal and practical. Operational issues such as index technologies are important, but
we are convinced that their scope is too limited to solve the crucial issues.

At a formal level, queries and answers are two key notions. It is nowadays standard to
consider queries as logical formulas and answers as special models of queries. Computing the
preferred model of a query in some context is conceptually easy, and it warrants �exibility.
However, the opposite is not that easy in general; given a subset of the data, how can we
compute a query of which it is a model? Given two di�erent subsets of the data, how can
we compute a query that explains the di�erence? Knowing this would warrant precision.
The LIS team proved that formal concept analysis (FCA [GW99]) is a powerful framework for
analyzing 〈query , answer〉 pairs. Formal concepts formalize the association between a query
and its answers. Formal concepts are structured into a lattice which provides navigation links
between concepts.

However, standard FCA cannot deal with queries considered as logical formulas (recall
that this is the key for �exibility). Therefore a variant of FCA for logical description has
been developed [6] altogether with the generic notion of Logical information system (LIS)
that provided a reconstruction of all information system operations based on logical concept
analysis. In particular, some data-mining operations are native in LIS [6, 4].

The mottoes of the LIS research are:

1. Never impose a priori a structure on information. E.g., do not use hierarchical structures.
Imposing a priori a structure causes the tyranny of the dominant decomposition[TOHS99].
For instance, the usual class-based organisation of source code makes highly visible the
connections between methods of the same class, but masks the possible connections
between methods in di�erent classes.

Instead, consider pieces of information as a bulk. Structure should emerge a posteriori
from the contents or the point of view. As a consequence, updating the contents may
change the structure: we accept it.

2. Consider every possible rational classi�cation, and permit changes at any time. Here,
rational means that what makes a piece of information belong or not to a class depends
on the very piece of information, not on other pieces. The concept lattice induced by
FCA is precisely a means to grasp all possible rational classi�cations.

3. Rare events are as important as the frequent ones. One cannot say a priori if a piece of
information is interesting because it presents a frequent pattern, or because it presents
a rare pattern.

So, rare events must not be masked by statistical artefacts. Statistics is not forbidden,
but it is only a complement of a symbolic logic approach.

4. Queries should be possible answers.

[GW99] B. Ganter, R. Wille, Formal Concept Analysis � Mathematical Foundations, Springer, 1999.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, S. Sutton, �N Degrees of Separation: Multi-Dimentional
Separation of Concerns�, in : ICSE, IEEE Computer Society, p. 107�119, 1999.
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In usual information systems (say relational databases or Web browsers) there is a strict
dichotomy between queries (they are intensional expressions), and answers (they are
strictly extensional expressions, i.e. sets of things). We contend that a good answer must
be a mix of extensional and intensional answers. E.g. the good answer to �I would like to
buy a book� is seldom the whole catalog of the bookshop; it is more relevant to answer
such a query with other queries, like �Is this for a child� or �Do you prefer novels or
documents�.

Note that hierarchical �le systems already do that. Queries (i.e., �lepaths) yield an-
swers that contain other queries (i.e., sub-directories). One of the LIS achievements is a
formalization of this behaviour that does not rely on an a priori hierarchical structure.

Our research is intended to be vertical in the sense that all aspects of information systems
are of interest: design, implementation, and applications.

On the implementation side, the LIS team develops systems that present the LIS abstrac-
tion either at the �le system level [7] or at the user level [4].

On the application side, the LIS team explores the application of LIS to Geographical
information systems (GIS). The intuition here is that the traditional layered organization of
information in GIS su�ers a rigid structure of thematic layers. Moreover, GIS applications
usually cope with highly heterogeneous information and large amount of data; this makes
them an interesting challenge for LIS. The team also works on a data-mining interpretation
of bug tracking. In this case, the intuition is that pieces of information relevant to software
engineering, e.g. programs, speci�cations or tests, can be explored very systematically by a
LIS. More generally, applications to software engineering are important for the team. A recent
trend of application is the assistance to social choice, e.g., committee decision making [3]. The
idea is to register all the pros and cons of a set of candidates as a formal context and to explore
their consequences.

2.2 Key Issues

In its current state, LIS studies the following key issues:

• The LIS formalism is generic w.r.t. the logic used for describing pieces of information.

What are the appropriate logics for the application �elds that we have chosen? (GIS
and error localization) Do we need a brand new logic for every application, or is there
something that di�erent applications can share?

• Genericity of LIS w.r.t. logic opens the door for creating ad hoc logics for describing
pieces of information of an application. We already have proposed the framework of logic
functors for helping a user build safely ad hoc logics. Logic functors are certi�ed logic
components that can be composed to form certi�ed implementations of a logic.

What are the useful logic functors? How can we be sure that a toolbox of logic functors
is complete for a given purpose?
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Can the idea of certi�ed composition be applied to another domain? Given a domain foo,
foo functors would be certi�ed foo components that can be assembled to form certi�ed
implementations of foo systems.

Is it possible to certify other properties than meta-logical properties? E.g. is it possible
to characterize complexity, or other non-functional properties like security?

• A family of non-commutative logics has developed over the years in the domain of com-
putational linguistics, e.g. Lambek logic, pregroups. As for LIS, a great amount of
creativity is expected for extending this family with ad hoc logics that would tackle
�ne-grained linguistics phenomena.

Is it possible to build up an implementation of these logics using logic functors?

Some LIS applications deal with objects that are sequential by nature (say, texts).

Can these non-commutative logics primarily developed for computational linguistics help
in LIS applications?

• Hierarchical �le systems have a preferred metaphor which is the tree.

What is the proper metaphor for LIS?

The tree is also the graphical metaphor of hierarchical �le systems.

What is the graphical metaphor for LIS?

Knowing this is crucial for the acceptance of LIS in end-user applications.

• Geographical information systems also su�er the tyranny of the dominant decomposition.
Here, the dominant decomposition is in rigid thematic layers that inherit from plastic
sheets of ancient map design. These layers are omnipresent in the design and interface
of GIS applications.

How can LIS abstract these layers, and still display layers when needed?

Mining geographical information is di�cult because of the layers and because it must
cope with complex spatial relations.

What is the proper modeling of these relations that will permit e�cient LIS operations,
including data-mining?

• Up to now, mining execution traces for bug tracking has used poor trace representations
and ad hoc algorithms.

How can the theoretical and practical framework of LIS help bene�t from the wide range
of information of program development environments?

• The �le system implementation of LIS can handle around 1 million elementary pieces of
information, which corresponds approximately to a full homedir with 10 to 20 thousands
�les. This is rather small compared to relational database capabilities, but already large
compared to other approaches based on formal concept analysis.

How can it handle more? Can we reach 100 million in the next few years?
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3 Scienti�c Foundations

3.1 Logics for Information Systems

Keywords: Syntax, interpretation, semantics, subsumption.

Glossary :

Syntax De�nition of the well-formed statements of a language. Statements are �nite.

Interpretation Complete description of a world. Interpretations can be arbitrary math-
ematical constructs, and so can be in�nite. Interpretations are models of statements, namely
the worlds in which the statement is true. Statements are features of interpretations, namely
the statements that are true in the world.

Semantics A binary relation between syntactic statements and interpretations.

Subsumption A relation which states that a property is more speci�c than another prop-
erty.

Logic is the core of Logical Information Systems. However, this does not say everything
because every particular usage of logic is also a point of view on logic. For instance, logic in
Logic Programming is not the same as in Description Logics. This section describes the point
of view on logic from information systems.

Logic is a wide domain that is concerned with formal representation and reasoning. The
point of view on logic in logical information systems can be characterized by two things.
Firstly, we are interested in the individual description of objects (e.g., �les, pictures, program
functions or methods), so that we need to represent concrete domains and data structures.
This entails two levels of statements: (1) statements about objects, and (2) statements about
the world (e.g., ontologies and subsumption). Subsumption helps to decide when an object is
an answer to a query. Secondly, we need automated reasoning facilities as the subsumption
must be decided between any object and a query in information retrieval. This forces us to
only consider decidable logics, unless consistency or completeness are weakened.

Properties of a Logic A characteristic of logic is the ability to derive new statements from
known statements. Such a derivation is valid w.r.t. semantics only if every model of the known
statements is also a model of the new statements. This ability opens the room for reasoning,
i.e. the production of valid statements by working at the syntactical level only. Reasoning is
formalized by inference systems (e.g., axioms and rules). An inference system is consistent if
it produces only valid statements; it is complete if it produces all valid statements. Reasoning
is decidable if a consistent and complete inference system can be realized by an algorithm.

Examples of Logics for Information Systems Proposition logic is a possible logic for
an information system, but it needs a lot of encoding for handling structured information.
Instead, non-standard logics have been de�ned for some structured domains.

A large family of logics that comes into our scope is the family of Description Logics
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(DL) [Bra79,CLN98], which have been widely studied, implemented, and applied in knowledge
and information management. Moreover, their semantic structure is especially well-suited to
be used in a LIS. The semantics of proposition logic is often exposed in terms of truth values
and truth tables. To the contrary, the semantics of description logic is de�ned in terms of sets
of objects that are close to answers to a query. DL are, therefore, of a special interest for the
LIS team.

Another family of interest is categorial grammars. Many substructural logics come into
this scope, among which non-commutative linear logic or Lambek Calculus[Lam58] that handle
various concatenation principles (or ordered conjunction) in categorial grammars where logic
is used both for attaching formulas to objects and for parsing seen as deduction.

At an empirical level, the categorial approach comes very close to the LIS approach. Cat-
egorial grammars correspond to LIS contents, because they both attach formulas to objects,
and sentence types correspond to queries. The di�erence is that the answer to a LIS query is an
unordered set, whereas a sentence generated by a categorial grammar is an ordered sequence.
We expect a cross-fertilization of both theories in the future, especially in the LIS applications
where the objects are naturally ordered.

3.2 Concept Analysis

Keywords: Objects, descriptors, context, instance, property, extension, intension, concept.

Glossary :

Objects A set of distinguished individuals.
Descriptors A set of distinguished properties.
Context A set of objects associated with descriptors.
Instance An object is an instance of a descriptor if it is associated with it in a given

context.
Property A descriptor is a property of an object if it is associated with it in a given

context.
Extension The extension of a collection of descriptors is the set of their common instances.

Extent is a synonym.
Intension The intension of a collection of objects is the set of their common properties.

Intent is a synonym.
Concept Given a context, and extensions and intensions taken from it, a concept is a

pair (E, I) of an extension E and an intention I that are mutually complete; i.e., I is the
intention of the extension, and E is the extension of the intention.

[Bra79] R. J. Brachman, �On the Epistemological Status of Semantic Nets�, in : Associative Networks:
Representation of Knowledge and Use of Knowledge by Examples, N. V. Findler (editor), Academic
Press, New York, 1979.

[CLN98] D. Calvanese, M. Lenzerini, D. Nardi, �Description Logics for Conceptual Data Modeling�, in :
Logics for Databases and Information Systems, J. Chomicki, G. Saake (editors), Kluwer, p. 229�263,
1998.

[Lam58] J. Lambek, �The Mathematics of Sentence Structure�, American Mathematical Monthly 65, 1958,
p. 154�170.
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Formal Concept Analysis Formal Concept Analysis (FCA) is part of the mathematical
branch of applied lattice theory [Bir40,DP90]. It can be seen as a reformulation by Wille of Galois
lattices [BM70] that emphasizes lattices as conceptual hierarchies [Wil82]. The mathematical
foundations of FCA have been extensively studied by Ganter and Wille [GW99].

FCA mainly aims at the automatic construction of concepts and their classi�cation ac-
cording to a generalization ordering, given a �at representation of data. The adjective formal
means that concepts are given a mathematical de�nition, which re�ects the usual philosophi-
cal meaning of a �concept�. The basic notions of FCA are those of formal context, and formal
concept.

A formal context is a binary relation between a set of objects, and a set of attributes.
Through this relation attributes can be seen as properties of objects, and reciprocally, objects
can be seen as instances of attributes. This is a very general settings that applies to various
domains such as data analysis, information retrieval, data-mining or machine learning. In all
these domains, the objects of interest are described by sets of attributes, and the objective is
to relate in some way sets of objects and sets of attributes. In information retrieval a set of
attributes is a query, whose answers is a set of objects. In machine learning a set of objects is
a set of positive examples, whose characterization is a set of attributes.

A formal concept is the association of a set of objects, the extent, and a set of attributes,
the intent. This comes close to the classical de�nition of concept in philosophy, but in FCA
the relationship between extent and intent is formally de�ned. The extent must be the set of
instances shared by all attributes of the intent; and the intent must be the set of properties
shared by all objects in the extent.

The fundamental theorem of FCA says that the set of all concepts forms a complete lattice
when they are ordered according to the set inclusion on extents (or intents). This is called the
concept lattice, and it can be computed automatically from the formal context. The concept
lattice is the structure that is implicit in any formal context. It contains all the information
contained in the formal context; the latter can be rebuilt from the former. In data analysis,
the concept lattice permits a �exible classi�cation of data (where a concept is a class), because
concepts are not organized as a strict hierarchy. In information retrieval and data-mining it is
used as a search space for answers.

Logical Concept Analysis In Formal Concept Analysis (FCA) object properties are re-
stricted to Boolean attributes. In many applications there is a need for richer properties, where
properties are not independent. For instance, if a book has been published in 2000, it can be
given the property year = 2000, and has then the implicit properties year in 1990..2000

and year in 2000..2010. This means that properties are statements about objects that can

[Bir40] G. Birkhoff, Lattice Theory, American Mathematical Society, 1940.

[DP90] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press,
1990.

[BM70] M. Barbut, B. Monjardet, Ordre et classi�cation � Algèbre et combinatoire (2 tomes), Ha-
chette, Paris, 1970.

[Wil82] R. Wille, Ordered Sets, Reidel, 1982, ch. Restructuring lattice theory: an approach based on
hierarchies of concepts, p. 445�470.

[GW99] B. Ganter, R. Wille, Formal Concept Analysis � Mathematical Foundations, Springer, 1999.
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be subject to reasoning, exactly like logical statements. Other examples of useful properties
are strings and string patterns, spatial descriptions for locating objects, or patterns over the
programming type of functions and methods.

FCA has been extended by other authors to handle multi-valued contexts [GW99], but this
extension takes the form of a preprocessing stage that results in a standard formal context,
and forgets all logical relations between properties. Moreover it is limited in practice to valued
attributes with �nite domains of attributes. In 2000 we proposed a logical generalization of
FCA, named Logical Concept Analysis (LCA) [6], that is the abstraction of FCA w.r.t. object
descriptions and concept intents. This makes LCA an abstract component, and makes FCA
the composition of LCA with a logic component. LCA makes the theory of concept analysis
easily reusable in various applications.

For good composability of LCA and logics, they must agree on the speci�cation of logics.
What LCA needs from a logic is:

• a language of formulas (or statements), L, for the representation of object descriptions
and concept intents,

• a procedure, v, for deciding the subsumption between 2 formulas; v means �is subsumed
by�, �is more speci�c than�, �entails�,

• a procedure, t, for computing the least common subsumer of 2 formulas; it is a kind of
logical disjunction,

• a formula, ⊥, that is the most speci�c according to subsumption (logical contradiction).

This speci�cation provides everything required to extend fundamental results of FCA to LCA
(formal context, extent, intent, concept, complete lattice of concepts). For information retrieval
and the expression of queries, it is useful to add, to this speci�cation, operations such as logical
conjunction, and logical tautology (the most general formula).

Any formal context de�nes a logic whose subsumption relation is isomorphic to the concept
lattice that is derived from the formal context. An interesting result is that the contextualized
logic (the logic de�ned by the logical context) is a re�nement or extension of the logic used
by LCA. Everything true in the logic is also true in the contextualized logic (because it is
eternal truth); and everything true only in the contextualized logic says something that is true
in the context, but not in general (because it is instant truth). Thus, contextualized logic forms
the basis for data-mining and machine learning tasks, whose aim is to discover outstanding
regularities in a given context [6, 4].

3.3 Logical Querying, Navigation, and Data-mining

Keywords: Querying, navigation, data-mining.

Glossary :

Querying The process that takes a query (e.g., a logical formula), and returns the collec-
tion of objects that satisfy the query (e.g., the extent of the query).

[GW99] B. Ganter, R. Wille, Formal Concept Analysis � Mathematical Foundations, Springer, 1999.
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Navigation The process of moving from place to place, where each place indicates objects
they contain (i.e. local objects) and other places where it is possible to move (i.e. neighbouring
places).

Data-mining The process of extracting outstanding regularities from data (e.g., a context)
hoping to discover new and useful knowledge.

In most information systems, querying and navigation are two disconnected means for
information retrieval. With querying, users formulate queries which belong to more or less
complex querying languages, from simple words as in Google to highly structured languages
like SQL. The system returns a set of answers to the query. This permits expressive search
criteria over large amounts of data, but lacks interactivity because the dialogue is only one-way.
If the answers are not satisfying, users have to imagine new queries and formulate them, which
requires a priori knowledge of both querying language and data. With navigation, users move
from place to place following links. The most common systems are folder hierarchies (e.g.,
�le systems, bookmarks, emails), and hypertext. As opposed to querying, navigation provides
interactivity by making suggestions at each step, but o�ers limited expressivity because nav-
igation structures are rigid. In a hierarchy, selection criteria are presented in a �xed order.
For instance, if pictures are classi�ed �rst by date, then by type, one cannot easily �nd all
landscape pictures.

The need for combining querying and navigation has already been recognized. Most pro-
posals, however, are unsatisfying. Indeed, either querying and navigation cannot be mixed
freely in a same search, or consistency of querying is not maintained. An example of the for-
mer is SFS [GJSO91], once a querying step is done, there is no more navigation. An example
of the latter is HAC [GM99], some query answers may not satisfy the query. A proposal based
on FCA has not these drawbacks [GMA93], and we have generalized it to work within LCA,
which allows us to use logical formulas for object description and queries [6]. Logic brings
expressivity in querying, and concept analysis brings the concept lattice as a navigation struc-
ture (i.e., navigation places are formal concepts). The advantages of this navigation structure
is that (1) it is automatically derived from data, the logical context (see motto 1), (2) it is
complete as navigation alone makes it possible to reach any object (see motto 3), and (3) it
is �exible because selection criteria can be chosen in any order, thus allowing user to express
their preferences (see motto 2). Querying and navigation can be freely mixed (see motto 4)
in a same search because every logical formula points to a formal concept, and every formal
concept is labelled by a logical formula. Put concretely, this means that a user can at each
step of his search: either modify by hand the current query and reach a new place, or follow a
suggested link that will modify the current query and reach a new place.

The critical operation is the computation of navigation links, which correspond to edges in

[GJSO91] D. K. Gifford, P. Jouvelot, M. A. Sheldon, J. W. J. O'Toole, �Semantic �le systems�,
in : 13th ACM Symposium on Operating Systems Principles, ACM SIGOPS, p. 16�25, 1991.

[GM99] B. Gopal, U. Manber, �Integrating Content-Based Access Mechanisms with Hierarchical File
Systems�, in : third symposium on Operating Systems Design and Implementation, USENIX Asso-
ciation, p. 265�278, 1999.

[GMA93] R. Godin, R. Missaoui, A. April, �Experimental Comparison of Navigation in a Galois Lattice
with Conventional Information Retrieval Methods�, International Journal of Man-Machine Studies
38, 5, 1993, p. 747�767.
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the concept lattice. Indeed, the worst-case time complexity for computing the concept lattice
is exponential in the number of objects, which makes it intractable in most interesting cases.
We demonstrated both in theory and practice that this computation is not necessary. A key
feature of LIS is that its semantics is expressed in terms of LCA, though it is not required to
actually build the concept lattice. This is opposed to most (all?) previous proposals for using
LCA in information retrieval.

The concept lattice upon which our navigation is based is also a rich structure for data-
mining and machine learning [Kuz04]. Here again, we have combined existing techniques with
logic [6, 4], and applied them to the automatic classi�cation of emails [FR02], and the prediction
of the function of proteins from their sequence [4].

3.4 Genericity and Components

Keywords: Abstraction, reusability, composability, component.

Glossary :

Abstraction a mechanism and practice to reduce and factor out details so that one can
focus on few concepts at a time.

Reusability the likelihood a segment of structured code can be used again to add new
functionalities with slight or no modi�cation. Reusable code reduces implementation time, it
increases the likelihood that prior testing and use has eliminated bugs and it localizes code
modi�cations when a change in implementation is required.

Composability a system design principle that deals with the inter-relationships of com-
ponents. A highly composable system provides recombinant components that can be selected
and assembled in various combinations to satisfy speci�c user requirements.

Component a unit of composition with contractually speci�ed interfaces and explicit
context dependencies only. A software component can be deployed independently and is subject
to composition by third parties.

The application scope of Logical Information Systems is very large, and we do not expect
that one design (e.g., one logic) will �t all possible applications. That is why we emphasize
genericity, and we use the plural in �logical information systems�. The need for genericity is
not limited to theoretical results and design, but extends to the concrete implementation of
LIS.

Genericity requires programming facilities for abstraction, composability, and reusability of
software components.

In LIS, abstraction is of the upper importance in the design of logical concept analysis;
LCA is an abstraction of FCA. It is also at the heart of the logic functor framework and of
its implementation; a logic functor is an abstraction of a logic (see Section 3.5). Reusability
and composability are the expected outcomes of this framework. It is expected to make things

[Kuz04] S. O. Kuznetsov, �Machine Learning and Formal Concept Analysis.�, in : Int. Conf. Formal
Concept Analysis, P. W. Eklund (editor), LNCS 2961, Springer, p. 287�312, 2004.

[FR02] S. Ferré, O. Ridoux, �The Use of Associative Concepts in the Incremental Building of a Logical
Context�, in : Int. Conf. Conceptual Structures, G. A. U. Priss, D. Corbett (editor), LNCS 2393,
Springer, p. 299�313, 2002.
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easier to the designer of a LIS application. Composability is also at the heart of the very
notion of formal context, and thus at the heart of concept analysis. Indeed, the �at structure
of formal concepts makes it trivial to extend a context or merge two contexts, and the burden
of giving a structure to the context is left to the construction of the concept lattice.

A generic implementation of LIS can be seen as a central component that is parameterized
by several application-dependent components: at least a logic, and a transducer for importing
data. These parameter components can be linked at compilation time (plugins). The central
component as well as parameter components can themselves be the result of the composition
of smaller components.

3.5 Logic Functors

Keywords: Logics, genericity, composability.

The genericity w.r.t. logic implies that for every new application a logic has to be found
for describing objects in a logic context. Either a suitable logic is already known, or it must
be created. Creating a logic requires designing a syntax, a semantics, algorithms for subsump-
tion and other procedures, and proving that these algorithms are correct w.r.t. semantics.
This de�nitely requires logic expertise and programming skills, especially for the subsumption
procedure that is a theorem prover for which consistency and completeness must be proven.
However, application developers and logic experts are likely to be di�erent persons in most
cases. Moreover, creating new logics from scratch for each application is unsatisfying w.r.t.
reusability as these logics certainly share common parts. For instance, many applications need
propositional reasoning, only changing the notion of what is a propositional variable.

We introduced high-level logic components, named logic functors [5], in order to make the
creation of a new logic the mere composition of abstract and reusable components. All logics
share a common speci�cation that contains all useful procedures (e.g., subsumption); logic
functors are functions from logics to logics, implemented as parameterized modules. Some
logic functors take no parameter, and provide stand-alone but reusable logics: this is the case
of concrete domains such as integers or strings. Other logic functors take one or several logics as
parameters. For instance the functor Prop(X) is propositional logic abstracted over its atoms.
This makes it possible to replace atoms in propositional logic by the formulas of another logic
(e.g., valued attributes, terms from a taxonomy).

Logics are built by applying logic functors to sub-logics, which can themselves be de�ned as
a composition of logic functors. For instance, the propositional logic where atoms are replaced
by integer-valued attributes (and allowing for integer intervals) can be de�ned by the expression

L = Prop(Set(Prod(Atom,Interval(Int)))).

This results in a concrete software component L that is fully equipped with implementations
of the logic speci�cation procedures. This component can then be composed itself with LCA
or a LIS system.

3.6 Categorial Grammars

Keywords: Categorial grammar, identi�cation in the limit.
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Categorial grammars are used for natural language modeling and processing; they mainly
handle syntactic aspects, but Lambek variants also have a close link with semantics and
Lambda-calculus. Formally, a categorial grammar is a structure G = (Σ, I, S) where: Σ is
a �nite alphabet (the words in the sentences); I is a function that maps a �nite set of types
to each element of Σ (the possible categories of each word, a lexicon); S is the main type
associated to correct sentences. A k-valued categorial grammar is a categorial grammar where,
for every word a ∈ Σ, I(a) has at most k elements. A rigid categorial grammar is a 1-valued
categorial grammar. Rigidity is a useful constraint to get learnable subclasses of grammars
(and related algorithms).

Each variant of categorial grammar formalism is also determined by a derivability relation
on types ` (which can be seen as a subcase of linear logic deduction in the case of Lambek
grammars). Given a categorial grammar G = 〈Σ, I, S〉, a sentence w on the alphabet Σ belongs
to the language of G whenever the words in w can be assigned by I a sequence of types that
derive (according to `) the distinguished type S.

A simpli�ed example is G1 = (Σ1, I1, S) with Σ1 = {John,Mary, likes} I1 = {John 7→
{N}, Mary 7→ {N}, likes 7→ {N \ (S/N)}} the sentence �John likes Mary� belongs to the
language of G1 because N,N\(S/N), N ` S due to successive applications of the two elimination
rules : X, X \Y ` Y and Y, Y/X ` Y . Type constructors / and \ can be seen as oriented
logic implications, the elimination rules are analogues of the �Modus Ponens� logic rule. An
interesting issue is how the underlying rules or logics may compose (this is the design of logic
functors) to deal with more �ne-grained linguistic phenomenon.

Since they are lexicalized, such grammar formalisms seem well-adapted to automatic acqui-
sition or completion perspectives. Such studies are performed in particular in Gold's paradigm.

Identi�cation in the limit in the model of Gold consists in de�ning an algorithm on a �nite
set of (possibly structured) sentences that converges to obtain a grammar in the class that
generates the examples. Let G be a class of grammars that we wish to learn from positive
examples; let L(G) denote the language associated with a grammar G; a learning algorithm is
a function φ from �nite sets of (structured) strings to G, such that for any G ∈ G and 〈ei〉i∈N
any enumeration of L(G), there exists a grammar G′ ∈ G such that L(G′) = L(G) and n0 ∈ N
such that ∀n > n0 φ({e0, . . . , en}) = G′.

4 Application Domains

4.1 Geographical Information Systems

Participants: Olivier Bedel, Pierre Allard, Olivier Ridoux, Sébastien Ferré, Erwan
Quesseveur, François, Le Prince.

Geographical Information Systems (GIS) is an important, fast developing domain of Infor-
mation technology, and it is almost absent from INRIA projects. It is especially important for
local communities (e.g. region and city councils).

Geographical information systems [LT92] handle information that are localized in space

[LT92] R. Laurini, D. Thompson, Fundamentals of Spatial Information Systems, Elsevier, Academic
Press Limited, 1992.
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(geolocalized). GIS form a area which incorporates various technologies such as web, databases,
or imaging. One characteristic of GIS is their organization as layers. This is inherited from
the plastic sheets that where used until recently for drawing maps. A layer represents the
road system, another the �uvial system, another the relief, etc. This is another instance of the
tyranny of the dominant decomposition, and is not satisfactory: to which layer belong bridges,
into which layer can we represent a multimodal network? Moreover, mining GIS is known to
be di�cult for the same reason; the layer structure makes inter layer relationships di�cult to
discover.

The �rst advantage of applying LIS to GIS is to allow cross-layer navigation. Another
advantage is to permit a logical handling of scales. In current GIS systems, scales are treated
as di�erent layers, and it is di�cult to keep the consistency between all layers that describe the
same object. Another advantage that we have observed in a preliminary work is that LIS helps
cleaning a data-base. This was not expected, and opens an interesting research area. Another
characteristic of GIS is an intensive usage of topological relations (toochs, overlaps, etc) and
geographical relations (North, upstream, etc). Logic o�ers a rich language for expressing these
relations and combining them.

4.2 Mining Software Repositories

Participants: Peggy Cellier, Mireille Ducassé, Olivier Ridoux.

There exist numerous repositories related to the development of software: for example
source versions generated by control systems, archived communications between project per-
sonnel, defect tracking systems, component libraries and execution traces. They are used
to help manage the progress of software projects. Software practitioners and researchers are
beginning to recognize the potential bene�t of mining this information to support the mainte-
nance of software systems, improve software design/reuse, and empirically validate novel ideas
and techniques.

Logical information systems seem particularly adapted to mine these repositories. Indeed,
the repositories contain heterogeneous and incomplete information. Their size is too large to be
directly handled by human beings and it is still manageable by the current implementations
of LIS. The LIS team currently focuses on component retrieval and execution traces cross-
checking.

5 Software

5.1 LISFS

Participants: Yoann Padioleau, Olivier Ridoux [contact point].

The main objective of a LIS is not to go faster; it is to go easier. This must be evaluated by
experimenting the use of LIS in various contexts. However, the price for an easier usage must
not be too high compared to more classical storage means such as a �le system. At the same
time we want to promote a �le system level implementation of LIS so that every application
that uses the �le system interface could use a LIS.
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LISFS is a �le system that implements LIS under the Linux �le system interface [7]. It
uses the whole usual �le system technology (e.g. caching, journaling) to o�er reactivity, safety,
robustness, etc. At the same time, it is not intimately attached to Linux technology because
it is programmed at the user level, and it uses the FuseFS bridge to redirect �le system calls
to the user level.

LISFS manages a set of objects described with attributes that may be valued. The at-
tributes of an object form a logic conjunction, disjunction and negation can be expressed in
queries. More sophisticated logical descriptions can be embedded in the attributed values.
For instance, title:contains "logic" is an attribute whose value is contains "logic" and
refers to a logic of string pattern matching. Objects can be created and deleted (e.g. shell
commands touch f and rm f); their attributes can be changed anytime (e.g. shell command
mv f1 f2; and new attributes can be created anytime (e.g. shell command mkdir a).

LISFS response time grows with the number of objects, the number of attributes, and the
complexity of their values. We have proved, under hypotheses which are met in practice, that
LISFS response time to queries is linear with the number of objects. However, this is not
enough in practice, and the ideal complexity is amortized constant time. This is what we
try to achieve through the use of �le system and database technologies like caches, indexes,
and journals. In its current state LISFS can manage up to 1 000 000 objects×attributes with
a�ordable response time for queries. However, the response time for updates is not yet as good
as we wish, and this is a track for improvement in the future. Similarly, 100 000 objects is
good enough for a personal computer, but is not enough for some professional usage; this is
also something we wish to improve.

An important service of LISFS is to permit navigation, querying and updates inside �les.
This is the part-of-�le service, PofFS [PR05]. The idea is that a �le is considered as a composition
of subparts; the subparts are to the �le as �les are to a mount point. This is a way to overcome
arti�cial constraints that are often imposed by applications. For instance, it is often the case
that methods of the same class must be textual neighbours in a source �le. Sometimes what
is desired is to see together all methods with the same role, say print. PofFS permits that. In
fact, PofFS is just the right thing to do in many applications where the goal is not to �nd one
answer but to display together all answers. This is the case of GIS applications, for instance.

In 2008, LISFS has been extended with relations for linking objects together. This has
been applied to spatial relations between geographic features (distance and topology) [2].

5.2 GEOLIS

Participants: Olivier Bedel.

GEOLIS is a prototype combining a Logical Information System (LIS) and webmapping
tools for geographical data exploration. GEOLIS takes the form of a web application. Server-
side, GEOLIS relies on LISFS to organize the data and on the webmapping engine MapServer
to produce a map representation of data selection. Client-side, the GEOLIS user interface

[PR05] Y. Padioleau, O. Ridoux, �A Parts-of-File File System�, in : USENIX Annual Technical Con-
ference, General Track (Short Paper), 2005, http://www.usenix.org/events/usenix05/tech/

general/padioleau.html.
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provides three components: 1) a query box similar to web search engines querying interfaces,
2) a map area, and 3) a navigation tree gathering navigation links. Navigation links can be
followed to reduce (resp. enlarge) the current selection of data visible on the map by re�ning
(resp. generalizing) the current query written in the query box. GEOLIS is not yet distributed,
but online demos are available. A demo is a partial dataset concerning rodents distribution
in Soudano-Sahelian Africa. It aims at helping geographs in the research of factors impacting
rodents distribution.

5.3 Camelis

Participants: Sébastien Ferré.

Camelis is a stand-alone application that allows to store, retrieve and update objects
through a graphical interface. Its main purpose is to experiment with the LIS paradigm.
In particular, it has been very useful for re�ning the query-answer principle in special circum-
stances (e.g. when there are many answers, or when there are few answers). It is currently
used as a personal storage device for handling photos, music, bibliographical references, etc,
up to tens of thousands of objects. It implements as closely as possible the LIS paradigm.
It is generic w.r.t. logics, and is compatible with our library of logic functors, LogFun (see
Section 5.4). It is available on Linux and Windows, and comes with a user manual.

An important extension, Camelis2, has been developped to browse RDF(S) graphs, a Se-
mantic Web standard. It uses a query language whose expressivity is similar to SPARQL, the
reference query language of the Semantic Web. The LIS navigation has been proved consistent
(i.e., does not lead to dead-ends), and complete (i.e., can reach all conjunctive queries), so that
users can perform complex searches easily and safely [18].

5.4 LogFun

Participants: Sébastien Ferré.

The formal de�nition of a LIS is generic with respect to the logic used for object descriptions
and for queries. The counterpart is that it is up to the user to design and implement a logic
solver to plug in a LIS. This is too demanding on the average user, and we have developed a
framework of logic functors that permits to build certi�ed logic solvers (see Section 3.5).

LogFun is a library of logic functors and a logic composer. A user de�nes a logic using
the logic functors, and produces a certi�ed software implementation of the logic (i.e., parser,
printer, prover) by applying the logic composer to the de�nition. For instance, using a functor
Interval for reasoning on intervals (e.g. x ∈ [2, 5] =⇒ x ∈ [0, 10]), and a functor Prop for
propositional reasoning (e.g. a ∧ b =⇒ a), a user can de�ne logic Prop(Interval). In this logic,
a theorem like x ∈ [2, 5] ∨ x ∈ [7, 9] =⇒ x ∈ [0, 10] can be proven. Note that [2, 5] ∪ [7, 9] is
not an interval, so that Prop(Interval) is an actual extension over Interval.

What the logic composer does when building logic Prop(Interval) is to compose the solver
of Interval and the generic solver of Prop, and build a solver for Prop(Interval). It also type-
checks Prop(Interval) to produce its certi�cate using the certi�cates of Interval and Prop.
In this example, the certi�cate says that Prop(Interval) is complete: everything that could be
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deduced from the meaning of Prop(Interval) can be proved by its solver. In other circumstances,
the certi�cate indicates that the logic de�ned by the user is incomplete, w.r.t. the semantics
and solvers that come with the functors. In this case, the certi�cate also indicates what
hypotheses are missing for completeness; this may help the user to de�ne a more complete
variant of its logic.

Logic functors o�er basic bricks and a building rule to safely design new logics. For instance,
in a recent application of LIS to geographical information system, a basic reasoning capability
on locations was needed. The designer of the application, not a LIS or LogFun author, could
build a relevant ad hoc logic safely and rapidly.

5.5 Typed grammars

Participants: Denis Béchet [LINA-Nantes], Annie Foret [contact point].

A Pregroup ToolBox is under development on the gforge Inria as a collaborative work
with LINA. It includes a generic pregroup parser (LINA) and grammar lexicon de�nitions
and manipulation tools based on XML. An interface with Camelis has been developped (from
Camelis to the Pregroup XML format, and the other way round). It has been used to de�ne
and experiment grammar prototypes for di�erent natural languages.

6 New Results

6.1 GEOLIS: a Logical Information System for Organizing and Searching

Geographical Data

Participants: Olivier Bedel.

The following is a summary of the PhD thesis of Olivier Bedel [2], supervised by Olivier
Ridoux and Sébastien Ferré.

Today, the thematic layer is still the prevailling structure in geomatics for handling geo-
graphical information. However, the layer model is rigid: it implies partitionning geographical
data in prede�ned categories and using the same description schema for all elements of a
layer. Futhermore, Geographical Information Systems (GIS) rely exclusively on querying for
geographical information retrieval. Using Logical Information Systems (LIS) paradigm for
information management and retrieval, we propose a more �exible organisation of vectorial
geographical data at a thiner level since it is centered on the geographical object. Our data
model allows to consider every collections of geographical objects that share a common de-
scription. Geographical objects descriptions mix spatial and non-spatial properties that are
handled by specialized logics. Especially, a spatial logic has been designed to test the inclusion
of the di�erent kinds of geometrical description (i.e. polygon, line and point) and to reason on
derived properties such as the area or the length. Our navigation model allows to freely com-
bine querying and navigation on geographical data. More particularly, the navigation model
relies on three di�erent views over the geographical data: 1) the current selection is described
intentionnaly by the current query, 2) its extension is represented graphically on the geograph-
ical map, and 3) the navigation tree gathers the properties describing objects of the current
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selection. These properties also serve as navigation links to re�ne or generalize the current
query. The data and the navigation models have been implemented in the GEOLIS prototype,
which has been used to lead experiments on a real dataset.

6.2 Dynamic Taxonomies and Faceted Search: Theory, Practice, and Ex-

perience

Participants: Sébastien Ferré.

The following is the backcover summary of a book on dynamic taxonomies and faceted
search, edited by G.M. Sacco and Y. Tzitzikas. We contributed into 5 chapters [7, 11, 8, 10, 9]
of this book on the contribution of logical information systems and logic functors.

�Current access paradigms for the Web, i.e., direct access via search engines or database
queries and navigational access via static taxonomies, have recently been criticized because
they are too rigid or simplistic to e�ectively cope with a large number of practical search
applications. A third paradigm, dynamic taxonomies and faceted search, focuses on user-
centered conceptual exploration, which is far more frequent in search tasks than retrieval using
exact speci�cation, and has rapidly become pervasive in modern Web data retrieval, especially
in critical applications such as product selection for e-commerce. It is a heavily interdisciplinary
area, where data modeling, human factors, logic, inference, and e�cient implementations must
be dealt with holistically.

Sacco, Tzitzikas, and their contributors provide a coherent roadmap to dynamic taxonomies
and faceted search. The individual chapters, written by experts in each relevant �eld and
carefully integrated by the editors, detail aspects like modeling, schema design, system im-
plementation, search performance, and user interaction. The basic concepts of each area are
introduced, and advanced topics and recent research are highlighted. An additional chap-
ter is completely devoted to current and emerging application areas, including e-commerce,
multimedia, multidimensional �le systems, and geographical information systems.

The presentation targets advanced undergraduates, graduate students and researchers from
di�erent areas from computer science to library and information science as well as advanced
practitioners. Given that research results are currently scattered among very di�erent publi-
cations, this volume will allow researchers to get a coherent and comprehensive picture of the
state of the art.�

6.3 Organizing and browsing a collection of documents with Camelis

Participants: Sébastien Ferré.

Since the arrival of digital cameras, many people are faced with the challenge of organizing
and browsing the overwhelming �ood of photos their life produces. The same is true for all
sorts of documents, e.g. emails, audio �les. Existing systems either let users �ll query boxes
without any assistance, or drive them through rigid navigation structures (e.g., hierarchies);
or they do not let users put annotations on their documents, even when this would support
the organization and retrieval of any documents on customized criteria. We present [4] a tool,
Camelis, that o�ers users with an organization that is dynamically computed from documents
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and their annotations. Camelis is designed along the lines of Logical Information Systems
(LIS), which are founded on logical concept analysis. Hence, (1) an expressive language can
be used to describe photos and query the collection, (2) manual and automatic annotations
can be smoothly integrated, and (3) expressive querying and �exible navigation can be mixed
in a same search and in any order. This presentation is illustrated on a real collection of more
than 5,000 photos.

In the domain of Dynamic Taxonomies and faceted search, we show that Camelis extends
the navigational capabilities. In addition to the zoom-in navigation mode (e.g., replacing
Europe by France in the query), we present other navigation modes for less directed and
more exploratory browsing of a document collection. The presented navigation modes are
zoom-out (e.g., replacing France by Europe), shift (e.g., replacing France by Spain), pivot
(e.g., switching location and time), and querying by examples. These modes all correspond to
query transformations, and make use of boolean operators. The current focus of the search is
always clearly speci�ed by a query, and complex boolean queries can be constructed through
navigation only, i.e. by successive selection of navigation links.

6.4 E�cient Browsing and Update of Complex Data Based on the Decom-

position of Contexts

Participants: Sébastien Ferré.

Formal concept analysis is recognized as a good paradigm for browsing data sets. Besides
browsing, update and complex data are other important aspects of information systems. To
have an e�cient implementation of concept-based information systems is di�cult because of
the diversity of complex data and the computation of conceptual structures, but essential for
the scalability to real-world applications. We decompose contexts into simpler and specialized
components: logical context functors [17]. We demonstrate this allows for scalable implemen-
tations, updatable ontologies, and richer navigation structures, while retaining genericity.

6.5 Data Mining for Fault Localization

Participants: Peggy Cellier, Mireille Ducassé, Sébastien Ferré, Olivier Ridoux.

Most dynamic fault localization methods aim at totally ordering program elements from
highly suspicious to innocent. This ignores the structure of the program and creates clusters of
program elements where the relations between the elements are lost. We have proposed a data
mining process that computes program element clusters and that also displays dependencies
between program elements. Experimentations show that our process gives a comparable num-
ber of lines to analyze than the best related methods while providing a richer environment for
the analysis. We have also shown that the method scales up by tuning the statistical indicators
of the data mining process [14].
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6.6 Multi-criteria decision support : consistency and fairness thanks to

formal concept analysis

Participants: Mireille Ducassé, Sébastien Ferré.

In academia, many decisions are taken in committee, for example to hire people or to
allocate resources. Genuine people often leave such meetings quite frustrated. Indeed, it is
intrinsically hard to make multi-criteria decisions, selection criteria are hard to express and the
global picture is too large for participants to embrace it fully. We describe a recruiting process
where logical concept analysis and formal concept analysis are used to address the above
problems [15]. We do not pretend to totally eliminate the arbitrary side of the decision. We
claim, however, that, thanks to concept analysis, genuine people have the possibility to 1) be
fair with the candidates, 2) make a decision adapted to the circumstances, 3) smoothly express
the rationales of decisions, 4) be consistent in their judgements during the whole meeting, 5)
vote (or be arbitrary) only when all possibilities for consensus have been exhausted, and 6)
make sure that the result, in general a total order, is consistent with the partial orders resulting
from the multiple criteria.

6.7 Alert Correlation in Intrusion Detection

Participants: Mireille Ducassé.

Managing and supervising security in large networks has become a challenging task, as new
threats and �aws are being discovered on a daily basis. This requires an in depth and up-to-
date knowledge of the context in which security-related events occur. Several tools have been
proposed to support security operators in this task, each of which focuses on some speci�c
aspects of the monitoring. Many alarm fusion and correlation approaches have also been
investigated. However, most of these approaches su�er from two major drawbacks. First, they
only take advantage of the information found in alerts, which is not su�cient to achieve the
goals of alert correlation, that is to say to reduce the overall amount of alerts, while enhancing
their semantics. Second, these techniques have been designed on an ad hoc basis and lack a
shared data model that would allow them to reason about events in a cooperative way. We have
proposed a federative data model for security systems to query and assert knowledge about
security incidents and the context in which they occur. This model constitutes a consistent
and formal ground to represent information that is required to reason about complementary
evidences, in order to con�rm or invalidate alerts raised by intrusion detection systems [6].

6.8 Optional and iterated types for Pregroup Grammars

Participants: Annie Foret.

Pregroup grammars are a context-free grammar formalism which may be used to describe
the syntax of natural languages. However, this formalism is not able to easily de�ne types
corresponding to optional or iterated arguments like an optional complement of a verb or
a sequence of its adverbial modi�ers. A former paper [1] has introduced two constructions
that make up for this de�ciency where Gentzen-style rules are introduced to take care of two
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new operations, and an equivalent rewriting system. The extended pregroup calculus enjoys
several properties shared with traditional dependency grammars, yet does not signi�cantly
expand the polynomial complexity of the syntactic analysis on the pregroup grammar. The
basic formalism and this extension has been further studied, and explored in the pregroup
toolbox under development with a team in Nantes [12, 3, 13]. The use of Camelis in this
context is also presented in these papers.

Our interest is also in learning categorial grammars [2]. A theoretical study was recently
proposed for a version of a library of logic functors (LogFun) dedicated to the logic of pregroup:
this is detailed in [5] (to appear in a journal).

6.9 Assessment of achievements

The results achieved by the LIS team must be compared with the key issues presented in the
objective part. Not all key issues have deserved attention yet. However, a few of them have
been su�ciently well explored to start and draw conclusions.

We have now gained su�cient experience to claim that even if every application uses a
speci�c logic, it is not necessary to design every speci�c logic from scratch. Not only do we
have proposed a toolbox of logic components for building logic tools (parser, prover, printer,
etc), but we also have designed a theory of logic composition that allows to prove meta-
properties about the prover thus obtained. This methodology has been successfully applied
to build Description Logic style provers, topological property provers, time comparators, text
comparators, etc. Moreover, we have design a non-commutative logic comment that allows to
build variants of Lambek logics.

We have also progressed on the metaphor issue. We have observed that all applications
we have designed require a three-components interface. One component exposes a query,
another one exposes a navigation tree, and the last one exposes a set of application oriented
entities represented using an application oriented interface. The second component provides
at the same time a summary of the answers to the query, and a set of navigation links that
lead to related queries. The third component can be a map display for GIS applications, a
thumbnail array for a picture application, or an agenda for a personal organizer application.
In all applications the three interface components must be tightly connected so that acting on
one component e�ects the two other components. The three components must always be kept
coherent.

Finally, we have demonstrated that LIS principles can be successfully applied to the GIS
domain, and to the software fault localization domain. In both cases, LIS principles have per-
mitted new functionalities, and have opened new perspectives on possible developments. The
most interesting result is that the same high-level LIS features give rise to di�erent capabilities
in di�erent domains. This shows that more than a set of information management principles,
LIS is also an application integration principle. This is due to the use of logic for describing
data and to the lack of rigid data schematas.

22



Team LIS IRISA Activity Report 2009

7 Contracts and Grants with Industry

7.1 NXP Software

Participants: Sébastien Ferré.

A collaboration contract has been signed between Sébastien Ferré (LIS team), Laurent
Amsaleg and Patrick Gros (TEXMEX team) on one hand, and the company NXP Software
on the other hand. LIS and TEXMEX have agreed to provide advices on the feasibility of the
portability of multimedia data indexation and exploration technologies on present or future
mobile devices.

7.2 ECOMER

Participants: Mireille Ducassé, Sébastien Ferré.

At this date (19/11/2009), this contract is still awaiting �nal approval.

The program ECOMER is a grouping of several projects submitted to the call for projects �
Réduction de la consommation d'énergie à la pêche � (energy consumption savings in �shery).
It is a collaborative project between industrial partners and academic partners. Its objectives
are:

• to provide �shers with hardware and software tools that allow them to better control
their oil consumption,

• to design a module for the training of �shers to the economical steering of ships.

The motivation for this project comes from the fact that oil takes a heavier and heavier place in
the budget of the �sh industry. The role of the LIS team will be to provide a user interface to
browse streams of data about oil consumption. The objective is that �shermen get a detailed
feedback about their consumption so that they can learn how to reduce it.

8 Other Grants and Activities

8.1 International Collaborations

• The team LIS collaborates with the Belgian company Mission Critical IT on the use
of logical information systems in ontology-driven engineering. Mission Critical IT has
submitted a European Project, ODESSC (Ontology-Driven Engineering for Software
Services on the Cloud), in which the team LIS is a partner.

8.2 National Collaborations

• The LIS team has a contract with Région Bretagne in collaboration with the laboratory
RESO of the University of Rennes 2, for the funding of O. Bedel's PhD (until september
2008), and P. Allard's PhD (since october 2008).
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• The GeoTal project has been accepted by MSHB (Maison des sciences de l'homme de
Bretagne) for 2009-2010, it regroups local actors from various �elds, that are interested in
Geographical Data and Natural Language; meetings are organized with communications
by local actors or by other specialists on this issue.

• Annie Foret is an external collaborator of LINA (research lab. Nantes), in TALN team
(Natural Language Processing), and member of �Agence Universitaire de la Franco-
phonie� (AUF) , LTT network on �Lexicologie, terminologie et traduction�.

• Pierre Allard, Alice Hermann, and Sébastien Ferré have took part in the �treillis cler-
montois�, the annual seminar of the French FCA community.

9 Dissemination

9.1 Involvement in the Scienti�c Community

• Olivier Ridoux has served in several doctoral and habilitation committees: Gilles Trédan
� Structures et systèmes répartis �, Pierre Crégut � Contribution à la véri�cation des logi-
ciels � and Thomas Genet � Analyse d'atteignabilité en réécriture pour la véri�cation de
programmes �. He also served in several recruitment committees in University of Rennes
1 (President of 3 commitees), University of Rennes 2 (1 committee) and University of
Nantes (1 committee).

• Mireille Ducassé has served in the program committee of ICLP 2009 (International Con-
ference on Logic Programming), Pasadena, USA. At that conference, she has been in-
vited to give a tutorial on �(C)LP Tracing and Debugging� [16]. She has been in one PhD
committee : Grégoire Jacob, Université de Rennes 1. She is an elected member of the
�Conseil National des Universités (CNU) 27e section�, a national assessment committee
for teaching and research sta�. This amounts for more than 5 weeks of full time work
per year.

• Sébastien Ferré has been one of the two Program Chairs for the International Conference
on Formal Concept Analysis (ICFCA), which took place in May in Darmstadt, Ger-
many [1]. He has been named as a Program Chair for the International Conference on
Conceptual Structures (ICCS), to be held in July 2010 in Malaysia.

He has served as an external reviewer for the journals: The Computer Journal (CompJ),
AMAI (Annals of Mathematics and Arti�cial Intelligence), and Information Sciences
(INS). He has participated in the PhD defense committee of Olivier Bedel, as a co-
director, and he is also a member of the PhD committee of Nicolas Lebreton.

Sébastien Ferré has also served in the recruitment committee (�comité de sélection�) for
the recruitement of two assistant professors at the National Institute of Applied Sciences
(INSA).

• Annie Foret has been a program committee member of the Formal Grammar 2009 In-
ternational Conference.
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9.2 Teaching

• Olivier Ridoux was the head of IFSIC (Institut de Formation Supérieure en Informatique
et Communication - the Computing Science department at University of Rennes 1) until
February 2009, and then the head of ESIR (École supérieure d'ingénieurs de Rennes).

Olivier Ridoux teaches compilation, logic and constraint programming, as well as software
engineering at the Master level of IFSIC. He teaches an introduction to computability
and complexity at the Licence level. He also teaches an introduction to the principles of
IT systems at the Licence level.

• Mireille Ducassé is the head of the computer science department of the INSA of Rennes.
She is also an elected member of the board of directors (�Conseil d'administration�) of
the Insa of Rennes. She has been a member of two recruitment committees (�comités de
sélection�) in computer science at the Insa of Rennes.

At Insa, she teaches compilation and formal methods for software engineering (with the
�B formal method�) at Master 1 level of Insa. She leads an exercise of participatory
design based on the work of Wendy Mackay from the �In Situ� project of Inria Futurs.
She contributes to a course on risk analysis at Licence 2 level. She has presented the
participatory design course at a French pedagogical event [19].

• Sébastien Ferré teaches symbolic data mining and compilation at the master level. He
also teaches formal methods for programming and software engineering at the license
level. Until August, he has been in delegation at the CNRS.

• Annie Foret teaches university courses including formal logic, functional programming,
and databases.

• Peggy Cellier has been ATER (Attachée Temporaire à l'Enseignement et la Recherche)
at University of Rennes 1. She teaches algorithmics of graphs at Master 1 level of DIIC
(Diplôme d'Ingénieur de l'IFISIC), object-oriented modelling (UML, JUnit) at Master 1
level of IFSIC, and an introduction to computability and complexity at the Licence level.

• Pierre Allard teaches datamining and programming in C at the INSA of Rennes.

• Olivier Ridoux and Sébastien Ferré have animated one day during the �Journées péd-
agogiques de l'IFSIC� (pedagogical days of IFISC) in July, on Indexation and Logical
Information Systems.

10 Bibliography

Major publications by the team in recent years

[1] D. Bechet, A. Dikovsky, A. Foret, E. Garel, �Optional and Iterated Types for Pregroup
Grammars�, in : Int. Conf. Language and Automata Theory and Applications (LATA), C. Martín-
Vide, F. Otto, H. Fernau (editors), LNCS 5196, Springer, p. 88�100, 2008.

25



Team LIS IRISA Activity Report 2009

[2] D. Bechet, A. Foret, �k-Valued Non-Associative Lambek Grammars are learnable from Gen-
eralized Functor-Argument Structures�, Journal of Theoretical Computer Science 355, 2, 2006.

[3] M. Ducassé, S. Ferré, �Fair(er) and (almost) serene committee meetings with Logical and
Formal Concept Analysis�, in : Proceedings of the International Conference on Conceptual Struc-
tures, P. Eklund, O. Haemmerlé (editors), Springer-Verlag, July 2008. Lecture Notes in Arti�cial
Intelligence 5113.

[4] S. Ferré, R. D. King, �A dichotomic search algorithm for mining and learning in domain-
speci�c logics�, Fundamenta Informaticae � Special Issue on Advances in Mining Graphs, Trees
and Sequences 66, 1-2, 2005, p. 1�32.

[5] S. Ferré, O. Ridoux, �A Framework for Developing Embeddable Customized Logics�, in :
Int. Work. Logic-based Program Synthesis and Transformation, A. Pettorossi (editor), LNCS 2372,
Springer, p. 191�215, 2002.

[6] S. Ferré, O. Ridoux, �An Introduction to Logical Information Systems�, Information Processing
& Management 40, 3, 2004, p. 383�419.

[7] Y. Padioleau, O. Ridoux, �A Logic File System�, in : Usenix Annual Technical Conference,
2003.

[8] B. Sigonneau, O. Ridoux, �Indexation multiple et automatisée de composants logiciels�, Tech-
nique et Science Informatiques 25, 1, 2006.

Books and Monographs

[1] S. Ferré, S. Rudolph (editors), Formal Concept Analysis, 7th International Conference,
ICFCA 2009, Darmstadt, Germany, May 21-24, 2009, Proceedings, LNCS 5548, Springer, 2009.

Doctoral dissertations and �Habilitation� theses

[2] O. Bedel, GEOLIS : Un Système d information logique pour l organisation et la recherche de
données géolocalisées, PhD Thesis, Thèse de l'université de Rennes 1, 22 janvier 2009, coencadrée
par Olivier Ridoux et Sébastien Ferré.

Articles in referred journals and book chapters

[3] D. Béchet, A. Foret, �A Pregroup Toolbox for Parsing and Building Grammars of Natural
Languages�, Linguistic Analysis Journal, Vol. 36, to appear.

[4] S. Ferré, �Camelis: a logical information system to organize and browse a collection of docu-
ments�, Int. J. General Systems 38, 4, 2009.

[5] A. Foret, �A modular and parameterized presentation of pregroup calculus�, Information and
Computation Journal, to appear.

[6] B. Morin, L. Mé, H. Debar, M. Ducassé, �A Logic-based model to support alert correlation
in intrusion detection�, Information Fusion 10, 4, October 2009, p. 285�299.

[7] G. M. Sacco, S. Ferré, Y. Tzitzikas, Dynamic Taxonomies and Faceted Search: Theory,
Practice, and Experience, The Information Retrieval Series, 25, Springer, 2009, ch. 3 - Comparison
with Other Techniques.

26



Team LIS IRISA Activity Report 2009

[8] G. M. Sacco, S. Ferré, Dynamic Taxonomies and Faceted Search: Theory, Practice, and
Experience, The Information Retrieval Series, 25, Springer, 2009, ch. 5 - Extensions to the
Model.

[9] G. M. Sacco, S. Ferré, Dynamic Taxonomies and Faceted Search: Theory, Practice, and
Experience, The Information Retrieval Series, 25, Springer, 2009, ch. 9 - Applications and Expe-
riences.

[10] G. M. Sacco, Y. Tzitzikas, S. Ferré, Dynamic Taxonomies and Faceted Search: Theory,
Practice, and Experience, The Information Retrieval Series, 25, Springer, 2009, ch. 8 - System
Implementation.

[11] M. Stefaner, S. Ferré, S. Perugini, J. Koren, Y. Zhang, Dynamic Taxonomies and
Faceted Search: Theory, Practice, and Experience, The Information Retrieval Series, 25, Springer,
2009, ch. 4 - User Interface Design.

Publications in Conferences and Workshops

[12] D. Béchet, A. Foret, �(PPQ) : a pregroup parser using majority composition�, in : Proceedings
of Parsing with Categorial Grammars, ESSLLI workshop, 20-24 July, 2009 in Bordeaux, France,
2009.

[13] D. Béchet, A. Foret, �Une boîte à outils pour développer et utiliser les grammaires de
prégroupe�, in : journée ATALA : Quels analyseurs syntaxiques pour le français ?, 2009.

[14] P. Cellier, M. Ducassé, S. Ferré, O. Ridoux, �DeLLIS: A Data Mining Process for
Fault Localization�, in : Int. Conf. Software Engineering (SEKE), Knowledge Systems Institute
Graduate School, p. 432�437, 2009.

[15] M. Ducassé, S. Ferré, �Aide à la décision multicritère : cohérence et équité grâce à l'analyse
de concepts�, in : Modèles et Apprentissage en Sciences Humaines et Sociales, Juin 2009.

[16] M. Ducassé, �(C)LP Tracing and Debugging�, in : 25th International Conference on Logic
Programming, ICLP 2009, P. M. Hill, D. S. Warren (editors), Lecture Notes in Computer Science,
5649, Springer, p. 38, July 2009.

[17] S. Ferré, �E�cient Browsing and Update of Complex Data Based on the Decomposition of
Contexts�, in : Int. Conf. Conceptual Structures, S. Rudolph, F. Dau, S. O. Kuznetsov (editors),
LNCS 5662, Springer, p. 159�172, 2009.

Internal Reports

[18] S. Ferré, �Navigating the Semantic Web with Logical Information Systems�, in-
ternal publication number 1934, Institut de Recherche en Informatique et Systèmes
Aléatoires (IRISA), August 2009, http://www.irisa.fr/centredoc/publis/PI/2009/

navigating-the-semantic-web-with-logical-information-systems.

Miscellaneous

[19] M. Ducassé, �Cours de conception participative dans la formation d'ingénieur en informatique�,
Poster aux Rencontres �Pédagogie et Formations d'Ingénieurs�, Mars 2009, INSA de Toulouse.

27


	Team
	Overall Objectives
	Overview
	Key Issues

	Scientific Foundations
	Logics for Information Systems
	Concept Analysis
	Logical Querying, Navigation, and Data-mining
	Genericity and Components
	Logic Functors
	Categorial Grammars

	Application Domains
	Geographical Information Systems
	Mining Software Repositories

	Software
	LISFS
	GEOLIS
	Camelis
	LogFun
	Typed grammars

	New Results
	GEOLIS: a Logical Information System for Organizing and Searching Geographical Data
	Dynamic Taxonomies and Faceted Search: Theory, Practice, and Experience
	Organizing and browsing a collection of documents with Camelis
	Efficient Browsing and Update of Complex Data Based on the Decomposition of Contexts
	Data Mining for Fault Localization
	Multi-criteria decision support : consistency and fairness thanks to formal concept analysis
	Alert Correlation in Intrusion Detection
	Optional and iterated types for Pregroup Grammars
	Assessment of achievements

	Contracts and Grants with Industry
	NXP Software
	ECOMER

	Other Grants and Activities
	International Collaborations
	National Collaborations

	Dissemination
	Involvement in the Scientific Community
	Teaching

	Bibliography

